
SoK: Sanitizing for Security

Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, Michael Franz

University of California, Irvine

{dokyungs,jlettner,rajasekp,yeouln,stijnv,perl,franz}@uci.edu

Abstract—The C and C++ programming languages are noto-
riously insecure yet remain indispensable. Developers therefore
resort to a multi-pronged approach to find security issues before
adversaries. These include manual, static, and dynamic program
analysis. Dynamic bug finding tools—henceforth “sanitizers”—
can find bugs that elude other types of analysis because they
observe the actual execution of a program, and can therefore
directly observe incorrect program behavior as it happens.

A vast number of sanitizers have been prototyped by aca-
demics and refined by practitioners. We provide a systematic
overview of sanitizers with an emphasis on their role in finding
security issues. Specifically, we taxonomize the available tools and
the security vulnerabilities they cover, describe their performance
and compatibility properties, and highlight various trade-offs.

I. INTRODUCTION

C and C++ remain the languages of choice for low-level

systems software such as operating system kernels, runtime

libraries, and browsers. A key reason is that they are efficient

and leave the programmer in full control of the underlying

hardware. On the flip side, the programmer must ensure that

every memory access is valid, that no computation leads to

undefined behavior, etc. In practice, programmers routinely fall

short of meeting these responsibilities and introduce bugs that

make the code vulnerable to exploitation.

At the same time, memory corruption exploits are getting

more sophisticated [1]–[4], bypassing widely-deployed mitiga-

tions such as Address Space Layout Randomization (ASLR)

and Data Execution Prevention (DEP). Code-reuse attacks such

as Return-Oriented Programming (ROP) corrupt control data

such as function pointers or return addresses to hijack the

control-flow of the program [1]. Data-only attacks such as

Data-Oriented Programming (DOP) leverage instructions that

can be invoked on legal control-flow paths to compromise a

program by corrupting only its non-control data [4].

As a first line of defense against bugs, programmers use

analysis tools to identify security problems before their software

is deployed in production. These tools rely on either static

program analysis, dynamic program analysis, or a combination.

Static tools analyze the program source code and produce

results that are conservatively correct for all possible executions

of the code [5]–[9]. In contrast, dynamic bug finding tools—

often called “sanitizers”—analyze a single program execution

and output a precise analysis result valid for a single run only.

Sanitizers are now in widespread use and responsible for

many vulnerability discoveries. However, despite their ubiquity

and critical role in finding vulnerabilities, sanitizers are often

not well-understood, which hinders their further development

TABLE I
EXPLOIT MITIGATIONS VS. SANITIZERS

Exploit Mitigations Sanitizers

The goal is to ... Mitigate attacks Find vulnerabilities
Used in ... Production Pre-release
Performance budget ... Very limited Much higher
Policy violations lead to ... Program termination Problem diagnosis
Violations triggered at location of bug ... Sometimes Always
Tolerance for FPs is ... Zero Somewhat higher
Surviving benign errors is ... Desired Not desired

and adoption. In fact, although there is a significant body of

research in the area, only a few of them have seen adoption,

leaving many types of vulnerabilities unsanitized. This paper

provides a systematic overview of sanitizers with an emphasis

on their role in finding security vulnerabilities. We taxonomize

the available tools and the security vulnerabilities they cover,

describe their performance and compatibility properties, and

highlight various trade-offs. Based on our findings, we point

to deployment directions for developers as well as research

directions aimed at (i) finding vulnerabilities that elude existing

tools, (ii) improving compatibility with real-world programs,

and (iii) ways to find vulnerabilities more efficiently.

The rest of the paper is organized as follows. We start with

a high-level comparison of sanitizers and exploit mitigations

(Section II). Next, we describe the low-level vulnerabilities in

C/C++ (Section III) and taxonomize techniques to detect them

(Section IV). We then continue with a description of two key

implementation aspects of sanitizers: program instrumentation

techniques (Section V) and metadata management (Section VI).

We then briefly discuss how to drive the program being

sanitized so as to maximize the effectiveness of the sanitizer

(Section VII). Next, we present a summary of sanitizers that are

being actively maintained or that were published at academic

conferences with a focus on their precision, compatibility, and

performance/memory costs (Section VIII). We also survey the

deployment landscape of these tools (Section IX). We conclude

the paper with future research directions (Section X).

II. EXPLOIT MITIGATIONS VS. SANITIZERS

Sanitizers are similar to many well-known exploit mitigations

insofar that they may instrument the program in similar

ways, e.g., by inserting inlined reference monitors (IRMs).

Despite such similarities, exploit mitigations and sanitizers

significantly differ in their goals and use cases. We summarize

key differences in Table I.

The biggest difference between the two types of tools lies

in the type of security policy they enforce. Exploit mitigations

1275

2019 IEEE Symposium on Security and Privacy

© 2019, Dokyung Song. Under license to IEEE.
DOI 10.1109/SP.2019.00010



deploy a policy aimed at detecting or preventing attacks,

whereas sanitizers aim to pinpoint the precise locations of

buggy program statements. Control-Flow Integrity (CFI) [10],

[11], Data-Flow Integrity (DFI) [12] and Write Integrity Testing

(WIT) [13] are examples of exploit mitigations because they

detect deviations from legal control or data flow paths, which

usually happen as a consequence of a bug’s exploitation, but

do not necessarily happen at the precise locations of vulnerable

program statements. Bounds checking tools, in contrast, could

be considered sanitizers because violations of their policies

trigger directly at the locations of vulnerable statements.

Some tools selectively apply sanitization techniques, possibly

combined with exploit mitigation techniques. Code-Pointer

Integrity (CPI), for example, only performs bounds checks

(a sanitization technique used in many sanitizers) when

the program directly or indirectly accesses sensitive code

pointers [14]. We therefore consider CPI an exploit mitigation

rather than a sanitizer because CPI only detects a fraction of

all bugs that could be detected using bounds checks.

Exploit mitigations are meant to be deployed in production,

thus put stringent requirements on various design aspects.

First, exploit mitigations rarely see real-world adoption if

they incur non-negligible run-time overhead [15]. Sanitizers

have less stringent performance requirements because they are

only used for testing. Second, false positive detections in an

exploit mitigations are unacceptable because they terminate

the program. Sanitizers may tolerate false alerts to the extent

that developers are willing to review false bug reports. Finally,

surviving benign errors (e.g., writes to padding) is allowed

and often desired in production systems for reliability and

availability reasons, whereas sanitizers aim to detect these bugs

precisely since their exploitability is unknown.

III. LOW-LEVEL VULNERABILITIES

Given the wide range of security-related bugs, we focus on

bugs that have specific security implications in C/C++. This

includes not only undefined behavior, but also well-defined

behaviors that are potentially dangerous in the absence of type

and memory safety. We briefly describe the bugs and how

they can be exploited to leak information, escalate privilege,

or execute arbitrary code.

A. Memory Safety Violations

A program is memory safe if pointers in the program only

access their intended referents, while those intended referents

are valid. The intended referent of a pointer is the object from

whose base address the pointer was derived. Depending on the

type of the referent, it is either valid between its allocation and

deallocation (for heap-allocated referents), between a function

call and its return (for stack-allocated referents), between the

creation and the destruction of its associated thread (for thread-

local referents), or indefinitely (for global referents).

Memory safety violations are among the most severe

security vulnerabilities and have been studied extensively in

the literature [15], [16]. Their exploitation can lead to code

injection [17], control-flow hijacking [1], [18], [19], privilege

escalation [20], information leakage [21], and program crashes.

1) Spatial Safety Violations: Accessing memory that is not

(entirely) within the bounds of the intended referent of a pointer

constitutes a spatial safety violation. Buffer overflows are a

typical example of a spatial safety violation. A buffer overflow

happens when the program writes beyond the end of a buffer. If

the intended referent of a vulnerable access is a subobject (e.g.,

a struct field), and if an attacker writes to another subobject

within the same object, then we refer to this as an intra-object
overflow. Listing 1 shows an intra-object overflow vulnerability

which can be exploited to perform a privilege escalation attack.

struct A { char name[7]; bool isAdmin; };
struct A a; char buf[8];
memcpy(/* dst */ a.name, /* src */ buf, sizeof(buf));

Listing 1. Intra-object overflow vulnerability which can be exploited to
overwrite security-critical non-control data

2) Temporal Safety Violations: A temporal safety violation

occurs when the program accesses a referent that is no

longer valid. When an object becomes invalid, which usually

happens by explicitly deallocating it, all the pointers pointing

to that object become dangling. Accessing an object through

a dangling pointer is called a use-after-free. Accessing a local

object outside of its scope or after the function returns is

referred to as use-after-scope and use-after-return, respectively.

This type of bug becomes exploitable when the attacker can

reuse and control the freed region, as illustrated in Listing 2.

struct A { void (*func)(void); };
struct A *p = (struct A *)malloc(sizeof(struct A));
free(p); // Pointer becomes dangling
...
p->func(); // Use-after-free

Listing 2. Use-after-free vulnerability which can be exploited to hijack the
control-flow of the program

B. Use of Uninitialized Variables

Variables have an indeterminate value until they are ini-

tialized [22], [23]. C++14 allows this indeterminate value to

propagate to other variables if both the source and destination

variables have an unsigned narrow character type. Any other

use of an uninitialized variable results in undefined behavior.

The effects of this undefined behavior depend on many factors,

including the compiler and compiler flags that were used to

compile the program. In most cases, indeterminate values are

in fact the (partial) contents of previously deallocated variables

that occupied the same memory range as the uninitialized vari-

able. As these previously deallocated variables may sometimes

hold security-sensitive values, reads of uninitialized memory

may be part of an information leakage attack, as illustrated in

Listing 3.

struct A { int data[2]; };
struct A *p = (struct A *)malloc(sizeof(struct A));
p->data[0] = 0; // Partial initialization
send_to_untrusted_client(p, sizeof(struct A));

Listing 3. Use of a partially-initialized variable which becomes vulnerable as
the uninitialized value crosses a trust boundary

1276



C. Pointer Type Errors

C and C++ support several casting operators and language

constructs that can lead memory accesses to misinterpret the

data stored in their referents, thereby violating type safety.

Pointer type errors typically result from unsafe casts. C allows

all casts between pointer types, as well as casts between

integer and pointer types. The C++ reinterpret_cast type

conversion operator is similarly not subject to any restrictions.

The static_cast and dynamic_cast operators do have

restrictions. static_cast forbids pointer to integer casts,

and casting between pointers to objects that are unrelated by

inheritance. However, it does allow casting of a pointer from a

base class to a derived class (also called downcasting), as well

as all casts from and to the void* type. Bad-casting (often

referred to as type confusion) happens when a downcast pointer

has neither the run-time type of its referent, nor one of the

referent’s ancestor types.

class Base { virtual void func(); };
class Derived : public Base { public: int extra; };
Base b[2];
Derived *d = static_cast<Derived *>(&b[0]); // Bad-casting
d->extra = ...; // Type-unsafe, out-of-bounds access, which

// overwrites the vtable pointer of b[1]

Listing 4. Bad-casting vulnerability leading to a type- and memory-unsafe
memory access

To downcast safely, programmers must use the dynamic_cast

operator, which performs run-time type checks and returns a

null pointer if the check fails. Using dynamic_cast is entirely

optional, however, and introduces additional run-time overhead.

Type errors can also occur when casting between function

pointer types. Again, C++’s reinterpret_cast and C impose

no restrictions on casts between incompatible function pointer

types. If a function is called indirectly through a function

pointer of the wrong type, the target function might misinterpret

its arguments, which leads to even more type errors. Finally, C

also allows type punning through union types. If the program

reads from a union through a different member object than the

one that was used to store the data, the underlying memory

may be misinterpreted. Furthermore, if the member object used

for reading is larger than the member object used to store

the data, then the upper bytes read from the union will take

unspecified values.

D. Variadic Function Misuse

C/C++ support variadic functions, which accept a variable

number of variadic function arguments in addition to a fixed

number of regular function arguments. The variadic function’s

source code does not specify the number or types of these

variadic arguments. Instead, the fixed arguments and the

function semantics encode the expected number and types

of variadic arguments. Variadic arguments can be accessed

and simultaneously typecast using va_arg. It is, in general,

impossible to statically verify that va_arg accesses a valid

argument, or that it casts the argument to a valid type. This lack

of static verification can lead to type errors, spatial memory

safety violations, and uses of uninitialized values.

char *fmt2; // User-controlled format string
sprintf(fmt2, user_input, ...);
// prints attacker-chosen stack contents if fmt2 contains
// too many format specifiers
// or overwrites memory if fmt2 contains %n
printf(fmt2, ...);

Listing 5. Simplified version of CVE-2012-0809; user-provided input was
mistakenly used as part of a larger format string passed to a printf-like function

E. Other Vulnerabilities

There are other operations that may pose security risks in the

absence of type and memory safety. Notable examples include

overflow errors which may be exploitable when such values

are used in memory allocation or pointer arithmetic operations.

If an attacker-controlled integer value is used to calculate a

buffer size or an array index, the attacker could overflow that

value to allocate a smaller buffer than expected (as illustrated

in Listing 6), or to bypass existing array index checks, thereby

triggering an out-of-bounds access.

// newsize can overflow depending on len
int newsize = oldsize + len + 100;
newsize *= 2;
// The new buffer may be smaller than len
buf = xmlRealloc(buf, newsize);
memcpy(buf + oldsize, string, len); // Out-of-bounds access

Listing 6. Simplified version of CVE-2017-5029; a signed integer overflow
vulnerability that can lead to spatial memory safety violation

C/C++ do not define the result of a signed integer overflow, but

stipulate that unsigned integers wrap around when they overflow.

However, this wrap-around behavior is often unintended and

potentially dangerous.

Undefined behaviors such as signed integer overflows pose

additional security risks when compiler optimizations are

enabled. In the presence of potential undefined behavior,

compilers are allowed to assume that the program will never

reach the conditions under which this undefined behavior

is triggered. Moreover, the compiler can perform further

optimization based on this assumption [24]. Consequently,

the compiler does not have to statically verify that the program

is free of potential undefined behavior, and the compiler is

not obligated to generate code that is capable of recognizing

or mitigating undefined behavior. The problem with this

rationale is that optimizations based on the assumption that

the program is free from undefined behavior can sometimes

lead the compiler to omit security checks. In CVE-2009-1897,

for example, GCC infamously omitted a null pointer check

from one of the Linux kernel drivers, which led to a privilege

escalation vulnerability [25]. Compiler developers regularly add

such aggressive optimizations to their compilers. Some people

therefore refer to undefined behavior as time bombs [26].

struct sock *sk = tun->sk; // Compiler assumes tun is not
// a null pointer

if (!tun) // Check is optimized out
return POLLERR;

Listing 7. Simplified version of CVE-2009-1897; dereferencing a pointer lets
the compiler safely assume that the pointer is non-null

1277



IV. BUG FINDING TECHNIQUES

We now review the relevant bug finding techniques. We

begin each subsection with an informal description of the bug

finding policy, followed by a description of mechanisms that

implement (or approximate) that policy.

A. Memory Safety Violations

Memory safety bug finding tools detect dereferences of

pointers that either do not target their intended referent (i.e.,

spatial safety violations), or that target a referent that is no

longer valid (i.e., temporal safety violations). There are two

types of tools for detecting these bugs. We summarize their

high-level goals and properties here, and then proceed with an

in-depth discussion of the techniques these tools can employ

to detect memory safety bugs.

Location-based Access Checkers: Location-based access

checkers detect memory accesses to invalid memory regions.

These checkers have a metadata store that maintains state for

each byte of (a portion) of the addressable address space, and

consult this metadata store whenever the program attempts

to access memory to determine whether the memory access

is valid or not. Location-based access checkers can use red-

zone insertion [27]–[31] or guard pages [32], [33] to detect

spatial safety violations. Either of these techniques can be

combined with reuse delay to additionally detect temporal

safety violations [27]–[29], [31]–[36]. Location-based access

checkers incur low run-time performance overheads, and are

highly compatible with uninstrumented code. The downside

is that these tools are imprecise, as they can only detect if

an instruction accesses valid memory, but not if the accessed
memory is part of the intended referent of the instruction. These

tools generally incur high memory overhead.

Identity-based Access Checkers: Identity-based access

checkers detect memory accesses that do not target their

intended referent. These tools maintain metadata (e.g., bounds

or allocation status) for each allocated memory object, and

have a mechanism in place to determine the intended referent

for every pointer in the program. Metadata lookups can

happen when the program calculates a new pointer using

arithmetic operations to determine if the calculation yields

a valid pointer and/or upon pointer dereferences to determine

if the dereference accesses the intended referent of the pointer.

Identity-based access checkers can use per-object bounds

tracking [34], [37]–[43] or per-pointer bounds tracking [44]–

[55] to detect spatial safety violations, and can be extended

with reuse delay [55], lock-and-key checking [46], [47], [56],

or with dangling pointer tagging [57]–[60] to detect temporal

safety violations. Identity-based checkers are more precise

than location-based access checkers, as they cannot just detect

accesses to invalid memory, but also accesses to valid memory

outside of the intended referent. These tools do, however,

incur higher run-time performance overhead than location-based

checkers. Identity-based checkers are generally not compatible

with uninstrumented code. They also have higher false positive

detection rates than location-based checkers.

1) Spatial Memory Safety Violations:

Red-zone Insertion: Location-based access checkers can

insert so-called red-zones between memory objects [27]–[31].

These red-zones represent out-of-bounds memory and are

marked as invalid memory in the metadata store. Any access

to a red-zone or to an unallocated memory region triggers a

warning. Purify was the first tool to employ this technique [27].

Purify inserts the red-zones at the beginning and the end of each

allocation. Purify tracks the state of the program’s allocated

address space using a large shadow memory bitmap that stores

two bits of state per byte of memory. Valgrind’s Memcheck

uses the same technique but reserves two bits of state for every

bit of memory [28]. Consequently, Memcheck can detect access

errors with bit-level precision, rather than byte-level precision.

Light-weight Bounds Checking (LBC) similarly inserts red-

zones, but adds a fast path to the location-based access checks

to reduce the overhead of the metadata lookups [30]. LBC

does this by filling the red-zones with a random pattern and

compares the data read/overwritten by every memory access

with the fill pattern. If the data does not match the fill pattern,

the access is considered safe because it could not have targeted

a red-zone. If the data does happen to match the fill pattern,

LBC performs a secondary slow path check that looks up the

state of the accessed data in the metadata store, and triggers a

warning if the accessed data is a red-zone.

Location-based access checkers that use red-zone insertion

generally incur low run-time performance overhead, but have

limited precision as they can only detect illegal accesses that

target a red-zone. Illegal accesses that target a valid object,

which may or may not be part of the same allocation as the

intended referent, cannot be detected. Red-zone insertion-based

tools also fail to detect intra-object overflow bugs because they

do not insert red-zones between subobjects. While technically

feasible, inserting red-zones between subobjects would lead to

excessive memory overhead and it would change the layout

of the parent object. Any code that accesses the parent object

or one of its subobjects would therefore have to be modified,

which would also break compatibility with external code that

is not aware of the altered data layout.

Guard Pages: Location-based access checkers can insert

inaccessible guard pages before and/or after every allocated

memory object [32], [33]. Out-of-bound reads and writes

that access a guard page trigger a page fault, which in turn

triggers an exception in the application. This use of the paging

hardware to detect illegal accesses allows location-based access

checkers to run without instrumenting individual load and

store instructions. Using guard pages does, however, incur

high memory overhead, making the technique impractical for

applications with large working sets. Microsoft recognized this

problem and added an option to surround memory objects with

guard blocks instead of full guard pages in PageHeap [33].

PageHeap fills these guard blocks with a fill pattern, and verifies

that the pattern is still present when a memory object is freed.

This technique is strictly inferior to red-zone insertion, as it

only detects out-of-bounds writes (and not reads), and it does

not detect the illegal writes until the overwritten object is freed.

1278



Per-pointer Bounds Tracking: Identity-based access

checkers can store bounds metadata for every pointer [44]–[55].

Whenever the program creates a pointer by calling malloc or

by taking the address of an object, the tracker stores the base

and size of the referent as metadata for the new pointer. The

tracker propagates this metadata when the program calculates

new pointers through arithmetic and assignment operations.

Spatial memory safety violations are detected by instrumenting

all pointer dereferences and checking if a pointer is outside of

its associated bounds when it is dereferenced.

Identity-based access checkers that use per-pointer bounds

tracking can provide complete spatial memory violation de-

tection, including detection of intra-object overflows. Soft-

Bound [48] and Intel Pointer Checker [49] detect intra-object

overflows by narrowing the pointer bounds to the bounds

of the subobject whenever the program derives a pointer

from the address of a subobject (i.e., a struct field). The

primary disadvantage of per-pointer bounds tracking is poor

compatibility, as the program generally cannot pass pointers

to uninstrumented libraries because such libraries do not

propagate or update bounds information correctly. Another

disadvantage is that per-pointer metadata propagation adds

high run-time overheads. CCured reduces this overhead by

identifying “safe” pointers, which can be excluded from

bounds checking and metadata propagation [50]. However,

even with such optimizations, per-pointer bounds checking

remains expensive without hardware support [61].

Per-object Bounds Tracking: Identity-based access

checkers can also store bounds metadata for every memory

object, rather than for every pointer [34], [37]–[43].

This approach—pioneered by Jones and Kelly (J&K)—

solves some of the compatibility issues associated with per-

pointer bounds tracking [34]. Per-object bounds trackers

can maintain bounds metadata without instrumenting pointer

creation and assignment operations. The tracker only needs

to intercept calls to memory allocation (i.e., malloc) and

deallocation (i.e., free) functions, which is possible even

in programs that are not fully instrumented. Since bounds

metadata is maintained only for objects and not for pointers, it

is difficult to link pointers to their intended referent. While the

intended referent of an in-bounds pointer can be found using

a range-based lookup in the metadata store, such a lookup

would not return the correct metadata for an out-of-bounds

(OOB) pointer. J&K therefore proposed to instrument pointer

arithmetic operations, and to invalidate pointers as they go

OOB. Any subsequent dereference triggers a fault, which can

then be caught to output a warning.

J&K’s approach, however, breaks many existing programs

that perform computations using OOB pointers. In light of this,

CRED supports the creation and manipulation of OOB pointers

by tracking their referent information [37]. CRED links OOB

pointers to so-called OOB objects which store the address of

the original referent for each OOB pointer.

Baggy Bounds Checking (BBC) eliminates the need to

allocate dedicated OOB objects by storing the distance between

the OOB pointer and its referent into the pointer’s most

significant bits [39]. Tagging the most significant bits also

turns OOB pointers into invalid user-space pointers, such that

dereferencing them causes a fault. BBC compresses the size

of the per-object metadata by rounding up all allocation sizes

to the nearest power of two, such that one byte of metadata

suffices to store the bounds.

Low-fat pointer (LFP) bounds checkers improve BBC by

making allocation sizes configurable, which results in lower

performance and memory overheads [42], [43]. The idea is

to partition the heap into equally-sized subheaps that each

supports only one allocation size. Thus, the allocation size

for any given pointer can be obtained by looking up the

allocation size supported by that heap. The base address of the

pointer’s referent can be calculated by rounding it down to the

allocation size. LFP also differs from BBC in handling of OOB

pointers. For better compatibility with uninstrumented libraries,

LFP does not manipulate the pointer representation to encode

the referent of an OOB pointer. Instead, LFP recomputes the

referent of each pointer whenever the pointer is given to a

function as input either explicitly (e.g., a pointer given as an

argument) or implicitly (e.g., a pointer loaded from memory).

However, this requires LFP to enforce an invariant that pointers

are within bounds whenever they are given as input to other

functions, which is likely too strict for real-world programs

(cf. Section VIII-A).

Per-object bounds trackers can support near-complete spatial

safety vulnerability detection. However, techniques such as

BBC and LFP do sacrifice precision for better run-time perfor-

mance, as they round up allocation sizes and check allocation

bounds rather than object bounds (cf. Section VIII-B).

Per-object bounds tracking has other downsides too. First,

per-object bounds trackers do not detect intra-object overflows

(cf. Section VIII-B). Second, marking pointers as OOB by

pointing them to an OOB object, or by writing tags into their

upper bits might impact compatibility with external code that is

unaware of the bounds checking scheme used in the program.

Specifically, external code is unable to restore OOB pointers

into in-bounds pointers even when that is the intent.

2) Temporal Memory Safety Violations:
Reuse Delay: Location-based access checkers can mark

recently deallocated objects as invalid in the metadata store

by replacing them with red-zones [27]–[29], [31], [34] or with

guard pages [32], [33], [35], [36]. Identity-based checkers can

similarly invalidate the identity of deallocated objects [55]. The

existing access checking mechanism can then detect dangling

pointer dereferences as long as the deallocated memory or

identity is not reused. If the program does reuse the memory

or identity for new allocations, this approach will erroneously

allow dangling pointer dereferences to proceed. Some reuse

delay-based tools reduce the chance of such detection failures

by delaying the reuse of memory regions or identities until

they have “aged” [27]–[29], [31], [34], [55]. This leads to a

trade-off between precision and memory overhead as longer

reuse delays lead to higher memory overhead, but also to a

higher chance of detecting dangling pointer dereferences.

Dhurjati and Adve (D&A) proposed to use static analysis

1279



to determine exactly when deallocated memory is safe to

reuse [35]. D&A allocate every memory object on its own

virtual memory page, but allow objects to share physical

memory pages by aliasing virtual memory pages to the same

physical page. When the program frees a memory object,

D&A convert its virtual page into a guard page. D&A also

partition the heap into pools, leveraging a static analysis called

Automatic Pool Allocation [62]. This analysis can infer when a

pool is no longer accessible (even through potentially dangling

pointers), at which point all virtual pages in the pool can be

reclaimed. Dang et al. proposed a similar system that does not

use pool allocation, and can therefore be applied to source-

less programs [36]. Similar to D&A, Dang et al. allocate all

memory objects on their own virtual pages. Upon deallocation

of an object, Dang et al. unmap that object’s virtual page. This

effectively achieves the same goal as guard pages, but allows

the kernel to free its internal metadata for the virtual page,

which reduces the physical memory overhead. To prevent reuse

of unmapped virtual pages, Dang et al. propose to map new

pages at the high water mark (i.e., the highest virtual address

that has been used in the program). While this does not rule

out reuse of unmapped virtual pages completely, the idea is

that reuse is unlikely to happen given a 64-bit address space.

Lock-and-key: Identity-based checkers can detect tempo-

ral safety violations by assigning unique allocation identifiers—

often called keys—to every allocated memory object and by

storing this key in a lock location [46], [47], [56]. They also

store the lock location and the expected key as metadata for

every pointer. The checker revokes the key from the lock

location when its associated object is deallocated. Lock-and-key

checking detects temporal memory safety violations when the

program dereferences a pointer whose key does not match the

key stored in the lock location for that pointer. Assuming unique

keys, this approach provides complete coverage of temporal

safety violations [56]. Since this technique stores per-pointer

metadata, it naturally complements identity-based checkers that

also detect spatial violations using per-pointer bounds tracking.

The drawbacks of lock-and-key checking are largely the same

as those for per-pointer bounds tracking: compatibility with

uninstrumented code is poor because uninstrumented code will

not propagate the metadata correctly, and the run-time overhead

is significant because maintaining metadata for every pointer

is expensive.

Dangling Pointer Tagging: The most straightforward way

to tag dangling pointers is to nullify either the value or the

bounds associated with pointers that are passed to the free

function [49]. A spatial memory safety violation detection

mechanism would then trigger a warning if such pointers are

dereferenced at a later point in time. The disadvantage of this

approach is that it does not tag copies of the dangling pointer,

which may also be used later.

Several tools tag not only the pointer passed to free, but also

copies of that pointer by maintaining auxiliary data structures

that link all memory objects to any pointers that refer to

them [57]–[60]. Undangle uses taint tracking [63]–[65] to track

pointer creations, and to maintain an object-to-pointer map [57].

Whenever the program deallocates a memory object, Undangle

can query this pointer map to quickly find all dangling pointers

to the now deallocated object. Undangle aims to report not

only the use but also the existence of dangling pointers. It has a

configurable time window where it considers dangling pointers

latent but not unsafe, e.g., a transient dangling pointer that

appears during the deallocation of nested objects. Undangle

reports a dangling pointer when this window expires, or earlier

if the program attempts to dereference the pointer.

DangNull [58], FreeSentry [59], and DangSan [60] steer clear

of taint tracking and instrument pointer creations at compile

time instead. These tools maintain pointer maps by calling a

runtime registration function whenever the program assigns a

pointer. Whenever the program deallocates a memory object,

the tools look up all pointers that point to the object being

deallocated, and invalidate them. Subsequent dereferences of

an invalidated dangling pointer result in a hardware trap.

Dangling pointer tagging tools that are not based on taint

tracking have some fundamental limitations. First, they require

the availability of source as it relies on precise type information

to determine which operations store new pointers. Second,

they fail to maintain accurate metadata if the program copies

pointers in a type-unsafe manner (e.g., by casting them to

integers). Third, and most importantly, they can only link

objects to pointers stored in memory, and is therefore unaware

of dangling pointers stored in registers. Taint tracking-based

tools such as Undangle, have none of these disadvantages, but

incur significant performance and memory overheads.

B. Use of Uninitialized Variables

These tools detect uses of uninitialized values.

Uninitialized Memory Read Detection: Location-based

access checkers can be extended to detect reads of uninitialized

memory values by marking all memory regions occupied

by newly allocated objects as uninitialized in the metadata

store [27]. These tools instrument read instructions to trigger

a warning if they read from uninitialized memory regions,

and they instrument writes to clear the uninitialized flag for

the overwritten region. Note that marking memory regions as

uninitialized is not equivalent to marking them as a red-zone,

since both read and write accesses to red-zones should trigger

a warning, whereas accesses to uninitialized memory should

only be disallowed for reads.

Uninitialized Value Use Detection: Detecting reads of

uninitialized memory yields many false positive detections,

as the C++14 standard explicitly allows uninitialized values

to propagate through the program as long as they are not

used. This happens, for example, when copying a partially

uninitialized struct from one location to the other. Memcheck

attempts to detect only the uses of uninitialized values by

limiting error reporting to (i) dereferences of pointers that are

(partially) undefined, (ii) branching on a (partially) undefined

value, (iii) passing undefined values to system calls, and (iv)

copying uninitialized values into floating point registers [28]. To

support this policy, Memcheck adds one byte of shadow state

for every partially initialized byte in the program memory.

1280



This allows Memcheck to track the definedness of all of

the program’s memory with bit-level precision. Memcheck

approximates the C++14 semantics but produces false negatives

(failing to report illegitimate uses of uninitialized memory)

and false positives (reporting legitimate uses of uninitialized

memory), which are unavoidable given that Memcheck op-

erates at the binary level, rather than the source code level.

MemorySanitizer (MSan) implements fundamentally the same

policy as Memcheck, but instruments programs at the compiler

Intermediate Representation (IR) level [66]. The IR code carries

more information than binary code, which makes MSan more

precise than Memcheck. MSan produces no false positives

(provided that the entire program is instrumented) and few

false negatives. Its performance overhead is also an order of

magnitude lower than Memcheck.

C. Pointer Type Errors

These tools detect bad-casting or dereferencing of pointers

of incompatible types.

Pointer Casting Monitor: Pointer casting monitors detect

illegal downcasts through the C++ static_cast operator.

Illegal downcasts occur when the target type of the cast is not

equal to the run-time type (or one of its ancestor types) of the

source object. UndefinedBehaviorSanitizer [67] (UBSan) and

Clang CFI [68] include checkers that verify the correctness of

static_cast operations by comparing the target type to the

run-time type information (RTTI) associated with the source

object. This effectively turns static_cast operations into

dynamic_cast. The downside is that RTTI-based tools cannot

verify casts between non-polymorphic types that lack RTTI.

CaVer [69] and TypeSan [70] do not rely on RTTI to

track type information, but instead maintain metadata for all

types and all objects used in the program. This way, they can

extend the type-checking coverage to non-polymorphic types.

At compile time, these tools build per-class type metadata tables

which contain all the valid type casts for a given pointer type.

The type tables encode the class inheritance and composition

relationships. Both tools also track the effective run-time types

for each live object by monitoring memory allocations and

storing the allocated types in a metadata store. To perform

downcast checking, the tools retrieve the run-time type of the

source object from the metadata store, and then query the type

table for the corresponding class to check if the type conversion

is in the table (and is therefore permissible). HexType similarly

tracks type information in disjoint metadata structures, but

provides a more accurate run-time type tracing [71]. HexType

also replaces the default implementation of dynamic_cast

with its own optimized implementation, while preserving its

run-time semantics, i.e., returning NULL for failing casts.

Pointer Use Monitor: C/C++ support several constructs

to convert pointer types in potentially dangerous ways; C-style

casts, reinterpret_cast, and unions can all be used to

bypass compile-time and run-time type checking. Extending

pointer casting monitoring to these constructs can result in

false positives, however. This is because programmers can

legitimately use such constructs as the language standard allows

it. For this reason, one might opt for pointer dereference/use

monitoring over pointer casting monitoring.

Loginov et al. proposed a pointer use monitor for C

programs [72]. The tool maintains and verifies run-time type

tags for each memory location by monitoring load and store

operations. A tag contains the scalar type that was last used to

write to its corresponding memory location. Aggregate types are

supported by breaking them down into their scalar components.

The tool stores the tags in shadow memory. Whenever a value

is read from memory, the tool checks if the type used to load

the value matches the type tag.

LLVM Type Sanitizer (TySan) also maintains a type tag

store in shadow memory and verifies the correctness of load

instructions [73]. Contrary to Loginov et al.’s tool, however,

TySan does not require that the types used to store and load

from a memory location match exactly. Instead, TySan only

requires type compatibility, as defined by the aliasing rule

in the C/C++ standard. TySan leverages metadata generated

by the compiler frontend (Clang) which contains the aliasing

relationship between types. This metadata is used at run time

to allow, for example, all loads through a character pointer

type, even if the target location was stored using a pointer

to a larger type. Loginov et al.’s tool would detect this as an

error, but this behavior is explicitly permitted by the language

standard.

EffectiveSan is another pointer use monitor that performs

type checks as well as bounds checks at pointer uses [74].

EffectiveSan instruments each allocation site to tag each

allocated object with its statically-determined type. It uses

declared variable types for stack and global variables, as well

as objects allocated using the C++ new operator. For objects

allocated using malloc, it uses the type of the first lvalue usage

of the object. EffectiveSan also generates type layout metadata

at compile time, which contains the layout information of all

nested subobjects for each type. At every pointer dereference,

both type compatibility and object bounds are checked, using

the object type tag in conjunction with the type layout metadata.

EffectiveSan’s bounds checking supports detection of intra-

object overflows by using type layout information to derive

subobject bounds at run time.

Several tools also detect pointer type errors in indirect

function calls, that is, calling functions through a pointer of a

type incompatible with the type of the callee [67], [68], [75].

Function-signature-based forward-edge control flow integrity

mechanisms such as Clang CFI [68] can be viewed as sanitizers

that detect such function pointer misuses. Since all the function

signatures are known at compile time, these tools can detect

mismatches between the pointer type and the function type

without maintaining run-time tags.

D. Variadic Function Misuse

These tools detect memory safety violations and uninitialized

variable uses specific to variadic functions.

Dangerous Format String Detection: The most promi-

nent class of variadic function misuse bugs are format string

vulnerabilities. Most efforts therefore focus solely on detection

1281



of dangerous calls to printf. Among these efforts are tools

that restrict the usage of the %n qualifier in the format

string [76], [77]. This qualifier may be used to have printf

write to a caller-specified location in memory. However, this

dangerous operation [2] is specific to the printf function, so

the aforementioned tools’ applicability is limited.

Argument Mismatch Detection: FormatGuard prevents

printf from reading more arguments than were passed by the

caller [78]. FormatGuard does this by redirecting the calls to

a protected printf implementation that increments a counter

whenever it retrieves a variadic argument through va_arg. If

the counter surpasses the number of arguments specified at the

call site, FormatGuard raises an alert. HexVASAN generalizes

argument counting to all variadic functions, and also adds type

checking [79]. HexVASAN instruments the call sites of variadic

functions to capture the number and types of arguments passed

to the callee and saves this information in a metadata store. The

tool then instruments va_start and va_copy operations to

retrieve information from the metadata store, and it instruments

va_arg operations to check if the argument being accessed is

within the given number of arguments and of the given type.

E. Other Vulnerabilities

These tools detect other undefined behavior or well-defined

but potentially unintended and dangerous behavior.

Stateless Monitoring: UndefinedBehaviorSanitizer (UB-

San) is a dynamic tool that detects undefined behavior we have

not covered so far [67]. The undefined behaviors UBSan detects

currently include signed integer overflows, floating point or

integer division by zero, invalid bitwise shift operations, floating

point overflows caused by casting (e.g., casting a large double-

precision floating point number to a single-precision float), uses

of misaligned pointers, performing an arithmetic operation

that overflows a pointer, dereferencing a null pointer, and

reaching the end of a value-returning function without returning

a value. Most of UBSan’s detection features are stateless, so

they can be turned on collectively without interfering with each

other. UBSan can also detect several kinds of well-defined but

likely unintended behavior. For example, the language standard

dictates that unsigned integers wrap around when they overflow.

This well-defined behavior is often unexpected and a frequent

source of bugs, however, so UBSan can optionally detect these

unsigned integer wrap-arounds.

V. PROGRAM INSTRUMENTATION

Sanitizers implement their bug finding policy by embedding

inlined reference monitors (IRMs) into the program. These

IRMs monitor and mediate all program instructions that can

contribute to a vulnerability. Such instructions include (but

are not limited to) memory loads and stores, stack frame

(de)allocations, calls to memory allocation functions (e.g.,

malloc), and system calls. IRMs can be embedded using

a compiler, linker, or an instrumentation framework.

A. Language-level Instrumentation

Sanitizers can be embedded at the source code or abstract

syntax tree (AST) level. The source code and AST are language-

specific and typically contain full type information, language-

specific syntax, and compile time-evaluated expressions such

as const_cast and static_cast type conversions. This

language-specific information is typically discarded when the

compiler lowers the AST into Intermediate Representation (IR)

code. Language-level instrumentation is recommended (or even

necessary) for sanitizers that detect pointer type errors through

pointer cast monitoring.

An additional advantage of instrumenting at the language

level is that the compiler preserves the full semantics of

the program throughout the early stages of the compilation.

The sanitizer can therefore see the semantics intended by the

programmer. At later stages in the compilation, the compiler

may assume that the program contains no undefined behavior,

and it may optimize the code based on this assumption (e.g.,

by eliminating seemingly unnecessary security checks). The

disadvantage of instrumenting at the language level is that

the entire source code of the application must be available

and the code must be written in the expected language. Thus,

this approach does not work for applications that link against

closed-source libraries, nor does it work for applications that

contain inline assembly code [80].

B. IR-level Instrumentation

Sanitizers can also be embedded later stage in the compila-

tion, when the AST has been lowered into IR code. Compiler

backends such as LLVM support IR-level instrumentation [81].

This approach is more generic than source-level transformation

in that the compiler IR is (mostly) independent of the source

language. Thus, by instrumenting at this level, the sanitizer can

automatically support multiple source languages. An additional

advantage is that the compiler backend implements various

static analyses and optimization passes that can be used by the

sanitizer. Sanitizers can leverage this infrastructure to optimize

the IRMs they embed into the program (e.g., by removing

redundant or provably safe checks).

The disadvantage of IR-level instrumentation is largely

similar to that of language-level instrumentation, i.e., the lack

of support for closed-source libraries and inline assembly

code (Section V-A). Exceptionally, AddressSanitizer (ASan)

does provide limited support for inline x86 assembly code by

instrumenting MOV and MOVAPS instructions found in inline

assembly blocks [31]. This approach is architecture-specific,

however, and needs to be reimplemented or duplicated for

every supported architecture.

C. Binary Instrumentation

Dynamic binary translation (DBT) frameworks allow in-

strumentation of a program at run time [82]–[84]. They read

program code, instrument it, and translate it to machine code

while the program executes and expose various hooks to

influence execution. The main advantage of DBT-based tools

1282



over compiler-based tools is that they work well for closed-

source programs. Moreover, DBT frameworks offer complete

instrumentation coverage of user-mode code regardless of its

origin. DBT frameworks can instrument the program itself,

third party code (that may be dynamically loaded), and even

dynamically generated code.
The main disadvantage of DBT is the (much) higher run-

time performance overhead compared to static instrumentation

tools (see Section VIII-E). This overhead can be primarily

attributed to run-time decoding and translation of instructions.

This problem can be partially addressed by instrumenting

binaries statically using a Static Binary Instrumentation (SBI)

framework. However, both SBI and DBT-based sanitizers must

operate on binaries that contain virtually no type information

or language-specific syntax. It is therefore impossible to embed

a pointer type error sanitizer at this stage. Information about

stack frame and global data section layouts is also lost at the

binary level, which makes it impossible to insert a fully precise

spatial memory safety sanitizer using binary instrumentation.

D. Library Interposition
An alternative, albeit very coarse-grained, method is to

intercept calls to library functions using library interposers [85].

A library interposer is a shared library that, when preloaded

into a program [86], can intercept, monitor, and manipulate all

inter-library function calls in the program. Some sanitizers use

this method to intercept calls to memory allocation functions

such as malloc and free.
The advantage of this approach is that, similarly to DBT-

based instrumentation, it works well for COTS binaries in

that no source or object code is required. Contrary to DBT,

however, library interposition incurs virtually no overhead. One

disadvantage is that library interposition only works for inter-
library calls. A call between two functions in the same library

cannot be intercepted. Another disadvantage is that library

interposition is highly platform and target-specific. A sanitizer

that uses library interposition to intercept calls to malloc

would not work for programs that have their own memory

allocator, for example.

VI. METADATA MANAGEMENT

One important aspect of a sanitizer design is how it stores and

looks up metadata. This metadata typically captures information

about the state of pointers or memory objects used in the

program. Although run-time performance is not a primary

concern for sanitizer developers or users, the sheer quantity

of metadata most sanitizers store means that even small

inefficiencies in the storage scheme can make the sanitizer

unacceptably slow. The metadata storage scheme also by

and large determines whether two sanitizers can be used in

conjunction. If two independent sanitizers both use a metadata

scheme that changes the pointer and/or object representation

in the program, they often cannot be used together.

A. Object Metadata
Some sanitizers use object metadata storage schemes to

store state for all allocated memory objects. This state may

include the object size, type, state (e.g., allocated/deallocated,

initialized/uninitialized), allocation identifier, etc.

Embedded Metadata: An obvious way to store metadata

for an object is to increase its allocation size and to append or

prepend the metadata to the object’s data. This mechanism is

popular among modern memory allocators which, for example,

store the length of a buffer in front of the actual buffer. Tools

can modify memory allocators to transparently reserve memory

for metadata in addition to the requested buffer size, and

then return a pointer into the middle of this allocation so

that the metadata is invisible to clients. Allocation-embedded

metadata is used in ASan [31] and Oscar [36], among others.

ASan embeds information about the allocation context in each

allocated object. Oscar stores each object’s canonical address

as embedded metadata.

Direct-mapped Shadow: The direct-mapped shadow

scheme maps every block of n bytes in the application’s

memory to a block of m bytes of metadata via the formula:

// shadow_base is the base address of the metadata store
// block_addr is the address of the memory block
metadata_addr = shadow_base + m * (block_addr / n)

ASan [31], for example, stores 1 byte of metadata for every 8
bytes of application memory. In this case, the shadow mapping

formula can be simplified to:

metadata_addr = shadow_base + (block_addr >> 3)

The direct-mapped shadow scheme is easy to implement

and insert into an application. It is generally also very efficient

since only one memory read is needed to retrieve the metadata

for any given object. There are cases where it can lead to poor

run-time performance too, however, as it can worsen memory

fragmentation (and thus spatial locality) in already fragmented

address spaces. It is also wasteful in terms of allocated memory,

since the shadow memory area is contiguous and must be big

enough to mirror all allocated memory blocks (from the lowest

virtual addresses to the highest).

Multi-level Shadow: The multi-level shadow scheme can

reduce the memory footprint of metadata store by introducing

additional layers of indirection in the form of directory tables.

These directory tables can store pointers to metadata tables

or other directory tables. Each metadata table directly mirrors

a portion of the application memory, similar to the direct-

mapped shadow scheme. As a whole, the multi-level shadow

scheme resembles how modern operating systems implement

page tables. Having additional layers of indirection allows

metadata stores to allocate metadata tables on demand. They

only have to allocate the directory tables themselves, and can

defer allocation of the metadata tables until they are needed.

This is particularly useful for systems that have limited address

space (e.g., 32-bit systems), where sanitizers that implement

direct-mapped shadow schemes (e.g., ASan [31]) often exhaust

the available address space and cause program termination.

Tools that require per-object metadata (in contrast to per-

byte metadata) can use a variable-compression-ratio multi-

level shadow mapping scheme, where the directory table maps

variable-sized objects to constant-sized metadata. This scheme

1283



can help the tools to optimize their shadow memory usage and

allocation-time performance [87].

The main characteristic of this scheme is that each metadata

access requires multiple memory accesses: one for each level of

directory tables and another one for the corresponding metadata

table. This significantly affects performance, especially for tools

that frequently look up metadata, e.g., a bounds checking tool

which requires metadata access for most memory accesses.

TypeSan [70], for example, is a good fit for the two-level

variable-compression-ratio scheme, as the type metadata is per-

object and constant-sized and metadata lookup is infrequent.

Custom Data Structure: In addition to variations of the

previously presented metadata schemes, some tool authors have

opted for a range of custom data structures and tool-specific

solutions to store metadata. Bounds checkers such as J&K,

CRED, and D&A employ splay trees [34], [37], [38]. UBSan

and CaVer use an additional hash table as a cache to store

the most recent results of type checking [67], [69]. DangNull

utilizes a thread-safe red-black tree to encode the relationship

between objects [58]. Note that, when using a data structure

without support for concurrent access it must be protected

by explicit locks in a multi-threaded setting. For thread-local

or stack variables, per-thread metadata is also a choice, e.g.,

CaVer’s per-thread red-black tree for stack and global objects.

B. Pointer Metadata

Fat Pointers: Some sanitizers replace standard machine

pointers with fat pointers. Fat pointers are structures that contain

the original pointer value, as well as metadata associated with

the original pointer. A fairly straightforward fat pointer layout,

used in many per-pointer bounds tracking tools is:

struct fat_pointer {
void* value; // Original pointer value
void* base; // Base address of the intended referent
size_t size; // Size of the referent

};

The primary advantage of using fat pointers is that they

do not add much additional cache pressure compared to

regular pointers, and that they can store an arbitrary amount

of metadata. The disadvantages are that they require extensive

instrumentation of the program, they change the calling

conventions for functions that accept pointer arguments (fat

pointers occupy more than one register when passed as a

function argument), and that they cannot be used in programs

that interact with uninstrumented third-party libraries. Without

instrumentation, these libraries do not interpret the fat pointer

correctly, nor are they able to update the fat pointer when its

embedded inner pointer value changes.

Tagged Pointers: A less invasive way to store per-pointer

metadata is to replace regular machine pointers with tagged

pointers. A tagged pointer embeds metadata in the pointer

itself, without changing its size. This technique provides better

compatibility than fat pointers. Passing tagged pointers as

function arguments does not require changes to the standard

calling conventions, for example. Another advantage is that

tagged pointers do not introduce any additional cache pressure

compared to regular machine pointers. Tools that rely on tagged

pointers generally store the tag in the unused bits of the original

pointer. The amount of information that a tagged pointer can

encode is therefore limited by size of the unused address space

for a given target platform. Most AMD64 platforms, including

Linux/x86 64, for example, only use the lowest 256TiB of

virtual address space for user-mode applications. The upper 16
bits of any valid user-mode pointer are therefore guaranteed to

be zero. These 16 bits can store per-pointer metadata. Baggy

Bounds Checking uses the spare bits to store the distance

between an OOB pointer and its intended referent [39]. In

32-bit SGX enclaves running on 64-bit processors, the upper

32 bits of any pointer are zero. SGXBounds uses these 32 bits

to store the upper bound of the pointer’s referent [54].

CUP goes one step further and uses the entire pointer

width to store tags, thus discarding the original pointer value

altogether [55]. One of the tags CUP stores in the tagged

pointer is an offset into a metadata table that contains the

original pointer value.

Note that tagged pointers usually cannot be dereferenced

directly. CUP needs to retrieve the original pointer value of

a tagged pointer before it can be dereferenced, while most

other tools need to mask out the tag(s) prior to dereferencing a

tagged pointer. This is also necessary for tagged pointers that

escape to external uninstrumented libraries. The one exception

is low-fat pointer-based tools, which store the tag implicitly in

the pointer value, and can be dereferenced directly [42], [43].

Disjoint Metadata: Storing metadata in a disjoint meta-

data store instead of embedding it in the pointer representation

improves compatibility over the aforementioned approaches. In

contrast to per-object metadata, however, sanitizers usually do

not use direct-mapped shadow stores to maintain per-pointer

metadata (cf. Section VI-A). The portion of memory occupied

by pointers is usually small and the size of pointer metadata

(e.g., bounds) tends to exceed the size of the pointer itself,

resulting in wasteful consumption of address space. For this

reason, even at the cost of additional memory accesses, tool

authors have favored multi-level structures for maintaining

per-pointer metadata. CETS utilizes a two-level lookup trie

(similar to page tables) using the pointer location as the key

to store the allocation identifier and the lock address of the

referent [56]. Intel Pointer Checker [49] and Intel MPX [88]

also use a two-level structure to maintain pointer bounds.

The main disadvantage of disjoint metadata compared to in-

pointer metadata is that the sanitizer must explicitly propagate

the metadata whenever the program copies a pointer to a new

memory location. If the program calls memcpy to copy a data

structure containing pointers, for example, then the sanitizer

must update the metadata store for the pointers in the target data

structure. With in-pointer metadata, by contrast, the metadata

always travels with the pointer.

C. Static Metadata

Some sanitizers require certain information discarded by the

compiler to perform their checks at run time. To make the

required compile-time information available at run time, these

1284



sanitizers usually embed static metadata into the compiled

program. For example, bad-casting sanitizers create a type

hierarchy table at compile time to facilitate type casting checks

at run time. HexVASAN, a variadic function call sanitizer,

builds static metadata for each variadic call site to encode

the number of arguments and their types. At run time, the

instrumented caller pushes the static metadata onto a custom

stack, which is used by the callee to check the validity of the

supplied arguments.

VII. DRIVING A SANITIZER

Dynamic analysis tools, including sanitizers, only detect

bugs on code paths that execute during testing. Increasing

path coverage therefore increases bug finding opportunities.

Program execution can be driven by unit or integration test

suites, automated test case generators, alpha and beta testers,

or any combination thereof.

Unit testing and integration testing are already best practices

in software engineering. Writing these tests has traditionally

been a manual process. While indispensable in general, using

hand-written tests does have some drawbacks when used to

sanitize a program. First, manually written tests often focus on

positive testing using valid inputs to check expected behavior.

Security bugs are typically exploited by feeding the program

invalid inputs, however. Second, manually written tests hardly

ever cover all code paths.

Developers can use automated test case generators to

alleviate these problems. One option is to use symbolic

execution, which systematically explores all possible execution

paths to generate concrete program inputs [6]–[9]. These

inputs can then be fed into sanitized programs to find bugs.

However, this approach in general does not scale due to the

path explosion problem and the cost of constraint solving. A

more scalable option is to run a fuzzer on the program being

sanitized [89]–[94]. Fuzzers are testing tools that run programs

on automatically generated inputs, typically using light-weight

dynamic program analysis such as coverage feedback. Fuzzers

perform negative testing, because they tend to provide invalid

inputs to the program, and can find security bugs relatively

quickly, especially if the bugs are triggered on code paths that

are easily accessible.

Finally, developers can ship sanitization-enabled programs to

beta testers and to collect and transmit any sanitizer output back

to the developer. The main advantage here is that beta testers

can distribute the testing load, therefore allowing developers

to locate bugs more quickly. One disadvantage is that beta

testers will inadvertently focus on testing the program’s main

usage scenarios. Another disadvantage is that sanitizers can

slow down the program to the point where it becomes unusable,

thus reducing the chance that beta testers will thoroughly test

the programs. Lettner et al. [95] demonstrated that partitioned
sanitization, where sanitization is turned on and off at run time

based on criteria such as coverage and execution speed, can

alleviate this concern to the extent that sanitizers compose.

VIII. ANALYSIS

Table II summarizes the features of sanitizers that are

either being actively maintained (as open source projects or

commercial products), or that were published at academic

conferences. Some of the tools we included were originally

designed as an exploit mitigation, and therefore do not have a

built-in error reporting mechanism. However, these tools do fit

our definition of a sanitizer (cf. Section II) as they can pinpoint

the exact location of the vulnerable code, and they can provide

useful feedback if used in conjunction with a debugger. We

excluded Intel Inspector [96], ParaSoft Insure++ [75], Micro

Focus DevPartner [97], and UNICOM Global PurifyPlus [98],

because the lack of public information about these sanitizers

does not permit an accurate comparison.

For every sanitizer, the table shows which bugs it finds,

which techniques it uses to find those bugs, and which metadata

storage scheme (if any) it uses. The pie marks represent our

assessment of how effective the sanitizer is, and how efficient

it is in terms of run-time and memory overheads. A colored

cell indicates that the sanitizer is known to produce false

positives. We discuss the reasons for these false positives in

Section VIII-A. We verified the reported performance numbers

for 10 of these tools (i.e., those that have their performance

overhead cells in Table II marked with an asterisk) by running

them on the same experimental platform using the same set

of benchmarks. We report the exact performance numbers for

these tools in Appendix A.

A. False Positives

The practicality of a sanitizer primarily depends on how

accurately it reports bugs. A developer that uses a sanitizer

wants to minimize the time spent on reviewing its bug reports.

The most desirable property for a sanitizer is therefore that

it reports no false positives (i.e., all bugs it reports are truly

bugs), while false negatives (i.e., the sanitizer finds all possible

bugs) are a secondary concern. We identified the following

recurring problems that can lead to false positive detections.

The most frequently recurring problem is that sanitizers often

implement a bug finding policy or mechanism which is stricter

than either the language standard or the de facto standard.

The de facto standard includes widely-followed programming

practices that do not necessarily comply with the language

standard, even though they result in bug-free code [99]. One

could therefore argue that reporting behavior that does not

comply with the de facto standard as a bug constitutes a false

positive detection.

Older per-object bounds trackers such as J&K disallow the

creation of OOB pointers that point beyond the end of an

array [34]. This design decision is compatible with the language

standard, but not with the de facto standard. Creating OOB

pointers is common in real-world programs, and does not lead

to problems unless the program dereferences the OOB pointer.

Subsequent per-object bounds trackers such as CRED allow

programs to create OOB pointers.

Programs that store temporarily OOB pointers can also cause

problems for dangling pointer checkers [58]–[60]. These tools

1285



Sanitizers IV. Bug Finding Techniques V. Instr. VI. Metadata Mgmt. VIII. Analysis

Y
ea

r
P

u
b

li
sh

ed

A
ct

iv
el

y
M

ai
n

ta
in

ed

R
ed

-z
o

n
e

In
se

rt
io

n

G
u

ar
d

P
ag

es

R
eu

se
D

el
ay

P
er

-p
o

in
te

r
B

o
u

n
d

s
T

ra
ck

in
g

P
er

-o
b

je
ct

B
o

u
n

d
s

T
ra

ck
in

g

L
o

ck
-a

n
d

-k
ey

D
an

g
li

n
g

P
o

in
te

r
T

ag
g

in
g

U
n

in
it

.
M

em
.

R
ea

d
D

et
ec

ti
o

n

U
n

in
it

.
V

al
u

e
U

se
D

et
ec

ti
o

n

P
o

in
te

r
C

as
ti

n
g

M
o

n
it

o
r

P
o

in
te

r
U

se
M

o
n

it
o

r

V
ar

ia
d

ic
A

rg
.

M
is

m
at

ch
D

et
ec

ti
o

n

S
ta

te
le

ss
M

o
n

it
o

ri
n

g

L
an

g
u

ag
e-

le
v
el

In
st

r.

IR
-l

ev
el

In
st

r.

B
in

ar
y

In
st

r.

L
ib

ra
ry

In
te

rp
o

si
ti

o
n

E
m

b
ed

d
ed

M
et

ad
at

a

D
ir

ec
t-

m
ap

p
ed

S
h

ad
o
w

M
u

lt
i-

le
v
el

S
h

ad
o
w

C
u

st
o

m
D

at
a

S
tr

u
ct

u
re

F
at

/T
ag

g
ed

P
o

in
te

rs

D
is

jo
in

t
P

er
-p

o
in

te
r

M
et

ad
at

a

S
ta

ti
c

M
et

ad
at

a

S
p

at
ia

l
S

af
et

y
V

io
la

ti
o

n
(I

II
-A

1
)

T
em

p
o

ra
l

S
af

et
y

V
io

la
ti

o
n

(I
II

-A
2

)

U
se

o
f

U
n

in
it

.
V

ar
ia

b
le

s
(I

II
-B

)

B
ad

-c
as

ti
n

g
(I

II
-C

)

L
o

ad
T

y
p

e
M

is
m

at
ch

(I
II

-C
)

F
u

n
c.

C
al

l
T

y
p

e
M

is
m

at
ch

(I
II

-C
)

V
ar

ia
d

ic
F

u
n

c.
M

is
u

se
(I

II
-D

)

S
ig

n
ed

In
te

g
er

O
v
er

fl
o
w

(I
II

-E
)

O
th

er
U

n
d

ef
.

B
eh

av
io

r
(I

II
-E

)

P
er

fo
rm

an
ce

O
v
er

h
ea

d

M
em

o
ry

O
v
er

h
ea

d

Purify [27] ’92 � � � � �
Memcheck [28] ’05 � � � � � � � n/a

Dr. Memory [29] ’11 � � � � � � n/a

LBC [30] ’12 � � �
ASan [31] ’12 � � � � � �

Electric Fence [32] ’93 � � � n/a

PageHeap [33] ’00 � � � n/a

D&A Dangling [35] ’06 � � � n/a

Oscar [36] ’17 � � � �
RTCC [45] ’92 � � � n/a

Safe-C [46] ’94 � � � � �
P&F [47] ’97 � � � �
MSCC [52] ’04 � � � �
SoftBound+CETS [48], [56] ’10 � � � �
Intel Pointer Checker [49] ’12 � � � � �
SGXBounds [54] ’17 � � � �
CUP [55] ’18 � � � � � n/a

J&K [34] ’97 � � � n/a

CRED [37] ’04 � � � n/a

D&A Bounds [38] ’06 � � � n/a

BBC [39] ’09 � � �
PAriCheck [41] ’10 � � � n/a

Low-fat Pointer [42], [43] ’17 � � � � �

Undangle [57] ’12 � � �
FreeSentry [59] ’15 � � � � n/a

DangNull [58] ’15 � � �
DangSan [60] ’17 � � � � �

MSan [66] ’15 � � � � �

CaVer [69] ’15 � � � � �
TypeSan [70] ’16 � � � � � �

HexType [71] ’17 � � � � � �

Loginov et al. [72] ’01 � � � n/a

LLVM TySan [73] ’17 � � � � � n/a

EffectiveSan [74] ’18 � � � � � �
Clang CFI [68] ’15 � � � � � � � �

HexVASAN [79] ’17 � � � � �

UBSan [67] ’12 � � � � � � � �

TABLE II
OVERVIEW OF SANITIZERS

SPATIAL SAFETY VIOLATION

No stack/global var. overflow detection
No overflow to padding detection
No intra-object overflow detection

TEMPORAL SAFETY VIOLATION

Dangling pointer identified at compile time
No protection for pointers to reused memory

and/or register-stored pointers
No protection for pointers to stack variables

and/or integer-typed pointers

USE OF UNINITIALIZED VARIABLES

Fair coverage
Good coverage

BAD-CASTING

Polymorphic class support only
Non-polymorphic class support
Better but incomplete run-time type tracing

LOAD TYPE MISMATCH

Scalar type granularity
Incomplete run-time type tracing

OTHER UNDEFINED BEHAVIOR

Partial coverage

Known false positives

PERFORMANCE OVERHEAD

Over 10x
Up to 10x
Up to 3x
Up to 10%

� Verified (see Appendix A)

MEMORY OVERHEAD

Over 10x
3x to 10x
1x to 3x

n/a Data not available

do not recognize the intended referent of an OOB pointer and

therefore fail to register the pointer to the correct object. If the

intended referent gets deallocated, the dangling pointer checker

will not invalidate the OOB pointer. Worse, if the temporarily

1286



OOB pointer happened to point to a valid object (different

from its intended referent) when it was registered, then the

pointer checker will erroneously invalidate the pointer when

the program deallocates that different object.

Pointers that temporarily go OOB can also cause problems

in low-fat pointer-based bounds checkers [42], [43], which

perform bounds checks whenever a pointer escapes from a

function. If an OOB pointer is passed to a function that converts

that pointer back to its original in-bounds value, the checker

will have raised a false positive warning.

Uninitialized memory read detectors raise warnings when

the program reads uninitialized memory [27]. The language

standard allows this, as long as the uninitialized values are not

used in the program.

Some pointer type error checkers fail to capture the effective

type of an object under certain circumstances [69], [70]. For

example, if a memory region is repurposed using placement

new in C++, these checkers may fail to update or invalidate

the type metadata associated with that region. This can lead

to false positive detections when the old type is used for type

checking.

Several tools do not respect the language standard’s aliasing

rule. Loginov et al.’s pointer use monitor requires that the

stored value of an object is accessed using the type identical

to the run-time type of the object [72]. HexVASAN requires

that the given argument types are identical to the ones used

in va_arg [79]. These tools will generate false alarms when,

for example, the program legitimately uses a character type

pointer to alias different types of objects.

B. False Negatives

False negatives (i.e., failing to report bugs that are in scope)

happen due to discrepancies between the bug finding policy

and the mechanism that implements the policy. We identified

several bug finding mechanisms that do not fully cover all of

the bugs that are supposed to be covered by the policy.

Spatial safety violation detection mechanisms based on red-

zone insertion and guard pages only detect illegal accesses to

the red-zone or guard page directly adjacent to the intended

referent of that access. Memory accesses that target a valid

object beyond the red-zone or guard page are not detected.

These same mechanisms also fail to detect intra-object over-

flows because they do not insert red-zones or guard pages

between subobjects in the same parent object.

Spatial safety violation detectors that use tagged pointers

may round up the allocation sizes for newly allocated objects

to the nearest power of two [39], or to the nearest supported

allocation size [42], [43]. The bounds checks performed by

these detectors enforce allocation bounds, rather than object

bounds. Thus, if an illegal memory access targets the padding

added to an object, it will not be reported.

Per-object bounds tracking tools do not detect intra-object

overflows because they cannot (always) distinguish object

pointers from subobject pointers. This happens, e.g., when a

parent object has a subobject as its first member. This subobject

is located at the same memory address as the parent object.

Temporal safety violation detection mechanisms based

on location-based checking or guard pages cannot detect

dereferencing of dangling pointers whose target has been reused

for a new memory allocation. This problem can be mitigated

by delaying memory reuse for a limited time, or eliminated

if a pool allocation analysis can determine when deallocated

is no longer accessible [35]. Pool allocation analysis is only

available at compile time, when sufficient type information is

available, however.

Guard page-based temporal safety violation detectors cannot

invalidate local variables that have gone out of scope. These

local variables are stored in stack frames. These frames cannot

be replaced by guard pages because they usually share memory

pages with other frames that are still in use. Consequently,

guard page-based techniques cannot detect use-after-scope and

use-after-return vulnerabilities.

Temporal safety violation detectors based on dangling pointer

tagging only invalidate pointers that are stored in memory.

Dangling pointers stored in registers are not invalidated, even

if the program eventually copies them into memory.

Most uninitialized memory use detectors approximate the

language standard by considering a value as “used” only in

limited circumstances, such as when it is passed to a system

call, or when it is used in a branch condition.

Pointer type error detectors such as TySan [73] also conser-

vatively approximate the effective type rules of the language

standard, thus failing to detect bugs involving objects of a type

unknown to their system.

Some sanitizers fail to recognize pointers that are cast to

integers or copied via memcpy. Identity-based access checkers

that use disjoint per-pointer metadata, for example, regularly

fail to propagate pointer bounds across these constructs. This

problem also affects sanitizers that tag dangling pointers

by instrumenting stores of pointer-typed variables, but miss

pointers temporarily cast to integers or copied in a type-unsafe

manner.

C. Incomplete Instrumentation

Sanitizers that instrument programs statically cannot fully

support programs that generate code at run time (e.g., just-in-

time compilers) or programs that interact with external libraries

that are not or cannot be instrumented (e.g., because their

source code is not available). Some sanitizers that instrument

programs at the compiler IR level also do not support programs

containing inline assembly code because the compiler front-end

does not translate such code into compiler IR code. In all of

these cases, the sanitizer might fail to insert checks, potentially

leading to false negatives. For example, if a program accesses

memory from within a block of dynamically generated code,

a spatial safety violation sanitizer will generally not be able to

verify whether the memory access is legal.

Moreover, the sanitizer might also fail to emit the necessary

instructions to update metadata. This is particularly problematic

for sanitizers that need to propagate metadata explicitly (e.g.,

disjoint per-pointer metadata or memory status bits) [46]–

[49], [52], [56], [66]. For example, if a program copies a

1287



pointer with disjoint metadata to a new memory location from

within an external uninstrumented library, then the sanitizer

will not copy the metadata for the source pointer. Without

proper metadata propagation, the sanitizer might generate false

negatives (because metadata might be missing from the store)

or false positives (because the metadata might be outdated).

Incomplete instrumentation is also a problem for some tools

that change the pointer representation [39], [45], [46], [54],

[55], as passing fat/tagged pointers to uninstrumented code

can lead to crashes, while interpreting pointers received from

uninstrumented code as fat/tagged pointers can lead to false

positive and false negative detections.

These problems can be overcome by embedding the sanitizer

at run time instead, using a dynamic binary instrumentation

framework. These frameworks cannot provide accurate type

information, however, and consequently do not support certain

types of sanitizers (e.g., pointer casting monitors).

D. Thread Safety

Sanitizers that maintain metadata for pointers and objects

can incur both false positives and false negatives in multi-

threaded programs. This can happen because they might access

metadata structures in a thread-unsafe way, or because the

sanitizer does not guarantee that it updates the metadata

in the same transaction as program’s atomic updates to its

associated pointers or objects. The former problem affects

FreeSentry [59] and makes the sanitizer unable to support

multi-threaded programs. The latter problem affects Intel

Pointer Checker [49], Intel MPX [88], and MSan [66] among

others. These sanitizers allow pointers or objects to go out of

sync with their metadata, which may lead to false positives

and/or false negatives. Some sanitizers such as Memcheck [28]

sidestep this issue by serializing the execution of multi-threaded

programs, thereby always atomically updating metadata along

with pointers and objects associated with it.

E. Performance Overhead

The run-time performance requirements for sanitizers are

not as stringent as those for exploit mitigations. While the

latter typically only see real-world deployment if their run-

time overhead stays below 5% [15], we observed that sanitizers

incurring less than 3x overhead are widely used in practice. In

some cases, such as when the source code for a program is not

(fully) available, or if the program generates code on-the-fly,

even larger overheads of up to 20x are acceptable. Yet, there

are good reasons to try to minimize a sanitizer’s overhead. One

reason in particular is that the faster a sanitizer becomes, the

faster a sanitization-enabled program can be fuzzed. This in

turn allows the fuzzer to explore more code paths before it

stops making meaningful progress (cf. Section VII).

The primary contributors to a sanitizer’s run-time overhead

are its checking, metadata storage and propagation, and run-

time instrumentation cost. The run-time instrumentation cost

is zero for most sanitizers, because they instrument programs

statically (at compile time). For sanitizers that use dynamic

binary instrumentation, however, the run-time instrumentation

cost can be very high. Valgrind’s Memcheck [28], for example,

incurs 25.7x overhead on the SPEC2000 benchmarks. 4.9x of

this run-time overhead can be attributed to Valgrind itself [84],

the DBT framework Memcheck is based on.
The metadata storage and propagation cost primarily depends

on the metadata storage scheme. In general, embedded metadata

and tagged or fat pointers are the most efficient storage schemes

because they cause less cache pressure than disjoint/shadow

metadata storage schemes. Embedded metadata and tagged/fat

pointers have the additional advantage that their metadata

automatically propagates when an object or pointer is copied.

Using tagged or fat pointers is problematic in programs that

cannot be fully instrumented, however (cf. Section VI-B). The

one exception is low-fat pointer-based bounds tracking [42],

[43], where the metadata is stored implicitly in the tagged

pointer so that the tagged pointer can still be dereferenced

in uninstrumented libraries. In practice, we observe that

disjoint/shadow metadata storage schemes are preferred over

tagged and fat pointers, despite the fact that they cause more

cache pressure and require explicit metadata propagation when

objects or pointers are copied.
The checking cost is strongly correlated with the sanitizer’s

checking frequency, which, in turn, strongly depends on the

type of sanitizer. Since memory error detectors generally

require coverage of all memory accesses or pointer arithmetic

operations performed by a program, they introduce more

overhead than other tools such as type casting checkers that

monitor a smaller set of operations. Some memory error

detection tools provide selective instrumentation, e.g., to

monitor memory writes only, to achieve better performance at

the cost of reduced coverage.

F. Memory Overhead
Sanitizers that increase the allocation sizes for memory

objects, or that use disjoint or shadow metadata storage schemes

have sizable memory footprints. This can be problematic on

32-bit platforms, where the amount of the addressable memory

space is limited. ASan [31], for example, inserts red zones into

every memory object and maintains a direct-mapped shadow

bitmap to store addressability information. Consequently, ASan

increases the memory usage of the SPEC2006 benchmarks by

3.37x on average. Guard page-based memory safety sanitizers,

such as Electric Fence [32] and PageHeap [33], insert entire

memory pages at the end of dynamically allocated objects,

and therefore have even bigger memory footprints. In general,

however, most sanitizers increase the program’s memory

footprint by less than 3x on average, even if the sanitizer

stores metadata for every object or pointer in the program.

IX. DEPLOYMENT

We studied the current use of sanitizers. Our goals were to

determine (i) what sanitizers are favored by developers and

(ii) how they differ from those that are not.

A. Methodology
Popular GitHub repositories: We compiled a list of

the top 100 C and top 100 C++ projects on GitHub and

1288



examined their build and test scripts, GitHub issues, and

commit histories. Most of the sanitizers we reviewed need

to be integrated into the tested program at compile time. A

program’s build configuration would therefore reveal whether

it is regularly sanitized. Our examination of the test suites and

testing scripts further showed which sanitizers can be enabled

during testing. Contrary to the build system/configuration files,

references to sanitizers that instrument programs at run time

(e.g., Memcheck) would show up here.

Sanitizer web pages: We examined the web sites for

sanitizer tools and looked for explicit references to projects

using the sanitizer and acknowledgments of bug discoveries.

Search trends: We examined and compared search trends

for different sanitizers. We used ASan as the baseline in the

search trends as our study indicates that it is currently the most

widely deployed sanitizer.

B. Findings

AddressSanitizer is the most widely adopted sanitizer:
We found that ASan is used in 24 and 19 of the most popular

C and C++ projects on GitHub respectively. We believe that

this popularity can be attributed to several of ASan’s strengths:

(i) ASan detects the class of bugs with the highest chance of

exploitation (memory safety violations), (ii) ASan is highly

compatible because it does not incur additional false positives

when the program is not fully instrumented (e.g., because the

program loads uninstrumented shared libraries), (iii) ASan has

a low false positive rate in general and false positives that do

occur can be suppressed by adding annotations to the program,

or by adding the location where the false positive detection

occurs to a blacklist, (iv) ASan is integrated into mainstream

compilers, requiring only trivial changes to the tested program’s

build system, and (v) ASan scales to large programs such as

the Chromium and Firefox web browsers. A weakness of ASan,

and of other sanitizers that combine location-based checking

with red-zone insertion, is that it produces false negatives.

One interesting observation is that DBT-based memory safety

sanitizers such as Memcheck and Dr. Memory have nearly

identical strengths. Additionally, these sanitizers can always

instrument the full program even if part of the program’s source

code is not available. Yet, our study shows that while Memcheck

was popular before ASan was introduced into LLVM and GCC,

and its real-world use now trails that of ASan. Dr. Memory,

being a much more recent tool, never achieved the same level

of adoption than either of the competitors.

The adoption rate for other LLVM-based sanitizers is
lower: MSan and UBSan have also seen adoption, mainly

due to increased attention towards vulnerabilities such as

uninitialized memory use and integer overflows. However, users

frequently report high false positive rates and avoiding them

requires significant effort. In fact, developers have to go to

great lengths to apply those sanitizers to large projects like the

Chromium web browser. To avoid false positives for MSan,

the entire program must be instrumented. In Chromium’s case,

this means that MSan must be inserted into the web browser

itself, as well as in all of its dependencies. For UBSan, the

developers maintain a long list of suppressions that most notably

suppresses all detections in the entire V8 JavaScript engine.

C. Deployment Directions

The deployment landscape hints at the desirable properties

of a sanitizer. First, all the deployed sanitizers are easy to

use. Specifically, they can be enabled via a compiler flag

(Clang sanitizers) or can be applied to any binary (Memcheck).

Second, the false positive rate and adoption are inversely related,

i.e., fewer false positives means higher adoption (ASan and

Memcheck vs. MSan and UBSan). Third, performance overhead

is not a primary concern (Memcheck is used), but is avoided

when a faster alternative is available (Memcheck vs. ASan).

Our own experience of applying sanitizers to the SPEC

benchmarks shows that research prototypes suffer even more

from false positives than widely deployed sanitizers (cf.

Table III). ASan successfully ran all the benchmarks, correctly

reporting known bugs in SPEC. Memcheck ran all benchmarks

except for 447.dealII, which takes more than 48 hours to

finish. In contrast, SoftBound+CETS fails to run many of

the benchmarks raising false alarms, due to strictness (e.g.,

not supporting integer-pointer casts) and compatibility (e.g.,

failure to update bounds for pointers created in uninstrumented

libraries) issues. LFP failed to run several benchmarks, because

the assumed invariant that OOB pointers do not escape the

creating function is too strict. DangSan provides their own

patches to circumvent incorrect invalidation of pointers.

Developers who want to sanitize memory safety issues in

their projects can pick up ASan or Memcheck without much

effort. However, they should be aware that these tools do not

detect all classes of memory safety violations. Developers

who want to adopt MSan and UBSan should expect continued

efforts for recompilation of all the dependencies and/or for

blacklisting and annotation to weed out false positives. For the

vulnerabilities not covered by these popular sanitizers (e.g.,

intra-object overflow and type errors caused by type punning),

developers currently have no viable option. Further research

in this area is required, because existing research prototypes

do not scale to real-world code bases.

X. FUTURE RESEARCH AND DEVELOPMENT DIRECTIONS

A. Type Error Detection

Due to type-punning constructs such as C-style casts and

C++’s reinterpret_cast, it is still possible for pointers to

have an illegal type when the program dereferences them.

Pointer use monitoring can solve this problem because it tracks

the effective types of every storage location, and detects illegal

dereferences of pointers that were derived through type punning.

Unfortunately, there are only a few tools that monitor pointer

uses [73], [74], and they suffer from false positives and/or high

performance and memory overheads. This is in large part due

to the complexity of the effective type and aliasing rules in

the language standard. Therefore, designing tools that detect

pointer misuses with better precision and performance remains

an interesting area of research.

1289



B. Improving Compatibility

Although there exist other memory vulnerability sanitizers

with better precision, ASan is by far the most deployed

sanitizer. We believe that the primary reason for ASan’s wider

deployment is its excellent compatibility with the de facto lan-

guage standards, and with partially instrumented programs. We

encourage future research and development efforts to put more

emphasis on compatibility. One promising direction towards

better compatibility with partially instrumented programs is

to combine compiler instrumentation with static or dynamic

binary translation [66], where binary translation is used to

instrument parts of the program that are not instrumented at

compile time.

C. Composing Sanitizers

Sanitizers typically detect one particular class of bugs.

Embedding multiple sanitizers is unfortunately not possible at

present because existing sanitizers use a variety of incompatible

metadata storage schemes. Current practice is therefore to test

the program multiple times, once with each sanitizer. This

is less than ideal because the resource usage may not be

optimal, and multiple sanitizers may generate duplicate reports

by detecting different side-effects of the same underlying bug.

We encourage further research into composing sanitizers for

comprehensive bug detection. One promising direction is to use

multi-variant execution systems, which run multiple variants

of the same program in parallel on the same input. Different

sanitizers can be embedded in each variant, allowing incom-

patible sanitizers to run in parallel [100], [101]. Developing

new sanitizers with comprehensive detection by design is also

a choice (e.g., EffectiveSan [74]), which can be facilitated by

generic metadata storage schemes [87], [102].

D. Hardware Support

Hardware features can lower the run-time performance

impact of sanitization, improve bug detection precision, and

alleviate certain compatibility issues. The idea of using special

hardware instructions to accelerate memory safety violation

detection has already been extensively explored [61], [103],

[104]. Recent Intel CPUs even include an ISA extension called

memory protection extension (MPX) built for memory error

detection [88]. Intel MPX improves the speed of the software

implementation of the same mechanism, though there is still

room for improvement [105]. In addition, hardware features

could improve compatibility and precision. For example,

ARMv8’s virtual address tagging allows top eight bits of the

virtual address be ignored by the processor [106]. This can

be used to implement the tagged pointer scheme which does

not incur binary compatibility issues, because dereferencing

a tagged pointer in an uninstrumented library no longer leads

to processor faults. This tag also propagates back to the

instrumented code, potentially increasing the bug detection

precision. Hardware-assisted AddressSanitizer [107], being

developed as of writing, uses this feature to detect both spatial

and temporal memory safety violations at lower performance

and memory costs than ASan.

E. Kernel and Bare-Metal Support

Sanitizers have traditionally only been available for user-

space applications. Lower-level software such as kernels, device

drivers and hypervisors is therefore missing out on the security

benefits of sanitization. Unfortunately, security bugs may have

the most disastrous consequences in such low-level software.

Efforts are ongoing to remedy this problem. Projects led by

Google, for example, are bringing ASan and MSan to the

Linux kernel [108], [109]. We encourage these efforts and

hope to see other classes of sanitizers adopted to lower level

software. One challenge for this is to reduce the sanitizer’s

memory footprint. While memory overheads of 3x or more

are acceptable in user-space applications for 64-bit platforms,

such overheads could be a problem for lower level software on

32-bit architectures. The Linux kernel, in particular, is often

compiled and run on 32-bit platforms (e.g., on IoT devices).

XI. CONCLUSION

Sanitization of C/C++ programs has been an active area of

research for decades. Researchers have particularly focused

on detecting memory and type safety issues. Many sanitizers

are now available and some have seen widespread adoption.

They play a critical role in finding security issues in programs

during pre-release testing. There is still room for improvement,

however.

We presented an in-depth analysis of state-of-the-art san-

itization techniques for C/C++ programs, highlighting their

precision, performance, and compatibility properties. We also

presented how these properties impact real-world adoption

by surveying the current deployment landscape. Our analysis

identified several promising research directions. For example,

there is a currently lack of precise and efficient solutions for

pointer type misuse. There is similarly a lack of a systematic

way to compose sanitizers to look for different classes of bugs

during a single run. Finally, sanitization for kernels, hypervisors,

and other privileged software has yet to be fully explored

despite the high risks posed by vulnerabilities at this level.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their

constructive feedback. We also thank Gregory J. Duck, Mathias

Payer, Nathan Burow, Bart Coppens, and Manuel Rigger for

their helpful feedback. This material is based upon work

partially supported by the Defense Advanced Research Projects

Agency under contracts FA8750-15-C-0124 and FA8750-15-

C-0085, by the United States Office of Naval Research under

contract N00014-17-1-2782, and by the National Science

Foundation under awards CNS-1619211 and CNS-1513837.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the Defense Advanced Research

Projects Agency or its Contracting Agents, the Office of Naval

Research or its Contracting Agents, the National Science

Foundation, or any other agency of the U.S. Government.

The authors also gratefully acknowledge a gift from Oracle

Corporation.

1290



REFERENCES

[1] Hovav Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In ACM Conference on
Computer and Communications Security (CCS), 2007.

[2] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R. Gross. Control-flow bending: On the effectiveness of control-
flow integrity. In USENIX Security Symposium, 2015.

[3] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in
C++ applications. In IEEE Symposium on Security and Privacy (S&P),
2015.

[4] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. Data-oriented programming: On the
expressiveness of non-control data attacks. In IEEE Symposium on
Security and Privacy (S&P), 2016.

[5] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 168–176, 2004.

[6] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
automated random testing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2005.

[7] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit
testing engine for C. In European Software Engineering Conference Held
Jointly with ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2005.

[8] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: Automatically generating inputs of death. In
ACM Conference on Computer and Communications Security (CCS),
2006.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2008.

[10] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In ACM Conference on Computer and Communications
Security (CCS), 2005.

[11] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Precision,
security, and performance. ACM Computing Surveys (CSUR), 50(1):16,
2017.

[12] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by
enforcing data-flow integrity. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[13] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing memory error exploits with WIT. In IEEE
Symposium on Security and Privacy (S&P), 2008.

[14] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-pointer integrity. In USENIX Security
Symposium, 2014.

[15] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal
war in memory. In IEEE Symposium on Security and Privacy (S&P),
2013.

[16] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and
Herbert Bos. Memory errors: The past, the present, and the future.
In International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2012.

[17] Aleph One. Smashing the stack for fun and profit. Phrack Magazine,
7, 1996.

[18] Solar Designer. Getting around non-executable stack (and fix). Email
to the Bugtraq mailing list, August 1997.

[19] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack
Magazine, 11, 2001.

[20] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K
Iyer. Non-control-data attacks are realistic threats. In USENIX Security
Symposium, 2005.

[21] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens,
Sven Lachmund, and Thomas Walter. Breaking the memory secrecy
assumption. In European Workshop on System Security (EuroSec), 2009.

[22] ISO/IEC JTC1/SC22/WG14. ISO/IEC 9899:2011, Programming Lan-
guages — C, 2011.

[23] ISO/IEC JTC1/SC22/WG14. ISO/IEC 14882:2014, Programming
Language C++, 2014.

[24] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy
Das, David Majnemer, John Regehr, and Nuno P. Lopes. Taming
undefined behavior in LLVM. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2017.

[25] National Vulnerability Database. NVD - CVE-2009-1897. https://nvd.
nist.gov/vuln/detail/CVE-2009-1897, 2009.

[26] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding
integer overflow in C/C++. In International Conference on Software
Engineering (ICSE), 2012.

[27] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks
and access errors. In USENIX Winter Conference, 1992.

[28] Julian Seward and Nicholas Nethercote. Using Valgrind to detect
undefined value errors with bit-precision. In USENIX Annual Technical
Conference (ATC), 2005.

[29] Derek Bruening and Qin Zhao. Practical memory checking with
Dr. Memory. In International Symposium on Code Generation and
Optimization (CGO), 2011.

[30] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds
checking. In International Symposium on Code Generation and
Optimization (CGO), 2012.

[31] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A fast address sanity checker. In
USENIX Annual Technical Conference (ATC), 2012.

[32] Bruce Perens. Electric fence malloc debugger, 1993.

[33] Microsoft Corporation. How to use Pageheap.exe in Windows XP,
Windows 2000, and Windows Server 2003, 2000.

[34] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In International
Workshop on Automatic Debugging, pages 13–26, 1997.

[35] Dinakar Dhurjati and Vikram Adve. Efficiently detecting all dangling
pointer uses in production servers. In IEEE/IFIP Conference on
Dependable Systems and Networks (DSN), 2006.

[36] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A
practical page-permissions-based scheme for thwarting dangling pointers.
In USENIX Security Symposium, 2017.

[37] Olatunji Ruwase and Monica S Lam. A practical dynamic buffer
overflow detector. In Symposium on Network and Distributed System
Security (NDSS), 2004.

[38] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds
checking for C with very low overhead. In International Conference
on Software Engineering (ICSE), 2006.

[39] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
Baggy bounds checking: An efficient and backwards-compatible defense
against out-of-bounds errors. In USENIX Security Symposium, 2009.

[40] Frank Ch Eigler. Mudflap: Pointer use checking for C/C++. In Annual
GCC Developers’ Summit, 2003.

[41] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R Sekar, Frank
Piessens, and Wouter Joosen. PAriCheck: An efficient pointer arithmetic
checker for C programs. In ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2010.

[42] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with
low fat pointers. In International Conference on Compiler Construction
(CC), pages 132–142, 2016.

[43] Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. Stack
bounds protection with low fat pointers. In Symposium on Network and
Distributed System Security (NDSS), 2017.

[44] Samuel C Kendall. Bcc: Runtime checking for C programs. In USENIX
Summer Conference, 1983.

[45] Joseph L Steffen. Adding run-time checking to the portable C compiler.
Software: Practice and Experience, 22(4):305–316, 1992.

[46] Todd M Austin, Scott E Breach, and Gurindar S Sohi. Efficient detection
of all pointer and array access errors. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 1994.

[47] Harish Patil and Charles Fischer. Low-cost, concurrent checking of
pointer and array accesses in C programs. Software — Practice and
Experience, 27(1):87–110, 1997.

[48] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. SoftBound: Highly compatible and complete spatial memory
safety for C. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2009.

[49] Intel. Pointer checker. https://software.intel.com/en-us/node/522702,
2015.

1291



[50] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-
safe retrofitting of legacy code. In ACM Symposium on Principles of
Programming Languages (POPL), 2002.

[51] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In
USENIX Annual Technical Conference (ATC), 2002.

[52] Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs. In
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2004.

[53] Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking entire
programs without recompiling. In Workshop on Semantics, Program
Analysis, and Computing Environments for Memory Management
(SPACE), 2004.

[54] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. SGXBounds:
Memory safety for shielded execution. In European Conference on
Computer Systems (EuroSys), 2017.

[55] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer.
CUP: Comprehensive user-space protection for C/C++. In ACM Asia
Conference on Computer and Communications Security (ASIACCS),
2018.

[56] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler enforced temporal safety for C. In
International Symposium on Memory Management (ISMM), 2010.

[57] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: Early detection of dangling pointers in use-after-free and
double-free vulnerabilities. In International Symposium on Software
Testing and Analysis (ISSTA), pages 133–143, 2012.

[58] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo
Kim, Long Lu, and Wenke Lee. Preventing use-after-free with dangling
pointers nullification. In Symposium on Network and Distributed System
Security (NDSS), 2015.

[59] Yves Younan. FreeSentry: protecting against use-after-free vulnerabili-
ties due to dangling pointers. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[60] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan:
Scalable use-after-free detection. In European Conference on Computer
Systems (EuroSys), 2017.

[61] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.
HardBound: Architectural support for spatial safety of the C program-
ming language. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2008.

[62] Chris Lattner and Vikram Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2005.

[63] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In Symposium on Network and Distributed System Security
(NDSS), 2005.

[64] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas.
Secure program execution via dynamic information flow tracking. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2004.

[65] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
In USENIX Security Symposium, 2004.

[66] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer:
Fast detector of uninitialized memory use in C++. In International
Symposium on Code Generation and Optimization (CGO), 2015.

[67] LLVM Developers. Undefined behavior sanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html, 2017.

[68] LLVM Developers. Control flow integrity. https://clang.llvm.org/docs/
ControlFlowIntegrity.html, 2017.

[69] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type
casting verification: Stopping an emerging attack vector. In USENIX
Security Symposium, 2015.

[70] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. TypeSan: Practical type confusion
detection. In ACM Conference on Computer and Communications
Security (CCS), 2016.

[71] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Mathias
Payer. HexType: Efficient detection of type confusion errors for C++.

In ACM Conference on Computer and Communications Security (CCS),
2017.

[72] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and Thomas Reps.
Debugging via run-time type checking. In International Conference
on Fundamental Approaches to Software Engineering, pages 217–232,
2001.

[73] Hal Finkel. The Type Sanitizer: Free yourself from -fno-strict-aliasing.
In LLVM Developers’ Meeting, 2017.

[74] Gregory J. Duck and Roland H. C. Yap. EffectiveSan: Type and memory
error detection using dynamically typed C/C++. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2018.

[75] Parasoft. Insure++. https://www.parasoft.com/product/insure, 2017.
[76] Timothy Tsai and Navjot Singh. Libsafe 2.0: Detection of format string

vulnerability exploits. White paper, Avaya Labs, 2001.
[77] Michael F Ringenburg and Dan Grossman. Preventing format-string

attacks via automatic and efficient dynamic checking. In ACM
Conference on Computer and Communications Security (CCS), 2005.

[78] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman,
Michael Frantzen, and Jamie Lokier. FormatGuard: Automatic protection
from printf format string vulnerabilities. In USENIX Security Symposium,
2001.

[79] Priyam Biswas, Alessandro Di Federico, Scott A Carr, Prabhu Ra-
jasekaran, Stijn Volckaert, Yeoul Na, Michael Franz, and Mathias Payer.
Venerable variadic vulnerabilities vanquished. In USENIX Security
Symposium, 2017.

[80] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and
Hanspeter Mössenböck. An analysis of x86-64 inline assembly in C
programs. In ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), 2018.

[81] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization (CGO), 2004.

[82] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization (CGO), 2003.

[83] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2005.

[84] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2007.

[85] Timothy W Curry et al. Profiling and tracing dynamic library usage via
interposition. In USENIX Summer Conference, pages 267–278, 1994.

[86] Linux Programmer’s Manual. ld.so(8), 2017.
[87] Istvan Haller, Erik van der Kouwe, Cristiano Giuffrida, and Herbert

Bos. METAlloc: Efficient and comprehensive metadata management for
software security hardening. In European Workshop on System Security
(EuroSec), 2016.

[88] Intel. Introduction to Intel memory protection
extensions. https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions, 2013.

[89] Michał Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl,
2017.

[90] LLVM Developers. libFuzzer - a library for coverage-guided fuzz
testing. https://llvm.org/docs/LibFuzzer.html, 2017.

[91] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed System Security
(NDSS), 2016.

[92] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[93] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware evolutionary
fuzzing. In Symposium on Network and Distributed System Security
(NDSS), 2017.

[94] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In ACM Conference on
Computer and Communications Security (CCS), 2017.

1292



[95] Julian Lettner, Dokyung Song, Taemin Park, Stijn Volckaert, Per Larsen,
and Michael Franz. PartiSan: Fast and flexible sanitization via run-
time partitioning. In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2018.

[96] Intel. Intel Inspector. https://software.intel.com/en-us/intel-inspector-xe,
2017.

[97] Micro Focus. DevPartner. https://www.microfocus.com/products/
devpartner, 2017.

[98] UNICOM Global. PurifyPlus. https://teamblue.unicomsi.com/products/
purifyplus, 2017.

[99] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nien-
huis, David Chisnall, Robert N. M. Watson, and Peter Sewell. Into the
depths of C: Elaborating the de facto standards. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2016.

[100] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee. Bunshin:
Compositing security mechanisms through diversification. In USENIX
Annual Technical Conference (ATC), 2017.

[101] Lus Pina, Anastasios Andronidis, and Cristian Cadar. FreeDA:
Deploying incompatible stock dynamic analyses in production via multi-
version execution. In ACM International Conference on Computing
Frontiers (CF), 2018.

[102] Taddeus Kroes, Koen Koning, Cristiano Giuffrida, Herbert Bos, and
Erik van der Kouwe. Fast and generic metadata management with
mid-fat pointers. In European Workshop on System Security (EuroSec),
2017.

[103] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
Watchdog: Hardware for safe and secure manual memory management
and full memory safety. In International Symposium on Computer
Architecture (ISCA), 2012.

[104] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
WatchdogLite: Hardware-accelerated compiler-based pointer checking.
In International Symposium on Code Generation and Optimization
(CGO), 2014.

[105] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX explained: A cross-layer analysis of
the Intel MPX system stack. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2(2):28, 2018.

[106] ARM. ARM Cortex-A series programmer’s guide for ARMv8-
A. http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/
DEN0024A v8 architecture PG.pdf, 2015.

[107] LLVM Developers. Hardware-assisted AddressSanitizer
design documentation. https://clang.llvm.org/docs/
HardwareAssistedAddressSanitizerDesign.html, 2018.

[108] Google. Kernel address sanitizer. https://github.com/google/kasan, 2017.
[109] Google. Kernel memory sanitizer. https://github.com/google/kmsan,

2017.

APPENDIX A

We measured the run-time performance overhead of 10 tools

by running all 19 SPEC CPU2006 C/C++ benchmarks (or all

7 C++ benchmarks for type casting sanitizers) on a single

experimental platform. To assist future sanitizer developers in

measuring the relative overhead of their tool, we open-sourced

our fully automated build and benchmarking scripts1.

A. Scope

We included sanitizers that are either actively maintained

and/or were published between 2008 and 2017. For sanitizers

that are not publicly available, we sent the authors a request

for source code access. However, the authors either did not

respond [41], [57], [58], or refused our request because of

licensing restrictions [39], [49] or code quality concerns [36],

[59]. We excluded several sanitizers that either failed to compile

or run more than half of the benchmarks [48], [56], [73], or

do not support our experimental platform [33]. CaVer caused

1https://github.com/securesystemslab/sanitizing-for-security-benchmarks

several instrumented binaries to run significantly faster than the

baseline binaries [69]. Since these speedups were not reported

in the original paper, and since we did not have time to properly

investigate the cause of these speedups, we decided to exclude

CaVer from our evaluation. In the end, we evaluated 10 tools.

B. Experimental Setup

We conducted all experiments on a host equipped with an

Intel Xeon E5-2660 CPU with 20MB cache and 64GB RAM

running 64-bit Ubuntu 14.04.5 LTS. Unless stated otherwise, we

used the system default libraries installed in the OS distribution.

C. Results

We ran each benchmark three times with the sanitizer and

report the median for each run normalized to the baseline.

We used the median of three runs without the sanitizer as

the baseline result. We also report and give details about false

positives encountered while running benchmarks in this section.

Table III summarizes the overheads and false positives.

1) Memcheck: We used the official version of LLVM/-

Clang 6.0.0 to compile the baseline binaries. We measured

Memcheck’s overhead by running Valgrind 3.13.0 with the

--tool=memcheck option. We excluded 447.dealII as it

does not finish within 48 hours.

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

0

20

40

19.6

Memcheck

Baseline

2) AddressSanitizer: We used the official version of LLVM/-

Clang 6.0.0 to compile the baseline binaries, and compiled the

AddressSanitizer binaries using the -fsanitize=address

flag for that same compiler. We patched several known bugs in

400.perlbench and 464.h264ref to avoid crashing those

benchmarks early. We disabled detection of memory leaks and

alloc/dealloc mismatches.

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

1

2

3

4

1.99

ASan

Baseline

1293



TABLE III
NORMALIZED PERFORMANCE OVERHEADS AND FALSE POSITIVES

SPEC CPU2006 INT SPEC CPU2006 FP

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
3

3
.m

il
c

4
4

4
.n

am
d

4
4

7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

G
eo

m
et

ri
c

M
ea

n

C C C C C C C C C C++ C++ C++ C C++ C++ C++ C++ C C

Memcheck [28] 39.7 14.1 21.0 4.34 24.9 23.9 26.8 9.81 31.9 17.5 11.0 28.5 13.4 24.4 10.9 47.8 23.0 34.0 19.6

ASan [31] 4.27 1.71 2.32 1.47 2.17 2.01 2.31 1.39 2.37 2.24 1.62 2.77 1.44 1.58 2.48 1.65 2.99 1.07 1.93 1.99

Low-fat Pointer [42], [43] 1.74 1.77 2.01 1.37 1.88 2.44 1.74 1.94 2.20 1.47 1.79 1.87 1.69 1.66 2.19 1.77 2.47 1.54 2.06 1.85

DangSan [60] 3.63 1.02 1.55 1.50 1.13 1.01 1.03 0.92 0.99 6.83 1.51 2.28 1.34 1.00 1.25 1.09 1.56 1.00 1.01 1.40

MSan [66] 3.50 2.04 3.51 2.16 2.51 3.68 3.49 1.93 3.40 2.24 1.95 2.21 1.99 1.96 2.62 1.95 3.29 2.20 2.85 2.53

TypeSan [70] 1.64 0.99 1.41 0.99 1.81 1.00 1.24 1.26

HexType [71] 1.13 1.01 1.08 1.00 1.18 1.02 1.01 1.06

Clang CFI [68] 1.46 1.00 1.16 1.00 1.09 0.99 1.03 1.09

HexVASAN [79] 1.03 1.01 1.01 1.00 1.01 1.00 0.99 1.03 1.00 1.04 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01

UBSan [67] 2.20 2.33 1.98 1.90 3.04 6.68 2.94 2.87 4.31 4.26 2.22 5.37 2.38 2.08 9.16 2.67 3.01 1.24 3.02 2.97

3) Low-fat Pointer: We used LLVM/Clang 4.0.0 to compile

the baseline binaries, and applied LFP’s changes to that com-

piler to generate the LFP binaries with -fsanitize=lowfat.

The tested LFP version includes global variable support, which

was not included in the original implementation [43]. We used

the default size encoding in the low-fat pointer representation.

As CPUs in our experimental platform do not have bit

manipulation extensions, we removed optimization flags using

those extensions, though they are enabled in author’s build

script. We applied author’s blacklist to measure the overhead

for benchmarks with a bug (464.h264ref) or false positives.

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

1

1.5

2

2.5

1.85

LFP

Baseline

4) DangSan: We used LLVM/Clang 3.8.0 to compile the

baseline binaries, and the DangSan plugin for that same

compiler to generate the DangSan binaries. DangSan requires

linking with the GNU gold linker and link time optimization

(-flto) enabled, so we used gold and -flto to link the

baseline binaries as well. Similarly, since DangSan uses

tcmalloc as the default memory allocator, we enabled

tcmalloc for the baseline binaries too. We did not enable

-fsanitize=safe-stack for the baseline binaries, since it

incurs overhead. To avoid false positives in 450.soplex, we

applied the pointer unmasking patch provided by the authors.

We marked 400.perlbench as having false positives based on

their metadata invalidation workaround present in tcmalloc.

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

2

4

6

1.40

DangSan

Baseline

5) MemorySanitizer: We used the official version of LLVM/-

Clang 6.0.0 to compile the baseline binaries, and used the

-fsanitize=memory flag for that same compiler to generate

the MemorySanitizer binaries. We used instrumented versions

of libcxx and libcxxabi when running C++ benchmarks.

This addresses a false positive detection in 450.soplex. We

disabled early program termination after check failures to

measure the run-time overhead for 403.gcc.

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

1

2

3
2.53

MSan

Baseline

6) TypeSan: We used LLVM/Clang 3.9.0 to compile

the baseline binaries, and applied TypeSan’s changes to

1294



that compiler to generate the TypeSan binaries with

-fsanitize=typesan. TypeSan uses tcmalloc as its default

memory allocator, so we used tcmalloc in the baseline

binaries too.

g
eo

m
ea

n

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

1

1.2

1.4

1.6

1.8

1.26

TypeSan

Baseline

7) HexType: We used LLVM/Clang 3.9.0 to compile

the baseline binaries, and applied HexType’s changes to

that compiler to generate the HexType binaries with

-fsanitize=hextype. We enabled all type tracing coverage

and optimization features supported by HexType. This is

consistent with the experiments performed by the authors.

g
eo

m
ea

n

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

1

1.05

1.1

1.15

1.06

HexType

Baseline

8) Clang CFI: We used the official version of LLVM/-

Clang 6.0.0 to compile the baseline binaries, and used the

-fsanitize=cfi flag for that same compiler to generate the

Clang CFI binaries. Clang CFI inserts checks (i) for casts

between C++ class types and (ii) for indirect calls and C++

member function calls (virtual and non-virtual). We enabled

-fno-sanitize-trap to print diagnostic information.

g
eo

m
ea

n

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

1

1.2

1.4

1.09

Clang CFI

Baseline

9) HexVASAN: We used LLVM/Clang 3.9.1 to compile

the baseline binaries, and applied HexVASAN’s changes

to that compiler to generate the HexVASAN binaries with

-fsanitize=hexvasan. We disabled early program termina-

tion after check failures to measure the run-time overhead for

471.omnetpp, which has a known false positive reported in

the HexVASAN paper.

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

1

1.02

1.04

1.01

HexVASAN

Baseline

10) UndefinedBehaviorSanitizer: We used the official ver-

sion of LLVM/Clang 6.0.0 to compile the baseline binaries, and

used the -fsanitize=undefined flag for that same compiler

to generate the UBSan binaries. -fsanitize=undefined

enables a carefully chosen set of sanitizers. We refer the reader

to the UBSan web page for a description of the sanitizers in

this set [67].

g
eo

m
ea

n

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

m
il

c

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

lb
m

sp
h

in
x

3

2

4

6

8

2.97

UBSan

Baseline

1295


