
Formally Verified Cryptographic Web Applications
in WebAssembly

Jonathan Protzenko∗, Benjamin Beurdouche†, Denis Merigoux† and Karthikeyan Bhargavan†

∗Microsoft Research †Inria

Abstract—After suffering decades of high-profile attacks, the
need for formal verification of security-critical software has never
been clearer. Verification-oriented programming languages like
F∗ are now being used to build high-assurance cryptographic
libraries and implementations of standard protocols like TLS. In
this paper, we seek to apply these verification techniques to mod-
ern Web applications, like WhatsApp, that embed sophisticated
custom cryptographic components. The problem is that these
components are often implemented in JavaScript, a language
that is both hostile to cryptographic code and hard to reason
about. So we instead target WebAssembly, a new instruction set
that is supported by all major JavaScript runtimes.

We present a new toolchain that compiles Low∗, a low-level
subset of the F∗ programming language, into WebAssembly.
Unlike other WebAssembly compilers like Emscripten, our com-
pilation pipeline is focused on compactness and auditability: we
formalize the full translation rules in the paper and implement it
in a few thousand lines of OCaml. Using this toolchain, we present
two case studies. First, we build WHACL∗, a WebAssembly ver-
sion of the existing, verified HACL∗ cryptographic library. Then,
we present LibSignal*, a brand new, verified implementation of
the Signal protocol in WebAssembly, that can be readily used by
messaging applications like WhatsApp, Skype, and Signal.

I. INTRODUCTION: CRYPTOGRAPHIC WEB APPLICATIONS

Modern Web applications rely on a variety of cryptographic

constructions and protocols to protect sensitive user data from

a wide range of attacks. For the most part, applications can rely

on standard builtin mechanisms. To protect against network

attacks, client-server connections are typically encrypted using

the Transport Layer Security (TLS) protocol, available in all

Web servers, browsers, and application frameworks like iOS,

Android, and Electron. To protect stored data, user devices

and server databases are often encrypted by default.

However, many Web applications have specific security

requirements that require custom cryptographic mechanisms.

For example, popular password managers like LastPass [1] aim

to synchronize a user’s passwords across multiple devices and

back them up on a server, without revealing these passwords

to the server. So, the password database is always stored

encrypted, with a key derived from a master passphrase known

only to the user. If this design is correctly implemented,

even a disgruntled employee or a coercive nation-state with

full access to the LastPass server cannot obtain the stored

passwords. A similar example is that of a cryptocurrency

wallet, which needs to encrypt the wallet contents, as well

as sign and verify currency transactions.

Secure messaging applications like WhatsApp and Skype

use even more sophisticated mechanisms to provide strong

guarantees against subtle attacks. For example, they provide

Fig. 1. Secure Messaging Web App Architecture: The application includes
the official LibSignal library, which in turn uses the platform’s crypto library,
but also provides custom implementations for crypto primitives that are not
available on all platforms. The security-critical components that we aim to
verify are the core signal protocol and all the crypto code it relies on.

end-to-end security between clients, so that a compromised

or coerced server cannot read or tamper with messages.

They guarantee forward secrecy, so that even if one of the

devices used in a conversation is compromised, messages sent

before the compromise are still secret. They even provide

post-compromise security, so that a compromised device can

recover and continue to participate in a conversation. To obtain

these guarantees, many messaging applications today rely on

some variant of Signal, a cryptographic protocol designed by

Moxie Marlinspike and Trevor Perrin [2], [3].

To provide a seamless experience to users, most Web ap-

plications are implemented for multiple platforms; e.g. native

apps for iOS and Android, Electron apps that work on most

desktop operating systems, installable browser extensions for

specific browsers, or a website version accessible from any

Web browser. Except for the native apps, these are all written

in JavaScript. For example, most Signal-based messaging apps

use the official LibSignal library, which has C, Java, and

JavaScript versions. The desktop versions of WhatsApp and

Skype use the JavaScript version, as depicted in Figure 1.

In this paper, we are concerned with the question of how

we can gain higher assurance in the implementations of

such cryptographic Web applications. The key novelty of

our work is that we target WebAssembly rather than general

JavaScript. We show how to build verified implementations

of cryptographic primitives so that they can be deployed both

within platform libraries (via a C implementation) and within

pure JavaScript apps (via a WebAssembly implementation).

We show how to build a verified implementation of the Signal

protocol (as a WebAssembly module) and use it to develop a

drop-in replacement for LibSignal-JavaScript.

1256

2019 IEEE Symposium on Security and Privacy

© 2019, Jonathan Protzenko. Under license to IEEE.
DOI 10.1109/SP.2019.00064

WebAssembly. Introduced in 2017, WebAssembly [4] is

a portable execution environment supported by all major

browsers and Web application frameworks. It is designed to

be an alternative to but interoperable with JavaScript.

WebAssembly defines a compact, portable instruction set

for a stack-based machine. The language is made up of

standard arithmetic, control-flow, and memory operators. The

language only has four value types: floating-point and signed

numbers, both 32-bit and 64-bit. Importantly, WebAssembly

is typed, meaning that a well-typed WebAssembly program

can be safely executed without fear of compromising the

host machine (WebAssembly relies on the OS page protection

mechanism to trap out-of-memory accesses). This allows ap-

plications to run independently and generally deterministically.

WebAssembly applications also enjoy superior performance,

since WebAssembly instructions can typically be mapped

directly to platform-specific assembly.

Interaction with the rest of the environment, e.g. the browser

or a JavaScript application, is done via an import mechanism,

wherein each WebAssembly module declares a set of imports

whose symbols are resolved when the compiled WebAssembly

code is dynamically loaded into the browser. As such, Web-

Assembly is completely platform-agnostic (it is portable) but

also Web-agnostic (there is no mention of the DOM or the

Web in the specification).

This clean-slate design, endorsed by all major browsers,

yields a language that has cleaner semantics, both on paper [4]

and in mechanized rules [5]. As such, WebAssembly provides

a better basis for reasoning about correctness than JavaScript,

as one does not need to deal with a large semantics rife with

corner cases [6], [7]. Indeed, analysis tools for WebAssembly

are beginning to emerge. For example, CT-WebAssembly [8]

aims to statically rule out some classes of side-channel viola-

tions by extending the WebAssembly semantics.

Our approach is to compile WebAssembly code from for-

mally verified source code written in Low∗ [9], a subset of

the F∗ programming language [10]. As far as we know, this is

the first verification toolchain for WebAssembly that supports

correctness, memory safety, and side-channel resistance.

Verified Crypto for WebAssembly. Programmers, when au-

thoring Web applications, have very few options when it comes

to efficient, trustworthy cryptographic libraries. When run-

ning within a browser-like environment, the W3C WebCrypto

API [11] provides a limited choice of algorithms, while

imposing the restriction that all code calling into WebCrypto

must be asynchronous via the mandatory use of promises.

This entails that WebAssembly code cannot call WebCrypto,

since it does not support async functions. When running

within a framework like Electron, programmers can use the

crypto package, which calls OpenSSL under the hood and

hence supports more algorithms, but requires trust in a large

unverified library.

In both these scenarios, the main restriction is perhaps the

lack of novel algorithms: for a new algorithm to be available,

the W3C must adopt a new standard, and all browsers must

implement it; or, OpenSSL must implement it, issue a release,

and binaries must percolate to all target environments. For ex-

ample, modern cryptographic standards such as Curve25519,

Chacha20, Poly1305, SHA-3 or Argon2i are not available in

WebCrypto or older versions of OpenSSL.

When an algorithm is not available on all platforms, Web

developers rely on hand-written, unverified JavaScript imple-

mentations or compile such implementations from unverified

C code via Emscripten. In addition to correctness questions,

this JavaScript code is often vulnerable to new timing attacks.

We aim to address this issue, by providing application authors

with a verified crypto library that can be compiled to both C

and WebAssembly: therefore, our library is readily available

in both native and Web environments.

Verified Protocol Code in WebAssembly. Complex crypto-

graphic protocols are hard to implement correctly, and correct-

ness flaws (e.g. [12]) or memory-safety bugs (e.g. HeartBleed)

in their code can result in devastating vulnerabilities. A num-

ber of previous works have shown how to verify cryptographic

protocol implementations to prove the absence of some of

these kinds of bugs. In particular, implementations of TLS

in F# [13], C [14], and JavaScript [15] have been verified for

correctness, memory safety, and cryptographic security. An

implementation of a non-standard variant of Signal written

in a subset of JavaScript was also verified for cryptographic

security [16], but not for correctness.

We propose to build and verify a fully interoperable imple-

mentation of Signal in Low∗ for memory safety and functional

correctness with respect to a high-level specification of the

protocol in F∗. We derive a formal model from this speci-

fication and verify its symbolic security using the protocol

analyzer ProVerif [17]. We then compile our Low∗ code

to WebAssembly and embed it within a modified version

of LibSignal-JavaScript to obtain a drop-in replacement for

LibSignal for use in JavaScript Web applications.

Contributions and Outline. Our contributions are three-

fold. First, we present the first verification and compilation

toolchain targeting WebAssembly, along with its formalization

and a compact auditable implementation. Second, we present

WHACL∗, the first high-assurance cryptographic library in

WebAssembly, based on the existing HACL∗ library [18].

Third, we present LibSignal*, a novel verified implementation

of the Signal protocol, that by virtue of our toolchain, enjoys

compilation to both C and WebAssembly, making it a prime

choice for application developers.

We next introduce our source language, F∗, along with the

target language, WebAssembly (II). Next, we formalize our

toolchain, going through various intermediate languages to

connect the semantics of our source and target (III). The fol-

lowing section demonstrates the applicability of our approach,

by compiling an existing library, HACL∗, to WebAssembly,

and validating that the generated code enjoys side-channel

resistance (IV). Finally, we introduce our novel Signal imple-

mentation Signal∗ (V) and explain its design and verification

results.

1257

II. BACKGROUND: F∗ AND WEBASSEMBLY

A. Verified Security Applications in F∗

F∗ is a state-of-the-art verification-oriented programming

language [10]. It is a functional programming language with

dependent types and an effect system, and it relies on SMT-

based automation to prove properties about programs using

a weakest-precondition calculus. Once proven correct with

regards to their specification, programs written in F∗ can

be compiled to OCaml or F#. Recently [9], F∗ gained the

ability to generate C code, as long as the run-time parts of

the program are written in a low-level subset called Low∗.

This allows the programmer to use the full power of F∗ for

proofs and verification and, relying on the fact that proofs

are computationally irrelevant and hence erased, extract the

remaining Low∗ code to C. This approach was successfully

used by the HACL∗ [18] verified crypto library, and the

resulting C code is currently used in the Firefox browser and

Wireguard VPN. In the present work, we reuse the Low∗ subset

as our source language when compiling to WebAssembly.

Writing specifications in F∗. The programmer first writes

a high-level specification for her program as a series of

pure terminating functions in F∗. To illustrate our method-

ology, we focus on the Curve25519 implementation found in

HACL∗, which is used as an example throughout this paper.

Curve25519 extensively relies on arithmetic in the field of

integers modulo the prime 2255 − 19. The concise high-level

specification of this field in F∗ is as follows:

let prime = pow2 255 − 19
type elem = e:int{e ≥ 0 ∧ e < prime}
let add e1 e2 = (e1 + e2) % prime
let mul e1 e2 = (e1 * e2) % prime
let zero: elem = 0
let one: elem = 1

The syntax of F∗ resembles F# and OCaml. Definitions are

introduced using let; the syntax let f x y: Tot t defines a total

(pure) function of two parameters x and y, which returns

a value of type t while performing no side-effects. Total

functions always terminate for all valid inputs; F∗ enforces

this, and the programmer is sometimes required to provide a

decreases clause to indicate to F∗ why the function terminates.

Types may be annotated with a refinement between curly

braces; for instance, the type elem above describes mathe-

matical integers modulo prime. The backtick operator ` allows

using a function as an infix operator for readability.

The definitions above form a specification. The set of

field elements are defined as a type that refines mathematical

integers (int) and two arithmetic operations on these elements

(add, mul) are defined as pure terminating functions. These

specifications can be tested, by extracting the code above to

OCaml and running it on some test vectors as a sanity check.

However, this specification is still quite far from a concrete

low-level implementation.

Specifications can be layered. Building upon the field

arithmetic above, we can define elliptic curve operations for

Curve25519, culminating in a full specification for elliptic

curve scalar multiplication.

Writing low-level code in Low∗. Once equipped with a

specification, the programmer can write an efficient stateful

implementation in Low∗, a subset of F∗. She can then use the

program verification capabilities of F∗ to show that the low-

level implementation matches the high-level specification.

Field arithmetic in Curve25519 requires 256-bit integers

which are not supported by generic CPUs and hence need to be

encoded as arrays of 32-bit or 64-bit integers. Consequently, to

implement Curve25519, we define a low-level representation

of field elements called felem and stateful functions fadd and

felem that operate on these felems:

type felem = p:uint64 p { length p = 5 }

let fadd (output a b: felem):
Stack unit

(requires (λ h0 → live pointers h0 [output; a; b]
∧ fadd pre h0.[a] h0.[b])

(ensures (λ h0 h1 →modifies only output h0 h1
∧ h1.[output] == add h0.[a] h0.[b]))

The code first defines the type felem, using the popular

unpacked representation [19], as an array of five limbs of 64

bits each. To represent an integer modulo 2255−19, each limb

only need to use 51 bits, and so it has 13 extra bits that it

can use to store pending carries that need to be propagated

later. Delaying the carry propagation in this way is a common

optimization in many Curve25519 implementations, but needs

careful verification since it is also a leading cause of functional

correctness bugs [20]–[22].

We then show the type of fadd (its code appears in III-B).

The type uses the Stack annotation (instead of Tot) to indicate

that the function is stateful, and that it allocates memory only

on the stack, not on the heap. The function takes three array

arguments: the operands a and b of the addition, and output,
the destination array where the result is to be stored.

The pre-condition of the function (indicated by requires)

demands that all three arrays must be live in the initial heap

h0; i.e. they have been allocated (and not freed) and contain

values of the expected type and length. Since this function does

not perform carry propagation, the pre-condition also requires

(in fadd pre, elided) that there must be enough space left in

each limb to avoid overflows when adding two limbs.

The post-condition (indicated by ensures) guarantees that

once the function has executed, the resulting memory h1 at

address output contains exactly the specification add applied

to the values contained at addresses a and b in the initial

memory h0. Furthermore, nothing except the array output has

been modified between h0 and h1.

Verification with F∗. Verification goes as follows. Seeing the

definition of the function, F∗ computes a weakest precondition
for it, then checks that this weakest precondition subsumes

the requires/ensures annotation of the function. This involves

discharging proof goals to the Z3 theorem prover. Once Z3

approves, the correctness meta-theorem of F∗ concludes that

the function does meet its specification. Thereafter, at every

1258

call site for this function F∗ will verify that the pre-condition

is satisfied, and will then be able to use the post-condition to

prove further properties.

The verification of fadd ensures that it is memory safe: it

does not read or write from an unallocated memory region

and it does not access arrays out-of-bounds. It also guarantees

functional correctness with respect to a high-level specification

add. As we shall discuss in IV-C, our model of machine

integers (e.g. uint64) treats them as abstract secrets that cannot

be compared or used as memory addresses. Hence, typecheck-

ing our code also guarantees a form of timing side-channel

resistance called secret independence [9].

Compilation to C. To compile the verified code to C, it

must be in Low∗, a restricted subset of F∗ that is suitable

for compilation to C. (The fadd function above is in Low∗.)

A Low∗ program must verify against an F∗ model of the

C stack and heap (indicated by the Stack annotation). In

particular, it must not modify the structure of the stack or

allocate in any previous stack frame or on the heap. Finally,

Low∗ programs may not use certain language features, such

as closures, and must essentially remain first-order. Programs

that obey all these restrictions compile transparently to C,

via KreMLin [9], a dedicated compiler, and do not need any

runtime support. In short, Low∗ is a curated subset of C

modeled in F∗.

All the specifications and proof annotations are erased at

compile-time: pre- and post-conditions, refinements all disap-

pear, leaving only an efficient implementation to be executed,

using stack allocations, machine integers, pointers and loops.

The fadd function is a small, representative building block.

HACL∗ builds implementations all the way to the elliptic

curve scalar multiplication in Curve25519. The total amount

of low-level code, including proof annotations, whitespace and

comments, is about 10,000 lines of Low∗ code, for a resulting

700 lines of C code after compilation.

B. WebAssembly: a runtime environment for the Web

WebAssembly is the culmination of a series of experiments

(NaCl, PNaCl, asm.js) whose goal was to enable Web develop-

ers to write high-performance assembly-like code that can be

run within a browser. Now with WebAssembly, programmers

can target a portable, compact, efficient binary format that is

supported by Chrome, Firefox, Safari and Edge. For instance,

Emscripten [23], a modified version of LLVM, can generate

WebAssembly. The code is then loaded by a browser, JIT’d to

machine code, and executed. This means that code written in,

say, C, C++ or Rust, can now be run efficiently on the web.

The syntax of WebAssembly is shown in Figure 2. We use i
for WebAssembly instructions and t for WebAssembly types.

WebAssembly is a typed, expression language that reduces

using an operand stack; each instruction has a function type

that indicates the types of operands it consumes from the stack,

and the type of operand it pushes onto the stack. For instance,

if � has type i32, then get local � has type [] → i32, i.e.

it consumes nothing and pushes a 32-bit value on the stack.

f ∶∶= function

func tf local
�⇀
� ∶ t
�⇀
i

i ∶∶= instruction

if tf
�⇀
i else

�⇀
i conditional

call f function call
get local � read local variable
set local � set local variable
t.load load from memory
t.store write to memory
t.const k push constant
drop drop operand

loop
�⇀
i loop

br if break-if-true
t.binop o binary arithmetic

t ∶∶= value type
i32 32-bits integer
i64 64-bits integer

tf ∶∶= function type
�⇀
t → t

o ∶∶= operator
add, sub,div, . . .

Fig. 2. WebAssembly Syntax (selected constructs)

Similarly, t.store has type i32; t→ [], i.e. it consumes a 32-bit

address, a value of type t, and pushes nothing onto the stack.

We omit from this presentation: n-ary return types for

functions (currently not supported by any WebAssembly im-

plementation); treatment of packed 8-bit and 16-bit integer

arrays (supported by our implementation, elided for clarity).

This human-readable syntax maps onto a compact binary

format. The programmer is not expected to directly write

programs in WebAssembly; rather, WebAssembly was de-

signed as a compilation target. Indeed, WebAssembly delivers

performance: offline compilers generates better code than a

JIT; compiling WebAssembly code introduces no runtime-

overhead (no GC); the presence of 64-bit values and packed

arrays enables more efficient arithmetic and memory locality.

WebAssembly also delivers better security. Previous works

attempted to protect against the very loose, dynamic nature of

JavaScript (extending prototypes, overloading getters, rebind-

ing this, etc.) by either defining a “safe” subset [24], [25], or

using a hardening compilation scheme [26], [27]. By contrast,

none of the JavaScript semantics leak into WebAssembly,

meaning that reasoning about a WebAssembly program within

a larger context boils down to reasoning about the boundary

between WebAssembly and JavaScript.

From a security standpoint, this is a substantial leap forward,

but some issues still require attention. First, the boundary

between WebAssembly and JavaScript needs to be carefully

audited: the JavaScript code is responsible for setting up

the WebAssembly memory and loading the WebAssembly

modules. This code must use defensive techniques, e.g. make

sure that the WebAssembly memory is suitably hidden behind

a closure. Second, the whole module loading process needs to

be reviewed, wherein one typically assumes that the network

content distribution is trusted, and that the WebAssembly API

1259

cannot be tampered with (e.g. Module.instantiate).

Using WebAssembly now. The flagship toolchain for com-

piling to WebAssembly is Emscripten [23], a compiler from

C/C++ to JavaScript that combines LLVM and Binaryen,

a WebAssembly-specific optimizer and code emitter. Using

Emscripten, several large projects, such as the Unity and

Unreal game engines, or the Qt Framework have been ported to

WebAssembly. Recently, LLVM gained the ability to directly

emit WebAssembly code without going through Binaryen; this

has been used successfully by Rust and Mono.

Cryptographic libraries have been successfully ported to

WebAssembly using Emscripten. The most popular one is lib-

sodium, which owing to its relatively small size and simplicity

(no plugins, no extensibility like OpenSSL) has successfully

been compiled to both JavaScript and WebAssembly.

Issues with the current toolchain. The core issue with the

current toolchain is both the complexity of the tooling involved

and its lack of auditability. Trusting libsodium to be a correct

cryptographic library for the web involves trusting, in order:

that the C code is correct, something notoriously hard to

achieve; that LLVM introduces no bugs; that the runtime

system of Emscripten does not interfere with the rest of the

code; that the Binaryen tool produces correct WebAssembly

code; that none of these tools introduce side-channels; that the

code is sufficiently protected against attackers.

In short, the trusted computing base (TCB) is very large.

The source language, C, is difficult to reason about. Numerous

tools intervene, each of which may be flawed in a different

way. The final WebAssembly (and JavaScript) code, being

subjected to so many transformations and optimizations, can

neither be audited or related to the original source code.

III. FROM F∗ TO WEBASSEMBLY

Seeing that WebAssembly represents a compelling com-

pilation target for security-critical code on the web; seeing

that F∗ is a prime language for writing security-critical code;

we repurpose the Low∗-to-C toolchain and present a verified

compilation path from Low∗ to WebAssembly.

A. Overview of the toolchain

Protzenko et.al. [9] model the Low∗-to-C compilation in

three phases (Figure 3). The starting point is Explicitly

Monadic F∗ [28]. First, the erasure of all computationally-

irrelevant code yields a first-order program with relatively

few constructs, which they model as λow∗, a simply-typed

lambda calculus with mutable arrays. Second, λow∗ programs

are translated to C∗, a statement language with stack frames

built into its reduction semantics. Third, C∗ programs go to

CLight, CompCert’s internal frontend language for C [29].

Semantics preservation across these three steps is shown

using a series of simulations. More importantly, this Low∗-

to-C pipeline ensures a degree of side-channel resistance, via

type abstraction. This is achieved through traces of execution,

which track memory access and branches. The side-channel

resistance theorem states that if two programs verify against

an abstract secret type; if these two programs only differ

F∗

KreMLin

GCC/Clang/CompCert

EMF∗ Low∗

1st-order EMF∗

λow∗C∗Clight

.c Exe

≈ erase

partial ≈

hoist ≈

≈≈

print

compile

Fig. 3. The original Low∗-to-C translation

in their secret values; if the only functions that operate on

secrets have secret-independent traces; then once compiled to

Clight, the two programs reduce by producing the same result

and emitting the same traces. In other words, if the same

program operates on different secrets, the traces of execution

are indistinguishable.

We repurpose both the formalization and the implementa-

tion, and replace the λow∗ → C∗ → Clight toolchain with

a new λow∗ → C♭ → WebAssembly translation. We provide

a paper formalization in the present section and our imple-

mentation is now up and running as a new backend of the

KreMLin compiler. (Following [9], we omit the handling of

heap allocations, which are not used in our target applications.)

Why a custom toolchain. Using off-the-shelf tools, one can

already compile Low∗ to C via KreMLin, then to WASM via

Emscripten. As we mentioned earlier, this TCB is substantial,

but in addition to the trust issue, there are technical reasons

that justify a new pipeline to WASM.

First, C is ill-suited as an intermediary language. C is a

statement language, where every local variable is potentially

mutable and whose address can be taken; LLVM immediately

tries to recover information that was naturally present in

Low∗ but lost in translation to C, such as immutable local

variables (“registers”), or an expression-based representation

via a control-flow graph. Second, going through C via C∗ puts

a burden on both the formalization and the implementation.

On paper, this mandates the use of a nested stack of con-

tinuations for the operational semantics of C∗. In KreMLin,

this requires not only dedicated transformations to go to a

statement language, but also forces KreMLin to be aware of

C99 scopes and numerous other C details, such as undefined

behaviors. In contrast, C♭, the intermediary language we use

on the way to WebAssembly, is expression-based, has no C-

specific concepts, and targets WebAssembly whose semantics

have no undefined-behavior. As such, C♭ could be a natural

compilation target for a suitable subset of OCaml, Haskell, or

any other expression-based programming language.

B. Translating λow∗ to C♭

We explain our translation via an example: the implemen-

tation of the fadd function for Curve25519 (II). The function

takes two arrays of five limbs each, adds up each limb pairwise

1260

τ ∶∶= int32 ∣ int64 ∣ unit ∣ {
��⇀
f = τ} ∣ buf τ ∣ α

v ∶∶= x ∣ g ∣ k ∶ τ ∣ () ∣ {
��⇀
f = v}

e ∶∶= readbuf e1 e2 ∣ writebuf e1 e2 e3 ∣ newbuf n (e1 ∶ τ)
∣ subbuf e1 e2 ∣ e.f ∣ v ∣ if e1 then e2 else e3

∣ d�⇀e ∣ let x ∶ τ = e1 in e2 ∣ {
��⇀
f = e} ∣ e⊕ n ∣ for i ∈ [0;n) e

P ∶∶= ⋅ ∣ let d = λ��⇀y ∶ τ . e1 ∶ τ1, P ∣ let g ∶ τ = e,P

Fig. 4. λow∗ syntax

(using a for-loop) and stores the result in the output array. It

comes with the precondition (elided) that the addition must

not overflow, and therefore limb addition does not produce any

carries. The loop has an invariant (elided) that guarantees that

the final result matches the high-level specification of fadd.

let fadd (dst: felem) (a b: felem): Stack unit ... =
let invariant = ... in
C.Loops.for 0ul 5ul invariant (λ i →dst.(i) ← a.(i) + b.(i))

This function formally belongs to EMF∗, the formal model

for F∗ (Figure 3). The first transformation is erasure, which

gets rid of the computationally-irrelevant parts of the program:

this means removing the pre- and post-condition, as well as

any mention of the loop invariant, which is relevant only for

proofs. After erasure, this function belongs to λow∗.

The λow∗ language. λow∗ is presented in Figure 4. λow∗

is a first-order lambda calculus, with recursion. It is equipped

with stack-allocated buffers (arrays), which support: writebuf,
readbuf, newbuf, and subbuf for pointer arithmetic. These

operations take indices, lengths or offsets expressed in array
elements (not bytes). λow∗ also supports structures, which can

be passed around as values (as in C). Structures may be stored

within an array, or may appear within another structure. They

remain immutable; to pass a structure by reference, one has to

place it within an array of size one. None of: in-place mutation

of a field; taking the address of a field; flat (packed) arrays

within structures are supported. This accurately matches what

is presently implemented in Low∗ and the KreMLin compiler.

Base types are 32-bit and 64-bit integers; integer constants

are annotated with their types. The type α stands for a secret

type, which we discuss in the next section. For simplicity, the

scope of a stack allocation is always the enclosing function

declaration.
Looking at the fadd example above, the function belongs

to Low∗ (after erasure) because: its signature is in the Stack
effect, i.e. it verifies against the C-like memory model; it uses
imperative mutable updates over pointers, i.e. the felem types
and the ← operator; it uses the C loops library. As such, fadd
can be successfully interpreted as the following λow∗ term:

let fadd = λ(dst ∶ buf int64)(a ∶ buf int64)(b ∶ buf int64).
for i ∈ [0; 5). writebuf dst i (readbuf a i + readbuf b i)

λow∗ enjoys typing preservation, but not subject reduction.

Indeed, λow∗ programs are only guaranteed to terminate if

they result from a well-typed F∗ program that performed

verification in order to guarantee spatial and temporal safety.

In the example above, the type system of λow∗ does not

τ̂ ∶∶= int32 ∣ int64 ∣ unit ∣ pointer
v̂ ∶∶= � ∣ g ∣ k ∶ τ̂ ∣ ()
ê ∶∶= readn ê ∣ writen ê1 ê2 ∣ new ê ∣ ê1 ⊕ ê2 ∣ � ∶= ê ∣ v̂ ∣ ê1; ê2

∣ if ê1 then ê2 else ê3 ∶ τ̂ ∣ for � ∈ [0;n) ê ∣ ê1 × ê2 ∣ ê1 + ê2 ∣ d
�⇀
ê

P̂ ∶∶= ⋅ ∣ let d = λ
��⇀
� ∶ τ̂ .

��⇀
� ∶ τ̂ , ê ∶ τ̂ , P̂ ∣ let g ∶ τ̂ = ê, P̂

Fig. 5. C♭ syntax

guarantee that the memory accesses are within bounds; this is

only true because verification was performed over the original

EMF∗ program.

The differences here compared to the original presenta-

tion [9] are as follows. First, we impose no syntactic con-

straints on λow∗, i.e. we do not need to anticipate on the

statement language by requiring that all writebuf operations

be immediately under a let. Second, we do not model in-

place mutable structures, something that remains, at the time

of writing, unimplemented by the Low∗/KreMLin toolchain.

Third, we add a raw pointer addition e⊕ n that appears only

as a temporary technical device during the structure allocation

transformation (below).

The C♭ language. C♭ (Figure 5) resembles λow∗, but: i)

eliminates structures altogether, ii) only retains a generic

pointer type, iii) expresses all memory operations (pointer

addition, write, reads, allocation) in terms of byte addresses,

offsets and sizes, and iv) trades lexical scoping in favor of

local names. As in WebAssembly, functions in C♭ declare the

set of local mutable variables they introduce, including their

parameters.

Translating from λow∗ to C♭ involves three key steps:

ensuring that all structures have an address in memory; con-

verting let-bindings into local variable assignments; laying out

structures in memory.

1) Desugaring structure values. Structures are values in

λow∗ but not in C♭. In order to compile these, we make sure

every structure is allocated in memory, and enforce that only

pointers to such structures are passed around. This is achieved

via a mundane type-directed λow∗-to-λow∗ transformation

detailed in Figure 6. The first two rules change the calling-

convention of functions to take pointers instead of structures;

and to take a destination address instead of returning a

structure. The next two rules enact the calling-convention

changes at call-site, introducing an uninitialized buffer as a

placeholder for the return value of f . The next rule ensures

that let-bindings have pointer types instead of structure types.

The last rule actually implements the allocation of structure

literals in memory.

The auxiliary take addr function propagates the address-

taking operation down the control flow. When taking the

address of sub-fields, a raw pointer addition, in bytes, is

generated. Unspecified cases are ruled out either by typing

or by the previous transformations.

This phase, after introducing suitable let-bindings (elided),

establishes the following invariants: i) the only subexpressions

1261

let d = λy ∶ τ1. e ∶ τ2 ↝ let d = λy ∶ buf τ1. [readbuf y 0/y]e ∶ τ2 if τ1 is a struct type
let d = λy ∶ τ1. e ∶ τ2 ↝ let d = λy ∶ τ1. λr ∶ buf τ2. let x ∶ τ2 = e in writebuf r 0 x ∶ unit if τ2 is a struct type

f (e ∶ τ) ↝ let x ∶ buf τ = newbuf 1 e in f x if τ is a struct type
(f e) ∶ τ ↝ let x ∶ buf τ = newbuf 1 (∶ τ) in f e x; readbuf x 0 if τ is a struct type

let x ∶ τ = e1 in e2 ↝ let x ∶ buf τ = take addr e1 in [readbuf x 0/x]e2 if τ is a struct type

{
��⇀
f = e} (not under newbuf) ↝ let x ∶ buf {

��⇀
f = τ} = newbuf 1 {

��⇀
f = e} in readbuf x 0 if τ is a struct type

take addr(readbuf e n) ↝ subbuf e n

take addr((e ∶
��⇀
f ∶ τ).f) ↝ take addr(e) ⊕ offset(

��⇀
f ∶ τ , f)

take addr(let x ∶ τ = e1 in e2) ↝ let x ∶ τ = e1 in take addr e2
take addr(if e1 then e2 else e3) ↝ if e1 then take addr e2 else take addr e3

Fig. 6. Ensuring all structures have an address

size int32 = 4
size unit = 4
size int64 = 8
size buf τ = 4

size
��⇀
f ∶ τ = offset (

��⇀
f ∶ τ , fn) + size τn

offset (
��⇀
f ∶ τ , f0) = 0

offset (
��⇀
f ∶ τ , fi+1) = align(offset (

��⇀
f ∶ τ , fi) + size τi,
alignment τi+1)

alignment(
��⇀
f ∶ τ) = 8

alignment(τ) = size τ otherwise

align(k,n) = k if k mod n = 0
align(k,n) = k + n − (k mod n) otherwise

Fig. 7. Structure layout algorithm

that have structure types are of the form {
��⇀
f = e} or readbuf e n

and ii) {
��⇀
f = e} appears exclusively as an argument to newbuf.

2) Assigning local variables. Transformation 1) above was

performed within λow∗. We now present the translation rules

from λow∗ to C♭ (Figures 8 and 17). Our translation judge-

ments from λow∗ to C♭ are of the form G;V ⊢ e ∶ τ ⇛ e′ ∶
τ ′ ⊣ V ′. The translation takes G, a (fixed) map from λow∗

globals to C♭ globals; V , a mapping from λow∗ variables to

C♭ locals; and e ∶ τ , a λow∗ expression. It returns ê ∶ τ̂ , the

translated C♭ expression, and V ′, which extends V with the

variable mappings allocated while translating e.

We leave the discussion of the WRITE* rules to the next

paragraph, and now focus on the general translation mecha-

nism and the handling of variables.

Since λow∗ is a lambda-calculus with a true notion of value,

let-bound variables cannot be mutated, meaning that they can

be trivially translated as C♭ local variables. We thus compile

a λow∗ let-binding let x = e1 to a C♭ assignment � ∶= ê1 (rule

LET). We chain the V environment throughout the premises,

meaning that the rule produces an extended V ′′ that contains

the additional x ↦ �, τ̂ mapping. Translating a variable then

boils down to a lookup in V (rule VAR).

The translation of top-level functions (rule FUNDECL) calls

into the translation of expressions. The input variable map is

pre-populated with bindings for the function parameters, and

the output variable map generates extra bindings �⇀y for the

locals that are now needed by that function.

3) Performing struct layout. Going from λow∗ to C♭,
BUFWRITE and BUFNEW (Figure 8) call into an auxiliary

writeB function, defined inductively via the rules WRITE*.

This function performs the layout of structures in memory,

relying on a set of mutually-defined functions (Figure 7): size
computes the number of bytes occupied in memory by an

element of a given type, and offset computes the offset in bytes

of a field within a given structure. Fields within a structure are

aligned on 64-bit boundaries (for nested structures) or on their

intrinsic size (for integers), which WASM can later leverage.

We use writeB as follows. From BUFWRITE and BUFNEW,

we convert a pair of a base pointer and an index into a

byte address using size, then call writeB e1 e2 to issue a

series of writes that will lay out e2 at address e1. Writing

a base type is trivial (rule WRITEINT32). Recall that from the

earlier desugaring, only two forms can appear as arguments to

writebuf: writing a structure located at another address boils

down to a memcpy operation (rule WRITEDEREF), while

writing a literal involves recursively writing the individual

fields at their respective offsets (rule WRITELITERAL).

The allocation of a buffer whose initial value is a struct

type is desugared into the allocation of uninitialized memory

followed by a series of writes in a loop (rule BUFNEW).

Translated example. After translation to C♭, the earlier fadd
function now features four locals: three of type pointer for

the function arguments, and one for the loop index; buffer

operations take byte addresses and widths.

let fadd = λ(�0, �1, �2 ∶ pointer)(�3 ∶ int32).
for �3 ∈ [0; 5).
write8 (�0 + i × 8) (read8 (�1 + i × 8) + read8(�2 + i × 8))

C. Translating C♭ to WebAssembly

The C♭ to WASM translation appears in Figure 9). A C♭
expression ê compiles to a series of WASM instructions

�⇀
i .

WRITE32 compiles a 4-byte write to WASM. WASM is a

stack-based language, meaning we accumulate the arguments

1262

LET

G;V ⊢ e1 ∶ τ1 ⇛ ê1 ∶ τ̂1 ⊣ V ′

� fresh G; (x↦ �, τ̂1) ⋅ V
′ ⊢ e2 ∶ τ2 ⇛ ê2 ∶ τ̂2 ⊣ V ′′

G;V ⊢ let x ∶ τ1 = e1 in e2 ∶ τ2 ⇛ � ∶= ê1; ê2 ∶ τ̂2 ⊣ V ′′

FUNDECL

G;
����⇀
y ↦ �, τ̂ ⊢ e1 ∶ τ1 ⇛ ê1 ∶ τ̂1 ⊣

�����⇀
x↦ �′, τ̂ ′ ⋅

����⇀
y ↦ �, τ̂

G ⊢ let d = λ��⇀y ∶ τ . e1 ∶ τ1 ⇛ let d = λ
��⇀
� ∶ τ̂ .

���⇀
�′ ∶ τ̂ ′, ê1 ∶ τ̂1

VAR

V (x) = �, τ

G;V ⊢ x⇛ � ∶ τ ⊣ V

BUFWRITE

G;V ⊢ writeB (e1 + e2 × size τ1) e3 ⇛ ê ⊣ V ′

G;V ⊢ writebuf (e1 ∶ τ1) e2 e3 ⇛ ê ∶ unit ⊣ V ′

WRITEINT32
G;V ⊢ e1 ⇛ ê1 ⊣ V ′ G;V ′ ⊢ e2 ⇛ ê2 ⊣ V ′′

G;V ⊢ writeB e1 (e2 ∶ int32) ⇛ write4 ê1 ê2 ⊣ V ′′

WRITELITERAL

G;Vi ⊢ writeB (e + offset (
��⇀
f ∶ τ , fi)) ei ⇛ êi ⊣ Vi+1

G;V0 ⊢ writeB e ({
����⇀
f = e ∶ τ}) ⇛ ê0; . . . ; ên−1 ⊣ Vn

WRITEDEREF

� fresh V ′ = �, int32 ⋅ V G;V ⊢ vi ⇛ v̂i ⊣ V
memcpy v1 v2 n = for � ∈ [0;n) write1 (v1 + �) (read1 (v2 + �) 1)

G;V ⊢ writeB v1 (readbuf (v2 ∶ τ2) 0) ⇛ memcpy v1 v2 (size τ2) ⊣ V ′

BUFNEW

�, �′ fresh G;x↦ (�, int32) ⋅ y ↦ (�′, int32) ⋅ V ⊢ writeB (x + size τ × y) v1 ⇛ ê ⊣ V ′

G;V ⊢ newbuf n (v ∶ τ) ⇛ � ∶= new (n × size τ); for �′ ∈ [0;n) ê; � ⊣ V ′

Fig. 8. Translating from λow∗ to C♭ (selected rules)

to a function on the operand stack before issuing a call

instruction: the sequence
�⇀
i1 ;
�⇀
i2 pushes two arguments on the

operand stack, one for the 32-bit address, and one for the

32-bit value. The store instruction then consumes these two

arguments.

By virtue of typing, this expression has type unit; for the

translation to be valid, we must push a unit value on the

operand stack, compiled as i32.const 0. A similar mechanism

operates in FOR, where we drop the unit value pushed by the

loop body on the operand stack (a loop growing the operand

stack would be ill-typed in WebAssembly), and push it back

after the loop has finished.
WebAssembly only offers a flat view of memory, but Low∗

programs are written against a memory stack where array
allocations take place. We thus need to implement run-time
memory management, the only non-trivial bit of our transla-
tion. Our implementation strategy is as follows. At address 0,
the memory always contains the address of the top of the stack,
which is initially 1. We provide three functions for run-time
memory stack management.

get stack = func [] → i32 local []
i32.const 0; i32.load

set stack = func i32→ [] local
���⇀
� ∶ i32

i32.const 0; get local �; i32.store

grow stack = func i32→ i32 local
���⇀
� ∶ i32

call get stack; get local �; i32.op+;
call set stack; call get stack

Thus, allocating uninitialized memory on the memory stack

merely amounts to a call to grow stack (rule NEW). Functions

save the top of the memory stack on top of the operand stack,

then restore it before returning their value (rule FUNC).

Combining all these rules, the earlier fadd is compiled as

shown in Figure 10.

Looking forward. This formalization serves as a succinct

description of our compiler as well as a strong foundation

for future theoretical developments, while subsequent sections

demonstrate the applicability and usefulness of our approach.

This is, we hope, only one of many future papers connecting

state-of-the-art verification tools to WASM. As such, the

present paper leaves many areas to be explored. In partic-

ular, we leave proofs for these translations to future work.

The original formalization only provides paper proofs in the

appendix [9]; since we target simpler and cleaner semantics

(WASM instead of C), we believe the next ambitious result

should be to perform a mechanical proof of our translation,

leveraging recent formalizations of the WASM semantics [5].

IV. VERIFIED CRYPTOGRAPHY IN WEBASSEMBLY

We now describe the first application of our toolchain:

WHACL∗, a WebAssembly version of the (previously exist-

ing) verified HACL∗ crypto library [18]. Compiling such a

large body of code demonstrates the viability of our toolchain

approach. In addition, we validate the generated code using a

new secret independence checker for WebAssembly.

A. The source: HACL∗

HACL∗ is a verified library of cryptographic primitives that

is implemented in Low∗ and compiled to C via KreMLin [18].

It includes implementations of Chacha20 and Salsa20, AES,

GCM, Curve25519, Poly1305, Ed25519, HMAC-SHA256,

and the SHA2 family. Hence, it provides a full implementation

of the NaCl API [30] and many of the key cryptographic

algorithms used in modern protocols like TLS 1.3 and Signal.

HACL∗ code is currently used by the Firefox browser and

WireGuard VPN, among others.
HACL∗ is a choice application for our toolchain: it im-

plements many of the newer cryptographic algorithms that

are supported by neither WebCrypto nor older versions of

OpenSSL. Indeed, WebCrypto supports none of: the Salsa fam-

ily; Poly1305; or any of the Curve25519 family of APIs [11].

In contrast, WebAssembly is already available for 81% [31]

of the userbase, and this number is only going to increase.
Furthermore, developers now have access to a unified ver-

ified cryptographic library for both their C and Web-based

1263

WRITE32

ê1 ⇛
�⇀
i1 ê2 ⇛

�⇀
i2

write4 ê1 ê2 ⇛
�⇀
i1 ;
�⇀
i2 ; i32.store; i32.const 0

NEW

ê⇛
�⇀
i

new ê⇛
�⇀
i ; call grow stack

FOR

ê⇛
�⇀
i

for � ∈ [0;n) ê⇛

loop(
�⇀
i ;drop;

get local �; i32.const 1; i32.op+; tee local �;
i32.const n; i32.op =;br if); i32.const 0

FUNC

ê⇛
�⇀
i τ̂i ⇛ ti

let d = λ
���⇀
�1 ∶ τ̂1.

���⇀
�2 ∶ τ̂2, ê ∶ τ̂ ⇛

d = func
�⇀
t1 → t local

�������⇀
�1 ∶ t1 ⋅ �2 ∶ t2 ⋅ � ∶ t.

call get stack;
�⇀
i ; store local � ; call set stack; get local �

Fig. 9. Translating from C♭ to WebAssembly (selected rules)

fadd = func [int32; int32; int32] → []
local [�0, �1, �2 ∶ int32; �3 ∶ int32; � ∶ int32].
call get stack; loop(

// Push dst + 8*i on the stack
get local �0;get local �3; i32.const 8; i32.binop∗; i32.binop+
// Load a + 8*i on the stack
get local �1;get local �3; i32.const 8; i32.binop∗; i32.binop+
i64.load
// Load b + 8*i on the stack (elided, same as above)
// Add a.[i] and b.[i], store into dst.[i]
i64.binop+; i64.store
// Per the rules, return unit
i32.const 0;drop
// Increment i; break if i == 5
get local �3; i32.const 1; i32.binop+; tee local �3
i32.const 5; i32.op =;br if
); i32.const 0
store local � ; call set stack;get local �

Fig. 10. Compilation of the fadd example to WebAssembly

applications; rather than dealing with two different toolchains,

a single API is used for both worlds. This comes in contrast to

applications that use various unverified versions of platform-

specific crypto libraries through C, Java, or JavaScript APIs.

B. The WebAssembly translation: WHACL∗

We successfully compiled all the algorithms above to Web-

Assembly using KreMLin, along with their respective test

suites, and dub the resulting library WHACL∗, for Web-

HACL∗, a novel contribution. All test vectors pass when the

resulting WebAssembly code is run in a browser or in node.js,

which serves as experimental validation for our compiler.

Once compiled to WebAssembly, there are several ways

clients can leverage WHACL∗. In a closed-world setting,

the whole application can be written in Low∗, meaning one

compiles the entire client program with KreMLin in a single

pass (which we do with Signal∗ in V). In this scenario,

JavaScript only serves as an entry point, and the rest of

the program execution happens solely within WebAssembly.

KreMLin automatically generates boilerplate code to: load

the WebAssembly modules; link them together, relying on

JavaScript for only a few library functions (e.g. for debugging).

Primitive (blocksize, #rounds) (A) (B) (C)
Curve25519 (1k) 0.83 s 0.15 s 4.05 s
Chacha20 (4kB, 100k) 1.86 s 1.74 s 6.62 s
Salsa20 (4kB, 100k) 1.55 s 2.24 s 5.52 s
Ed25519 sign (16kB, 1k) 3.01 s 0.27 s 15.6 s
Ed25519 verify (16kB, 1k) 3.07 s 0.24 s 15.6 s
Poly1305 32 (16kB, 10k) 0.27 s 0.19 s
Poly1305 64 (16kB, 10k) 1.93 s 0.19 s 11.5 s
SHA2 256 (16kB, 10k) 1.64 s 1.84 s 3.5 s
SHA2 512 (16kB, 10k) 1.16 s 1.21 s 3.2 s

Fig. 11. Performance evaluation of HACL∗. (A) is HACL∗/C, (B) is
libsodium and (C) is WHACL∗.

In an open-world setting, clients will want to use WHACL∗

from JavaScript. We rely on the KreMLin compiler to en-

sure that only the top-level API of WHACL∗ is exposed

(via the exports mechanism of WebAssembly) to JavaScript.

These top-level entry points abide by the restrictions of the

WebAssembly-JavaScript FFI, and only use 32-bit integers

(64-bit integers are not representable in JavaScript). Next,

we automatically generate a small amount of glue code; this

code is aware of the KreMLin compilation scheme, and takes

JavaScript ArrayBuffers as input, copies their contents into the

WebAssembly memory, calls the top-level entry point, and

marshals back the data from the WebAssembly memory into

a JavaScript value. We package the resulting code as a portable

node.js module for easy distribution.

Performance. We benchmarked (Figure 11) and compared the

performance of three WebAssembly cryptographic libraries:

(A) HACL∗ compiled to C via KreMLin then compiled to

WebAssembly via Emscripten, (B) libsodium compiled to

WebAssembly via Emscripten, and (C) our KreMLin-compiled

WHACL∗. We measured, for each cryptographic primitive, the

run time of batches of 1 to 100 thousands operations on a

machine equipped with an Intel i7-8550U processor.

We first compare (A) and (B). When executed as a C

library, HACL∗ is known to have comparable performance

with libsodium (with assembly optimizations disabled) [18].

Consequently, when compiled with Emscripten, we find that

the code for most HACL∗ primitives (A) is roughly as fast as

the code from libsodium (B). However, we find that the gener-

ated WebAssembly code for Curve25519 and Ed25519 from

HACL∗ (A) is 6-11x slower than the code from libsodium

1264

(B). This is because HACL∗ relies on 128-bit arithmetic

in these primitives, which is available on C compilers like

gcc and clang, but in WebAssembly, 128-bit integers need

to be encoded as a pair of 64-bit integers, which makes

the resulting code very slow. Instead, libsodium switches to

a hand-written 32-bit implementation, which is significantly

faster. If and when HACL∗ adds a 32-bit implementation for

these primitives, we expect the performance gap to disappear.

This experience serves as a warning for naive compilations

from high-performance C code to WebAssembly, irrespective

of the compilation toolchain.

The more interesting comparison is between (C) and (A).

Compared to the Emscripten route (A), our custom backend

(C) generates code that is between 2.1x (SHA256) and 5.2x

(Ed25519/verify) slower. This is a direct consequence of our

emphasis on auditability and compactness: KreMLin closely

follows the rules from Figure 8 and performs strictly no

optimization besides inlining. As such, KreMLin, including the

Wasm backend, amounts to 11,000 lines of OCaml (excluding

whitespace and comments). Looking forward, we see two

avenues for improving performance.

First, we believe a large amount of low-hanging fruits

remain in KreMLin. For instance, a preliminary investigation

reveals that the most egregious slowdown (Ed25519) is likely

due to the use of 128-bit integers. Barring any optimizations,

a 128-bit integer is always allocated as a two-word struct

(including subexpressions), which in turn adds stack manage-

ment overhead. We plan to optimize this away, something we

speculate Emscripten already does.

Second, JIT compilers for Wasm are still relatively new [32],

and also contain many low-hanging fruits. Right now, the

Emscripten toolchain uses a WebAssembly-specific optimizer

(Binaryen) that compensates for the limitations of browser

JITs. We hope that whichever optimizations Binaryen deems

necessary soon become part of browser JITs, which will help

close the gap between (C) and (A).

C. Secret Independence in WebAssembly

When compiling verified source code in high-level program-

ming language like F∗ (or C) to a low-level machine language

like WebAssembly (or x86 assembly), a natural concern is

whether the compiler preserves the security guarantees proved

about source code. Verifying the compiler itself provides the

strongest guarantees but is an ambitious project [29].

Manual review of the generated code and comprehensive

testing can provide some assurance, and so indeed we exten-

sively audit and test the WebAssembly generated from our

compiler. However, testing can only find memory errors and

correctness bugs. For cryptographic code, we are also con-

cerned that some compiler optimizations may well introduce

side-channel leaks even if they were not present in the source.

A Potential Timing Leak in Curve25519.js. We illustrate the

problem with a real-world example taken from the Curve25519

code in LibSignal-JavaScript, which is compiled using Em-

scripten from C to JavaScript (not to WebAssembly). The

source code includes an fadd function in C very similar to

the one we showed in III. At the heart of this function is 64-

bit integer addition, which a C compiler translates to some

constant-time addition instruction on any modern platform.

Recall, however, that JavaScript has a single numeric type,

IEEE-754 double precision floats, which can accurately repre-

sent 32-bit values but not 64-bit values. As such, JavaScript is

a 32-bit target, so to compile fadd, Emscripten generates and

uses the following 64-bit addition function in JavaScript:

function i64Add(a, b, c, d) {
/* x = a + b*2ˆ32 ; y = c + d*2ˆ32 ; result = l + h*2ˆ32 */
a = a|0; b = b|0; c = c|0; d = d|0;
var l = 0, h = 0;
l = (a + c)>>>0;
// Add carry from low word to high word on overflow.
h = (b + d + (((l>>>0) < (a>>>0))|0))>>>0;
return ((tempRet0 = h,l|0)|0);

}

This function now has a potential side-channel leak, because

of the (l>>>0) < (a>>>0) subterm, a direct comparison be-

tween l and a, one or both of which could be secret. Depending

on how the JavaScript runtime executes this comparison, it

may take different amounts of time for different inputs, hence

leaking these secret values. These kinds of timing attacks are

an actual concern for LibSignal-JavaScript, in that an attacker

who can measure fine-grained running time (say from another

JavaScript program running in parallel) may be able to obtain

the long-term identity keys of the participants.

This exact timing leak does not occur in the WebAssembly

output of Emscripten, since 64-bit addition is available in

WebAssembly, but how do we know that other side-channels

are not introduced by one of the many optimizations? This

is a problem not just for Emscripten but for all optimizing

compilers, and the state-of-the-art for side-channel analysis

of cryptographic code is to check that the generated machine

code preserves so-called “constant-time” behaviour [33], [34].

We propose to build a validation pass on the WebAssembly

code generated from KreMLin to ensure that it preserves the

side-channel guarantees proved for the Low∗ source code.

To ensure that these guarantees are preserved all the way to

machine code, we hope to eventually connect our toolchain to

CT-Wasm [35], a new proposal that advocates for a notion of

secrets directly built into the WebAssembly semantics.

Secrets in HACL∗. HACL∗ code manipulates arrays of

machine integers of various sizes and by default, HACL∗ treats

all these machine integers as secret, representing them by an

abstract type (which we model as α in λow∗) defined in a

secret integer library. The only public integer values in HACL∗

code are array lengths and indices.

The secret integer library offers a controlled subset of

integer operations known to be constant-time, e.g. the library

rules out division or direct comparisons on secret integers.

Secret integers cannot be converted to public integers (al-

though the reverse is allowed), and hence we cannot print a

secret integer, or use it as an index into an array, or compare

its value with another integer. This programming discipline

1265

CLASSIFY

C ⊢ i ∶ π

C ⊢ i ∶ σ

BINOPPUB

o is constant-time

C ⊢ t.binop o ∶m m→m

BINOPPRIV

o is not constant-time

C ⊢ t.binop o ∶ π π → π

LOAD

C ⊢ t.load ∶ ∗σ π → σ

LOCAL

C(�) =m

C ⊢ get local � ∶ [] →m

COND

C ⊢
�⇀
i1 ∶
�⇀m → π C ⊢

��⇀
i{2,3} ∶

�⇀m →�⇀m

C ⊢ if
�⇀
i1 then

�⇀
i2 else

�⇀
i3 ∶
�⇀m π →�⇀m

Fig. 12. Secret Independence Checker (selected rules)

guarantees a form of timing side-channel resistance called

secret independence at the level of the Low∗ source [9].

Carrying this type-based information all the way to Web-

Assembly, we develop a checker that analyzes the generated

WebAssembly code to ensure that secret independence is

preserved, even though Low∗ secret integers are compiled to

regular integers in WebAssembly. We observe that adding

such a checker is only made possible by having a custom

toolchain that allows us to propagate secrecy information from

the source code to the generated WebAssembly. It would

likely be much harder to apply the same analysis to arbitrary

optimized WebAssembly generated by Emscripten.

We ran our analysis on the entire WHACL∗ library; the

checker validated all of the generated WebAssembly code.

We experimented with introducing deliberate bugs at various

points throughout the toolchain, and were able to confirm that

the checker declined to validate the resulting code.

Checking Secret Independence for WebAssembly. The rules

for our secret independence checker are presented in Figure 12.

We mimic the typing rules from the original WebAssembly

presentation [4]: just like the typing judgement captures the

effect of an instruction on the operand stack via a judgement

C ⊢ i ∶
�⇀
t →

�⇀
t , our judgement C ⊢ i ∶ �⇀m → �⇀m captures the

information-flow effect of an instruction on the operand stack.

The context C maps each local variable to either π (public)

or σ (secret). The mode m is one of π, σ or ∗σ. The ∗σ mode

indicates a pointer to secret data, and embodies our hypothesis

that all pointers point to secret data. (This assumption holds

for the HACL∗ codebase, but we plan to include a more fine-

grained memory analysis in future work.)

For brevity, Figure 12 omits administrative rules regarding

sequential composition; empty sequences; and equivalence

between �⇀m �⇀m1 →
�⇀m �⇀m2 and �⇀m1 →

�⇀m2. The mode of local

variables is determined by the context C (rule LOCAL). Con-

stant time operations accept any mode m for their operands

(rule BINOPPUB); if needed, one can always classify data

(rule CLASSIFY) to ensure that the operands to BINOPPUB

are homogeneous. For binary operations that are not constant-

Fig. 13. LibSignal*: We write an F∗ specification for the Signal protocol and
verify its security by transcribing it into a ProVerif model. We then write a
Low∗ implementation of Signal and verify it against the spec using F∗. We
compile the code to WebAssembly, link it with WHACL∗ and embed both
modules within a defensive JavaScript wrapper in LibSignal-JavaScript.

time (e.g. equality, division), the rules require that the operands

be public. Conditionals always take a public value for the

condition (rule COND). For memory loads, the requirement

is that the address be a pointer to secret data (always true of

all addresses), and that the index be public data (rule LOAD).

In order to successfully validate a program, the checker

needs to construct a context C that assigns modes to variables.

For function arguments, this is done by examining the original

λow∗ type for occurrences of α, i.e. secret types. For function

locals, we use a simple bidirectional inference mechanism,

which exploits the fact that i) our compilation scheme never

re-uses a local variable slot for different modes and ii) classi-

fications are explicit, i.e. the programmer needs to explicitly

cast public integers to secret in HACL∗.

V. LIBSIGNAL*: VERIFIED LIBSIGNAL IN WEBASSEMBLY

As our main case study, we rewrite and verify the core

protocol code of LibSignal in F*. We compile our implemen-

tation to WebAssembly and embed the resulting code back

within LibSignal-JavaScript to obtain a high-assurance drop-

in replacement for this popular library, which is currently used

in the desktop versions of WhatsApp, Skype, and Signal.

Our Signal implementation is likely the first cryptographic

protocol implementation to be compiled to WebAssembly, and

is certainly the first to be verified for correctness, memory

safety, and side-channel resistance. In particular, we carefully

design a defensive API between our verified WebAssembly

code and the outer LibSignal JavaScript code so that we can

try to preserve some of the strong security guarantees of the

Signal protocol, even against bugs in LibSignal.

Our methodology and it components are depicted in Fig-

ure 13. We first describe the Signal protocol and how we

specify it in F∗. Then, we detail our verified implementation

in Low∗ and its integration into LibSignal-JavaScript.

A. An F∗ Specification for the Signal Protocol

Signal is a cryptographic protocol that allows two devices

to exchange end-to-end encrypted messages via an untrusted

server that is used only to store and forward encrypted data

and public key material. Figures 15 and 16 depict the message

flow and the main cryptographic computations in the protocol.

1266

Asynchronous Session Initiation (X3DH). The first phase of

the conversation (Figure 15) is sometimes called X3DH [2]. It

consists of two messages that set up a bidirectional mutually-

authenticated channel between an initiator I and responder R,

who are identified by their long-term Diffie-Hellman identity
keys ((i, gi), (r, gr)).

A distinctive feature of X3DH, in comparison with classic

channel-establishment protocols like TLS, is that it is asyn-
chronous : I can start sending messages even if R is offline,

as long as R has previously uploaded some public key material

(called prekeys) to the messaging server. Hence, to begin the

conversation with R, I must know R’s public key gr, and must

have downloaded R’s signed Diffie-Hellman prekey gs (signed

with r), and an optional one-time Diffie-Hellman prekey go.

We assume that I knows the private key for its own public

key gi, and that R remembers the private keys r, s and o.

As depicted in Figure 15, I constructs the first session

initiation message in three steps:

● Initiate: I generates a fresh Diffie-Hellman keypair

(e, ge) and uses e and its identity key i to compute 3

(or optionally 4) Diffie-Hellman shared secrets in combi-

nation with all the public keys it currently knows for R
(gr, gs, go). It then puts the results together to derive an

initial root key (rk0) for the session.

● SendRatchet: I generates a second Diffie-Hellman key-

pair (x, gx) and uses it to compute a Diffie-Hellman

shared secret with gs, which it then combines with rk0

to obtain a new root key (rk1) and a sender chaining
key (ck i

0) for message sent from I to R.

● Encrypt: I uses the sender chaining key to derive authen-

ticated encryption keys (ek0,mk0) that it uses to encrypt

its first message m0 to R. It also derives a fresh sender

chaining key (ck i
1) for use in subsequent messages.

On receiving this message, the responder R performs the

dual operations (Respond, ReceiveRatchet, Decrypt) to de-

rive the same sequence of keys and decrypts the first message.

At this point, we have established a unidirectional channel

from I to R. To send messages back from R to I , R calls

SendRatchet to initialize its own sender chaining key ckr
0,

and then calls Encrypt to encrypt messages to I .

At the end of the first two messages, both I and R have

a session that consists of a root key (rk), two chaining keys,

one in each direction (cki, ckr), and ephemeral Diffie-Hellman

keys (gx0 , gy0) for each other.

Per-Message Key Update (Double Ratchet). In the second

phase of the conversation (Figure 16), both I and R send

sequences (or flights) of encrypted messages to each other. At

the beginning of each flight, the sender calls SendRatchet to

trigger a fresh Diffie-Hellman computation that mixes new key

material into the root key. Then, for each message in the flight,

the sender calls Encrypt, which updates the chaining key (and

hence encryption keys) with each message. The receiver of the

flight symmetrically calls RecvRatchet for each new flight,

followed by Decrypt for each message.

This mechanism by which root keys, chaining keys, and

encryption keys are continuously updated is called the Double

Ratchet algorithm [3]. Updating the chaining key for every

message provides a fine-grained form of forward secrecy:

even if a device is compromised by a powerful adversary, the

keys used to encrypt previous messages cannot be recovered.

Updating the root key for every flight of message provides a

form of post-compromise security [36]: if an adversary gains

temporary control over a device and obtains all its keys, he

can read and tamper with the next few messages in the current

flight, but loses this ability as soon as a new flight of messages

is sent or received by the device.

Specifying Signal in Pure F∗. We formally specify the Signal

protocol in a purely functional (and terminating) subset of

F*. Appendix B shows the full F∗ module Spec.Signal.Core
with the main functions of this specification: initiate, respond,

ratchet, encrypt, and decrypt.
The main difference between these functions and the pro-

tocol operations in Figures 15 and 16 (except for the change

of syntax) is that our F∗ code is purely functional and so

it cannot generate fresh random values, such as ephemeral

keys. Instead, each function is explicitly given as additional

arguments all the fresh key material it may need. With this

change, the code for sendRatchet and recvRatchet becomes

the same, and is implemented as a single ratchet function.

Spec.Signal.Core in turn relies on two other specification

modules: (1) Spec.Signal.Crypto specifies the cryptographic

constructions used in Signal, by building on the formal crypto

specs in HACL∗; (2) Spec.Signal.Messages specifies serializ-

ers for protocol messages. For example, the function encrypt
in Appendix B calls the hmac and hkdf3 functions to derive

new keys, and calls aes enc and mac whisper message to

encrypt and then MAC the message; all these functions are

from Spec.Signal.Crypto. To serialize the encrypted message

before MACing, it calls serialize whisper message (from

Spec.Signal.Messages).

Linking the F∗ specification to a security proof. Various

aspects of the Signal protocol have been previously studied

in a variety of cryptographic models, using both manual

proofs [37]–[40] and automated tools [16]. One of our goals

is to bridge the gap between these high-level security anal-

yses and the concrete low-level details of how LibSignal is

implemented and deployed in messaging applications today.

Although our Signal specification is written in the syntax of

F*, it is quite similar to protocol models written in other formal

languages. For example, we were able to easily transcribe our

specification in the input language for the ProVerif symbolic

protocol analyzer [17]. We analyzed the resulting model for all

the security goals targeted by Signal: confidentiality, mutual

authentication, forward secrecy, and post-compromise security.

To simplify automatic verification, we proved these properties

separately for the X3DH protocol and the subsequent Double-

Ratchet phase, and we limited each flight to 2 messages.

Our verification results for this model closely mirror previous

results in [16], which used ProVerif to analyze a non-standard

variant of Signal. Hence, our analysis serves both as a sanity

1267

check on our specification, and as a confirmation that the

expected security guarantees do hold for the standard version

of Signal implemented in LibSignal.

B. Implementing Signal in Low∗

An implementation of the Signal protocol needs to not just

encode the protocol logic depicted in Figures 15 and 16 but

also make choices on what cryptographic primitives to use,

how to format messages, and how to provide a usable high-

level API to a messaging application like WhatsApp. Since we

aim to build a drop-in replacement for LibSignal-JavaScript,

we mostly adopt the design decisions of that library.

Crypto Algorithms from HACL*. To implement message

encryption, LibSignal uses a combination of AES-CBC and

HMAC-SHA256 to implement a custom (but relatively stan-

dard) scheme for authenticated encryption with associated

data (AEAD). To derive keys, LibSignal implements HKDF,

again using HMAC-SHA256. For both AES-CBC and HMAC-

SHA256, LibSignal-JavaScript relies on the WebCrypto API.

For Diffie-Hellman, LibSignal relies on the Curve25519

elliptic curve, and for signatures, it relies on a non-standard

signature scheme called XEdDSA [41]. Neither of these prim-

itives are available in WebCrypto. So, LibSignal-JavaScript

includes a C implementation of these constructions, which

is compiled to JavaScript using Emscripten. As discussed

in Section IV-C, the resulting JavaScript is vulnerable to

timing attacks. And even if Curve25519 is added to We-

bCrypto, XEdDSA is unlikely to be included in any standard

API. Hence, high-assurance WebAssembly implementations

for these primitives appear to be needed for LibSignal.

Most of these primitives were already available in HACL*,

except for AES-CBC and XEdDSA. We extended HACL*

with formal specifications and verified implementations for

these primitives and compiled them to WebAssembly.

Formatting Messages using Protocol Buffers. To define its

concrete message formats, LibSignal uses the ProtoBuf for-

mat, known for its compactness. Hence, LibSignal-JavaScript

includes an efficient ProtoBuf parser and serializer written

in JavaScript. Parsing protocol messages is an error-prone

task, and verifying efficient parsers can be time-consuming.

So instead, we treat the ProtoBuf library as untrusted code

(under the control of the adversary) and reimplement a verified

serializer for the one case in LibSignal where the security of

the protocol relies on the message formatting.

When user messages are encrypted in LibSignal, they are

first enciphered using AES-CBC, then the ciphertext is format-

ted with a ProtoBuf format called WhisperMessage, and the

resulting message is HMACed for integrity. Consequently, the

formatting of WhisperMessages becomes security-critical: if

the ProtoBuf library has a bug in the serialization or parsing of

these messages, an attacker may be able to bypass the HMAC

and tamper with messages sent between devices.

We specify and implement a verified serializer for the

WhisperMessage ProtoBuf format. This code includes generic

serializing functions for variable-size integers (varint) and

bytearrays (bytes), and a specialized function for converting

a WhisperMessage into a sequence of bytes. This serializer

is called during both message encryption and decryption.

Notably, we do not implement a verified WhisperMessage

parser, which would be significantly more complex. Instead,

we require that the (unverified) application code at the re-

cipient parses the encrypted message and call the decrypt
function with the message components. To verify the MAC,

our code re-serializes these components using our verified

serializer. This design choice imposes a small performance

penalty during decryption, but yields protocol code that is

simpler and easier to verify.

Implementing the Core Protocol Functions. We closely

followed our formal specification to reimplement the core

functionality of LibSignal in Low*. The main difference is

that our code is stateful: it reads and writes from arrays

that are allocated by the caller, and it stores and modifies

local variables and arrays on the stack. (In the compiled

WebAssembly, all these arrays are allocated within the WASM

memory.) We present in Appendix C. the Low∗ implementation

for the ratchet function of the Signal Protocol. The full Low∗

codebase for Signal, including the ProtoBuf serializer and all

protocol functions, consists of 3500 lines of code, compared

to 570 lines of F∗ specifications.

We prove that our low-level code matches the high-level

spec (functional correctness), and that it never reads and writes

arrays out-of-bounds (memory safety). Furthermore, we prove

secret independence for the whole protocol layer: our Signal

code treats all inputs as secret and hence never branches on

secret values or reads memory at secret indices. Note that

the application code outside our verified core may well leak

identity keys and message contents, but our proof guarantees

that these leaks will not come from our protocol code.

A Wrapped WebAssembly Module for Signal. We compile

our Signal code to WebAssembly functions where all inputs

and outputs are expected to be allocated in the WASM

memory. For instance, the initiate function, which in Low∗

takes five pointers and a boolean, is now a WASM export

that wants five WASM addresses along with a 32-bit integer

for the boolean. It returns an error code, also a 32-bit integer.

(type 34 (func (param i32 i32 i32 i32 i32 i32) (result i32)))
(func 34 (type 34) (local ...))
(export ”Signal Impl Core initiate” (func 34))

However, typical JavaScript applications like LibSignal-

JavaScript would use JavaScript arrays and records to pass

around session state, ephemeral key material, and parsed

messages. To properly embed our WebAssembly code within

a JavaScript application, we automatically generate a wrapper

module in JavaScript that provides functions to translate back

and forth between the two views by encoding and decoding

JavaScript ArrayBuffers in the WASM memory. For example,

the JavaScript wrapper code for calling a WebAssembly func-

tion that expects a list of buffer objects is in Figure 14.

Extending the Protocol Module to Full LibSignal*. Lib-

Signal encapsulates all the protocol functionality within a

1268

function callWith(f) {
// Saves the stack pointer value before the function call
var m32 = new Uint32Array(FStarSignal.Kremlin.mem.buffer);
var sp = m32[0];
// Calls the function
var ret = f();
// Restores thae value of the stack pointer
m32[0] = sp;
return ret;

}

function callWithBuffers(args, func) {
callWith(() => {

// Allocates arguments in the Wasm memory and grows the stack pointer
var pointers = args.map((arg) => grow(new Uint8Array(arg)));
// Calls the function with the pointers to the allocated zones
var result = func(pointers);
for (var i = 0; i < args.length; i++) {

// Copying the contents back to Javascript
args[i].set(read memory(pointers[i], args[i].byteLength));

}
return result;

});
}

// Example of function using the combinator
function FStarGenerateKeyPair() {

var keyPair = {privKey: new ArrayBuffer(32), pubKey: new ArrayBuffer(33)};
callWithBuffers(

[keyPair.privKey, keyPair.pubKey],
function([privKeyPtr, pubKeyPtr]

) {
FStarSignal.Module.Signal Impl Core generate key pair(

privKeyPtr, pubKeyPtr
);

})
return keyPair;

}

Fig. 14. JavaScript wrapper for calling a WebAssembly function func that
expects a list of ArrayBuffer objects encoded in the WebAssembly memory.

small set of JavaScript functions that provide a simple session-

based API to the user application. At any point, the user may

ask LibSignal to either (a) initiate a new session, or (b) to

respond to a session request it has received, or (c) to encrypt

a message for a session, or (d) to decrypt a message received

for a session. In addition, periodically, the application may ask

LibSignal to generate signed and onetime prekeys.

The code for these functions needs to manage a session

data structure, and load and store it from long-term storage;

it needs to implement message formats, handle message loss

and retransmission, and respond gracefully to a variety of

errors. In LibSignal-JavaScript, all this code is interleaved with

the core cryptographic protocol code for Signal. We carefully

refactored the JavaScript code to separate out the protocol

code as a separate module, and then replaced this module with

our verified WebAssembly implementation. Hence, we obtain

a modified LibSignal* library that meets the same API as

LibSignal-JavaScript, but uses a verified WebAssembly code

for both the protocol operations and the cryptographic library.

Protecting Signal against JavaScript bugs. In LibSignal,

the application stores the device’s long-term private identity

key, but all other session secrets, including the Diffie-Hellman

private keys, session root keys, chaining keys, and pending

message encryption keys, are stored locally by LibSignal using

the web storage API. Although the user application is not

entrusted with this data, due to the inherent lack of isolation

in JavaScript, any bug in the JavaScript code of LibSignal, the

user application, or any of the modules they depend on may

leak these session secrets, breaking the guarantees of Signal.

So what security guarantees can we expect to preserve

when we embed our verified WebAssembly code within an

unverified application like LibSignal-JavaScript? The isolation

guarantees of WebAssembly mean that bugs in the surround-

ing JavaScript cannot affect the functional behavior of our

verified code. However, the JavaScript still has access to the

WebAssembly memory, and so any bug can still corrupt or

leak all our protocol secrets.

To protect against such bugs, we write our JavaScript

wrapper in a defensive style: it hides the WASM memory in a

closure that only reveals a functional API to the rest of LibSig-

nal. Since all the cryptographic functionality is implemented

as WebAssembly modules loaded within this wrapper, short-

term session secrets never need to leave this wrapper. The

only secrets that remain outside our wrapper are the long-

term identity keys and medium-term prekeys. These keys are

needed for session setup, but once the first two messages have

been exchanged, even a bug that reveals all these long-term

and medium-term keys to the adversary will not reveal the

messaging keys. Hence, our defensive design tries to preserve

Signal’s forward secrecy guarantees even against buggy soft-

ware components. However, note that this protection is partial

and unverified; to fully protect against malicious JavaScript

applications, we would need further defensive measures, like

those proposed in prior work [27], [42], [43].

Evaluation. LibSignal-JavaScript comes with a comprehen-

sive browser-based test-suite. We ran these tests on our

modified LibSignal implementation to verify that our verified

code interoperates correctly with the rest of LibSignal. This

demonstrates that our implementation can be used as a drop-

in replacement for LibSignal-JavaScript in applications like

WhatsApp, Skype and Signal. The performance of our code is

roughly the same as unmodified LibSignal: any speed improve-

ments we may anticipate by using WebAssembly is offset by

the overhead of encoding and decoding data structures between

JavaScript and WebAssembly. Furthermore, our code has to

use WebAssembly implementations even for cryptographic

algorithms like AES-CBC and HMAC-SHA256 for which fast

native implementations are available in the WebCrypto API but

as async functions that cannot be called from WebAssembly.

Our modified LibSignal is a useful proof-of-concept appli-

cable to real-world cryptographic applications deployed today.

However, a principled approach when building new Web

applications would be to design the application with clean

WebAssembly-friendly APIs between the JavaScript and ver-

ified WebAssembly components. We advocate that the Web-

Crypto API be extended to cover more modern cryptographic

primitives, that it also provide a synchronous API usable

from WebAssembly, and that mainstream browsers use verified

crypto code in C or assembly [44]–[48] to implement this API.

When verified native crypto is unavailable, applications can

fall back to verified WASM crypto libraries like WHACL∗.

1269

REFERENCES

[1] “The lastpass password manager.” [Online]. Available: https://www.
lastpass.com/how-lastpass-works

[2] M. Marlinspike and T. Perrin, “The x3dh key agreement protocol,” 2016,
https://signal.org/docs/specifications/x3dh/.

[3] T. Perrin and M. Marlinspike, “The double ratchet algorithm,” 2016,
https://signal.org/docs/specifications/doubleratchet/.

[4] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web
up to speed with webassembly,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2017, pp.
185–200.

[5] C. Watt, “Mechanising and verifying the webassembly specification,”
in Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs. ACM, 2018, pp. 53–65.

[6] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of javascript,”
in European conference on Object-oriented programming. Springer,
2010, pp. 126–150.

[7] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis,
D. Naudziuniene, A. Schmitt, and G. Smith, “A trusted mechanised
javascript specification,” in ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2014, pp. 87–100.

[8] J. Renner, S. Cauligi, and D. Stefan, “Constant-time webassembly,”
2018, https://cseweb.ucsd.edu/∼dstefan/pubs/renner:2018:ct-wasm.pdf.

[9] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet, and N. Swamy, “Verified low-level programming
embedded in f*,” Proceedings of the ACM on Programming Languages,
vol. 1, no. ICFP, pp. 17:1–17:29, Aug. 2017.

[10] N. Swamy, C. Hricu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Dependent types and multi-
monadic effects in F*,” in ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2016, pp. 256–270.

[11] “Web cryptography api.” [Online]. Available: https://www.w3.org/TR/
WebCryptoAPI

[12] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
IEEE Symposium on Security and Privacy (Oakland), 2015, pp. 535–
552.

[13] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub,
“Implementing TLS with verified cryptographic security,” in IEEE
Symposium on Security and Privacy (Oakland), 2013, pp. 445–459.

[14] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K. Zinzindo-
houe, “Implementing and proving the TLS 1.3 record layer,” in IEEE
Symposium on Security and Privacy (Oakland), 2017, pp. 463–482.

[15] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in IEEE
Symposium on Security and Privacy (Oakland), 2017, pp. 483–502.

[16] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification for
secure messaging protocols and their implementations: A symbolic and
computational approach,” in 2nd IEEE European Symposium on Security
and Privacy (EuroSP), 2017, pp. 435–450.

[17] B. Blanchet, “Modeling and verifying security protocols with the applied
pi calculus and proverif,” Foundations and Trends in Privacy and
Security, vol. 1, no. 1-2, pp. 1–135, Oct. 2016.

[18] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), ser. CCS
’17, 2017, pp. 1789–1806.

[19] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in
Public Key Cryptography-PKC 2006. Springer, 2006, pp. 207–228.

[20] D. J. Bernstein, B. Van Gastel, W. Janssen, T. Lange, P. Schwabe,
and S. Smetsers, “Tweetnacl: A crypto library in 100 tweets,” in
International Conference on Cryptology and Information Security in
Latin America (LATINCRYPT). Springer, 2014, pp. 64–83.

[21] D. Benjamin, “poly1305-x86.pl produces incorrect output,” https://mta.
openssl.org/pipermail/openssl-dev/2016-March/006161, 2016.

[22] H. Böck, “Wrong results with Poly1305 functions,” https://mta.openssl.
org/pipermail/openssl-dev/2016-March/006413, 2016.

[23] A. Zakai, “Emscripten: An llvm-to-javascript compiler,” in ACM In-
ternational Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (OOPSLA), 2011, pp.
301–312.

[24] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra, “Auto-
mated analysis of security-critical javascript apis,” in IEEE Symposium
on Security and Privacy (Oakland), 2011, pp. 363–378.

[25] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Defensive
javascript,” in Foundations of Security Analysis and Design VII.
Springer, 2014, pp. 88–123.

[26] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits, “Fully abstract compilation to javascript,” in ACM SIGPLAN
Notices, vol. 48, no. 1. ACM, 2013, pp. 371–384.

[27] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P. Strub,
and G. M. Bierman, “Gradual typing embedded securely in javascript,”
in ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2014, pp. 425–438.

[28] D. Ahman, C. Hriţcu, K. Maillard, G. Martı́nez, G. Plotkin, J. Protzenko,
A. Rastogi, and N. Swamy, “Dijkstra monads for free,” in ACM
SIGPLAN Notices, vol. 52, no. 1. ACM, 2017, pp. 515–529.

[29] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[30] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a
new cryptographic library,” in International Conference on Cryptology
and Information Security in Latin America (LATINCRYPT). Springer,
2012, pp. 159–176.

[31] “Can i use: Webassembly.” [Online]. Available: https://caniuse.com/
#feat=wasm

[32] A. Jangda, B. Powers, A. Guha, and E. Berger, “Mind the gap: Analyzing
the performance of webassembly vs. native code,” 2019.

[33] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in USENIX Security Sympo-
sium, 2016, pp. 53–70.

[34] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-
channel countermeasures: The case of cryptographic ”constant-time”,”
in IEEE Computer Security Foundations Symposium (CSF), 2018, pp.
328–343.

[35] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “Ct-wasm:
Type-driven secure cryptography for the web ecosystem,” arXiv preprint
arXiv:1808.01348, 2018.

[36] K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt, “On post-compromise
security,” in IEEE 29th Computer Security Foundations Symposium
(CSF), 2016, pp. 164–178.

[37] K. Cohn-Gordon, C. J. F. Cremers, B. Dowling, L. Garratt, and D. Ste-
bila, “A formal security analysis of the signal messaging protocol,” in
IEEE European Symposium on Security and Privacy (EuroS&P), 2017,
pp. 451–466.

[38] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs,
“Ratcheted encryption and key exchange: The security of messaging,”
in CRYPTO, 2017, pp. 619–650.

[39] J. Jaeger and I. Stepanovs, “Optimal channel security against fine-
grained state compromise: The safety of messaging,” in CRYPTO, Cham,
2018, pp. 33–62.

[40] B. Poettering and P. Rösler, “Towards bidirectional ratcheted key ex-
change,” in CRYPTO, Cham, 2018, pp. 3–32.

[41] T. Perrin, “The xeddsa and vxeddsa signature schemes,” 2017, https:
//signal.org/docs/specifications/xeddsa/.

[42] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Language-based
defenses against untrusted browser origins,” in Proceedings of the 22th
USENIX Security Symposium, 2013, pp. 653–670.

[43] ——, Defensive JavaScript, 2014, pp. 88–123.
[44] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness

and security of openssl HMAC,” in USENIX Security Symposium, 2015,
pp. 207–221.

[45] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub, “Jasmin: High-
assurance and high-speed cryptography,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017, pp. 1807–1823.

[46] A. W. Appel, “Verification of a cryptographic primitive: Sha-256,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 37, no. 2, p. 7, 2015.

[47] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying
high-performance cryptographic assembly code,” in Proceedings of the
USENIX Security Symposium, Aug. 2017.

[48] A. Tomb, “Automated verification of real-world cryptographic imple-
mentations,” IEEE Security and Privacy, vol. 14, no. 6, pp. 26–33, 2016.

1270

APPENDIX

A. THE SIGNAL CRYPTOGRAPHIC PROTOCOL

Initiator I Responder R

Prior Knowledge:
(i, gi)

Prior Knowledge:
(r, gr), (s, gs)[, (o, go)]

Initiate(i, gr, gs[, go]) → (rk0):
generate (e, ge)

dh0 = 0xFF ∣ g
si ∣ gre ∣ gse[∣ goe]

rk0 = HKDF(dh0,0x00
32,“WhisperText′′)

SendRatchet(rk0, gs) → (rk1, cki0, x0):
generate (x0, g

x0)
rk1 ∣ ck

i
0 = HKDF(g

sx0 , rk0,“WhisperRatchet
′′)

Encrypt(gi, gr, gx0 , cki0,m0) → (ck
i
1, c0, t0):

cki1 = HMAC(cki0,0x01)
k0 = HMAC(cki0,0x00)

(ek0, iv0,mk0) = HKDF(k0,0x00
32,“WhisperMessageKeys′′)

c0 = FORMAT(gx0 ,0,0,AES-CBC(ek0, iv0,m0))
t0 = HMAC(mk0, g

r ∣ gi ∣ 0x33 ∣ c0)

MSG0(g
i, ge, c0, t0)

Respond(r, s, o, gi, ge) → (rk0):
recompute dh0, rk0 (similarly to I)

ReceiveRatchet(rk0, s, gx0) → (rk1, ck
i
0):

recompute rk1, ck
i
0 (similarly to I)

Decrypt(cki0, c0, t0) → (m0, ck
i
1):

recompute cki1, k0 (similarly to I)
verify MAC and decrypt (c0, t0) to get m0

SendRatchet(rk1, gx0) → (rk2, ck
r
0, y0)

Encrypt(gr, gi, gy0 , ckr0,m1) → (ck
r
1, c1, t1)

MSG(c1, t1)

ReceiveRatchet(rk1, x0, g
y0) → (rk2, ck

r
0)

Decrypt(ckr0, c1, t1) → (m1, ck
r
1)

Session State:
{root key ∶ rk2,send chain ∶ (cki1, x0),recv chain ∶ (ckr1, g

y0)}
Session State:

{root key ∶ rk2,send chain ∶ (ckr1, y0),recv chain ∶ (cki1, g
x0)}

⋯

Fig. 15. Signal Protocol (first two messages). These messages set up a bidirectional mutually authenticated channel between I and R, using a series of
Diffie-Hellman operations. Each message carries a payload. This protocol is sometimes called X3DH. The figure does not show the (out-of-band) prekey
message in which R delivers (gs, go) to I (via the server) and I verifies R’s ED25519 signature on gs.

1271

Initiator I Responder R

Session State:
{root key ∶ rk2,send chain ∶ (cki1, x0),recv chain ∶ (ckr1, g

y0)}
Session State:

{root key ∶ rk2,send chain ∶ (ckr1, y0),recv chain ∶ (cki1, g
x0)}

SendRatchet(rk2, gy0) → (rk3, ck
i
2, x1)

Encrypt(gi, gr, gx1 , cki2,m2) → (ck
i
3, c2, t2)

MSG(c2, t2)

ReceiveRatchet(rk2, y0, gx1) → (rk3, ck
i
2)

Decrypt(cki2, c2, t2) → (m2, ck
i
3)Encrypt(gi, gr, gx1 , cki3,m3) → (ck

i
4, c3, t3)

MSG(c3, t3)

Decrypt(cki3, c3, t3) → (m3, ck
i
4)Encrypt(gi, gr, gx1 , cki4,m4) → (ck

i
5, c4, t4)

MSG(c4, t4)

Decrypt(cki4, c4, t4) → (m4, ck
i
5)

Session State:
{root key ∶ rk3,send chain ∶ (cki5, x1),recv chain ∶ (ckr1, g

y0)}
Session State:

{root key ∶ rk3,send chain ∶ (ckr1, y0),recv chain ∶ (cki5, g
x1)}

SendRatchet(rk3, gx1) → (rk4, ck
r
2, y1)

Encrypt(gr, gi, gy1 , ckr2,m5) → (ck
r
3, c5, t5)

MSG(c5, t5)

ReceiveRatchet(rk3, x1, g
y1) → (rk4, ck

r
2)

Decrypt(ckr2, c5, t5) → (m5, ck
r
3) Encrypt(gr, gi, gy1 , ckr3,m6) → (ck

r
4, c6, t6)

MSG(c6, t6)

Decrypt(ckr3, c6, t6) → (m6, ck
r
4)

Session State:
{root key ∶ rk4,send chain ∶ (cki5, x1),recv chain ∶ (ckr4, g

y2)}
Session State:

{root key ∶ rk4,send chain ∶ (ckr4, y2),recv chain ∶ (cki5, g
x1)}

⋯

Fig. 16. Signal Protocol (secure messaging). Once the channel is set up, I and S can send flights of messages to each other in any order. The first message of
each flight carries a fresh Diffie-Hellman key which is mixed into the root key. Subsequent messages in each flight advance the sender’s chaining key. This
protocol is sometimes a Double Ratchet protocol.

1272

B. F* FUNCTIONAL SPECIFICATION FOR CORE SIGNAL PROTOCOL

module Spec.Signal.Core

open Lib.IntTypes
open Lib.ByteSequence
open Lib.Sequence
open Spec.Signal.Crypto
open Spec.Signal.Messages

#set−options "-z3rlimit 50"
let initiate

(our identity priv key: privkey) (* i *)
(our onetime priv key: privkey) (* e *)
(their identity pub key: pubkey) (* gr *)
(their signed pub key: pubkey) (* gs *)
(their onetime pub key: option pubkey) (* go, optional *)
: lbytes 32 = (* output: rk0 *)

let dh1 = dh our identity priv key their signed pub key in
let dh2 = dh our onetime priv key their identity pub key in
let dh3 = dh our onetime priv key their signed pub key in
let shared secret = ff @| dh1 @| dh2 @| dh3 in
let shared secret =

match their onetime pub key with
| None →shared secret
| Some their onetime pub key →

let dh4 = dh our onetime priv key
their onetime pub key in

shared secret @| dh4 in
hkdf1 shared secret zz label WhisperText

let respond
(our identity priv key: privkey) (* r *)
(our signed priv key: privkey) (* s *)
(our onetime priv key: option privkey) (* o, optional *)
(their identity pub key: pubkey) (* gi *)
(their onetime pub key: pubkey) (* ge *)
: lbytes 32 = (* output: rk0 *)

let dh1 = dh our signed priv key their identity pub key in
let dh2 = dh our identity priv key their onetime pub key in
let dh3 = dh our signed priv key their onetime pub key in
let shared secret = ff @| dh2 @| dh1 @| dh3 in
let shared secret =

match our onetime priv key with
| None →shared secret
| Some our onetime priv key →

let dh4 = dh our onetime priv key
their onetime pub key in

shared secret @| dh4 in
hkdf1 shared secret zz label WhisperText

let ratchet
(root key:key) (* rkj *)
(our ephemeral priv key:privkey) (* xj *)
(their ephemeral pub key:pubkey) (* gyj *)
: (key & key) = (* output: rkj+1, ckj+1,0 *)

let shared secret = dh our ephemeral priv key
their ephemeral pub key in

let keys = hkdf2 shared secret

root key label WhisperRatchet in
let root key’ = sub keys 0 32 in
let chain key = sub keys 32 32 in
(root key’, chain key)

let encrypt
(our identity pub key:pubkey) (* gi or gr *)
(their identity pub key:pubkey) (* gr or gi *)
(chain key:key) (* ckj *)
(our ephemeral pub key:pubkey) (* gx *)
(prev counter:size nat) (* previous k *)
(counter:size nat) (* current j *)
(plaintext:plain bytes) (* message mj *)
: (cipher bytes & lbytes 8 & key) = (* output: cj , tj , ckj+1 *)

let msg key = hmac chain key zero in
let chain key’ = hmac chain key one in
let keys = hkdf3 msg key zz label WhisperMessageKeys in
let enc key = sub keys 0 32 in
let enc iv = sub keys 32 16 in
let mac key = sub keys 64 32 in
let ciphertext = aes enc enc key enc iv plaintext in
let whisper msg =

serialize whisper message our ephemeral pub key
prev counter counter ciphertext in

let tag8 =
mac whisper msg mac key their identity pub key

our identity pub key whisper msg in
(ciphertext, tag8, chain key’)

let decrypt
(our identity pub key:pubkey) (* gi or gr *)
(their identity pub key:pubkey) (* gr or gi *)
(chain key:key) (* ckj *)
(their ephemeral pub key:pubkey) (* gy *)
(prev counter:size nat) (* prev msg number k *)
(counter:size nat) (* current msg number j *)
(ciphertext:cipher bytes) (* ciphertext cj *)
(tag8:lbytes 8) (* tag tj *)
: option (plain bytes & key) = (* outputs: mj , ckj+1 *)

let len = length ciphertext in
let ciphertext = to lseq ciphertext in
let msg key = hmac chain key zero in
let chain key’ = hmac chain key one in
let keys = hkdf3 msg key zz label WhisperMessageKeys in
let enc key = sub keys 0 32 in
let enc iv = sub keys 32 16 in
let mac key = sub keys 64 32 in
let whisper msg =

serialize whisper message their ephemeral pub key
prev counter counter ciphertext in

let exp tag8 =
mac whisper msg mac key our identity pub key

their identity pub key whisper msg in
let plain = aes dec enc key enc iv ciphertext in
if equal bytes tag8 exp tag8
then Some (plain,chain key’)
else None

This snippet is pure F∗ code. It relies on the specific cryptographic constructions of the Signal protocol (in Spec.Signal.Crypto),

such as hmac and hkdf{1,2,3}, as well as the message serialization primitives (in Spec.Signal.Messages). See §V. Other helpers

include: zz (32 zero bytes), ff (32 0xff bytes), the label * string constants used in Signal and @| (byte sequence concatenation).

1273

C. LOW
∗ IMPLEMENTATION FOR THE RACHET FUNCTION FROM SIGNAL PROTOCOL

val ratchet:
output keys: uint8 p { length output keys = 64 }
→ root key:key p
→our ephemeral priv key:privkey p
→ their ephemeral pub key:pubkey p →
Stack unit

(requires (λ h0 → live pointers h0
[output keys; root key;
our ephemeral priv key;
their ephemeral pub key]

∧ disjoint from output keys
[root key; our ephemeral priv key;
their ephemeral pub key]))

(ensures (λ h0 h1 →modifies only output keys h0 h1
∧ let (root key’,chain key’) =

Spec.Signal.Core.ratchet
h0.[| root key |]
h0.[| our ephemeral priv key |]
h0.[| their ephemeral pub key |]

h1.[| output keys |] == root key’ @| chain key’))

let ratchet
output keys root key
our ephemeral priv key their ephemeral pub key

=
push frame();
let shared secret = create 32ul (u8 0) in
dh shared secret

our ephemeral priv key their ephemeral pub key;
hkdf2 output keys

shared secret 32ul root key
const label WhisperRatchet 14ul;

pop frame()

On the left is the type declaration (i.e. prototype) of our Low∗ implemetation of the ratchet function. The function takes four

arguments: the first argument contains an output buffer (i.e. a mutable array) called output keys containing two concatenated

keys of 32 bytes each; the rest of the arguments are three input buffers. The function has no return value, and is declared as

having a Stack effect, which means that it only allocates memory on the stack.
The pre-condition of the function, stated in the requires clause, requires that all the input and output buffers must be live

in the heap when the function is called, and all input buffers must be disjoint from the output buffer. The post-condition of

ratchet, stated in the ensures clause, guarantees that the function only modifies the output buffer, and that the output value of

output keys in the heap when the function returns matches the specification of ratchet in Spec.Signal.Core.
Hence, this type declaration provides a full memory safety and functional correctness specification for ratchet. Moreover,

all buffers are declared to contain secret bytes (uint8), so the type declaration also requires that the code for ratchet be secret

independent, or “constant-time”, with respect to the (potentially secret) contents of these buffers.
The verified Low∗ code for ratchet is shown on the right. It closely matches the F∗ specification of ratchet in Spec.Signal.Core.

The main difference is that the Low∗ code needs to allocate a temporary buffer to hold the shared secret: so the function calls

push frame to create a new stack frame, create to allocate the buffer, and pop frame when exiting the function.

D. COMPLETE TRANSLATION RULES FROM λOW
∗

TO C♭

IFTHENELSE

G;V ⊢ e1 ∶ bool⇛ ê1 ∶ bool ⊣ V ′

G;V ′ ⊢ e2 ∶ τ ⇛ ê2 ∶ τ̂ ⊣ V ′′

G;V ′′ ⊢ e3 ∶ τ ⇛ ê3 ∶ τ̂ ⊣ V ′′′

G;V ⊢ if e1 then e2 else e3 ∶ τ ⇛ if ê1 then ê2 else ê3 ∶ τ̂ ⊣ V ′′′

BUFREAD

G;V ⊢ e1 ∶ buf τ ⇛ ê1 ∶ pointer ⊣ V ′

G;V ′ ⊢ e2 ∶ int32⇛ ê2 ∶ int32 ⊣ V ′′

size(τ) = n

G;V ⊢ readbuf e1 e2 ∶ τ ⇛ readn(ê1 + n × ê2) ∶ τ̂ ⊣ V ′′

BUFSUB

G;V ⊢ e1 ∶ buf τ ⇛ ê1 ∶ pointer ⊣ V ′

G;V ′ ⊢ e2 ∶ int32⇛ ê2 ∶ int32 ⊣ V ′′

size(τ) = n

G;V ⊢ subbuf e1 e2 ∶ buf τ ⇛ ê1 + n × ê2 ∶ pointer ⊣ V ′′

FIELD

G;V ⊢ e ∶ buf τ ⇛ ê ∶ pointer ⊣ V ′

offset(τ, f) = k size(τf) = n

G;V ⊢ (readbuf e 0).f ∶ τf ⇛ readn(ê + k) ∶ τ̂f ⊣ V ′

POINTERADD

G;V ⊢ e ∶ buf τ ⇛ ê ∶ pointer ⊣ V ′

G;V ⊢ e⊕ n ∶ buf τ ⇛ ê + n ∶ pointer ⊣ V ′

FUNCALL

G;V ⊢ e ∶ τ1 ⇛ ê ∶ τ̂1 ⊣ V ′

G;V ⊢ d e ∶ τ2 ⇛ d ê ∶ τ̂2 ⊣ V ′

UNIT

G;V ⊢ () ∶ unit⇛ () ∶ unit ⊣ V

CONSTANT

G;V ⊢ k ∶ τ ⇛ k ∶ τ̂ ⊣ V

GLOBAL

g ∈ G

G;V ⊢ g ∶ τ ⇛ g ∶ τ̂ ⊣ V

FORLOOP

G; (i↦ �, int32) ⋅ V ⊢ e ∶ unit⇛ ê ∶ unit ⊣ V ′ � fresh

G;V ⊢ for i ∈ [0;n) e ∶ unit⇛ for � ∈ [0;n) ê ∶ unit ⊣ V ′

Fig. 17. Translating from λow∗ to C♭ (remaining rules). Some notes: FIELD: the type τf can only be a non-struct type per our invariant (III-B, 1).

1274

