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Abstract—Dynamic information-flow tracking (DIFT) is useful
for enforcing security policies, but rarely used in practice, as
it can slow down a program by an order of magnitude. Static
program analyses can be used to prove safe execution states
and elide unnecessary DIFT monitors, but the performance
improvement from these analyses is limited by their need to
maintain soundness.

In this paper, we present a novel optimistic hybrid analysis
(OHA) to significantly reduce DIFT overhead while still guaran-
teeing sound results. It consists of a predicated whole-program
static taint analysis, which assumes likely invariants gathered
from profiles to dramatically improve precision. The optimized
DIFT is sound for executions in which those invariants hold true,
and recovers to a conservative DIFT for executions in which
those invariants are false. We show how to overcome the main
problem with using OHA to optimize live executions, which is
the possibility of unbounded rollbacks. We eliminate the need for
any rollback during recovery by tailoring our predicated static
analysis to eliminate only safe elisions of noop monitors. Our
tool, Iodine, reduces the overhead of DIFT for enforcing security
policies to 9%, which is 4.4× lower than that with traditional
hybrid analysis, while still being able to be run on live systems.

I. INTRODUCTION

Dynamic information-flow tracking (DIFT) [1], also re-
ferred to as taint-tracking, is a powerful method for enforcing
a security or privacy policy. It tags source data (e.g., sensitive
user input) as tainted, propagates taints through data and/or
control flow, and checks if tainted data reaches sinks (e.g.,
network output). DIFT can help detect a wide range of security
attacks [2]–[8] such as SQL injection, cross-site scripting,
overwrite attacks, etc. It is also used to enforce information-
flow policies that prevent sensitive information from leaking
through untrusted channels [9]–[11].

In spite of its established benefits, DIFT is rarely used in
practice today, due to its prohibitive performance overhead.
For most use cases, the slowdown can be up to one to two
orders of magnitude [12]. The reason is that, in a pure dynamic
taint-tracking [12], every instruction has to be monitored to
propagate taints to the destination operand based on the source
operands’ taints. There have been several attempts to reduce
this cost by reducing tainted sources [13], by coarsening the
granularity of objects [12] and/or code-regions [4] at which
taints are tracked. But these approaches can compromise
accuracy, and even so the overheads remain prohibitive for
production use [14]. While parallelizing DIFT can help reduce
the latency overhead [15], it may increase the throughput
overhead due to additional parallelization costs. Recent work
[16], [17], that decouples taint tracking from the program

Iodine is used as a dye to track blood flow in X-ray angiography.
Our tool tracks information flow through program executions.

execution by performing symbolic taint analysis in parallel
and periodically resolving concrete taint values with control-
flow information, introduces imprecision due to the symbolic
analysis. Moreover, the application might often need to wait
for the outcome of the taint analysis before it can perform
security-critical operations like releasing output.

In this paper we present a new approach to significantly
reduce DIFT overhead using Optimistic hybrid analysis [18]
(OHA). For rigorously tested production software, execution
paths that violate an information-flow policy are almost cer-
tainly either rare or impossible. For such programs, pure
dynamic taint analyses fundamentally do more work than nec-
essary. A static taint analysis can identify instructions which
cannot propagate taints to a sink [19], and DIFT monitors
for these instructions can be elided. We show that OHA can
dramatically improve the precision and scalability of static
taint analysis, and thereby reduce DIFT overhead, by assuming
program properties that are almost always true but hard to
prove statically (e.g., likely callee-set of a function pointer).

A fundamental problem with OHA is that, if its assump-
tions (likely invariants) fail during an execution, then the
soundness of dynamic analysis for that execution is compro-
mised. To ensure soundness, prior work [18], which used OHA
for data-race detection and slicing, checked the likely invari-
ants at runtime, and when they fail, the program execution
is replayed from the beginning and analyzed with a conser-
vatively optimized dynamic analysis. While this unbounded
rollback-recovery strategy is acceptable for retrospective anal-
yses, it is not feasible for online security analysis of live
executions.

We present a novel OHA that enables efficient and sound
DIFT for live executions. We address the availability problem
by completely eliminating the need for roll-back and enabling
forward recovery on a likely invariant failure. The fundamental
cause of rollbacks in an optimistic hybrid analysis is the
runtime dependence between the current monitor being elided,
and any potential future invariant violations that may affect
the soundness of that elision. We observe that in order to
construct rollback-free OHA, we must break this dependence.
In other words, any monitor elided during a program execution,
before an invariant failure, has to be proven to be unnecessary
to ensure soundness of the dynamic analysis for the entire
execution. We refer to eliding monitors satisfying this property
as safe elisions.

Our key idea is to constrain predicated static analysis, such
that it prunes a runtime monitor only if it can prove that it is a
safe elision. Given this, when a likely invariant fails at runtime,
it is sufficient to simply switch to a conservatively optimized
analysis, and continue forward with the execution.



To restrict a predicated static analysis to safe elisions, we
further observe that many analyses, particularly bug finding
and security analyses such as DIFT, often have many monitors
that do not modify any analysis’ metadata state when executed.
We call such monitors noop monitors. By constructing a
predicated static analysis that identifies and elides only noop
monitors, we guarantee that any elision done by our predicated
static analysis will not have any effect on dynamic analysis
state until an invariant failure. Consequently, the soundness of
these elisions cannot depend on any potential future invariant
violations, because eliding a noop has the same effect as
executing a noop, making the noop elisions safe elisions,
and enabling forward recovery.

We construct such a predicated static analysis for DIFT that
optimizes only safe elisions as follows. We use a predicated
static forward data-flow may-analysis that prunes a runtime
DIFT monitor for an instruction by proving that its source
operands are never tainted. In this forward data-flow analysis,
all optimization decisions are induced from the invariant as-
sumptions using forward reasoning. Therefore, so long as the
likely invariants hold true in a program execution, it is guar-
anteed that any elided monitor for an instruction is effectively
a noop, as that instruction’s source operands are guaranteed
to be untainted. This in turn guarantees that the taint set (or
meta-data) at any program instance matches exactly that of an
unoptimized DIFT. When a program execution violates a likely
invariant, it must be detected immediately. This is trivial for
all the likely invariants we use. On detecting a likely invariant
violation, the program recovers forward by safely switching
to a conservatively optimized analysis. This requires careful
engineering to safely handle function returns after switching
the analysis versions.

It is interesting to note that it is challenging to construct
optimizations based on predicated backward dataflow analysis
that guarantees safe elision. For example, DIFT could be
further optimized by eliding monitors for instructions whose
destination operands never reach a sink. This requires a
backward-dataflow analysis from the source operands of all
sinks to the beginning of the program. A monitor elided using a
predicated version of this static analysis is not guaranteed to be
a safe elision. Because, in an execution, when a likely invariant
fails, it may invalidate the property assumed to elide a past
monitor as early as the beginning of the execution, requiring
an unbounded rollback. Thus, we employ only conservative
backward dataflow analysis in our system.

We implemented rollback-free optimistic hybrid DIFT us-
ing whole-program context-sensitive flow-sensitive taint anal-
ysis. We evaluate our tool on security-critical applications with
realistic information flow policies. We augment the Postfix
mail server application with information policies to check for
email integrity and privacy, and run the Nginx web server
application with detection against malicious overwrite attacks.
We compare the performance of our approach with conser-
vative hybrid and state-of-the-art full dynamic taint tracking
[20]. Dynamic taint tracking incurs 7× overhead over native
execution, and hybrid analysis-optimized taint tracking incurs
37% overhead. Our optimized taint tracking tool brings down
the overhead of dynamic taint tracking to 9%.

The contributions of this paper are as follows:

• We present a novel optimistic hybrid analysis technique
to realize low-overhead dynamic information-flow track-
ing (DIFT) for live executions.

• We solve an important unresolved problem with opti-
mistic hybrid analysis, which prevents its use for live
analysis: need for unbounded roll-back when a likely
invariant fails. We prove that restricting predicated static
analysis to eliding only noop monitors guarantees meta-
data equivalence between optimistic and conservative
hybrid analyses. This property in turn enables forward
recovery when an invariant fails.

• We present a new profiling methodology for OHA
based on regression and beta-testing. We show that likely
invariants profiled using regression test suites are effec-
tive in obtaining majority of the performance benefits.

• Our approach reduces the overhead of DIFT to 9%,
which is 4.4× lower than that with conservative hybrid
analysis, and 68× lower than that with pure dynamic
analysis.

II. BACKGROUND

Before discussing our analysis framework, we review the
necessary background related to taint tracking and how static
analysis is used to improve its performance.

A. Dynamic Taint Tracking

Dynamic information-flow tracking (DIFT) [1] or dynamic
taint tracking instruments a program to monitor data-flow from
certain program inputs (sources) to some program outputs
(sinks). Each source type is associated with a taint identifier.
Each variable in an analyzed program has an associated taint
state, which is a set of taint identifiers, representing which
sources the variable derives its data from. A variable’s taint
state is defined either by sources, or by the propagation
function when it is the destination of an instruction. Typically,
taints propagate via explicit data flows (as we assume in this
paper), where a destination operand’s taint is derived from
the taints of source operands. We refer to analysis code that
propagates taints as track monitors. A few DIFT systems also
consider implicit flows through control flow [12]. A taint
analysis policy can also define certain operations to clear
or sanitize taint, which are common in hash or encryption
functions. Sinks are program locations where typically taint
of output values are asserted to be false. We refer to these
assertions as check monitors.

Figure 1(a) illustrates DIFT using an example. It assumes
that s is a source, and printf is a sink. Taint propagates
from s to y (line 2), and then it may or may not propagate
to z (line 4) depending on the branch outcome in line 3. If
the taint does propagate to z , it can reach out (line 5), and
then reach the sink (line 6), causing an assertion failure.

Taint analysis can be tailored to a specific application by
adjusting the taint policy. For example, information leakage is
an important concern in database and web-service applications,
where taint analysis is used to track the flow of sensitive
information through program execution and prevent its leakage
through unsecured channels. Taint analysis [21] is widely used
in security analyses of programs to detect and prevent against
overwrite attacks [2]–[4], command injection attacks [5], [6],



main (…) {
x = c + 3;
y = s;
if (p < 0){

z = c * y;
}
out = z;

printf(z); }

main (…) {
x = c + 3;
y = s;
if (p < 0){

z = c * y;
}
out = z;

printf(z); }

z c y ;

main (…) {
1 x = c + 3;
2 y = s;
3 if (p < 0){
4 z = c * y;

}
5 out = z;

6 printf(z); }

x c ;
y
y s ;

z c y ;

assert(! z );

source: s sink: printf()
main (…) {
x = c + 3;
y = s;
if (p < 0){

z = c * y;
}
out = z;

printf(z); }

y s ;

z c y ;
**inv_check( );

y s ;

z c y ;

inv_check( );

Region R is likely unreachable

R

!

t(out) = t(z);

R

assert(! z );
t(out) = t(z);

(b) Conservative hybrid analysis(a) Full dynamic analysis (c) Optimistic hybrid analysis (d) Rollback-free OHA

Fig. 1: DIFT optimizations. Green dot indicates safe noop elisions, and ! indicates unsafe elision.

cross site scripting attacks in web applications [7], [8], and to
enforce information flow policies [10]. It has also been applied
in semantic analysis of programs for program understanding
[22], testing and debugging [23], [24].

In this work, we study several custom taint policies for
preventing spam, ensuring email integrity, and detecting over-
write attacks against a web server. We also consider generic
taint policies to evaluate DIFT performance.

B. Conservative Hybrid Taint Tracking

As shown in Figure 1(a), a pure DIFT instruments virtually
all the instructions to propagate taints. This can result in an
order of magnitude or more overhead. However, this overhead
is not fundamental to enforcing a taint analysis. Because, in a
rigorously tested program, information-flow leaks are rare. As
a result, many of the DIFT monitors are either not propagating
taints, or even if they do, they do no reach any sink. A sound
static data-flow analysis can prove these properties and prune
these dynamic monitors [19].

A static analysis constructs a data-flow model of the
program, using the same taint policy as the dynamic taint anal-
ysis. We assume that the analysis is done in the static-single
assignment (SSA) intermediate representation [25]. From this
static model, the hybrid analysis will typically optimize its
dynamic taint analysis in two ways:

• Forward Taint Analysis reasons from taint sources
forward in the program, determining if the source
operands of an instruction may be tainted or not. If none
of the source operands may be tainted for an instruction,
then the static analysis can prune its track monitor. For
example, in Figure 1(b), the analysis can reason that
neither source operands in the instruction x = c + 3
are tainted, and therefore x will not be tainted, allowing
its monitor to be elided.
• Backward Taint Analysis reasons whether a destina-
tion operand of an instruction may reach a sink. If not,
track monitor for that instruction is elided, even if it can
be tainted. In Figure 1(b), the conservative static analysis
cannot leverage this optimization to elide any monitors,

because it cannot prove this property soundly for any of
the instructions.

Although static analysis is helpful in reducing DIFT over-
head, its effectiveness is limited in practice. The sound static
analysis used in traditional hybrid analysis must often make
overly-conservative assumptions to retain soundness for all
possible executions of a program. This inevitably includes
many infeasible program states into the analysis’s search space.
Furthermore, even an ideal static analysis that only explores
feasible program states, would still be ineffective, as most
dynamic executions cover only a small subset of common
execution states. For example, an encryption function provided
by a standard crypto library has many candidate algorithms,
but only a few of them are ever used, as many of them are dep-
recated or not preferred for use in certain systems. So, there is
a significant gap between the states considered by sound static
analysis and those actually realized in dynamic executions.
This large discrepancy between the states that sound static
analysis considers and dynamic executions experience often
leads to highly inaccurate static analysis, and unacceptable
dynamic overheads.

III. DESIGN

We discuss a novel hybrid analysis, Iodine, to significantly
reduce DIFT overhead based on optimistic hybrid analysis
(OHA) [18]. It supports live executions by eliminating the need
for rollback-replay.

A. Optimistic Hybrid Taint Analysis

Iodine leverages the key observation of OHA: static anal-
yses used for optimizing a dynamic analysis should ideally
consider only the states that will be realized in the analyzed
dynamic executions. By targeting expected executions, we can
significantly improve the precision and scalability of static
analysis, and consequently optimize a dynamic analysis much
more efficiently than its traditional counterpart.

Figure 1(c) illustrates the untapped opportunity. If all
expected executions of this program only have non-negative
values for the variable p , the code region R is never executed.
A sound static analysis cannot assume this behavior, because
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there are legal executions where p < 0 . However, by con-
straining the static analysis to expected dynamic executions,
Iodine can reason that the variable z does not get tainted due
to y in line 4, and in turn proves that out in line 5 cannot
be tainted. Therefore, it elides track monitor for line 5, and
check monitor for the sink in line 6. Furthermore, backward
data-flow analysis determines that taint of y in line 2 can
never reach any sink, and elides its track monitor. None of
these three monitors could be elided using conservative static
analysis (Figure 1(b)).

Iodine’s work-flow is illustrated in Figure 2. First, a profiler
observes representative executions to gather a set of likely
invariants. These likely invariants are common-case dynamic
execution behaviors such as likely unreachable code, likely
callee sets, and likely unrealized call contexts [18]. These are
almost always true, but are hard to prove statically. Second,
these likely invariants are used as predicates to constrain the
state-space of the static taint analysis described in §II-B,
resulting in a predicated static taint analysis. It is much
more precise and scalable than a conservative sound static
taint analysis, and enables Iodine to aggressively elide DIFT
monitors. The program is instrumented with the remaining
DIFT monitors along with invariant checks.

In most dynamic executions, the likely invariants will hold
and the DIFT analysis will be sound. But, when the likely-
invariants do not hold, dynamic analysis may be rendered
unsound by the optimizations induced by predicated static
analysis. The dynamic analysis requires a mechanism to re-
cover from an invariant failure.

B. Problem: Rollback Recovery in OHA

When a likely invariant fails, it renders the predicated static
analysis’ optimizations unsound. As we use whole-program
static analysis, at runtime it is non-trivial to determine the
effect of a current invariant failure on the soundness of an
elided monitor in the past. For example, in Figure 1 (c), if
the likely unreachable code invariant (R) is violated in line 3,
it would render the past elision of monitor for line 2 to be
unsound.

Past work [18] conservatively addressed this problem by
completely redoing the dynamic analysis by replaying the
program execution from the beginning using the conservatively
optimized dynamic analysis. Since invariants rarely fail, this
rollback recovery is an acceptable solution for offline retro-
spective analyses such as debugging and forensic analyses.
However, a rollback to the beginning of the program is
intolerable for online security analyses on live executions, as
it would severely compromise availability of the system.

Bounding rollbacks is hard for arbitrary predicated whole-
program static analyses. Determining the latest point in a
program execution up to which we need to rollback is an
unsolved problem. For many analyses, especially backward
data-flow analysis, it may not be possible to bound the rollback
window. This unpredictable, and unbounded downtime caused
by rollback creates problems guaranteeing availability for live
executions.

Furthermore, support for rollback introduces significant
additional overhead even for executions where the likely
invariants hold true. This overhead includes the cost of logging
for replay and periodic check-pointing. Therefore even when
the invariants are not violated, eliminating rollbacks altogether
would improve OHA by getting rid of these overheads. Plus,
there is a cost for rollback-replay in case of an invariant
violation. The last component is a minor cost as invariant
violations can be made to be rare with sufficient profiling.

We address this problem by enabling forward recovery on
any invariant failure, and completely eliminating the need for
rollbacks.

C. Safe Elisions
Iodine uses a novel form of OHA called rollback-free

OHA, which eliminates the need for rollback on invariant
failure. Rollbacks are fundamentally caused by the dependence
between the current monitor being elided and potential future
invariant failures. Our idea is to distinguish safe elisions, which
do not have such dependencies, from unsafe elisions.

A predicated static analysis in OHA elides a monitor
as long as it can prove that it is unnecessary to guarantee
soundness of dynamic analysis in an execution where the
invariants hold. But an elided monitor is a safe elision only
if it can additionally prove that an invariant violation in an
execution would not affect the soundness of any preceding
elisions of that monitor.

Rollback-free OHA is realized by restricting its predicated
static analysis to only using safe elisions, and switching to a
conservatively optimized analysis on invariant violation.

D. Noop Monitor Elisions are Safe Elisions
Statically proving safe elisions is non-trivial for many

analyses. To make such an analysis practical and simple to
construct, we further observe that noop monitors are safe
elisions. A noop track monitor is one that does not change
the analysis metadata state. A noop check monitor is one
that always succeeds. For example, in Figure 1(c), monitors
for lines 5 and 6 are noop monitors, if we assume R is
unreachable. Monitor for line 2, however, is not a noop
monitor, as its execution can modify the taint set even if
invariants hold true.

Eliding noop monitors is safe for the following reasons.
By construction, OHA instruments invariant checks such that
they detect any invariant violation before an execution violates
the invariant. For example, in Figure 1(c), OHA detects an
invariant violation before entering R. Given this, when a noop
monitor is elided before an invariant violation, it is guaranteed
that it would be a noop monitor even in the conservatively
optimized analysis, and therefore its elision is sound even when
there is a later invariant violation. Thus, noop monitor elisions
are safe elisions.



E. Elisions in Predicated Forward Analysis are Safe

In §II-B, we discussed forward and backward static taint
analysis. Forward static data-flow taint analysis elides a mon-
itor for an instruction in an SSA intermediate representation
by proving that its source operands must not be tainted. The
taint for the destination operand of such an instruction remains
unchanged. Thus, all the monitors elided by predicated forward
taint analysis are noop monitors, and therefore safe elisions.

Figure 1(d) shows rollback-free OHA. Its predicated static
taint analysis is limited to forward taint analysis. Therefore,
it elides only the monitors for lines 5 and 6, which are both
noop safe elisions.

F. Elisions in Predicated Backward Analysis may not be Safe

Monitors elided by a predicated backward taint analysis are
not guaranteed to be safe elisions. A backward taint analysis
seeks to prove that an instruction’s destination taint does not
reach a sink, and if so it elides its monitor. Monitors elided
by this analysis are not guaranteed to be noops. For example,
the monitor for line 2 in Figure 1(d) is not a noop, because
it changes the taint of y . But a predicated backward analysis
can elide it by assuming R is unreachable. However, during an
execution, if that invariant fails, recovery must somehow pro-
duce the correct taint state of y , before proceeding forward.
Given that we use a whole-program analysis, it is unclear how
far the execution needs to be rolled-back and re-executed.

A more fundamental reason why elisions in backward-
analysis may not be safe is their dependence on invariants
holding true in the future. It may still be possible to construct
safe elisions through sophisticated optimizations. For example,
if we can somehow determine the set of all monitors elided
due to a particular invariant (R is unreachable), then hoisting
the invariant check before those elisions can make them safe
elisions. Such a transformation is non-trivial for a predicated
whole program analysis, and therefore we did not pursue this
avenue. Fortunately, we found the predicated forward taint
analysis to be quite effective by itself. Also, backward analysis
is not useful for certain information-flow policies such as one
that monitors taints from sources to all possible locations in a
program.

G. Rollback-Free Optimistic Hybrid Taint Analysis

Iodine uses a predicated forward taint analysis along with
a conservative backward taint analysis. Optimized dynamic
analysis (fast-path) is executed until an invariant fails. As
the analysis only elides noop monitors, it tracks exactly the
same meta-data as a conservatively optimized analysis at all
program points. We instrument a conditional branch for every
invariant check, which switches the control to a conservatively
optimized analysis (slow-path) when any of those checks fail.
The execution then continues forward in the slow-path. Care
is taken to ensure a safe switch. At the time of the switch, the
return addresses on the stack would be pointing to fast-path
return sites. We address this problem by checking every return
site, and transferring control to either the fast or slow path
based on the current mode of execution.

Iodine conservatively disables all optimistic optimizations
upon an invariant violation. Given adequate profiles, which

is a reasonable assumption for a rigorously tested production
software, invariant failures are very rare. If there is indeed
an invariant failure in production, the program can be re-
optimized offline after removing the offending invariant from
the likely-invariant set. Thus, in the steady-state, invariant
violations would be extremely rare. Also, since it is common
for live systems to be periodically restarted [26], the execution
can switch back to the fast-path on a restart. Alternatively, only
the optimizations induced by the violated invariant could be
selectively disabled. However, there is no known method that
can be easily applied to realize this. Also, this approach would
require numerous variants of slow-paths.

IV. PROOF SKETCH

In this section, we formalize the notion of two analyses
being state-identical, and then prove the soundness of rollback-
free optimistic hybrid analysis by showing that it’s state-
identical to a conservative hybrid analysis.

A. Notations and Notions

An analysis A is a transformation of a program P that only
generates additional metadata state σA and has no side-effect
on P ’s program state μP . We define outA to be the outcome
of all dynamically failed check monitors.

We will use the following notations to refer to analyses
instances:
UNOP is the unoptimized dynamic analysis that does not elide
any monitors.
CONS is the dynamic analysis optimized by conservative static
analysis.
OPTII is the dynamic analysis optimized by predicated static
analysis assuming the set of invariants I .
RFOPTII is the rollback-free dynamic analysis optimized by
forward-only predicated static analysis assuming the set of
invariants I .

σA(l) denotes the metadata state of dynamic analysis A at
the program location l. I-FAIL(i) denotes the point(s) in pro-
gram execution where the invariant assumption i dynamically
fails. I-CHECK(i) denotes the program location(s) where the
invariant validation checks are instrumented. A noop monitor
is either a track monitor that does not modify σA, or a check
monitor that succeeds.

Definition 1. Analysis equivalence : We say that dynamic
analysis A′ is equivalent to dynamic analysis A, denoted by
A′ ≡ A, if for all executions, their analysis outcomes are the
same, i.e., outA′ = outA.

Definition 2. State-identical : We say that dynamic analysis A′
is state-identical to dynamic analysis A, denoted by A′ = A,
if for all executions, their terminating metadata states σA and
σA′ are identical, i.e., σA′ = σA.

B. Axioms

Axiom 1. CONS is sound [19], i.e., CONS ≡ UNOP.

CONS only elides those monitors which can be proven to
not change the analysis outcome in all executions. ∴ CONS ≡
UNOP.



Axiom 2. OPTII is sound when the invariants hold [18], i.e.,
I |= OPTII ≡ CONS.

In addition to those elided by CONS, OPTII elides only
those monitors that can be proven to not change the anal-
ysis outcome in dynamic executions that satisfy I. ∴ I |=
outOPTII = outCONS → I |= OPTII ≡ CONS.

Axiom 3. Invariant violation is detected before a pro-
gram execution reaches a state that fails an invariant, i.e.,
I-CHECK(i) < I-FAIL(i).

By construction, our invariant checks are instrumented such
that this property holds.

Axiom 4. RFOPTII only elides monitors that are noops.

By construction in §III-C, RFOPTII uses forward
predicated static data-flow analysis to elide only those
monitors that it can prove are noops.

C. Soundness of Rollback-free OHA

We first show that RFOPTII is state-identical to a
sound conservative hybrid analysis for executions where
the invariants hold. Next, we provide a simple program
transformation that makes the RFOPTII state-identical to
CONS even at the point of a dynamic invariant failure.
Finally, we show that the above property allows a forward
recovery of RFOPTII upon an invariant failure, and makes
the whole dynamic analysis sound for all executions.

Lemma 5. RFOPTII is state-identical to CONS when the
invariants hold, i.e., I |= RFOPTII = CONS.

Proof: By Axiom 4, RFOPTII elides only those monitors
that can be proven to be noops in dynamic executions that
satisfy I. ∴ I |= σRFOPTII = σCONS → I |= RFOPTII =
CONS.

Lemma 6. RFOPTII is sound until an invariant fails, i.e.,
σRFOPTII (I-FAIL(i)) = σCONS(I-FAIL(i)).

Proof: Consider the analysis RFOPTI{i} with a single
invariant i. ¬{i} �|= RFOPTI{i} = CONS, i.e., we cannot
guarantee soundness for the entire program P if the invariant
fails in a dynamic execution.
Let I-FAIL(i) be the first instance of an invariant failure in
the dynamic execution of P . Now, consider the program P ′
obtained by the following transformation (shown in Figure 3):
immediately after the location of each invariant check, we
instrument a HALT instruction conditional on the invariant i
having failed. The elided monitors are shown as equivalent
noops.

By Axiom 3, the invariant check preceding I-FAIL(i)
will detect the invariant failure before the program execution
reaches a state that fails the invariant. Therefore, the modified
program P ′ will HALT after the failed I-CHECK(i), and before
I-FAIL(i). This is equivalent to a program executing without
an invariant failure.

By Lemma 5, RFOPTII = CONS for P ′. Since, P and
P ′ only differ in their termination behavior and P ′ HALTs at
I-FAIL(i), we have that:
σRFOPTII (I-FAIL(i)) = σCONS(I-FAIL(i)) for P .

· · ·
l1: noop

· · ·
I-CHECK(i): if (¬i)

HALT
I-FAIL(i): · · ·

l2: noop
· · ·

Fig. 3: Transformed program P ′

Theorem 7. RFOPTII with forward-recovery is sound.

Proof: By the soundness of RFOPTII on the HALT-
transformed program P ′ in Lemma 6, we have that the
metadata state σRFOPTII (I-FAIL(i)) at the location of invari-
ant failure is state-identical to that in CONS. Therefore, the
forward-recovery mechanism can simply switch to CONS on
an invariant failure, and that analysis as a whole is analysis-
equivalent to CONS. ∴ by Axiom 1, RFOPTII with forward-
recovery is sound.

D. Insight Summary

Contrasting Axiom 2 and Lemma 5, the key difference is
that when I holds, OPTII ≡ CONS but RFOPTII = CONS.
While the generic OPTII aggressively elides monitors to only
preserve analysis-equivalence, RFOPTII only elides noop
monitors, thus being state-identical to CONS. This allows the
analysis to simply switch to conservative analysis CONS upon
invariant violation.

V. IMPLEMENTATION

We built the Iodine tool, an instance of our rollback-free
optimistic hybrid analysis discussed in §III for taint track-
ing. The profiler, the profile-driven predicated static analysis
and the dynamic analysis instrumenter are implemented in
the LLVM 3.9 compiler infrastructure [27], and we run our
analysis tool after all other compiler optimization passes. We
support programs written in the C language. To track taint
flows through external libraries, we compile and statically link
all dependency libraries into a single object, except libc for
which we write stubs, and thereafter analyze them together.
Our analysis marks policy-determined inputs as tainted, fol-
lows how taints propagate through program execution, and
asserts checks on the usage of tainted data. To instrument the
final optimized taint analysis code, we build upon LLVM’s
Data Flow Sanitizer[20] as our instrumentation backend. We
discuss the implementation details below.

A. Specifying Information-Flow Policies

To evaluate the effectiveness of optimistic analysis on taint
tracking, we design a configurable taint policy that treats
all types of external inputs to the program as potential taint
sources. This includes most program interfaces such as termi-
nal, file, socket input functions, and command-line arguments.
Source functions can taint data in different ways, e.g. the
return value of getchar() becomes tainted, while the buffer
operand of read() becomes tainted. We allow the policy
to mark standard output interfaces, such as terminal, file and
socket outputs as taint sinks and assert that the appropriate
arguments to these functions should not be tainted.



We allow specifying configurable taint policies to identify
taint sources, sink locations, and untaint functions via a flexible
interface of source-level annotations. The annotation language
can specify custom taint markings, e.g. taint(password)
= secret would attach a new taint marking secret to
the variable password; and specify custom taint checks.
Additionally, the source annotations specify untaint functions
to indicate when a particular taint marking should be re-
moved. This makes Iodine easily adaptable to employ useful
information-flow policies, as we demonstrate in §VI-B.

B. Static Taint and Pointer Analysis

Static taint analysis computes how the taints of data prop-
agate through the program under a given selection of taint
sources, sinks, and propagation policies. We perform static
taint analysis using a whole-program context-sensitive flow-
sensitive data-flow may-analysis [2]. We do so by building a
definition-use graph (DUG) [28], each node representing an
instruction that defines the resultant data value, and an edge
connecting an instruction to those that use its definition. Our
taint analysis is a context-sensitive analysis, making it more
precise by distinguishing between different invocations of the
same function. The analysis first creates local DUGs separately
for each function in the program which captures the intra-
procedural data flows within each function. Then the analysis
traverses the call graph of the program, beginning at the main
function. For each function call, it creates a clone of the local
DUG of the callee function and connects the arguments and
return values of that replica to the call-site. If the function call
is recursive, the call is connected to the existing nodes in the
DUG representing that callee, otherwise a new set of nodes
is added for the call. It then recursively processes the callee
function until all calls are resolved, resulting in a complete
context-sensitive DUG of the program.

Once the DUG is constructed, the analysis can induce the
following two optimizations:
Forward optimizations: Taints are propagated through
the whole-program DUG using forward data-flow until a
transitive closure is reached. Since our dataflow analysis is
a may analysis, the absence of taint flow is a sound must
not assertion. Therefore, any instruction that does not have
tainted source operands can elide dynamic monitors for taint
tracking. This optimization is induced only using a forward
data-flow analysis.
Backward optimizations: Taint flows that do not eventually
reach a sink can be pruned out using a backward co-
reachability analysis on the DUG. We enable these
optimizations only in the conservative static analysis.
This optimization is induced using a backward data-flow
analysis on the result of forward taint-flows.

Pointer Analysis: To track taint flows via indirect memory
operations to aliased locations, we need to propagate taints to
all aliases of a pointer accessing a tainted value. To this end,
we perform a pointer analysis to compute the points-to set
of each pointer location and then use this information during
the static taint analysis to add taint-flow edges to the DUG
from pointer definition to its aliasing uses. We use Andersen’s-
based [29] whole-program context-sensitive flow-insensitive
inclusion-based pointer-analysis with heap cloning [30] and
well-known optimizations including HVN/HRU [31], online-
cycle-detection [32], and BDDs for points-to sets [33].

C. Predicated Static Taint Analysis

We improve the precision of the forward-only static data-
flow taint analysis by assuming profiled likely invariants to
increase its accuracy and efficiency. We use the following types
of invariants:

Likely unreachable code is a code region that is unlikely
to be executed. These can significantly reduce the static
analysis’ search space by pruning away all nodes defined by
and edges incident upon them in the analyses DUGs. This
invariant is profiled by instrumenting every basic block.

Likely callee set is the set of functions that are likely
to be invoked by an indirect function call. These invariants
effectively convert all indirect function calls in the DUG to
direct calls to the likely callee functions, thereby removing all
the imprecision due to unresolved indirect call destinations.
These are easily profiled by monitoring values of function
pointers in the program.

Likely unrealized call contexts is the set of calling
contexts that are unlikely to be realized for a function call.
These invariants reduce unnecessary replication of the local
DUGs for call contexts that are unlikely to occur, thereby
making context sensitive data-flow analysis more precise and
scalable. These can be profiled by monitoring the state of call
stack at the time of entering a function call.

We consider only those likely invariants which are not
violated in any of our profiled executions. These invariant
assumptions are used to prune the static analysis DUGs in our
profile-driven pointer analysis as well as the predicated static
data-flow analysis. The set of used invariants is recorded, and
later used by the monitor instrumenter to add invariant checks.

We implement predicated versions of pointer analysis and
forward data-flow analysis. The backward data-flow analysis
is not predicated as required in §III-C, so Iodine uses a conser-
vative backward data-flow analysis along with the predicated
forward data-flow analysis.

By assuming these likely invariants, the DUG constructed
for static analysis is unsound, and therefore much smaller than
a DUG constructed for a traditional sound program analysis.
This smaller DUG improves scalability and accuracy of our
optimistic pointer and taint analyses, significantly reducing the
aliasing-rate of pointers thereby improving accuracy and scala-
bility [18]. The improvement in scalability is so significant that
it allows us to scalably apply context-sensitive points-to and
taint analysis for all our test programs, even further improving
accuracy.

D. Optimistic Hybrid Taint Analysis
The predicated static taint analysis identifies the set of

instructions that need to be monitored. We then instrument
these monitors using LLVM DFSan [20] after the compiler
has finished all its optimization passes. DFSan is a purely
dynamic DIFT tool that provides a flexible interface to specify
data labels and enforce custom information-flow policies.
We modify DFSan’s instrumentation framework to selectively
process only those instructions which contribute to taint flows
in our predicated static analysis, thereby effectively eliding
the noop monitors. We chose DFSan as our state-of-the-art
dynamic baseline due to its ease of integration with our LLVM
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Fig. 4: Forward recovery switching mechanism: Each function
implements fast-path and slow-path in separate control flow
domains, and execution switches from fast-path to slow-path
upon detecting an invariant violation.

static analysis framework. Iodine’s optimizations are largely
orthogonal to those of traditional dynamic DIFT tools, and
will also likely proportionally improve the overheads of other
competing dynamic tools such as libdft [34] and Minemu [14].

Metadata tracking: The runtime monitors track meta-
data for each program variable and memory locations at the
byte-granularity in separate taint data structures in a shadow
memory, and we only consider explicit taint flows [12]. We
provide two options for tracking taints: (1) where each value
can be assigned a single taint type with taint propagations
being computed as logical or operations, and (2) where
we track multiple taint types per location and compute taint
propagations using the union mapping function [12] as bitwise
logical operations on bit fields representing the taint sets.

Invariant checks: We also instrument invariant checks to
detect invariant violations. Likely unreachable code is checked
by instrumenting a special invariant violation function call at
the entry of the code block. Likely callee sets are verified using
a set inclusion check upon a function pointer update. Likely
unrealized call contexts are verified by checking call-stack set
inclusion at the call-sites with reasonable overheads [18].

E. Forward Recovery Mechanism

To manage switching between the slow-path and fast-path
versions of our code, each function implements both the fast-
path and slow-path code in separate control-flow domains,
as shown in Figure 4. These two analyses paths are created
statically for each function as follows. First the control flow
graph for a function is replicated, and the fast-path version
is instrumented with monitors resulting from the predicated
static analysis, while the slow-path instrumentation uses the
conservative static analysis. Next, immediately after every
invariant check in the fast-path, we insert a conditional jump
to the slow-path that is taken whenever the guarding invariant
check fails. Note, that the slow-path has no invariant checks,
as it uses a conservative static analysis.

Another key issue is to handle the slow-path switching
correctly for function calls. When an invariant fails while
executing a function that is deep in the function call-graph,
that particular function can switch using the above mechanism.
Additionally, all functions in the call-stack up to the main
function must switch to the slow-path upon a return from the
slow-path domain. To achieve this, we instrument a conditional

switch to the slow-path after every call-site that checks a global
flag upon function return and switches to the slow-path if that
flag is raised by the invariant violation. We found the dynamic
overhead of this simple recovery mechanism to be negligible.
If this overhead were unacceptable, we could rewrite the return
addresses on stack with those in the slow-path domain. As the
observed overheads for our simple solution were low, we did
not implement this more complicated strategy.

Execution begins in the fast-path domain and continues,
as shown by the bold path in Figure 4, until it encounters
an invariant violation, at which time it immediately switches
to the slow-path domain and continues forward. This switch
is safe due to two reasons: (1) the two domains only differ
in analysis logic and maintain the same program state, and
(2) safe elision guarantees equal analysis metadata state at
invariant violation. Subsequent returns through the call-stack
switches to the slow-path through the second mechanism.

VI. EVALUATION

Our evaluation shows the following:

• Iodine enables production use of taint tracking by dra-
matically reducing the overhead of taint tracking com-
pared to conservative hybrid analysis and pure dynamic
analysis.
• Iodine efficiently implements real-world information-
flow policies for security-critical applications.
• Iodine requires reasonable profiling efforts. We show
regression tests are adequate to get majority of the
performance benefits.
• Iodine improves the precision and scalability of static
taint analysis.

A. Experimental Setup

We evaluate Iodine over several security-sensitive real-
world applications. Our benchmark suite consists of the fol-
lowing:

• Postfix mail server [35] test generators–
• qmqp-source, smtp-source: mail servers.
• qmqp-sink, smtp-sink: mail clients.
• sendmail: Postfix to Sendmail interface.

• nginx, thttpd: serving static webpages [36], [37].
• redis: database server [38] performing key-value
store, list operations, and geographic search [39].
• vim: pattern search and text processing [40].
• gzip: (de-)compressing large media files [41].

We test Iodine in a manner that parallels how we en-
vision it will be used in practice. We first profile a set
of profiling executions to gather likely invariants. Then, we
use these profiled invariants in a predicated static analysis
to construct our final optimized dynamic taint analysis for
a given information-flow policy. We generate a set of 500
diverse profile inputs by sweeping the programs’ parameter
space (e.g., data size, #clients, #requests, compression fac-
tor, etc.; excluding standardized parameters, e.g., TCP/SMTP
port). We run the postfix stress tests; nginx, thttpd
serving pydoc3 documentation and loading several webpages;
redis benchmarking application and performing geo-search
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Fig. 5: Dynamic information-flow tracking applications

[39]; vim challenge solutions from [40]; and gzip with
SPEC’s bzip2 and sphinx reference inputs. We randomly
partition these inputs into two disjoint sets- a profile set
consisting 400 executions, and a performance test set of 100
executions. We note that in an actual production environment
the profiling overhead of Iodine would be amortized over all
future executions of the program, not just the 100 we test.

To evaluate the benefits of Iodine, we compare it against
a conservative hybrid information flow tracking (IFT) tool,
and a naive dynamic IFT tool that uses no static analysis.
Our conservative hybrid IFT runs sound variants of the same
static algorithms Iodine uses, however as Iodine’s predicated
static analysis only analyzes a subset of program states, it can
often run more scalable context-sensitive predicated static anal-
yses, where sound static analysis must use context-insensitive
analysis for scalability. For our native dynamic baseline we
compare against our backend tool, DFSan[20] (4.84× avg.
for SPECint). This overhead is comparable to other purely
dynamic taint analysis systems, such as libdft [34] (5.08×).
For our conservative hybrid baseline we use DFSan with sound
static optimizations. The overhead of our conservative hybrid
system (2.83×) is also comparable to prior conservative hybrid
systems, such as TaintPipe [42] (2.67×).

All experiments are run on a single core of an Intel Xeon
E5-2620 processor with 16GB RAM running Linux 4.4.

B. IFT Security Policies

We demonstrate the effectiveness of Iodine using real taint
policies by applying it to a set of commonly used applications
with realistic taint policies adapted from Dytan [12] and
Google desktop’s privacy policy [43]. The policies we study
are:

Email integrity and privacy: We add security checks
to the Postfix mail server, following the policies outlined
in [13], [43]. These policies ensure: receiver addresses are
entirely determined by user input and message dates are only
determined by the time system call (email integrity), and
message bodies are passed through sanitizing functions that
perform encryption, and check for unmatched HTML tags or
scripting tags (privacy + security).

Overwrite attacks on web server: We enforce a taint
policy on the Nginx web server that taints all network inputs,

and asserts that tainted values are not used as function pointers,
return addresses, or format strings. This policy detects a
malicious overwrite attack [12].

Results: Iodine shows a 4.4× reduction in runtime over-
head for these realistic case studies, incurring only 7% to 12%
overhead, compared to 27% to 52% obtained with conservative
hybrid analysis. These results are shown in Figure 5, as
well as those of a naive dynamic IFT analysis. With these
significant runtime improvements Iodine enables taint tracking
in many production systems where performance concerns often
preclude security.

C. Generic Information-Flow Policies

As we only have a limited set of realistic taint policies, we
further test Iodine’s effectiveness in reducing taint overhead
over additional benchmarks by using synthetic taint policies.
We implement two different synthetic variants of taint analysis
to evaluate the effectiveness of our framework in a forward-
only analysis versus a forward-backward analysis.

Some-to-some: Propagates taints from a randomly sampled
fraction of the taint sources to the set of all sink instructions.
Both forward and backward static taint analyses are used to
implement this policy.

Some-to-all: Treats all instructions as potential sinks and
propagates taints from the sampled taint sources. Only forward
static taint optimizations are used to optimize this analysis.

Some-to-all taint policies are useful in many non-security
contexts such as database provenance and lineage queries,
information flow in debugging and software testing. This
optimization also isolates the forward optimizations of our
hybrid IFT framework, showing directly how effective pred-
icated static analysis is at optimizing taint checks versus
a sound static analysis. We treat all input interfaces from
console/file/network as potential taint sources and elect to
randomly sample 1

3 of them for these taint policies. All output
interfaces to console/file/network are taint sinks. We find this
sampling gives us overhead numbers similar to the realistic
policies evaluated previously. All subsequent results are based
on the above generic policies. We consistently use the 1

3
sampling fraction and the same set of sampled taint sources
for a program in all subsequent experiments, except in §VI-H
where we change this parameter.

Results: Similar to our taint policy tests, Iodine sig-
nificantly reduces the runtime of dynamic taint tracking in
our synthetic tests, as shown in Figure 6. When applied
to some-to-some taint tracking (Figure 6a), Iodine reduces
the dynamic overhead of conservative hybrid taint analysis
by 2.8×, bringing the overhead of taint tracking from 51%
with conservative hybrid analysis down to 18% over native
unmonitored execution. We also apply Iodine to some-to-all
taint tracking (Figure 6b). Iodine sees similar reductions in
overhead, reducing overhead of taint tracking to 24%, versus
92% for conservative hybrid analysis, and 276% for a pure
dynamic analysis. Once again, Iodine brings overheads down
significantly, further showing its capability to reduce overheads
and enable taint-tracking on production systems.

SPEC benchmarks: To further evaluate Iodine’s perfor-
mance on compute-intensive programs, we run it with the
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Fig. 6: Iodine compared to pure (full) dynamic DIFT and conservative hybrid DIFT.
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Fig. 7: Taint tracking performance on SPECint C benchmarks

same randomized some-to-some analysis setup on the SPECint
benchmarks that are written in C with reference inputs. The re-
sults of these experiments are shown in Figure 7. The SPECint
benchmarks are tuned to be CPU bound, and therefore exhibit
higher DIFT overheads compared to our other case studies.
Iodine improves the dynamic overhead of taint analysis by
4.5×, bringing the overhead of taint tracking over unmonitored
execution from 183% with conservative hybrid analysis down
to 41%. This speedup is in fact much higher than the 2.8×
speedup for our other programs.

Comparison to ideal analysis: We show that Iodine’s
optimization mechanism is so efficient it approaches optimal
by comparing Iodine’s some-to-all results with a dynamically
gathered optimal analysis. Our optimal analysis only monitors
instructions that are dynamically found to propagate taint, the
very minimum set of instructions a some-to-all analysis could
gather. We measure the average dynamic overhead of this ideal
some-to-all taint analysis to be 13%. This shows that at 24%
overhead, Iodine is 86% closer to optimal than traditional
hybrid’s 92%, and beginning to truly approach the realm of
optimal dynamic taint analysis.
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Fig. 8: Improved static analysis precision by assuming different
invariants for some-to-some analysis. Conservative analysis uses
a context-insensitive pointer-analysis, while the predicated analysis
can scalably apply a context-sensitive pointer analysis.

D. Memory Overheads

Iodine maintains the exact metadata state as a conservative
analysis. Therefore, the memory space overhead of metadata
tracking remains unchanged. Iodine does increase code-size by
generating two versions of the code: the fast-path and slow-
path. However, as only one version of the code is executed
at a time, this has little impact on the caching behavior or
performance of the program. On average, the code footprint
of a program instrumented by Iodine increases by 2.1×,
compared to 1.4× with conservative hybrid taint analysis, and
1.8× with pure dynamic taint analysis.

E. Iodine’s Framework Overheads

Invariant Check Cost: Figure 6 also isolates the invariant
checking costs. Invariant checks are only required in Iodine’s
optimistic analysis framework and are absent from the full



TABLE I: Static analysis time breakups for some-to-some taint analysis

Benchmark Conservative Static Analysis Predicated Static Analysis
Points-to Taint Total Profiling Points-to† Taint Total

qmqp-sink 8s 4m 28s 4m 36s 1m 19s 12s 36s 2m 07s
qmqp-source 7s 14m 18s 14m 25s 1m 45s 5s 1m 12s 3m 02s
smtp-sink 9s 6m 12s 6m 21s 2m 00s 16s 44s 3m 39s
smtp-source 11s 11m 44s 11m 55s 2m 19s 9s 1m 08s 3m 35s
sendmail 15s 16m 53s 17m 08s 2m 02s 13s 1m 37s 4m 32s
nginx 19s 20m 04s 20m 24s 1m 12s 12s 1m 30s 2m 54s
thttpd 18s 17m 54s 18m 12s 59s 16s 1m 14s 2m 29s
redis 1m 18s 19m 43s 21m 01s 2m 01s 10s 1m 25s 3m 35s
vim 32s 61m 22s 61m 54s 5m 12s 88s 2m 54s 9m 35s
gzip 8s 8m 49s 8m 58s 7m 03s 17s 1m 22s 8m 42s

†Our optimistic framework enables us to scalably apply more accurate context-sensitive points-to analysis during the predicated static analysis

dynamic and conservative hybrid analysis. Overall we observe
that invariant checks have nearly no effect on end runtime,
incurring only 2% of overall execution time.

Checking likely-unreachable-code incurs almost no over-
head. Checking likely-callee-sets requires small set inclusion
checks upon function pointer updates, which are fairly rare.
Likely-unused-call-contexts involve checking if current call-
context is among those assumed during static-analysis, and we
optimize it by hashing the call-stack to lookup a Bloom-filter
thereby avoiding majority of expensive checks [18].

Invariant Violations and Switching Overhead: Overall
Iodine observes largely inconsequential rates of invariant vi-
olations, with only sendmail, redis and vim violating
an invariant during some-to-all analysis in 3, 2, and 5 (out
of 100) executions respectively. This indicates that our profil-
ing methodology captures the common-case dynamic execu-
tion behavior effectively, signfiicantly optimizing the dynamic
analysis. The amortized overhead of the slow path analysis
resulting from these violations is less than 0.5%. Note that the
slow-path overhead can be no worse than that of conservative
hybrid analysis.

We also find that the runtime overhead of the switching
mechanism at function call return sites, discussed in §V-E, is
negligible.

F. Precise and Scalable Static Analysis

Figure 8 shows how assuming different types of invariants
successively reduces the number of required static monitors
for a some-to-some taint analysis. While the conservative
static analysis requires instrumenting 63% instructions on
average, our predicated static taint analysis nearly halves
this value at 37%, providing the foundation for Iodine’s
impressive performance results. This translates to eliding
54%(nginx)−86%(vim) of the dynamic taint checks from
a conservatively optimized analysis.

Table I summarizes the breakdown of static analysis times
for both the conservative static and our predicated static
versions. Applying the invariant assumptions to constrain the
static analysis search space enables us to scalably apply a
context-sensitive pointer analysis. This further improves the
precision of our predicated static analysis. We see that a
reasonable effort spent in profiling significantly reduces the

overall static taint analysis time. In fact, the total static
analysis time including the profiling time is lower than that
of conservative static analysis for all our test programs. This
makes Iodine suitable for deployment in production where
the applications are constantly evolving thereby requiring re-
analyzing them statically for hybrid analysis.

G. Profiling During Regression Testing Is Effective

An important concern with profile-based optimizations is
the time and effort spent in profiling as well as the system’s
sensitivity to the profile set. Unlike profile-based optimizations
that try to capture frequently executed program states, we
propose a conservative but effective methodology that attempts
to capture all feasible program states. We observe that software
regression tests seek to maximize code and path coverage, and
are therefore good candidates for conservative profiling.

We evaluate this approach by profiling three programs-
nginx, redis on their packaged regression test suites, and
vim on open-source test suites [44], [45]. The results in Fig-
ure 9 show that profiling on regression test suites alone is very
effective. It reduces the runtime overhead to 31% compared to
55% with conservative hybrid analysis. We however observe
invariants being violated dynamically after this profiling, and
so recommend further profiling on beta tests. We use our
original set of 400 profile inputs (in §VI-A) as a proxy for beta
testing. Profiling on the beta tests (shaded right halves) reduces
the invariant violation rate significantly and brings down the
analysis overhead to 23%.

Thus, we leverage the existing software testing suites to
perform Iodine’s initial profiling, and recommend reasonable
beta testing for learning invariants to optimize Iodine. Mature
software systems have well designed regression test suites
that attain high code coverage. As a result, we find that
our likely unreachable code invariants were learnt accurately
after profiling regression tests. Most invariant violations after
profiling on regression test suites were due to likely callee
sets and likely unrealized call contexts, mainly because test
suites often invoke many functions only in some mock context.
Profiling on a few actual executions during beta tests easily
overcomes this. Alternatively, improving test suites that attain
high coverage for calling contexts [46] can be effective, as can
learning invariants during production runs.
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Fig. 10: Iodine’s performance benefits reduce with larger
fractions of the program’s data space being tainted. Fraction
of taints observed for realistic taint policies (§VI-B) are
annotated.

Moreover, Iodine is resilient to weak profiling. Our analysis
needs no guarantees that all states are profiled; and even if the
invariants fail dynamically, the constructed optimized analysis
is still sound. Failing invariants can be learned over time
and the optimized analysis can be adaptively re-constructed to
exclude those without requiring analysis rollbacks (§VII). Un-
like a carefully crafted ‘bootstrapping’ process that ultimately
determines its effectiveness, Iodine requires test suites with
reasonable coverage for profiling, and is moreover resilient to
profiling inaccuracies.

H. Sensitivity to Fraction of Tainted Data

Hybrid analyses (both traditional and Iodine) elide in-
strumentation that cannot propagate taint. As a growing set
of inputs carry taints, the taints spread faster to nearly the
program’s entire data space. If nearly all data is tainted, there
is no optimization opportunity and Iodine fails to effectively
elide taint checks. To investigate this behavior, in Figure 10, we
look at how Iodine’s normalized runtime varies with increasing
the taint sampling fraction in our some-to-all taint analysis in

§VI-C. We statically identify all viable taint sources (input
interfaces from console/file/network) and randomly sample
the stipulated fraction of them to be active. Since selected
sources might vary in their dynamic execution frequencies,
we run on 100 different samples for a given sampling fraction
(except for 100%). As expected, we observe that Iodine’s
performance degrades in general when dealing with larger
fraction of tainted inputs, although Iodine shows significant
benefits for many realistic levels of tainted input. This behavior
is fundamental to hybrid analysis, and is no worse in Iodine
than in a conservative hybrid analysis.

Iodine is effective when the target program and the taint
policy induce a low fraction of tainted data. We observe that
this property indeed holds for the IFT security policies studied
in §VI-B; the static fraction of active taint sources therein are
between 14-23% (circled in Figure 10).

VII. DISCUSSION
Limitations: Our implementation is for programs written

in the C language, and we currently do not support native
programs written in assembly. OHA’s principles are however
generally applicable to static analyses of x86 binaries [47], and
has been shown to benefit other analyses for Java programs as
well [18].

Support for multi-threaded programs require a concurrency
analysis on top of Iodine’s information-flow analysis, and prior
work [18] has shown that OHA can benefit there as well.

Rarity and severity of invariant violations: For well-
tested software, invariants should rarely fail as profiles would
have captured the common-case program states. However for
moderately large software with diverse features, optimistically
gathered invariants may eventually fail when the program en-
counters unprofiled behavior. If this happens, Iodine switches
to a conservative hybrid analysis. Thus, even in the worst case,
Iodine is still as fast as the best available conservative hybrid
technique.

Currently, owing to the minuscule invariant violation rate,
Iodine conservatively continues on the slow-path until the
next system reboot when it switches back to the fast-path.
While this is no worse than conservative hybrid analysis, we
envision the following strategies to preserve most of Iodine’s
performance benefits even after an invariant violation.



Background re-analysis: Upon an invariant-failure, we can
‘learn’ this new behavior and re-analyze the program without
the offending invariant. For many useful static analyses, this
can be done incrementally rather than redoing from scratch
[48]. For a dataflow analysis like Iodine’s, this boils down
to adding new nodes and edges to the programs’ definition-
use graph, and recomputing the transitive closure. The re-
compilation process can continue in the background while
the monitored program runs slowly. Upon completion of the
re-compilation process, the program can switch to the newly
optimized analysis at a pre-determined safe program point.

Graceful degradation: Upon an invariant-failure, instead
of switching to the most conservatively optimized analysis, we
can switch to a less aggressive optimistic analysis that excludes
the failing invariant. Even better, if we can compute and
succinctly encode the mapping between assumed invariants
and the set of induced optimizations, we can selectively disable
only those optimizations induced by the violated invariant,
essentially re-instrumenting the monitors that were elided by
assuming that invariant. Dynamically re-instrumenting the new
analysis on-demand also eliminates the memory overhead of
maintaining multiple analysis versions.

Iodine can be implemented at the runtime system layer
wherein the invariant violation handler can invoke a dynamic
instrumentation framework to re-instrument the modified anal-
ysis, thereby opening opportunities to further benefit from JIT
compilation techniques [49]. Such a setup further opens the
possibility to actively learn new invariants and re-optimize the
analysis.

VIII. RELATED WORK

Iodine builds on the prior optimistic hybrid analysis work
[18] in two major ways- (1) it constructs a rollback-free OHA
by limiting to only safe elision optimizations thereby solving
the recovery problem in OHA, and (2) applies this novel
technique to realize a low overhead DIFT solution for live
executions. Below, we discuss relevant prior work on DIFT,
hybrid program analyses, and profile-based optimizations.

Dynamic Analysis: There has been significant work on
dynamic taint tracking systems [9], [12], [50]. Past work
has developed many optimized dynamic techniques, such as
creating highly specific information-flow policies [5], [6], [11],
reducing its scope to only apply to related processes [51],
optimizing low-level taint operations [34], writing minimal
emulators targeted for taint tracking [14], or even providing
custom hardware support [10], [52]–[54]. All of these opti-
mizations operate purely on the dynamic state of the program,
attempting to make existing set of taint operations faster.
Iodine elides taint operations through static analysis, reducing
the set of instructions monitored, making its optimization
complementary to these prior approaches.

Taint tracking has also been parallelized either by parti-
tioning the execution into epochs to perform local analysis and
then aggregating results [15], [55], or by decoupling taint anal-
ysis from the program execution [16], [17], [56], [57], wherein
the dynamic instrumentation only performs lightweight log-
ging followed by an offline analysis. These efforts reduce
latency of taint tracking through parallelization, but not overall
work, like Iodine does. They too are complimentary to Iodine’s
optimizations.

Static Analysis: Several systems have attempted to solve
taint tracking using language features to enforce a taint policy
at compile-time, sometimes with limited dynamic checks [58],
[59]. These systems achieve low runtime overhead, but place
the burden on the programmer to specify and guarantee taint
policy using an unfamiliar restrictive language. Iodine opti-
mizes dynamic analysis, and does not require source code
changes, other than trivial annotations specifying taint sources,
sinks, and untaint functions.

Hybrid Analysis: Hybrid analysis has been explored in
the past [60] for accelerating DIFT. Moore et al. provide the
soundness conditions for static analysis to determine when it
is safe to stop tracking certain variables dynamically [19]. In
addition to removing unnecessary monitors using static anal-
ysis, Chang et al. statically transform untrusted programs into
policy-enforcing programs to further reduce the amount of data
to be tracked dynamically [61]. Jee et al. statically separate the
taint tracking logic from the program logic and then optimize it
using abstract taint flow algebra [16]. Hybrid systems have also
coalesced taint checks through static analysis [4], [42]. While
these traditional hybrid analyses use sound static analysis
to conservatively reduce dynamic overheads, Iodine further
improves runtime overheads with use of unsound, predicated
static analysis. Iodine’s use of optimistic hybrid analysis with
forward recovery could likely be combined with these systems
for further taint optimizations.

Blended analysis [62] uses dynamic information to im-
prove the accuracy of a best-effort static taint checking tool
for JavaScript applications [63]. While they utilize dynamic
information to make static analysis tractable for corner-case
dynamic language features (e.g., eval), our likely invari-
ants captures common program behaviors to improve whole-
program static analysis. Moreover, their end goal is just to
improve static analysis, and stop short of optimizing dynamic
analysis. They also do not provide soundness or completeness
guarantees for any results produced. Iodine produces sound
and complete dynamic analysis for live executions.

Profile-guided Compiler Optimizations: Profile-guided op-
timizations [64], [65] learn invariants through profiling and
use them for local optimizations. In particular, work on JIT
optimizing compilers such as those that speculatively inline
functions [66], or speculatively convert indirect function calls
to direct function calls [67], speculatively optimize execution,
as done in Iodine. Our work differs in two key ways. First,
while compiler optimizations focus on optimizing program
logic, Iodine aims at eliding unnecessary runtime DIFT moni-
tors. A more fundamental difference is that Iodine uses invari-
ants to improve precision and scalability of whole-program
static analysis. In contrast, profile-guided optimizations do not
typically consider whole-program static analysis, and therefore
the methods for checking invariants and recovery are simpler
and cheaper than optimistic hybrid analysis.

IX. CONCLUSION

We presented a novel optimistic hybrid analysis (OHA)
technique to optimize DIFT. We solve a key challenge that
limits applying OHA to online analyses on live executions
— rollback recovery. We eliminated the need for rollbacks
by restricting our predicated static analysis optimizations to
noop safe elisions. Iodine significantly improves the precision
of static data-flow and pointer analysis, thereby drastically
reducing DIFT overhead for important security policies to 9%.
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