
Security of GPS/INS based On-road Location
Tracking Systems

Sashank Narain, Aanjhan Ranganathan, and Guevara Noubir
Northeastern University, Boston, MA, USA

Abstract—Location information is critical to a wide variety
of navigation and tracking applications. GPS, today’s de-facto
outdoor localization system has been shown to be vulnerable to
signal spoofing attacks. Inertial Navigation Systems (INS) are
emerging as a popular complementary system, especially in road
transportation systems as they enable improved navigation and
tracking as well as offer resilience to wireless signals spoofing
and jamming attacks. In this paper, we evaluate the security
guarantees of INS-aided GPS tracking and navigation for road
transportation systems. We consider an adversary required to
travel from a source location to a destination and monitored by
an INS-aided GPS system. The goal of the adversary is to travel to
alternate locations without being detected. We develop and eval-
uate algorithms that achieve this goal, providing the adversary
significant latitude. Our algorithms build a graph model for a
given road network and enable us to derive potential destinations
an attacker can reach without raising alarms even with the
INS-aided GPS tracking and navigation system. The algorithms
render the gyroscope and accelerometer sensors useless as they
generate road trajectories indistinguishable from plausible paths
(both in terms of turn angles and roads curvature). We also
design, build and demonstrate that the magnetometer can be
actively spoofed using a combination of carefully controlled coils.
To experimentally demonstrate and evaluate the feasibility of the
attack in real-world, we implement a first real-time integrated
GPS/INS spoofer that accounts for traffic fluidity, congestion,
lights, and dynamically generates corresponding spoofing signals.
Furthermore, we evaluate our attack on ten different cities using
driving traces and publicly available city plans. Our evaluations
show that it is possible for an attacker to reach destinations
that are as far as 30 km away from the actual destination
without being detected. We also show that it is possible for
the adversary to reach almost 60–80% of possible points within
the target region in some cities. Such results are only a lower-
bound, as an adversary can adjust our parameters to spend more
resources (e.g., time) on the target source/destination than we
did for our performance evaluations of thousands of paths. We
propose countermeasures that limit an attacker’s ability, without
the need for any hardware modifications. Our system can be used
as the foundation for countering such attacks, both detecting and
recommending paths that are difficult to spoof.

I. INTRODUCTION

The ability to track one’s location is important to a wide
variety of safety- and security-critical applications. For exam-
ple, logistics and supply chain management companies [1], [2],
[3] that handle high-value commodities (e.g., currency notes)
continuously monitor the locations of every vehicle in their
fleet carrying valuables to ensure their secure transportation to
the intended destination. Law enforcement officials use ankle
bracelets [4], [5] to monitor the location of defendants or
parole and notify them if the offender strays outside an allowed
area. Ride-hailing applications such as Uber and Lyft use

location information for tracking, billing, and assigning drivers
to trips. Furthermore, the locations of public transport [6], [7],
[8] are continuously monitored to ensure smooth and timely
operation of services. With the advent of autonomous vehicles
and transport systems, the dependence on location information
is only bound to increase. The majority of above applications
rely on GPS [9], the de facto outdoor localization system in
use today. It is estimated that more than 8 billion GNSS1

devices [10] will be in use by the year 2020.
However, it has been widely demonstrated that GPS is

vulnerable to signal spoofing attacks. One of the main reasons
is the lack of any form of signal authentication. It is today
possible to change the course of a ship [11], force a drone to
land in a hostile area [12] or fake the current location in a road
navigation system [13] by simply spoofing GPS signals. The
increasing availability of low-cost radio hardware platforms
make it feasible to execute such attacks with less than few
hundred dollars worth of equipment. There has been several
evidences of jamming and spoofing reported in the media.
For example, as quoted in Gizmodo [14] “Because the toll-
taking for commercial trucks relies on GPS tracking, they can
avoid paying through jamming. If a $45 device made your
daily commute free, you too might be tempted to commit a
federal crime.” Another report [15] mentions “Gary Bojczak
admitted buying an illegal GPS jammer to thwart the tracking
device in his company vehicle”. Several cryptographic [16],
[17], [18], [19] and non-cryptographic [20], [21], [22], [23],
[24], [25], [26] countermeasures have been proposed to detect
or mitigate signal spoofing attacks. These techniques are either
unreliable (e.g., large number of false alarms), effective only
against naive attackers or require modifications to the GPS re-
ceiver/infrastructure. Alternate localization technologies using
Wi-Fi or Cellular [27], [28] lack the accuracy and coverage
required for the mentioned applications, consume significant
amount of power and are susceptible to interference.

Inertial navigation i.e., the use of sensors such as accelerom-
eter, gyroscope and compass to navigate during temporary
GPS outages have been around for decades, specifically in
aircrafts, spacecrafts and military vehicles [29], [30], [31].
The advancements in sensor manufacturing technologies have
resulted in widespread integration of these sensors into many
commonly used devices such as smart phones, tablets, fitness
trackers and other wearables. Many vehicle tracking and au-

1Global Navigation Satellite Systems (GNSS) is an umbrella term for
satellite based localization systems such as GPS, Galileo, Glonass etc.

tomotive navigation systems have integrated GPS with inertial
measurement units to improve localization and tracking of
individual vehicles [32], [33], [34], [35]. Inertial sensors are
key to the balancing and navigation technologies present in
modern segways. Low-cost inertial sensors have also prolif-
erated into the consumer drone industry today. One of the
key advantages of inertial navigation is its robustness and
resilience to any form of wireless signal spoofing and jamming
attacks as there is no need for the sensors to communicate or
receive information from any external entity such as satellites
or other terrestrial transponders. This makes them very attrac-
tive for use in security- and safety-critical localization and
tracking applications where GPS (or any wireless) spoofing
and jamming attacks are a concern. The main drawback
of inertial navigation units is the accumulating error of the
sensor measurements. These accumulated sensor measurement
errors affect the estimated position and velocity over a longer
duration of time and hence limit the maximum period an
inertial unit can act independently. This affects aerial and
maritime navigation capabilities significantly as the tracked
vehicle has all the six degrees of freedom to move. However,
in the context of road navigation, the vehicle is limited by the
road network and can only navigate within the constraints of
these existing roadways. These inherent constraints imposed
by the road networks have made low-cost inertial sensors very
valuable for quick attack detection and immediate tracking of
cheating entities [36], [37], [38], [39], [40], [41].

In this work, we evaluate the security guarantees of
GPS/INS based on-road location tracking systems. Specif-
ically, we address the following research questions: Given
a geographic area’s road network and assuming that both
GPS and inertial sensor data are continuously monitored for
tracking an entity’s location, is it possible for an attacker to
fake his navigation path or final destination? If yes, what are
the attacker’s constraints and possibilities? Can we exploit the
physical motion constraints that exist in an urban road network
and design a secure navigation algorithm that generates travel
routes that are hard to spoof? For example, can a driver of a
vehicle carrying high-value commodities (e.g., currency notes)
spoof his assigned route and deviate without detection by the
monitoring center? Can a parole with GPS/INS ankle monitor
spoof his location and travel routes without detection?

We make the following contributions. First, we demonstrate
that it is indeed possible for an attacker to hijack vehicles far
away from the intended destination or take an alternate route
without triggering any alarms even though the GPS location
as well as inertial sensors are continuously monitored. We
develop a suite of algorithms which we refer to as ESCAPE
that leverage the regular patterns that exist in urban road
networks and automatically suggests potential alternate escape
routes while spoofing the assigned route with start point s, and
end point d. Spoofing means that the adversary will travel on
an alternate path indistinguishable from the spoofed (assigned)
path. Our ESCAPE suite of algorithms accounts for intersec-
tions turn angles, roads curvatures, and magnetometer bearings
to calculate the escape routes an attacker can take without

detection while spoofing. We implement a real-time integrated
GPS/INS spoofer that can dynamically generate spoofing
signals depending on the current traffic fluidity, traffic lights,
and any unexpected congestion the attacker might encounter
while driving the escape path. We note that our prototype is,
to the best of our knowledge, the first integrated GPS/INS
spoofing system that can, in real-time, dynamically adjust
the spoofing signals based on the true conditions. We further
evaluated our attack’s performance using open source city
plans and driving traces in ten major cities across the globe.
Our simulation results show that an attacker can potentially
take the vehicle as far as 30 km before the monitoring system
can detect a potential attack. We also drove on ten different
paths of varying lengths using our real-time integrated spoofer
and our results show that the attacker can hijack the vehicle to
more than 2 km (the average deviation for our city), without
once losing a GPS lock and with a maximum delay of 60ms
between the real and spoofed paths. Note that even after
detection, the tracking system has no knowledge of the true
location. Our attack affects several services and applications
with effective monetary value running into several millions
of dollars. Our attacks essentially renders the gyroscope and
accelerometer useless by generating paths acceptable to the
monitoring system, but have a signature indistinguishable
from the trajectory effectively traveled by the adversary. For
the magnetometer, a sensor that can play a critical role in
detecting the incongruence of the claimed trajectory with the
measured heading, we built and demonstrated the effectiveness
of a magnetometer-spoofing device that physically generate a
magnetic field compatible with the spoofed trajectory. Finally,
we turn around our ESCAPE suite of attack algorithms to build
a countermeasure that the tracking services can run to mitigate
such spoofing attacks. Specifically, we modified ESCAPE to
output secure navigation routes that can be assigned given a
start and end point that limit the attacker’s possibilities.

II. BACKGROUND

A. Overview of GPS

GPS is today the de-facto outdoor localization system used.
GPS consists of more than 24 satellites orbiting the earth. Each
satellite is equipped with high-precision atomic clocks and
transmits messages referred to as the navigation messages that
are spread using pseudorandom codes unique to that satellite.
The GPS receiver on the ground receives these navigation
messages and estimates their time of arrival. Based on the
time of transmission contained within the navigation message
and its time of arrival, the receiver computes its distance to
each of the visible satellites. Once the receiver acquires the
navigation messages from at least four satellites, the GPS
receiver estimates its own location and precise time.

B. GPS Spoofing Attacks

Civilian GPS is easily vulnerable to signal spoofing attacks
due to the lack of any signal authentication and the publicly
known spreading codes for each satellite, modulation schemes,

(a) Path drift

0 200 400

Time (s)

0

200

A
n
gl
e
(d
eg
)

X Axis

Y Axis

Z Axis

(b) Gyroscope drift

Fig. 1: The constraints imposed by the road networks lead to
better accuracy in tracking road applications. Blue path - route
estimate with road constraints. Green path - no constraints.

and data structure. A GPS signal spoofing attack is a physical-
layer attack in which an attacker transmits specially crafted
radio signals that are identical to authentic satellite signals.
In a signal spoofing attack, the objective of an attacker may
be to force a target receiver to (i) compute a false geographic
location, (ii) compute a false time or (iii) disrupt the receiver
by transmitting unexpected data. Today, with the increasing
availability of low-cost radio hardware platforms [42], [43]
and open source GPS signal generation software [44], it is
feasible to execute GPS spoofing attacks with less than $100
of equipment. GPS signal generators can be programmed to
transmit radio frequency signals corresponding to a static posi-
tion (e.g., latitude, longitude and elevation), or simulate entire
trajectories. For example, an attacker can spoof the navigation
route of a vehicle carrying high-value items and hijack it to
arbitrary locations without raising alarms. The operators of
ride hailing services can fake the route taken. Furthermore,
GPS spoofing attacks can delay or even prevent emergency
support services from reaching intended destinations.

C. Inertial Sensors Aided Navigation and Tracking

The need to operate effectively in scenarios where GPS
is inaccessible, unreliable or potentially jammed or spoofed
by adversaries has led to the increased interest in building
complementary navigation solutions and spoofing detection
techniques. Several countermeasures and alternative localiza-
tion techniques have been proposed. Of them, inertial sensors
are emerging as a popular choice for two main reasons. First,
inertial measurements are not affected by wireless jamming
and are therefore resilient to denial of service attacks. Second,
their widespread availability in majority of modern smart-
phones makes them easy to deploy and integrate into existing
navigation and tracking infrastructure without the need any
hardware or software modifications to the GPS receiver.

Inertial navigation is the process of integrating the readings
of select sensors such as accelerometers, gyroscopes, and
magnetometer into a complete three-dimensional position,
velocity, and orientation solution. Inertial navigation systems
are classified as dead-reckoning, since the estimation process
is iterative and uses prior information i.e., calculating from
some previously known navigation solution. Accelerometers
measure both gravitational and non-gravitational acceleration

along each of the three axes. The gyroscopes measure the rate
at which an object is rotating, and are used to compute the
attitude and heading of the object. The gyroscope measure-
ments aid the accelerometer in figuring out the orientation of
the object. Typically, sets of three accelerometers and three
gyroscopes, both orthogonally aligned, are combined into a
single inertial measurement unit (IMU). The setup commonly
contains additional analog and digital circuitry, including
conversion and calibration components. The magnetometer
measures the magnetic fields and thus determines the cardinal
direction to which the object is pointing.

One of the main drawbacks of low-cost inertial sensors
(e.g., MEMS [45]) is that the process of dead reckoning in
general, results in a build-up of errors over the course of the
measurement. Since the position, velocity, and attitude updates
are products of single or double integration of raw inertial
sensor readings, the errors propagate and affect the final
position, velocity and attitude estimates. For example, due to
the single integration performed on angular rate measurements,
a constant gyroscope bias will produce a linearly growing
angular error, the gyro noise will produce a ‘random walk’
growing with the square root of time. The double integration
required to transform the accelerometer output to position
produces a quadratically growing position error and a second-
order ‘random walk’, for a constant accelerometer bias and
white noise respectively. In numerical terms, a 25μm2s−1

accelerometer bias (≈ 245μg) of a navigation grade sensor
would produce a 1.59 km position error in one hour. The
aggravation of sensor errors becomes critical to aviation and
maritime applications as the vehicles have more degrees of
freedom to move. However, on road, the vehicles are limited
by the available road networks and are therefore severely
constrained in their possible trajectories. Figure 1 illustrates
how the bias errors affect the final position estimates in a
road navigation scenario (with motion constraints) and aerial
(without any motion constraints). These constraints imposed
inherently by the road networks has led to the emergence
of using inertial sensors to complement GPS navigation and
tracking solutions. Moreover, the inertial sensors are largely
immune to jamming which makes them invaluable to the safety
and security-critical applications described previously.

III. SPOOFING INS-AIDED LOCALIZATION SYSTEMS

In this section, we demonstrate spoofing attacks on road
navigation and tracking applications that rely on both GPS
and the inertial sensors for the localization. To the best of our
knowledge, this is the first demonstration of spoofing attacks
on GPS/INS localization systems.

A. System and Attacker Model

Our attack is independent of how the GPS/INS system is
deployed i.e., it can either be an app on a trusted smartphone
or a specialized tracking device (e.g., ankle monitors) installed
on the entity of interest. The main objective of the monitoring
system is to keep track of the location and navigation routes of
the entities. We assume an attacker capable of generating and

transmitting fake GPS signals corresponding to any location
or navigation route of his choice using tools such as gps-sdr-
sim [44]. The goal of the attacker is to spoof his location and
navigation trajectory without being detected. For example, the
attacker can try to deviate from an assigned navigation route
and reach as far away as possible from the intended destination
before an anomaly is detected and an alarm raised. At that
moment, the adversary’s location remains undetermined. Al-
ternately, the attacker starts and ends at the intended locations,
however using a different route than the one being reported
to the monitoring station. We assume an attacker with full
physical access to the entity being tracked and is aware of
the GPS/INS system deployed for monitoring. For this work,
we assume that the tracking device itself is tamper-proof. For
example, the attacker can be a driver of a cargo company (or
a hijacker) who has full access to the vehicle. He regularly
drives this vehicle to transport high-value goods, and is aware
of the GPS and INS based tracking system employed by the
company. However, he cannot modify the software on the
smartphone or physically tamper the tracking device.

B. Overview of the Attack

The primary objective of the attacker is to fake the reported
navigation route without raising suspicion. Note that simply
spoofing GPS signals is not sufficient as the INS measurements
will indicate discrepancies between the reported GPS location
and the inertial estimates. In order to successfully execute the
attack, it is now necessary for the attacker to identify and spoof
navigation paths that have similar distances, road curvature,
and turn angles to minimize the discrepancies between the
INS and GPS estimates. Our system, which we refer to as
ESCAPE, exploits the regular patterns that exist in many
cities’ road networks and identifies navigation paths that are
similar to the route that is reported to the monitoring center.
As a result, the inconsistencies between the INS and GPS
estimates are negligible and the attack is successfully executed.

The attack begins with the attacker providing the start and
end points of the assigned trip to ESCAPE. ESCAPE computes
two sets of paths: (i) spoofed paths and (ii) escape paths. The
spoofed paths are a set of paths that exist between the start
and end points of the trip. These are the paths that the attacker
will generate fake GPS signals and spoof the receiver to report
to the monitoring center. These should be plausible paths for
the source and destination locations. For every spoofed path,
ESCAPE computes a set of escape paths which the attacker
can use to deviate from the intended course while executing
the spoofing attack. In other words, a spoofed path is the route
that is reported to the monitoring center and the escape path
is the true route taken by the attacker to reach an alternate
destination. The attacker then picks an escape path that enables
him to reach his intended location. The intended location can
either be a point far away from the assigned destination (to buy
the adversary some time) or just a diversion before reaching
the assigned destination. The selected escape path corresponds
to a spoofed path which the attacker can use to generate
spoofing signals. Figure 2 illustrates an example of a spoofed

Fig. 2: A spoofed path example in Manhattan and the escape
destinations generated for that single spoofed path. Our algo-
rithms generate 100 distinct spoofed paths for a given start
and end location, allowing an adversary to undetectably reach
an even larger set of escape destinations.

path generated between two end points in Manhattan (green
line from green marker to red marker) and the destinations
of the escape paths (red points) generated for this particular
spoofed path. Finally, the attack is executed by spoofing the
tracking device to report the spoofed path while the attacker
actually drives the escape path.

C. Internals of ESCAPE

ESCAPE consists of three main building blocks: (i) graph
constructor, ii) spoofed paths generator and (iii) escape paths
generator. The graph constructor generates directed graphs
based on the road network present in the geographic area
of interest. Our attack does not enforce any limits on the
geographic area. As the name suggests, the spoofed and escape
paths generator blocks are responsible for computing and
identifying spoofed and escape paths for the attacker.

1) Graph Constructor: The paths for an area G are
generated from a directed graph GG = (V,E). We chose
OpenStreetMap [46] as the map provider as it has accurate
road information for major cities of the world along with
various meta-data such as types of roads and buildings. Each
geographic area can be represented as G = (A, C, θ, ϑ), where
A is a set of atomic sections and C = {χ = (s, s′)|s, s′ ∈ A}
is a set of connections where χ indicates a connection between
two atomic sections s and s′. We define an atomic section
as a section of road between two intersections, such that it
preserves the road’s curvature but does not contain turns or
sharp curves. A connection is an intersection connecting two
atomic sections. These connections may extend the same road
or may turn into another road. The turn angle associated with
a connection χ is given by the function θ(χ) and the atomic

V 1

V 8
V 9

V 4

 V
3

V 6

 V
5

(a) Example Road Network

V1 V2 V7

V8

V9V5 V6

V3 V4

(b) The Graph Representation

Fig. 3: Sample road and corresponding graph representation.

section’s curvature is given by the function ϑ(s) as defined in
Equation 1. We represent each atomic section s by a vertex
v ∈ V and each connection χ by an edge e ∈ E. Figure 3
shows an example road network and the corresponding
graph construction. A default speed limit is assigned to each
atomic section based on the road type in OpenStreetMap.
For example, a ‘motorway’ symbolizes interstates in the
USA that have speed limits ≈ 65mph. The length, speed
limit, and geographic coordinates of the atomic section s
are stored as attributes of the corresponding vertex v. The
length and speed limit are used to calculate the fastest time
of travel between the end points. It is important to note that
this is a one time initialization step for every geographic area.

2) Spoofed Paths Generator: Spoofed paths generator
searches and compiles possible paths between the source and
destination points assigned to a specific trip. The spoofed paths
are defined as a set of N routes S = {S1, . . . ,SN} such
that Si has a higher likelihood of spoofing than Sj , where
i < j and Si,Sj ∈ S . Each route Si contains a list of
geographic coordinates starting and ending at the input source
and destination. Given the geographic area of the attacker,
the algorithm generates paths that maximize the probability
of finding similar road curvature and turn angles in other
sections of the area. Therefore, it maximizes the number of
escape paths. It leverages the fact that urban areas have regular
patterns where most roads typically run straight and turn
angles are at right angles. This is achieved by implementing
a scoring scheme that ranks paths containing such regular
patterns higher than other non-regular paths between the same
source and destination. Figure 4 shows the curvature and turn
angle distribution for Manhattan and provides an intuition for
our approach. We note that most turn angles are 90◦ which
implies that given a path with all ≈ 90◦ turns, the probability
of finding another path with similar turn angles will be high.

The idea underlying the spoofed paths generator is to find
paths that contain attributes likely to be found in other sections

Input: G = (V,E), Loc(s), Loc(d), NP

Output: S = {p1, . . . , pNP
}

1 Initialization : S ← ∅; p ← []; v ← ∅
2 s ← getSourceV ertex(Loc(s))
3 d ← getDestinationV ertex(Loc(d))
4 GenerateSpoofedPaths(s, d)
5 S ← selectTopPaths(S, NP)

6 function GenerateSpoofedPaths(s, d):
7 p ← p+ [s]
8 v ← v ∪ {s}
9 if s = d then

10 S ← S ∪ {p}
11 else
12 for e ∈ V such that (s, e) ∈ E do
13 if e �∈ v and Filter(s, e, p) passed then
14 p.score ← p.score ∗ Score(s, e, p)
15 GenerateSpoofedPaths (e, d)
16 end

17 p ← p− [s]
18 v ← v − {s}

Algorithm 1: Spoofed Paths Algorithm

of the graph. When such paths are found, they increase the
likelihood of finding similar paths to other destinations in the
graph. To this extent, we implement a scoring scheme that
analyses the road curvature and turn angles of the geographic
area and maximizes the score of paths that contain curvature
and turns having a higher probability of occurrence. The
path search algorithm is implemented as a modified Depth
First Search (DFS) algorithm. A typical DFS implementation
computes a single path between a given source and destination.
This limits an attacker’s ability to generate multiple spoofed
paths between these end points. We extend the basic DFS
algorithm to compute all plausible non-cyclic paths between
the source and destination. A path is plausible if it is within
20% of the shortest path. To scale the algorithm to large graphs
(typical for large cities), we incorporate filtering and scoring
functions in order to speed up computation by eliminating
unlikely paths and pruning low scoring paths at every iteration.

The spoofed paths generator algorithm (Algorithm 1) takes
as input a graph G = (V,E), the source Loc(s) and desti-
nation Loc(d) geographic coordinates, and a count of output
paths NP . The algorithm outputs a set of spoofed paths S
sorted by the path score. The algorithm starts by initializing
the current path p and a set of visited vertices v (line 1). It uses
the attacker’s source s and destination d vertices as parameters
to GenerateSpoofedPaths to recursively compute the
output paths (lines 2 – 4). In the end, these paths are sorted by
score and the top NP paths are saved as the final set of spoofed
paths S (line 5). Inside the GenerateSpoofedPaths
function, the algorithm adds the vertex s to the current path p
and the visited set v (lines 7 – 8) and adds this path p to the
output set S when the destination vertex is found (lines 9 – 10).

0 20 40 60

Curvature (deg)

0

5000

10000

15000

20000

25000

C
ou

n
ts

(a) Curvature Distribution

50 100 150

Turn Angle (deg)

0

2000

4000

6000

8000

C
ou

n
ts

(b) Turn Distribution

Fig. 4: Curvature and Turn Distribution for Manhattan.

Otherwise, the algorithm traverses the path’s outgoing edges
e such that (s, e) ∈ E. During this traversal (lines 12 – 16),
filtering is applied to prune edges that are unlikely to occur
(line 13) and a scoring function is applied to rank remaining
edges (line 14). The filtering and scoring methodology are
described next. The GenerateSpoofedPaths function is
recursively invoked for each outgoing edge e (line 15). Note
that, in the end, the source s vertex is removed from the current
path p and visited set v to backtrack and proceed with the
depth-first search (lines 17 – 18).

Scoring: Recall that all the vertices of the graph G = (V,E)
are atomic sections, and the edges connect two atomic sections
(c.f. Section III-C). The turn angle of an edge χ = (s, s′),
where (s, s′) ∈ E, is given by the function θ(χ) and the
curvature of an atomic section s is given by the function ϑ(s).
This curvature ϑ(s) can be computed from the geographic
coordinates of the atomic section. Let B = {B1, . . . ,BN}
denote the set of bearings computed from N geographic
coordinates. Let B0 be the bearing of an imaginary line
connecting the first and last geographic coordinates of this
atomic section. The curvature ϑ(s) of this atomic section is
calculated as the normalized absolute difference of all bearings
in B from the reference bearing B0, i.e.,

ϑ(s) =

∑N
i=1 |Bi − B0|

N
. (1)

The set of all road curvatures ϑ = {ϑ(s′)|∀s′ ∈ V } and turn
angles θ = {θ(χ′)|∀χ′ ∈ E} represents the road structure
of the geographic area. Figure 4 shows these attributes for
Manhattan. Note that most of the calculated curvature values
are 0◦ and most turn angles are at 90◦. This is typical of
Manhattan and other cities synonymous with grid-like road
structures. To use this information for scoring, a probability
distribution table is precomputed for the area. This table can
be represented as P (G) = {P (c, t)|c ∈ ϑ, t ∈ θ}, where each
entry is the probability of occurrence of a specific curvature
and turn (angles rounded to the nearest integer) combination.

A path on the graph with M vertices can be represented
using each vertex’s curvature and the next edge’s turn angle,
i.e., p = [(c1, t1), . . . , (cM−1, tM−1), (cM , 0)], where ci ∈ ϑ
and ti ∈ θ. In the beginning, the path is initialized to a
score of 1. For each vertex ŝ and edge χ̂ = (ŝ, s′) added to

the path, the probability P (ϑ(ŝ), θ(χ̂)) is obtained from the
table P (G). Note that, owing to the algorithm construction, all
connecting edges have equal probability of occurrence and are
independent of the current path. Therefore, the score at each
vertex is multiplied with the previous path score to calculate
the compound probability of all vertices in the path. The final
path score is calculated as

score =

M∏

i=1

P (ϑ(si), θ(χi)). (2)

Filtering: The algorithm is designed to generate all paths
between the input source and destination. For a large graph,
the number of possibilities can be in the order of billions
making this search very inefficient. To scale the computation,
the algorithm uses the following filters to speed-up the search
of plausible paths, while enabling ranking. Given the current
path p, source s, edge e and destination d, the algorithm
filters the edge when the path’s distance summed with the
euclidean distance between the edge and destination exceeds
a maximum allowed distance, i.e., d(p)+ d(c, d) > F ∗ d(PI)
where d(.) denotes the distance of a path and PI denotes
the shortest time path between the source and destination.
For this work, we set F = 1.2 to only allow paths that
are similar in distance to the computed shortest path. The
algorithm also maintains the best N paths at all times, and
any new path p′ having a worse score is filtered. For our
evaluation, we chose N = 100 in order to determine the
attack efficiency in many cities for many paths (the algorithm
runs in around 1 minute for each source/destination pair).
However, a determined attacker with sufficient resources
can easily use a larger N to increase the count of spoofed
paths. Furthermore, the adversary will only be interested in a
single source/destination pair of locations on each instance
of the attack, and can therefore take more time to derive
the largest set possible of spoofed and escape paths. The
shortest path PI is also bounded by a rectangle (with added
padding of m = 1000 meters) such that all edges outside the
rectangle become out of scope. Note that the above algorithm
parameters are tunable and set to conservative values in this
work. We believe that the attack performance can substantially
improve when these parameters are tuned more aggressively,
e.g., setting F = 1.5 and N = 1000 (large values of N are
very reasonable when focusing on a single source/destination).

3) Escape Paths Generator: The idea behind the escape
paths generator is to find all the paths an attacker can travel
to reach different destinations without raising alarms. To avoid
detection, all computed paths must have similar accelerometer
and gyroscope patterns to spoofed paths. The escape paths
corresponding to a spoofed path Si are a set of M routes
Ei = {Ei1 , . . . , EiM } such that Eij �= Si, but semantically
similar to Si, for any Eij ∈ Ei. The paths are semantically
similar when they have similar distances, road curvature and
turn angles. These paths start at the input source, but end at
different destinations from the intended destination.

Input: G = (V,E), SI

Output: NP , E = {p1, . . . , pNP
}

1 Initialization : E ← ∅; NP ← 0; p ← []; v ← ∅
2 s ← getSourceV ertex(SI)
3 t ← getTurnsCount(SI)
4 GenerateEscapePaths(s, t)

5 function GenerateEscapePaths(s, t):
6 p ← p+ [s]
7 v ← v ∪ {s}
8 if len(p.turns) > t then
9 return

10 if len(p.turns) = t then
11 E ← E ∪ {p}
12 NP ← NP + 1

13 for e ∈ V such that (s, e) ∈ E do
14 if e �∈ v and Filter(s, e, p,SI) passed then
15 p.curve ← updateCurvature(s, e, p)
16 p.turns ← updateTurns(s, e, p)
17 p.score ← p.score ∗ Score(s, e, p,SI)
18 GenerateEscapePaths (c, t)
19 end

20 p ← p− [s]
21 v ← v − {s}

Algorithm 2: Escape Paths Algorithm

Given a spoofed path, the escape paths algorithm (Algo-
rithm 2) generates a set of escape paths with similar distances,
road curvatures and turn angles to the spoofed path. The
algorithm is similar to that of the spoofed paths generator.
The main differences being that the algorithm uses each
spoofed path SI generated in the previous stage as input, where
SI ∈ S , and outputs a set of escape paths E . Also, the escape
paths generator algorithm uses the turn count in the spoofed
path as a parameter to GenerateEscapePaths (lines 3 –
4) and checks whether the desired turn count has been reached
for the escape path under consideration (lines 10 – 12).

The deviations from the spoofed paths (to avoid INS de-
tection) can be determined by analyzing the noise sensitivity
of the inertial sensors used for tracking. We demonstrate that
commodity accelerometers and gyroscopes present challenges
in accurately calculating the distances, road curvature and
turn angles which can allow an attacker to travel to multiple
destinations without detection. We show that magnetometers
are easily spoofed rendering them incapable of detecting
anomalies in the heading direction of the vehicle. Our analysis
of the accelerometer and gyroscope noise and the potential of
magnetometer spoofing are reported in Section IV-A. Unlike
the spoofed paths generator algorithm that ranked paths by
score, the escape paths computed by this algorithm always
have a score of 1. The intuition is that all paths that pass
the algorithm’s filters are certain to avoid detection by INS
tracking systems.

Filtering: In this algorithm, we represent the input spoofed
path by SI = {(dI , ϑI , θI)} where dI and ϑI denote the set
of distances and road curvatures between intersections and θI
denotes the turn angles at the intersections. We first present
the idea of filtering using just turn angles θI , and later expand
the discussion to include distances dI and road curvatures ϑI .
Let θI = {θ(χ1), . . . , θ(χK)} be the derived turn angles of
the spoofed path, where K is the number of intersections.
A turning connection χ′ = (s, e) in the escape path, where
(s, e) ∈ E, is valid for an intersection k ∈ K when the turn
angle difference is below a set threshold value Tθ, i.e., |θ(χk)−
θ(χ′)| ≤ Tθ. The parameter Tθ depends on the noise sensitivity
of the gyroscope sensor.

The filter for distances dI is similar to turn angles. Let dI =
{d1, . . . , dK+1} be the derived distances of the spoofed path
traveled between K intersections. For an intersection k ∈ K,
dk represents the path’s distance from the previous intersection
k− 1, i.e., dk = d(k)− d(k− 1) where d(.) denotes the total
distance of the spoofed path at a given intersection. Note that
k = 0 is the source of the path and k = K+1 is the destination
of the path. A connection χ′ in the escape path is valid for
intersection k when its path distance from previous intersection
k − 1 is between a range defined by the kth intersection of
the spoofed path, i.e., dk ∗ Td1 ≤ d’(k) − d’(k − 1) ≤ dk ∗
Td2. Here, d’(.) denotes the distance of the escape path at an
intersection. The above parameters Td1 and Td2 depend on the
noise sensitivity of the accelerometer sensor.

The filter for road curvature ϑI is more complex than turn
angles and distances. The reason is that, given an intersection
k ∈ K, the distance dk and turn angle θ(χk) are scalars
while ϑ(sk) is a vector that must be derived from bearings of
the road segment sk between intersections k − 1 and k. Two
different vectors of bearings Bk and B′ for road segments sk
and s′, respectively, cannot be compared directly as they may
be of different lengths and in different orientations, e.g., Bk

may be directed north when B′ is directed east. Our idea of
calculating the road curvature similarity, denoted by C(sk, s′),
is to translate these bearings to the same size N using linear
interpolation, convert the interpolated bearings to curvature,
and then compare the curvatures. Let BIk and B′

I represent
the interpolated bearings for Bk and B′, respectively. The cur-
vature of a road segment s with M bearings B = [b1, . . . , bM]
can be derived by subtracting successive bearings for all the
bearings in B, i.e., ϑ(s) = [(b2 − b1), . . . , (bM − bM−1)]. Let
ϑ(sk) and ϑ(s′) be the curvatures derived from BIk and B′

I ,
respectively. The curvature similarity of the two segments can
then be represented as:

C(sk, s′) = {|ck − c′| ∀ck ∈ ϑ(sk), ∀c′ ∈ ϑ(s′)}. (3)

A connection χ′ in the escape path is valid for intersection
k when the maximum curvature similarity value is below a
set threshold value Tϑ, i.e., max(C(sk, s′)) ≤ Tϑ. Like turn
filtering, this parameter Tϑ also depends on the gyroscope
noise sensitivity.

To avoid detection, the above discussed constraints must
hold for all K intersections of the escape path. Therefore, an

0 5 10 15

Accelerometer Errors (m)

0

50

100

150

200

250

C
ou

n
ts

(a) Distance errors

−40 −20 0 20 40

Turn Angle Errors (deg)

0

25

50

75

100

125

C
ou

n
ts

(b) Turn angle errors

0 10 20 30 40

Curvature Errors (deg)

0

2000

4000

6000

8000

10000

C
ou

n
ts

(c) Curvature errors

0 50 100 150

Bearing Errors (deg)

0

1000

2000

3000

C
ou

n
ts

(d) Bearing errors

Fig. 5: Sensor error distributions measured in real experiments.

escape path is considered valid if and only if all the following
conditions are met.

|θ(χk)− θ(χ′)| ≤ Tθ, ∀ k = 1, . . . ,K
dk ∗ Td1 ≤ d’(k)− d’(k − 1) ≤ dk ∗ Td2, ∀ k = 1, . . . ,K + 1
max(C(sk, s′)) ≤ Tϑ, ∀ k = 1, . . . ,K + 1

IV. ATTACK IMPACT: IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of our attack
and evaluate its effectiveness in various cities across the globe.
First, we evaluate the accuracy of inertial sensors and derive
realistic noise threshold settings for ESCAPE algorithm. Then,
we describe the details of our experimental setup and the
methodology. Finally, we present the results of our evalua-
tion using two metrics, (i) displacement from the assigned
destination and (ii) coverage area of the escape paths.

A. Accuracy of Inertial Sensors

The sensor data for evaluating the noise sensitivity of
accelerometers and gyroscopes was obtained from an open
dataset [47]. This dataset comprises of accelerometer, gyro-
scope and magnetometer samples recorded from ≈ 140 real
driving experiments in the cities of Boston and Waltham, MA,
USA. The sensor samples were collected on 4 smart phones
(HTC One M7, LG Nexus 5, LG Nexus 5X, and Samsung S6).
The GPS traces for these routes were also recorded for ground
truth comparison. The work focused specifically on gyroscope
noise during turns. We extend that work to also include noise
sensitivity when distance is calculated from the accelerometer
sensor, as well as when road curvature is calculated from the
gyroscope sensor.

1) Accelerometer Accuracy: The accelerometer sensor can
be used to calculate the distance traveled for a path. This data
can be represented as a vector a = [(a1 + n1), . . . , (aT +
nT)] sampled at discrete time intervals t ∈ T , where at is the

true acceleration experienced by the device on the x, y and z
axis, and nt is an unknown noise quantity caused by several
factors. For example, the sensors have an inherent bias due
to manufacturing defects such as axis misalignment. Another
source of noise is the vibrations caused by the mechanical
structure of the vehicle and the engine. Additional noise is
induced on the sensor due to external environments such as
road conditions and traffic.

We are interested in finding the range of divergence from
the actual values due to nt, when distance is calculated from
accelerometer data. To obtain this range, we calculate the
distances between intersections using accelerometer data for
each sensor path in the data-set, and compare it to the actual
distances obtained from OpenStreetMap. To reduce the impact
of noise, we perform the calibration and rotation techniques
described in [47] before calculation. We also average multiple
samples together to further reduce the impact from noise.
As distances may significantly vary between intersections,
we represent the distance error as a ratio of the derived
accelerometer distances to the actual distances. More precisely,
if ds is a vector of N derived accelerometer distances and
da is a vector of N actual distances, then errors ea can be
represented as a vector ea = [(ds1/da1

), . . . , (dsN /daN
)].

Figure 5a shows the distribution of the errors ea. Note that the
desired value for an error should be near 1, however, we see
large variations ranging between 0.1 to 5. This indicates that
the accelerometer sensor is unsuitable for distance calculation
and enables an attacker to travel much larger distances than the
intended path. Recall that the escape paths generator algorithm
uses parameters Td1 and Td2 to filter connections of the escape
paths based on distances (Section III-C3). These parameters
are chosen from the error distribution ea such that the allowed
range is based on the 75th percentile of the distribution, i.e.,
Td1 = 0.2 and Td2 = 3.3.

2) Gyroscope and Magnetometer Accuracy: The gyroscope
sensor can be used to measure the turn angles and the curvature
of the path. This data can also be represented as the vector
g = [(g1+n1), . . . , (gT +nT)], where gt is the rate of angular
change experienced by the device on the x, y and z axis, and
nt is an unknown noise quantity. In this case, however, the
impact of nt is not as significant as accelerometers and the
measurements are closer to the actual values.

We are interested in finding the turn angle errors and
the curvature errors calculated from the gyroscope data, in
comparison to the actual values derived from OpenStreetMap.
To calculate the turn errors, we use a similar approach to [47]
in that we define a turn error as the absolute difference between
the gyroscope derived turn angle and the actual turn angle.
However, we are interested in the overall error distribution for
all the phones instead of individual phones. Figure 5b shows
the distribution of the turn angle errors for all the turns in the
data-set. The distribution reaffirms that the gyroscope is much
more accurate than the accelerometer where 75% of the turn
errors are within 5.5◦.

To calculate the curvature errors, recall our technique for
calculating curve similarity C(sk, s′) for two road segments

(a)

(b)

Fig. 6: a) Experimental setup used for magnetometer spoofing.
b) The two-coil system attached to a Google Pixel 2

sk and s′ between the (k − 1)th and kth intersections (Equa-
tion (3)). The road curvature ϑ(sk) is already known in the
form of the gyroscope data. However, this curvature must be
interpolated to the same length as ϑ(s′). Given the union of
curve similarity sets for all K intersections for N sensor paths
C =

⋃N
i=1 Ci, where Ci =

⋃K
j=1 C(sj , s′j), the curvature errors

ec is simply a set of absolute differences between all the
points in the two curves, i.e., ec = {|cs − ca| ∀[cs, ca] ∈ C}.
Figure 5c shows the distribution of the curve errors. Recall that
the escape paths generator algorithm defines parameters Tθ

and Tϑ to filter connections based on turn angles and curvature,
respectively (Section III-C3). Based on the 75th percentile of
the error distributions, we set the parameters to Tθ = 5.5◦ and
Tϑ = 2.8◦ in our evaluations.

We compute the bearing errors using the same technique
as curvature. Figure 5d shows the distribution of the bearing
errors. Note that the errors are much larger than the Gyroscope
owing to nearby magnetic fields from fans, speakers and other
electromagnetic devices. These errors are very difficult to
reduce and requires performing regular hard-iron calibration
of the device inside the vehicle.

3) Magnetometer Spoofing: As a proof of concept, we
built a prototype of a magnetometer spoofer for the Google
Pixel 2 smart phone. Our experimental setup is shown is
Figure 6a and consists of the following modules: (A) an ESP32
microcontroller, (B) a 8-channel relay module, (C) resistors
for controlling current flow, (D) a two coils system, and (E)
a Google Pixel 2 mounted on a car mount. We first identified
the exact location of the magnetometer which is on the top-
left of the phone (42mm from the top and 7mm from left
edge of the phone). We designed and 3D printed a two-coils
system, shown in Figure 6b, that snaps on to the phone and
allows the wrapping of enameled magnet wire. We focused on
controlling the x and y axes as they are easily reachable. Using
two coils each targeting one of the axes allows full control of

(a) Example Route in Manhattan

0 50 100 150

Time (s)

0

200

B
ea
ri
n
gs

(d
eg
)

(b) Spoofed Bearings

Fig. 7: Example of magnetometer spoofing.

the magnetic field in a plane. We used the following solenoid
magnetic field formula to estimate the intensity: B = kμ0nI
where k is the relative permeability, μ0 = 4π10−7 H/m, n is
the coil turn density, and I is the electric current. Our coils
turn density n is 155 turns/meter since we used 5 layers of
28 AWG enameled magnet wire. Without a core (k = 1), we
estimated a magnetic field of 98uT with a current of 5mA,
which is strong enough to impact the magnetometer. Note that
if the magnetometer is not accessible in other systems, it is
possible to use larger coils or channel the magnetic field using
materials with higher relative permeability. While the relative
permeability of air is 1, it is 5, 000 for iron, and 200, 000 for
iron annealed in hydrogen. To control the current in each of
the coils, we used the ESP32 microcontroller (Heltec WiFi Kit
32) with a sufficient number of GPIO/DAC pins to control the
8-channel relay module augmented with variable resistors for
current tuning. The spoofer was written in Python and takes as
input a sequence of bearings and durations. It sets the current
in the coils to trigger turns with a timing that matches the
input durations. Figure 7 shows an example spoofing route.

B. Integrated Attack

An integrated GPS/INS/Magnetometer spoofing system is
not trivial. It has to address two categories of challenges:
(1) synchronizing all spoofing components: GPS spoofing
SDR platform, magnetometer spoofing coils, and sensing
components real GPS, and INS sensors; and (2) dynamically
generating the GPS spoofing RF signals consistent with the
real time vehicle trajectory. Handling the synchronization is a
matter of carefully architecting the system and implementing
the control loop. However, real time spoofing of the GPS
and magnetometer to account for traffic conditions such as
traffic lights and fluidity is more challenging. While the
magnetometer is fully under the control of the adversary and
it is therefore a matter of synchronizing the control of the
two coils with the actual turns, the real time spoofing of the
GPS is more challenging. As noted in the related work, there
are various systems that generate offline GPS RF signals for a
pre-determined trajectory. It is challenging when the trajectory
changes in real time as it is critical that the GPS receiver does
not lose the lock on the satellites, which would happen if a
new GPS position is abruptly spoofed.

We extended an existing open source tool [48] that spoofs
GPS RF signals to dynamically interpolate a desired trajectory
in real time, independently adjusting each of the spoofed

0 20 40 60

Curvature (deg)

60

70

80

90

100

P
er
ce
n
t
of

C
u
rv
es

(C
u
m
u
la
ti
ve
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

(a) Curvature Distributions

50 75 100 125 150

Turn Angle (deg)

0

20

40

60

80

100

P
er
ce
n
t
of

T
u
rn
s
(C

u
m
u
la
ti
ve
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

(b) Turn Distributions

Fig. 8: Comparison of the curvature and turn distribution.

satellite signals at a fine grain, therefore enabling the GPS
receiver to maintain its lock and enabling a tight control loop
of the spoofed GPS signal. In order to account for traffic
fluidity, congestion, and lights, we spoof being at a position
that is proportionally equivalent on the physical road section.
Therefore, the spoofed position remains constant when the
vehicle is not moving and this position changes with a velocity
proportional to the real velocity when the vehicle is moving.
The paths are mapped such that when the driver turns on the
real path, the spoofed position also turns on a valid intersection
with a similar turn angle to the real turn. To the best of our
knowledge, this is the first real time dynamic GPS spoofer.
The GPS spoofer also integrates with other sensor spoofing
peripherals, in this case the magnetometer.

C. Evaluation Methodology and Setup

We implemented the ESCAPE attack algorithms in PyPy.
We used two servers running Intel Xeon CPUs at 2.40GHz
with 12 cores and 20GB of RAM to execute the algorithms
and evaluate its performance i.e., how far can an attacker
escape, given a start and end point, without being detected.

Selection of cities: We evaluate the effectiveness of our
attack on the road networks of 10 major cities across the
globe. The following cities were chosen across the continents
of North America, Europe and Asia for the evaluation. The
cities were chosen to represent the entire spectrum of urban
characteristics such as major logistics and transportations hubs,
dense population, city planning (e.g., grid-like or circular),
etc. Figure 8 shows the cumulative road curvature and turn
distributions for all selected cities. Recall that the road curva-
tures are calculated using Equation (1). We can observe that
Chicago and Manhattan have mostly straight roads and right
angled turns while the road networks of London and Paris
have very unique characteristics.

Generation of spoofed and escape routes: The evaluation
was performed by running simulations for every selected city.
This simulation data comprised of 1000 randomly generated
paths in every city, such that the path distances were uniformly
distributed between 1km and 21kms. The intention was to
evaluate the potential of spoofing also as a function of the
path distance. The simulation paths were generated as follows:
(i) a random ‘Home’ and ‘Work’ location were chosen from
OpenStreetMap tags inside the interest area, (ii) the geographic

coordinates of the end points were retrieved, and (iii) the
coordinates were given as input to the attack algorithms to
compute the spoofed and escape paths.

Integrated system: We built an attack evaluation system
that includes a GPS receiver (ublox NEO-M8N) to obtain
the real location of the vehicle in real time, a bladeRF x40
SDR to generate the spoofed GPS signal, our magnetometer
spoofer (described earlier), all connected to a Dell XPS laptop
running the control software. On the target side, we use a
Google Pixel 2 target (fitted with the magnetometer spoofer).
In order to avoid transmitting the spoofed GPS signal over
the air (and potentially interfering with other neighboring
devices), we use a second external GPS receiver with an
external antenna connected to the bladeRF using an RF coax
cable. The second GPS receiver is connected to the Pixel
phone through a USB link. The control software integrating
all the components is written in Python and leverages existing
libraries (e.g., geodesic calculations, nearest node search).

As for the attack setup, we create a mapping between the
escape and spoof paths. The mapping simplifies the spoofing
real time execution, as each attacker’s real location corre-
sponds to a spoofed location. More specifically, we (1) split
both paths into segments such that a segment is a part of road
between two turns, (2) interpolate coordinates of the escape
path such that each coordinate is at exactly 1 meters from
previous coordinate, and (3) interpolate coordinates of spoof
path using escape paths segments, i.e., this interpolation has
exactly the same number of points and the distance is based
on its ratio with the corresponding escape segment.

Executing the Integrated Attack: Three key blocks (Figure 9)
operate in parallel handling different functions (threads). (1)
The first block gets the real GPS location of the attacker
using a ublox NEO-M8N operating at 10 Hz. It uses the GPS
location to compute the nearest escape location on the map,
and the corresponding mapped spoof location on the map. The
spoof bearing can be estimated based on the spoof location.
The efficiency of calculating the spoof location is important to
avoid lags between sensor turns and the spoof GPS turns. To
compute the nearest escape location efficiently, we use a 2D-
Tree (a two dimensional representation of a KD-Tree) which
has an average time complexity of O(log n) with a worst-
case time complexity of O(n), where n is the count of total
coordinates in the escape path. In our experiments, using a
Dell XPS laptop (i7 Quad-Core processor with 16GB RAM),
the average time for computing the spoofed location is ≈ 4ms
with worst-case of ≈ 60ms. This is negligible delay for human
perception. (2) The second block updates the spoofed location
to the bladeRF x40 Software Defined Radio (SDR) every
10ms. To avoid transmitting and disturbing the GPS signals
of neighboring vehicles, the Tx of the SDR was connected
to another ublox NEO-M8N and acted as an external antenna
for the GPS receiver. The device under test (DUT) obtained
signals from this GPS receiver using USB OTG. (3) The third
block updates the spoofed bearing to the magnetometer.

Integrated
Spoofing Software

(Laptop)

GPS Receiver
(ublox NEO-M8N)

GPS Spoofer
(bladeRF x40 SDR)

Magnetometer
Spoofer

GPS Receiver
(ublox NEO-M8N)

Tx

Mobile
Device

Fig. 9: Block diagram of the integrated spoofing system.

D. Evaluation Results

We measure the performance of our attack using the two
metrics: (i) displacement and (ii) coverage area.

Displacement from Intended Destination: We define dis-
placement from the intended destination as the farthest dis-
tance an attacker can reach for a chosen trip (i.e., given a start
and end point) without being detected. For every evaluation
route, escape and spoofed paths are generated as described
previously. We then calculate the euclidean distance between
the destinations an attacker reaches by taking the escape route
and the actual intended destination i.e., the assigned end point
for the trip. We present our results in Figure 10. Figure 10a
shows the attacker’s deviation from the intended or assigned
destination for the generated routes in all 10 cities. It can
be observed that in majority of the cities, more than 20%
of the routes allow more than 10 km deviation from the
intended destination. There are at least 10% of the routes in
all selected cities where the attacker is able to reach points
as far as 30 km away from the assigned destination. Chicago
and Manhattan perform the worst among the selected cities
with more than 40% of the routes allowing a displacement
of 15 km or above. This is due to the regular patterns that
exist in these cities’ road network. Figure 10b shows the
maximum displacement in each city for specific assigned route
lengths. It is important to observe that in Manhattan and
Chicago the maximum displacement caused is independent of
the assigned route distance. This is due to the structure of the
cities itself. For example, Manhattan is a narrow strip with grid
like structures and therefore maximum displacement saturates
at some point. However, for a city like Beijing there are routes
that allow an attacker to spoof his location to as far as 40 km
away from the intended location.

Coverage Area of Spoofed Paths: The goal of this evalua-
tion is to determine the percentage of area an attacker can
cover by traveling the escape paths generated for a given
source Loc(s) and destination Loc(d) geographic coordinates.
Let A denote the total geographic area of interest to an
attacker. For this evaluation, we define this area as a circle
of radius r = d(Loc(s), Loc(d)) with center at Loc(s) where
r is the euclidean distance between the source and destination.
The above area may comprise of water bodies which must be
accounted for more accurate coverage. Let AL denote the area
of land within the interest area. Within AL, let AC denote the
area that the attacker can cover if he is willing to walk a small

0 10 20 30 40 50

Displacement (km)

0

20

40

60

80

100

P
er
ce
n
t
of

R
ou

te
s
(C

u
m
u
la
ti
ve
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

(a)

5 10 15 20

Distance (km)

0

10

20

30

40

M
ax
im

u
m

D
is
p
la
ce
m
en
t
(k
m
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

(b)

Fig. 10: a) Attacker’s displacement from assigned destination
for the generated paths. b) The maximum displacement in
every city for specific path lengths

distance r′ from an escape destination. (AC/AL) ∗ 100 gives
the escape path’s coverage area percentage. The area AL is not
trivial to calculate as the location of water bodies are not pre
known within the interest area. The area AC is also not trivial
to calculate as the escape destinations may be densely popu-
lated and many may overlap. To solve this, we implemented
Monte-Carlo simulations. The simulation works by generating
millions of uniformly distributed points within the interest
area. It maintains two separate counters: PL to count all the
points that are on land (i.e., within r′ meters of any road), and
PC to count all points within an escape destination’s radius
(i.e., within r′ meters of any escape destination). With these
counters, the area AL can be calculated as AL = (PL/P)∗A,
where P is the total number of points, and the area AC can
be calculated as AC = (PC/P) ∗ A. Therefore, the final
coverage area percentage of the escape paths using Monte-
Carlo simulation can be expressed as (PC/PL) ∗ 100. The
coverage percent is the ratio of the coverage area calculated
(using a 100 m walking radius) to the total area of land
calculated using the Monte-Carlo simulation.

The results are shown in Figure 11. It can be observed that
cities with more regular grid-like patterns such as Chicago and
Manhattan, New York City are more vulnerable to attacks. In
these cities, an attacker can, on average, cover more then 30%
of the target land area without being detected. For many routes,
they can even cover more than 60% of the target land area.
However, more irregular cities like London, Frankfurt and
Atlanta offer more resistance. It is important to note that it is
still possible to reach 20% of the target geographic region even
in these most limiting cases. The percent of coverage reduces
as route or trip distances increases because as trip length
increases so does the probability of the presence of an unique
road segment, but also because the area of interest grows
quadratically in the distance between source and destination.
For instance, for a distance of 20km, the area of interest is
400km2 and the coverage is 40km2 which is still significant.
Also, note that the above calculations present a lower-bound on
the total coverage area AC . This is because errors in distance
calculation from the accelerometer allows the attacker to cover
much larger distances. For example, in a number of escape

0 5 10 15 20

Route Distances (km)

0

10

20

30

40
P
er
ce
n
t
of

C
ov
er
ag
e
(M

ea
n
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

Fig. 11: Attacker’s mean coverage area with 95% confidence
interval for different route distances.

routes computed in our evaluation, up to 82% of final escape
destinations were located even beyond the area of interest used
for evaluation, with a mean of ≈ 46%.

Evaluation of integrated attack: We evaluated the perfor-
mance of the integrated spoofer on 10 routes. The spoofed
routes were chosen such that either the source or destination
was close to the university area and the other end-point
was within a 6km radius of the university. For each of the
spoofed path, the system selected a corresponding escape path
with the maximum displacement. In our set, we found this
displacement to range between .7km to 2.1km. During the
experiment, we drove the escape paths while spoofing the
GPS and magnetometer with the spoofed path. The following
information were recorded: the accelerometer, gyroscope and
magnetometer sensors and the GPS locations. We also drove
the spoofed paths to obtain baseline recordings. The attack was
successful for all the chosen paths despite traffic stops, lights,
or congestion. The spoofed locations (displayed on the phone)
matched the chosen locations and the turns were synchronized
between the escape and spoofed paths. We have uploaded a
short video2 demonstrating the attack. The maximum delay
between receiving current escape path location and computing
the spoofed location was ≈ 60ms with most spoofed locations
computed within 4−5ms of obtaining the current location. For
quantitative comparison, we also drove the spoofed path and
recorded all the sensor measurements and compared it with the
escape path measurements. The results are shown in Figure 12.
The path errors are computed as the difference in the sensor
measurements between the spoofed route and the escape route.
The ‘GPS path errors’ are based on the calculations performed
using GPS data and the ‘sensor path errors’ are the estimates
using the inertial sensors. We then compare it with the open
‘reference’ dataset [47] recorded from 140 different routes. We
observe that the error distributions are similar to the reference
dataset. For example, the gyroscope errors (both curvature and
turns) are within the range reported by the reference dataset
with ≈ 85−90% (≈ 90−95% for sensor baseline) of turns and
≈ 75−80% (≈ 70−75% for sensor baseline) of curves within
the ranges defined in our algorithm. We also observed that the
accelerometer and magnetometer data are more sensitive to
noise (e.g., magnets in car’s dashboard) than the gyroscope.

2Video of our experiment – https://youtu.be/Tvj8Fv5jFLw

0 5 10 15

Accelerometer Errors (m)

0

20

40

60

80

100

P
er
ce
n
ta
ge

Reference

GPS Path Errors

Sensor Path Errors

(a) Distance calculation errors

−40 −20 0 20 40

Turn Angle Errors (deg)

0

20

40

60

80

100

P
er
ce
n
ta
ge

Reference

GPS Path Errors

Sensor Path Errors

(b) Turn angle errors

0 10 20 30 40

Curvature Errors (deg)

0

20

40

60

80

100

P
er
ce
n
ta
ge

Reference

GPS Path Errors

Sensor Path Errors

(c) Curvature errors

0 50 100 150

Bearing Errors (deg)

0

20

40

60

80

100

P
er
ce
n
ta
ge

Reference

GPS Path Errors

Sensor Path Errors

(d) Bearing errors

Fig. 12: Sensor error distributions for the GPS-based estimates
and sensor-based measurements in comparison with the refer-
ence open dataset’s distribution.

V. COUNTERMEASURES

A. Deploying Accurate Accelerometer and Gyroscope Sensors

An obvious approach to mitigating the threat would be to
use high quality sensors. To measure the impact of sensor noise
on the potential of spoofing, we re-ran the simulations on the
cities using lower thresholds for the sensor noise. For this
evaluation, we set the thresholds using the 25th percentile of
the error distributions (c.f., Figure 5). The following thresholds
were set for the escape paths generator algorithm: Tθ = 1.4◦,
Tϑ = 0.2◦, Td1 = 0.6 and Td2 = 1.6. Figure 13a shows the
results of the simulations for all the cities. Using the above
thresholds, we see a significant reduction in the percentage of
routes that allow more than 5 km of displacement. However,
there are several limitations with this approach. First, the sen-
sors satisfying the above parameters are equivalent to aviation
and military-grade sensors which are bulky and expensive
(several thousands of dollars) to deploy. Furthermore, they
consume significant amount of power (� 5watts) making
it unsuitable for use in majority of tracking applications.
Moreover, the attacker can still induce noise in the sensors by
driving recklessly (e.g., rapid accelerations, lane switching).

B. Secure Navigation Path Selection

We present a path selection algorithm that provides better
mitigation than deploying accurate sensors, without requiring
any changes to existing GPS/INS tracking systems. The idea is
to generate a single “secure path” for travel. This path is less
favorable for spoofing because the curvatures or turn angles
of the path are more unique and, therefore, less likely to be
found in other sections of the road network. Furthermore, even

0 5 10 15

Displacement (km)

0

20

40

60

80

100

P
er
ce
n
t
of

R
ou

te
s
(C

u
m
u
la
ti
ve
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

(a) Military-grade sensors

0 5 10 15

Displacement (km)

0

20

40

60

80

100

P
er
ce
n
t
of

R
ou

te
s
(C

u
m
u
la
ti
ve
)

Atlanta

Beijing

Boston

Chicago

Frankfurt

Houston

London

Manhattan

Paris

SF

(b) Secure Path Selection

Fig. 13: Displacement error comparison between using mili-
tary grade sensors and our secure path selection algorithm.

if there exists some potential for spoofing in this path, the
escape routes can be known well in advance and appropriate
countermeasures can be taken to prevent it. Recall that the
attack algorithm searches for navigation routes with a high
probability of occurrence in other sections of the road network
(c.f., Section III-C2). The final path score was calculated
using Equation (2). For generating secure paths that are
more resilient to spoofing, the algorithm simply negates this
path score, i.e., score = −∏M

i=1 P (ϑ(si), θ(χi)). This has
the effect of assigning the highest score to paths containing
unique road curvature and turn angles with low probability of
occurrence. If we choose the count of output paths NP as 1, in
some instances, a path with unique curvature and turns only in
the beginning or towards the end of the path can get chosen.
This could allow the attacker to achieve higher displacement
than other potential paths, which is undesirable. To mitigate
this, the algorithm sets NP as 100 and chooses the path that
outputs the least number of spoofable paths. In other words,
the application or service provider (e.g., logistics company)
can assign “secure navigation routes” that are hard to fake
because of unique road characteristics. Figure 13b shows the
results of evaluations for all cities using the same parameters as
the original simulations, albeit the scoring method. Comparing
with the original simulations, we see the attacker significantly
limited in the amount of alternate routes available to him.

VI. RELATED WORK

In 2001, the Volpe report [49] first identified malicious
interference with the civilian GPS signal as a serious prob-
lem. Following this several researchers have demonstrated the
insecurity of GPS-based navigation by diverting the course of
a yacht [11], forcing drones [12] to land in a hostile area and
taking over navigation systems of transportation trucks [24]
using spoofed GPS signals. In addition to commercial GPS
simulators [50], [51], it is today possible to build low-cost
GPS signal spoofers that generate GPS signals for any chosen
trajectory or navigation route using existing public reposi-
tories [44] and less than $300 [43] of hardware equipment.
Advanced attacks [52], [53] in which the attackers takeover
a target receiver that is already receiving navigation messages
from authentic satellite signals without the receiver noticing
any disruption or loss of navigation data. It was also shown

that a variety of commercial GPS receivers were vulnerable
and in some cases even caused permanent damage to the
receivers. Zeng et al. [54] explored the feasibility of stealthily
spoofing GPS-based road navigation systems. The attacker
generates fake GPS signals that closely resembles the shape
of a route shown on the navigation software. The goal of the
attack is to fooling the user to drive a route that looks similar
to the original path. The success of the attack depends on the
user’s ability to match the navigation instructions with their
surroundings (e.g., street names). The attack further exploits
the limited area of focus that first-person views of majority of
navigation system provide. The ESCAPE attack proposed in
this paper makes no such assumption and succeeds against an
autonomous system that keeps track of a vehicle’s movement
patterns using both GPS and inertial sensors. In fact, Zeng
et al.’s [54] propose the use of inertial navigation sensors
as a countermeasure against their attack. In general, several
countermeasures were proposed against GPS spoofing attacks
that are both cryptographic [16], [17], [18], [19] and non-
cryptographic [20], [21], [22], [23], [24], [25], [26] to detect
or mitigate GPS signal spoofing attacks. These techniques
are either unreliable (e.g., large number of false alarms),
effective only against naive attackers or required modifications
to the GPS receiver/infrastructure itself. Alternate localization
technologies using WiFi or cellular networks [27], [28] lack
the accuracy and coverage required for the above mentioned
applications and are vulnerable to jamming attacks [55], [56],
[57], [58], [59]. In the context of on-road navigation and
tracking, using data from inertial sensors [29], [30], [31]
alongside GPS is emerging as a popular choice for applications
where spoofing and jamming are a threat. The absence of any
communication between the inertial sensors and the external
world for estimating the location makes it robust to signal
spoofing and jamming attacks. Many works [36], [37], [38],
[39], [40], [41], [60] analyze and show that inertial sensors are
promising for detection and mitigation of GPS spoofing at-
tacks. Many commercial-off-the-shelf GPS/INS products [32],
[33], [34], [35] are available and used in many civilian and
military applications. Recently, analog attacks have also been
demonstrated on inertial sensors. WALNUT [61] shows how
analog acoustic injection attacks can affect the digital integrity
of a capacitive MEMS accelerometer. Son et al. [62] showed
that acoustic interference on MEMS gyroscopes in drones can
cause them to crash. Shoukry et al. [63] demonstrate how to
deliver fake readings to an anti-lock braking system via the
magnetic wheel speed sensors using electro magnetic inter-
ference in an automotive setting. In this paper, we show that
magnetometers are vulnerable to electromagnetic interference
attacks and an attacker can precisely control its output. Given
the emergence of GPS/INS solutions, we believe our work
emphasizes fundamental security limitations of GPS/INS for
road navigation and tracking applications.

ACKNOWLEDGMENTS

The work was partially supported by NSF grants 1740907,
1643249, and 1850264.

REFERENCES

[1] J. R. Coffee, R. W. Rudow, R. F. Allen, M. Billings, D. A. Dye, M. L.
Kirchner, R. W. Lewis, K. M. Marvin, R. D. Sleeper, W. A. Tekniepe
et al., “Vehicle tracking, communication and fleet management system,”
Aug. 26 2003, US Patent 6,611,755.

[2] Y. A. Novik, “System and method for fleet tracking,” Jan. 15 2002, US
Patent 6,339,745.

[3] “Verizon Connect Fleet Management System,” https://www.
verizonconnect.com/solutions/gps-fleet-tracking-software/.

[4] “Massachusetts Probation Service’s Electronic monitoring program ,”
https://www.mass.gov/service-details/electronic-monitoring-program.

[5] “Geo-Satis Electronic Monitoring Solution,” https://geo-satis.com/.
[6] “US Department of Transportation: In-vehicle Performance Moni-

toring and Feedback,” https://www.transportation.gov/mission/health/
In-vehicle-Performance-Monitoring-and-Feedback.

[7] G. Mintsis, S. Basbas, P. Papaioannou, C. Taxiltaris, and I. Tziavos,
“Applications of gps technology in the land transportation system,”
European journal of operational Research, 2004.

[8] “Developing GPS monitoring for the public transport fleet,” http://civitas.
eu/measure/developing-gps-monitoring-public-transport-fleet.

[9] P. Misra and P. Enge, Global Positioning System: Signals, Measurements
and Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press,
2006.

[10] G. GSA, “Market report issue 3,” 2017, https://www.gsa.europa.eu/.
[11] “UT Austin Researchers Successfully Spoof an $80

million Yacht at Sea,” http://news.utexas.edu/2013/07/29/
ut-austin-researchers-successfully-spoof-an-80-million-yacht-at-sea.

[12] T. Humphreys, “Statement on the vulnerability of civil unmanned aerial
vehicles and other systems to civil gps spoofing,” University of Texas at
Austin (July 18, 2012), 2012.

[13] K. C. Zeng, Y. Shu, S. Liu, Y. Dou, and Y. Yang, “A practical gps
location spoofing attack in road navigation scenario,” in Proceedings
of the 18th International Workshop on Mobile Computing Systems and
Applications. ACM, 2017.

[14] “Jamming GPS Signals Is Illegal, Danger-
ous, Cheap, and Easy,” https://gizmodo.com/
jamming-gps-signals-is-illegal-dangerous-cheap-and-e-1796778955.

[15] “N.J. Man In A Jam, After Illegal GPS Device Interferes With Newark
Liberty Operations,” https://newyork.cbslocal.com/2013/08/09/n-j-
man-in-a-jam-after-illegal-gps-device-interferes-with-newark-liberty-
operations/.

[16] T. E. Humphreys, “Detection strategy for cryptographic GNSS anti-
spoofing,” IEEE Transactions on Aerospace and Electronic Systems,
2013.

[17] M. G. Kuhn, “An asymmetric security mechanism for navigation sig-
nals,” in Information Hiding, 2005.

[18] S. C. Lo and P. K. Enge, “Authenticating aviation augmentation system
broadcasts,” 2010.

[19] K. Wesson, M. Rothlisberger, and T. Humphreys, “Practical crypto-
graphic civil GPS signal authentication,” Journal of Navigation, 2012.

[20] D. M. Akos, “Who’s afraid of the spoofer? GPS/GNSS spoofing
detection via automatic gain control (AGC),” Navigation, 2012.

[21] A. Ranganathan, H. Ólafsdóttir, and S. Capkun, “Spree: A spoofing
resistant gps receiver,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016.

[22] M. L. Psiaki, S. P. Powell, and B. W. O’Hanlon, “GNSS spoofing
detection using high-frequency antenna motion and carrier-phase data,”
in Proceedings of the ION GNSS+ Meeting, 2013.

[23] K. Wesson, D. Shepard, J. Bhatti, and T. E. Humphreys, “An evaluation
of the vestigial signal defense for civil GPS anti-spoofing,” in Proceed-
ings of the ION GNSS Meeting, 2011.

[24] J. S. Warner and R. G. Johnston, “GPS spoofing countermeasures,”
Homeland Security Journal, 2003.

[25] A. Broumandan, A. Jafarnia-Jahromi, V. Dehghanian, J. Nielsen, and
G. Lachapelle, “GNSS spoofing detection in handheld receivers based on
signal spatial correlation,” in Proceedings of the IEEE Position Location
and Navigation Symposium (PLANS), 2012.

[26] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, and G. Lachapelle,
“GPS vulnerability to spoofing threats and a review of antispoofing
techniques,” International Journal of Navigation and Observation, 2012.

[27] P. A. Zandbergen, “Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning,” Transactions in GIS, 2009.

[28] N. O. Tippenhauer, K. B. Rasmussen, C. Pöpper, and S. Čapkun,
“Attacks on public wlan-based positioning systems,” in Proceedings of
the 7th international conference on Mobile systems, applications, and
services. ACM, 2009.

[29] D. Titterton, J. Weston et al., Strapdown Inertial Navigation Technology.
2nd Edition. IET, 2004.

[30] J. Farrell and M. Barth, The Global Positioning System and inertial
navigation. McGraw-Hill New York, 1999.

[31] J. Wendel, O. Meister, C. Schlaile, and G. F. Trommer, “An integrated
GPS/MEMS-IMU navigation system for an autonomous helicopter,”
Aerospace Science and Technology, 2006.

[32] “KVH Systems - Using Inertial Systems to Overcome GPS Spoofing,”
https://www.kvhmobileworld.kvh.com/.

[33] “VectorNAV - Embedded Navigation Solutions,” https://www.vectornav.
com/products.

[34] “Honeywell Aerospace - Embedded GPS/INS,” https:
//aerospace.honeywell.com/en/products/navigation-and-sensors/
embedded-gps-or-ins.

[35] “Navtech GPS soplutions,” https://www.navtechgps.com/oxts xoem
inseries/.

[36] S. Khanafseh, N. Roshan, S. Langel, F.-C. Chan, M. Joerger, and B. Per-
van, “Gps spoofing detection using raim with ins coupling,” in Pro-
ceedings of the Position, Location and Navigation Symposium—PLANS,
2014.

[37] N. A. White, P. S. Maybeck, and S. L. DeVilbiss, “Detection of
interference/jamming and spoofing in a dgps-aided inertial system,”
IEEE Transactions on Aerospace and Electronic Systems, 1998.

[38] J.-H. Lee, K.-C. Kwon, D.-S. An, and D.-S. Shim, “Gps spoofing detec-
tion using accelerometers and performance analysis with probability of
detection,” International Journal of Control, Automation and Systems,
2015.

[39] S. Dehnie and R. Ghanadan, “Methods and systems for detecting gps
spoofing attacks,” Dec. 30 2014, US Patent 8,922,427.

[40] R. E. Ebner and R. A. Brown, “Integrated gps/inertial navigation
apparatus providing improved heading estimates,” Aug. 12 1997, US
Patent 5,657,025.

[41] L. M. P. A. Serrano, C. S. Dixon, and M. J. Perren, “Receiver and
method for authenticating satellite signals,” Jul. 28 2011, US Patent
App. 12/780,337.

[42] “Ettus research llc,” http://www.ettus.com/.
[43] “Hacking A Phone’s GPS May Have Just Got Easier,” http://www.forbes.

com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/.
[44] “Opensource software-defined GPS signal simulator,” https://github.

com/osqzss/gps-sdr-sim.
[45] G. M. Rebeiz, RF MEMS: theory, design, and technology. John Wiley

& Sons, 2004.
[46] OpenStreetMap, “OpenStreetMap Project,” https://www.openstreetmap.

org/.
[47] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring user

routes and locations using zero-permission mobile sensors,” in 2016
IEEE Symposium on Security and Privacy (S&P), 2016.

[48] “GPS-SDR-SIM - Software-Defined GPS Signal Simulator,” https://
github.com/FrankBuss/gps-sdr-sim.

[49] J. A. Volpe, “Vulnerability assessment of the transportation infrastructure
relying on the global positioning system,” http://www.navcen.uscg.gov/ ,
2001.

[50] “LabSat GPS Simulator,” http://www.labsat.co.uk/.
[51] “GSG-xx Series Multi-channel advanced GNSS simulator,” http://www.

spectracomcorp.com/.
[52] T. Nighswander, B. M. Ledvina, J. Diamond, R. Brumley, and D. Brum-

ley, “GPS software attacks,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2012.

[53] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in Proceedings
of the 18th ACM Conference on Computer and communications security,
2011.

[54] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and
Y. Yang, “All your GPS are belong to us: Towards stealthy manipulation
of road navigation systems,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[55] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir, “Interleaving jamming in
wi-fi networks,” in Proceedings of the 9th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2016.

[56] L. Xin, D. Starobinski, and G. Noubir, “Cascading denial of service at-
tacks on wi-fi networks,” in 2016 IEEE Conference on Communications
and Network Security (CNS), 2016.

[57] K. Firouzbakht, G. Noubir, and M. Salehi, “On the performance of
adaptive packetized wireless communication links under jamming,”
IEEE Transactions on Wireless Communications, 2014.

[58] ——, “On the capacity of rate-adaptive packetized wireless communica-
tion links under jamming,” in Proceedings of the Fifth ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2012.

[59] T. D. Vo-Huu, E.-O. Blass, and G. Noubir, “Counter-jamming using
mixed mechanical and software interference cancellation,” in Proceed-
ings of the Sixth ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2013.

[60] A. Mosenia, X. Dai, P. Mittal, and N. K. Jha, “Pinme: Tracking a
smartphone user around the world,” IEEE Transactions on Multi-Scale
Computing Systems, 2018.

[61] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks,” in Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on, 2017.

[62] Y. M. Son, H. C. Shin, D. K. Kim, Y. S. Park, J. H. Noh, K. B. Choi,
J. W. Choi, and Y. D. Kim, “Rocking drones with intentional sound noise
on gyroscopic sensors,” in 24th USENIX Security symposium, 2015.

[63] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International Work-
shop on Cryptographic Hardware and Embedded Systems, 2013.

APPENDIX

A. In-car Experimental Setup

The photograph of our in-car integrated GPS/INS spoofer
setup used in the evaluations. We have uploaded a video of
our experiment in this link https://youtu.be/Tvj8Fv5jFLw .
Note that parts of the video has been edited (fast forward,
and parts cut) to focus the illustration on the relevant parts.

