
SENSORID: Sensor Calibration Fingerprinting for

Smartphones

Jiexin Zhang, Alastair R. Beresford

University of Cambridge

{jz448, arb33}@cl.cam.ac.uk

Ian Sheret

Polymath Insight Limited

ian.sheret@polymathinsight.co.uk

Abstract—Sensors are an essential component of many com-
puter systems today. Mobile devices are a good example, con-
taining a vast array of sensors from accelerometers and GPS
units, to cameras and microphones. Data from these sensors
are accessible to application programmers who can use this
data to build context-aware applications. Good sensor accuracy
is often crucial, and therefore manufacturers often use per-
device factory calibration to compensate for systematic errors
introduced during manufacture. In this paper we explore a
new type of fingerprinting attack on sensor data: calibration
fingerprinting. A calibration fingerprinting attack infers the per-
device factory calibration data from a device by careful analysis
of the sensor output alone. Such an attack does not require
direct access to any calibration parameters since these are
often embedded inside the firmware of the device and are not
directly accessible by application developers. We demonstrate the
potential of this new class of attack by performing calibration
fingerprinting attacks on the inertial measurement unit sensors
found in iOS and Android devices. These sensors are good
candidates because access to these sensors does not require any
special permissions, and the data can be accessed via both a
native app installed on a device and also by JavaScript when
visiting a website on an iOS and Android device. We find we are
able to perform a very effective calibration fingerprinting attack:
our approach requires fewer than 100 samples of sensor data and
takes less than one second to collect and process into a device
fingerprint that does not change over time or after factory reset.
We demonstrate that our approach is very likely to produce
globally unique fingerprints for iOS devices, with an estimated
67 bits of entropy in the fingerprint for iPhone 6S devices. In
addition, we find that the accelerometer of Google Pixel 2 and
Pixel 3 devices can also be fingerprinted by our approach.

Index Terms—Fingerprint; Calibration; Motion Sensors; iOS

I. INTRODUCTION

Mobile devices, especially smartphones and tablets, have

gained considerable popularity due to their portability, user

experience, and rich functionality. Recent statistics show that

around 69% of the total digital media time spent by Americans

was taken up by mobile devices and 87% of the total mobile

time was spent in apps in December 2016 [1]. The faltering

engagement with laptops and desktops has driven advertisers

to enthusiastically seek effective approaches to track the ac-

tivities of users on mobile platforms.

Device fingerprinting aims to generate a distinctive signa-

ture, or fingerprint, that uniquely identifies a specific com-

puting device. Once a reliable device fingerprint is available,

advertisers can use it to track users online and offline, study

their behavior, deliver tailored content, etc. It can also help

advertisers target potential customers and grow their business.

To protect user privacy, both Android and iOS have applied

a variety of measures to prevent device fingerprinting. In An-

droid, the countermeasures are usually enforced by requiring

developers to ask for user permission to use privacy-sensitive

APIs. For instance, the READ_PHONE_STATE permission

enables developers to access the IMEI (International Mobile

Equipment Identity) number and the phone number. The

ACCESS_WIFI_STATE and BLUETOOTH permissions allow

developers to access the MAC address of the WLAN and

Bluetooth modules, respectively. These identifiers make good

device fingerprints since they are globally unique and are

difficult to change, and a recent study has shown that the

ACCESS_WIFI_STATE permission, an install-time permis-

sion, has been used in 41% of 2700 most popular apps in the

Google Play Store [2].

Currently, there is no reliable way to get a unique identifier

for iOS devices. To address privacy concerns, Apple removed

developer access to the UDID (Unique Device Identifier)

and MAC addresses of hardware modules in iOS 7. From

iOS 11, Apple introduced Intelligent Tracking Prevention

(ITP) to mobile Safari, the default web browser on iOS that

holds around 15% of the global browser market, to restrict

cookie tracking. With iOS 12, Apple also prevents advertisers

from collecting unique characteristics of iOS devices through

mobile Safari.1 While it is still possible to track iOS users

by the advertising identifier built into the operating system,

this method comes with several drawbacks. First, iOS allows

users to reset the advertising identifier at any time. In addition,

enabling the “limit ad tracking” option in iOS prevents access

to this identifier. Moreover, apps that request this identifier

but do not serve any in-app advertisements will be rejected by

App Store. Last but not least, the advertising identifier is not

accessible from mobile browsers. Thus, it cannot be used to

track users across apps and websites.

In this paper we show that our calibration fingerprinting

attack on iOS and Android (Google Pixel 2 and Pixel 3)

devices provides a device fingerprint which the user cannot

change and which works across both apps and websites.

Modern mobile devices are shipped with a variety of

embedded sensors, such as an accelerometer, gyroscope, and

1https://www.apple.com/ios/ios-12/features

magnetometer. Mobile apps rely on these sensors to provide

rich functionality, such as workout tracking, improved user

interface interaction, and better gaming performance. Natural

variation during the manufacture of embedded sensors means

that the output of each sensor is unique and therefore they

may be exploited to create a device fingerprint.

Previous studies applied machine learning techniques di-

rectly to sensor data in an attempt to create device fingerprints

for smartphones [3], [4]. Unfortunately, this approach has

several drawbacks. First, these models are susceptible to

environmental conditions, such as temperature and noise, so

accuracy decreases over time. Second, they either require the

smartphone to be placed in a stationary position (e.g., on a

desk) or have a relatively low accuracy when devices are

moved. When devices were held in a hand, state-of-the-art

work by Das et al. achieved an accuracy of around 60% in an

open-world setting with the iPhone 6, which is equivalent to

13 bits of entropy (§VII-D) [4]. In comparison, we achieve 67

bits of entropy for the iPhone 6S.

In our work, we take a different approach. Instead of feeding

sensor outputs into machine learning algorithms, we infer the

per-device factory calibration data from the output of sensors

such as the gyroscope, accelerometer, and magnetometer. This

calibration data can then be used to construct a unique device

fingerprint. We call this a calibration fingerprinting attack.

This paper describes this new type of attack and demon-

strates its effectiveness on gyroscope and magnetometer data

available in iOS, and on accelerometer data in Google Pixel

2/3. We chose these sensors because they do not require

any special permissions to access, and the accelerometer

and gyroscope data can be accessed via both a native app

installed on a device and also by JavaScript when the user

visits a website. While we have focused on motion sensors,

we anticipate that a calibration-based fingerprint can also be

generated for other sensors across many different devices,

including the camera, touchscreen, and battery.

We make the following contributions in this paper:

1) We introduce a new method of fingerprinting a device:

the calibration fingerprinting attack.

2) We describe how factory calibration data can be ex-

tracted from both the magnetometer and gyroscope

found on all recent iOS devices.

3) We demonstrate that the magnetometer and gyroscope

calibration data together form a reliable fingerprint,

which we call the SENSORID; the SENSORID does not

change after factory reset or operating system update.

4) We collect motion sensor data from 870 iOS devices and

show that our approach can generate a globally unique

identifier; we show that the SENSORID of the iPhone

6S has about 67 bits of entropy.

5) We implement our approach as an iOS app and find the

approach is lightweight and efficient: data collection and

processing typically takes less than one second in total.

6) We find that the accelerometer of Google Pixel 2 and

Pixel 3 can be fingerprinted using the proposed method.

7) We propose several mitigation techniques.

II. CALIBRATION BACKGROUND

Motion sensors used in modern smartphones, including the

accelerometer, gyroscope, and magnetometer, are based on

MEMS (Micro-Electro-Mechanical Systems) technology and

use microfabrication to emulate the mechanical parts. The

accelerometer and gyroscope measure the proper acceleration

and rotation speed of a device in each of the axes, respectively.

Most smartphones and smartwatches are equipped with one

triaxial accelerometer and one triaxial gyroscope. In particular,

gyroscope has appeared in every iOS device since the iPhone

3GS and iPad 1. The magnetometer measures the Earth’s

magnetic field relative to the device. It is included in all iPhone

and iPad models, excluding the iPhone 2G/3G.

Although MEMS technology has greatly reduced the size

and cost of motion sensors, MEMS sensors are usually less

accurate than their optical counterparts due to various types of

error. In general, these errors can be categorized as determinis-

tic and random: random errors are usually caused by electronic

noise interfering with the output of sensors, which change

over time and have to be modeled stochastically; deterministic

errors are produced by manufacturing imperfections and can

be classified into three categories: bias, scaling factor, and

nonorthogonality misalignment errors [5], [6].

Calibration aims to identify and remove the deterministic

errors from the sensor. Many commercial sensors are fac-

tory calibrated and their calibration parameters are stored in

firmware or non-volatile memory, providing accurate measure-

ments off the shelf [7]. In the context of mobile devices, the

main benefit of per-device calibration is that it allows more

accurate attitude estimation [8]. By contrast, sensors embedded

in low-cost smartphones are usually poorly calibrated due to

the high cost and complexity of factory calibration [9]. For an

individual manufacturer, the choice of sensor calibration is,

therefore, an engineering trade-off.

MEMS sensors usually convert and store the analog mea-

surement in a digital register through an Analog-to-Digital

Converter (ADC) module. For a triaxial motion sensor, let

A = [Ax, Ay, Az]
T be the sensor ADC output. Considering

all three kinds of deterministic errors, the output of the motion

sensor can be represented by the following equation [10]:

⎡
⎣Ox

Oy

Oz

⎤
⎦ =

⎡
⎣Sx 0 0
0 Sy 0
0 0 Sz

⎤
⎦
⎡
⎣Nxx Nxy Nxz

Nyx Nyy Nyz

Nzx Nzy Nzz

⎤
⎦
⎡
⎣Ax

Ay

Az

⎤
⎦+

⎡
⎣Bx

By

Bz

⎤
⎦ (1)

Here, Si ∈ S is the scale factor; Nij ∈ N represents the

nonorthogonality between axis i and j; and Bi ∈ B is the bias.

A sensor’s sensitivity, or gain, is defined as the ratio between

the output signal and measured property. A sensor’s nominal

gain is the intended operating sensitivity of the sensor. It is a

single value that is usually documented in the sensor datasheet.

We use F to denote a sensor’s nominal gain in this paper.

If a sensor is ideal, its scale matrix S and nonorthogonality

matrix N should be F · I and I, respectively, where I is an

identity matrix. However, due to the existence of errors, the

scale factors can be as large as 2% of the nominal gain [11].

The above equation can be further simplified as:

O = GA+B (2)

where G = SN is referred to as the gain matrix.

A myriad of calibration techniques have been proposed to

calculate the gain matrix and bias vector during manufacture.

Overall, these methods can be divided into four groups: high-

precision equipment, multi-position, Kalman filter, and vision

based [5]. Manufacturers can choose to only calibrate the bias

vector to lower the cost. Once factory calibration is finished,

the calibration parameters of the sensor will be stored in non-

volatile memory inside the device and should not change over

time [12], [13]. Details of the calibration process used by

manufacturers are not made public.

III. ATTACK METHOD

The goal of the adversary in this paper is to obtain a reliable

fingerprint from the built-in motion sensors of a smartphone.

Our threat model is as follows. We assume an adversary is

able to record motion sensor samples from a smartphone. The

attacker can do this if the user installs an app, or visits a

website (currently accelerometer and gyroscope only), under

the control of the attacker. Furthermore, we assume that

the software embedded in the app or web page is able to

communicate with a remote server under the control of the

attacker; this is typically the case for both apps and web

pages. We first look at the gyroscope on iOS; the calibration

fingerprinting for other sensors and devices is discussed later.

A. Factory Calibration in Mobile Devices

Both Android and iOS provide APIs to access the raw and

fused motion sensor data. Web developers can also access

the fused accelerometer and gyroscope data via JavaScript.

According to the Android documentation, the raw or uncali-

brated data is the sensor output after factory calibration and

temperature compensation, while the fused or calibrated sen-

sor data API applies bias compensation and noise correction

on the raw measurements.2 On iOS, it is less clear from the

documentation whether the raw data is factory calibrated. To

investigate this, we collect the raw gyroscope data from both

an iPhone X and a Samsung Galaxy S8. Both phones are

placed on a flat desk and stay still during data collection.

Fig. 1 (a) presents the raw gyroscope measurements col-

lected by the two devices. From the figure, we can clearly

observe the quantization. This is because the outputs of the

gyroscope ADC are integers. Taking the difference between

two sensor readings directly reveals the gain of the sensor.

According to Equation 2, the difference between two mea-

surements, ΔO, can be calculated as:

ΔO = GΔA (3)

where ΔA is the difference between the corresponding ADC

outputs.

2https://developer.android.com/guide/topics/sensors/sensors motion.html

Samsung Galaxy S8 iPhone X

0 500 1000 1500 2000 0 500 1000 1500 2000
−0.8

−0.4

0.0

0.4

−2

−1

0

1

Sequence

G
yr

o
sc

o
p

e
O

u
tp

u
t

(d
eg

/s
)

Axis x y z

(a) Raw gyroscope measurements

Samsung Galaxy S8 iPhone X

0 500 1000 1500 2000 0 500 1000 1500 2000

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 G

yr
o

sc
o

p
e

O
u

tp
u

ts
 (

d
eg

/s
)

Axis x y z

(b) Consecutive differences between gyroscope measurements

Fig. 1: Raw gyroscope data collected from a Samsung Galaxy

S8 and an iPhone X

If there is no factory calibration, the gain matrix G will

be equal to the FG · I, where FG is the nominal gain of the

gyroscope. In this case, we will have:⎡
⎣ΔOx

ΔOy

ΔOz

⎤
⎦ = FG

⎡
⎣ΔAx

ΔAy

ΔAz

⎤
⎦ (4)

Since ΔAi is an integer, ΔOi should be a multiple of

the nominal gain. Fig. 1 (b) shows the difference between

consecutive measurements for each of the three axes. Notably,

the figure only presents a small range of data to show the

results more clearly. As seen in Fig. 1 (b), the difference for the

Gyro data in native units (rad/s)

10 20 30 40 50 60
Bit Index

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D
at

a
In

de
x

(a) rad/s, IEEE 754 format

Gyro data converted to deg/s

10 20 30 40 50 60
Bit Index

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D
at

a
In

de
x

(b) deg/s, IEEE 754 format

Gyro data converted to deg/s, in Q32.32 format.

10 20 30 40 50 60
Bit Index

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D
at

a
In

de
x

(c) deg/s, Q32.32 format

Fig. 2: Different binary representations of the raw gyroscope data

Samsung Galaxy S8 is always a multiple of a constant value

(nominal gain). By contrast, the differences for the iPhone X

are not a single multiple. Fig. 1 also reveals that each axis of

the gyroscope in the iPhone X has a different gain and bias

(the x axis has a slightly lower gain than the y and z axes).

Overall, Fig. 1 demonstrates two things: (i) the gain matrix

of the gyroscope in the iPhone X is factory calibrated while

the one in the Samsung Galaxy S8 is not; and (ii) the

iOS API for accessing raw sensor data obtains the factory

calibrated data. We further implement the same experiment on

other iOS device models and confirm their gyroscope is also

factory calibrated. The factory calibration of motion sensors

in Android devices is discussed in §V-D.

B. Nominal Gain Estimation

In general, manufacturing imperfections introduce idiosyn-

crasies across different sensors. If factory calibration is carried

out on a per-device basis, then the calibration matrices, which

include the gain matrix G and the bias matrix B, may also

be unique. Therefore, if we can recover any of these matrices,

then it may be used as a device fingerprint. In this paper we

focus on recovering the gain matrix G. We first investigate

fingerprinting devices from mobile apps, where raw sensor

data is accessible.

To recover the gain matrix G, we need to know the nominal

gain of each device. For some earlier iOS devices, such as

iPhone 4, the nominal gain of the gyroscope, 70 millidegrees

per second (mdps), is specified in the datasheet. Although

we could not find the gyroscope specification for recent

iOS device models, we can estimate the nominal gain from

gyroscope measurements.

Equation 3 shows that the bias B can be eliminated by

taking the difference between two sensor outputs. From Fig. 1

(b), we observe that the actual gain of each axis is in close

proximity to each other (or to the nominal gain) and the

fluctuation within each cluster is small compared with the large

gap between different clusters. This implies that the actual

gain matrix is close, but not equal, to the ideal gain matrix

(FG·I). Since the iPhone X was resting on the desk during data

collection, the difference between consecutive ADC outputs

TABLE I: Estimated gyroscope nominal gain for iOS devices

Model
Nominal Gain

(mdps)

iPhone 5S∗/6/6 Plus/6S/6S Plus/7/7 Plus/8/8 Plus/SE
61iPhone X/XS/XS Max

iPad Pro 9.7/10.5/12 inch

iPhone 4/4S/5/5C/5S∗,
70

iPad 3/Mini/Mini 4/Mini Retina/Air/Air 2

∗ iPhone 5S devices have two possible nominal gain values.

ΔAi should be small (e.g., 0, ±1). To estimate the nominal

gain (FG) of the iPhone X, we find the cluster with only

positive values that is closest to 0 but its range does not

include 0. In the case of Fig. 1 (b), the qualified clusters is

the one inside dashed black lines. Then the average of all the

values inside the cluster, which includes data from all three

axes, can be used as a reliable estimate of the nominal gain of

the iPhone X. Note that this approach requires the device is

stationary (e.g., at rest on a desk) during measurement so that

we have enough data points with ΔAi = ±1. This is usually

not a problem since we only need to estimate the nominal gain

once for each device model. Appendix A shows the estimated

nominal gain from two iPhone X devices using this approach.

Table I lists the nominal gain (in mdps) of the gyroscope

for all the iOS devices that we have measured. Note that we

have observed two possible nominal gain values for iPhone 5S

devices. This may be because some iPhone 5S devices use a

different IMU model from others. The estimated nominal gain

of 61 mdps indicates that the sensor is likely configured to a

measurement range of ±2000 dps and resolution of 16 bits

(4000/216 ≈ 0.061).

C. Data Representation

Before looking into the gyroscope fingerprinting technique,

we first investigate the data representation format used by the

hardware. We start by looking at the binary representation

of the raw sensor data. In particular, we collect 3,918 raw

gyroscope samples from an iPad Air 2. Each sample is a 3-

tuple consisting of triaxial measurements; the native unit pro-

vided by the iOS SDK is radians per second. A visualization

Failed

Pass
ΔA G

BOTH APPROACHES

IMPROVED APPROACH

Not CompleteUpdate G
~

Fig. 3: General steps to recover the SENSORID

of the raw gyroscope data, in the IEEE 754 floating point

representation, is shown in Fig. 2 (a).

Here, the colors show the various parts of the IEEE 754

representation: bit 1 (yellow) is the sign bit, bits 2–12 (green)

are the exponent, and bits 13–64 (blue) are the significand.

Overall, no obvious structure is observed in this form. How-

ever, if we convert the data into units of degrees per second

and replot, then we obtain the results shown in Fig. 2 (b).

It is now obvious that the internal calculations have much

less precision than is available in IEEE 754 representation

and must be in units of degrees per second. We gain some

more information if we convert the double precision numbers,

in degrees per second (dps), into fixed-point Q32.32 form.

Results are presented in Fig. 2 (c).

In Fig. 2 (c), the first 32 bits contain the integer part of

the data (two’s complement) and the last 32 bits show the

fractional part. It is obvious that there are only 16 bits of

data in the fractional part. The 16-bit resolution of gyroscope

outputs is observed on all the iOS devices we have tested.

There are a few possible reasons for this, but the simplest is

that the value in the gain matrix G is stored as a signed integer

with a resolution of 2−16 dps. After investigation, we find that

every device that uses an M-series motion coprocessor, which

was released by Apple in September 2013 with the iPhone 5S,

shows this pattern. The purpose of the motion coprocessor is

to offload the collection and processing of sensor data from

the CPU. However, for older devices such as iPhone 4 and

iPhone 4S, gain matrix values are stored with more precision

and the calibration involves truncation down to 2−16 dps after

the gain is applied. The complete set of devices that use the M-

series motion coprocessor can be found online.3 As discussed

in §III-D, the lack of resolution in these devices allows us to

precisely recover the gain matrix G.

D. Fingerprinting from Mobile Apps

The general process to generate the SENSORID is illustrated

in Fig. 3, which consists of six major steps: Data Collec-

tion, Data Preprocessing, ADC Value Recovery, Gain Matrix

Estimation, Validity Check, and SensorID Generation. In the

following of the section, we first present a basic approach to

generate the gyroscope fingerprint (GYROID), which works

well when the device is stationary. Then, we further propose

an improved scheme that can reliably generate the GYROID

even when the device is moving.

3https://en.wikipedia.org/wiki/Apple motion coprocessors

1) Basic Approach: We first consider the case that the

device is stationary or moving slowly during sampling.

Data Collection. We collect a small number of samples

from the gyroscope through a mobile app at the maximum

sampling frequency. Empirically, we find 100 samples col-

lected in less than 1 second is sufficient. We use O =
[O0,O1, · · · ,On−1] to denote the collected data, where Oi =
[Oix , Oiy , Oiz]

T is a 3-by-1 vector.

Data Preprocessing. After collecting the data, we calculate

ΔO by differencing the consecutive outputs for all three axes.

In other words, ΔO is calculated by the following equation:

ΔO = [O1 −O0,O2 −O1, · · · ,On−1 −On−2]

ADC Value Recovery. In this step, we aim to recover ΔA,

which is the difference between consecutive ADC outputs.

From Equation 3 we know that ΔA can be calculated by:

ΔA = G
−1ΔO (5)

where G
−1 is the inverse of the gain matrix G. However,

the value of G is unknown at the moment. Nevertheless, we

can set G to the ideal value G0 = FG · I, where FG is the

nominal gain of the gyroscope. Since the deterministic errors

are comparatively small, G should be relatively close to G0

(§III-B). Since ΔA only has integer values, we can estimate

ΔA by:

Δ̃A = round(G−1
0 ΔO) (6)

where the round function rounds each element to the nearest

integer. However, since G0 is not equal to G, the rounded

value Δ̃A may not be the true value. Therefore, we further

calculate the rounding error E
r
ΔA

∈ R
3×(n−1), which is

defined as follows:

E
r
ΔA = |Δ̃A−G

−1
0 ΔO| (7)

To ensure the estimated values are correct, we require that

every value in E
r
ΔAi

, which means the i-th column in E
r
ΔA

,

be lower than a threshold Γ (e.g., 0.1). If not, we believe the

rounding is ambiguous and remove both Δ̃Ai and ΔOi from

the dataset. Once all ambiguous values are removed, we will

regard the estimated Δ̃A as the true ADC value matrix ΔA.

Note that, this is only true if the device is stationary or

moving slowly, in which case the absolute values of ΔA are

small. Otherwise, any rounding error could be accumulated

and results in rounding to an incorrect integer value.

Gain Matrix Estimation. After recovering the ADC value

matrix ΔA, we can estimate the gain matrix G̃ as follows:

G̃ = ΔO/ΔA

Here, the matrix right division operation returns a least

squares solution of G that minimizes the norm of the vector

GΔA−ΔO.

Validity Check. To quantify the deviation between G̃ and

the true value of G, we define the estimation error Ee ∈ R
3×1

as follows:

E
e = std(ΔO− G̃ΔA)

where std is the row-wise standard deviation function. If the

estimation error is small (i.e., max(Ee) < Θ), then G̃ should

be close to the true gain matrix G.

If the device uses an M-series motion coprocessor, we

can implement another check to ensure the accuracy of our

estimation and precisely recover the true gain matrix G.

By way of an example, here is the G̃ that we estimated

from an iPhone XS in the units of radians per second (rps):⎡
⎣ 0.001068460229340 −0.000009587379924 −0.000002929477199

0.000002929477199 0.001073520235411 0.000005858954398
−0.000001065264436 −0.000006657902725 0.001069525493776

⎤
⎦

Recall that the gain matrix of the iPhone XS, which uses

Apple M12 coprocessor, only has 2−16 resolution in the units

of dps. Therefore we can convert from rds to dps and estimate

the underlying integers:

G̃ · 216 · 180/π =⎡
⎣ 4012.000000000001 −35.999999999999318 −10.999999999999677
11.000000000000174 4030.999999999999 21.999999999999631
−3.999999999999980 −25.000000000000011 4016.000000000000

⎤
⎦

In this case, these numbers are extremely close to whole

integers, so these can be rounded to obtain the true gain matrix

G. To ensure the rounding is safe, we calculate the rounding

error Er
G

∈ R
3×3 as follows:

E
r
G = |G̃d · 216 − round(G̃d · 216)|

where G̃d means G̃ in the units of dps.

If the maximum value in E
r
G

is lower than a threshold

Φ (e.g., 0.01), then we believe that the rounding is reliable.

Otherwise, if any of these checks fail, then it is likely that

the device was moving during data collection. For this basic

approach, we need to repeatedly collect another batch of data

until the estimation error and rounding error are small enough.

GYROID Generation. The generation of the GYROID can

be categorized into two groups based on whether the device

has an M-series coprocessor. If the device does have an M-

series coprocessor, the GYROID is defined as follows:

GYROID = round(G̃d · 216) − round(Gd
0 · 2

16) (8)

Or in words, the GYROID is the gain matrix G after subtract-

ing the nominal gain in units of 2−16 dps. For instance, the

GYROID of the iPhone XS in previous example is:

GYROID =

⎡
⎣14 −36 −11
11 33 22
−4 −25 18

⎤
⎦

§III-F covers the case when the device does not contain an

M-series coprocessor.

Summary. The basic approach illustrates the general idea

and procedure to generate the GYROID. Overall, the calcula-

tions are light-weight and are easy to implement. However, the

basic approach requires the device to be stationary or moving

slowly during measurement. To address this problem, we

propose an improved approach which takes device movement

into consideration.

2) Improved Approach: The drawback of the basic ap-

proach is that it may take a long time to generate the GYROID,

because the approach will keep trying until the device is

almost stationary. In Equation 6, we use a bootstrap value

G0 = FG · I to estimate the value of ΔA. However, since

G0 is not equal to G, the rounded value Δ̃A may not be the

actual value ΔA. In general, the difference between ΔO and

G0 ·ΔA will increase as elements in ΔO gets bigger, leading

to incorrect rounding (i.e., Δ̃A �= ΔA). In the improved

approach, we use the same processing steps as in §III-D1

except for Data Preprocessing, ADC Value Recovery, and Gain

Matrix Estimation. The general idea is that, instead of feeding

ΔO directly into the algorithm (which might result in incorrect

rounding), we update G iteratively using data with different

ranges. The general steps of the improved approach are also

illustrated in Fig. 3.

Data Preprocessing. In this step, we first generate more

data from ΔO with small values because smaller values are

less likely to introduce rounding errors. To do so, we can sort

elements in ΔO and then take the difference between adjacent

elements; the resulting values are then likely to be small.

In more detail, suppose ΔO = [ΔO0,ΔO1, · · · ,ΔOn−1],
where ΔOi = [ΔOix ,ΔOiy ,ΔOiz]

T is a 3-by-1 vector. We

first sort ΔO based on the value of ΔOix into ascending order.

Here, we use [ΔO]x to denote the sorted array. Similarly, we

sort ΔO by the value of ΔOiy and ΔOiz , and denote the

results as [ΔO]y and [ΔO]z , respectively. Then, we calculate

ΔΔO as follows:

ΔΔO = [diff([ΔO]x) diff([ΔO]y) diff([ΔO]z)] (9)

where the diff function differences consecutive column vectors

in a matrix. For instance, diff(ΔO) is calculated by:

diff(ΔO) = [ΔO1 −ΔO0, · · · ,ΔOn−1 −ΔOn−2]

By subtracting similar vectors, ΔΔO contains more data

with smaller values. From Equation 5 we have:

G
−1diff(ΔO) = diff(ΔA)

where values in diff(ΔA) are all integers. Combined with

Equation 9, it is clear that the result of G−1ΔΔO should only

contain integer values. Therefore, we can directly add ΔΔO

to the ΔO dataset and our basic algorithm still applies (i.e.,

ΔO ← [ΔO ΔΔO]). This expansion can be implemented

multiple times to generate more data with small values.

Then, we generate several batches of data from the ex-

panded dataset based on the value range and update G̃

iteratively. In particular, each batch, ΔO
εi , is a subset of ΔO

where the absolute value of all its elements is lower than a

multiplication of the nominal gain. That is to say,

ΔO
εi = {ΔOj ∈ ΔO | max(|ΔOj |) < (εi + 0.5)FG}

where εi is the threshold for batch i. We start εi from 1 and

double its value for each batch (i.e., εi+1 = 2εi) until the batch

is the same as ΔO. Then, we progressively feed ΔO
εi to the

next step and update the value of G from the first batch to

the last one.

ADC Value Recovery. In this step, instead of using G0

to estimate ΔA and calculate the rounding error E
r
ΔA

, we

instead use G̃ whose initial value is G0. In other words,

Equation 6 and 7 should be updated to:

Δ̃A
εi
= round(G̃−1ΔO

εi)

E
r
ΔAεi = |Δ̃A

εi
− G̃

−1ΔO
εi |

Gain Matrix Estimation. This step updates G̃ from each

batch of data, ΔO
εi . As seen in Fig. 3, one major difference

between the improved approach and the basic approach is

that the former may go back to the Data Preprocessing step

after the Gain Matrix Estimation. In particular, after each

update of G̃, the algorithm will check whether ΔO
εi = ΔO

holds true. If true, it means we have processed all the output

data, and we will pass the estimated G̃ to the Validity Check

process. Otherwise, the algorithm will go back to the Data

Preprocessing stage with an updated G̃, and a new batch of

data will be processed with εi+1 = 2εi.
Summary. The improved approach updates the estimation

of G iteratively from data within a small range to the whole

dataset. By using the iteratively updated G to estimate ADC

outputs, the improved approach reduces the error of each

estimation, and thus, it is able to generate a GYROID even

when the device is moving modestly. In general, the basic

approach is useful to illustrate the idea. The improved ap-

proach introduces few additional computations and is much

more reliable. Therefore, it is the preferred way to fingerprint

devices in practical situations.

E. Fingerprinting from Mobile Websites

JavaScript also provides APIs for web developers to access

the fused gyroscope data. Fig. 4 (a) presents the data collected

from an iPad Air through mobile Safari. As shown in Fig. 4

(a), quantization in the fused data is still visible because

the gyroscope ADC outputs are integers. However, there is

a slowly varying continuous component added to the bias.

The bias correction is likely to be a Kalman filter. Fig. 4

(b) shows that the bias part can be nearly eliminated by

subtracting consecutive samples. Therefore, we can apply the

same technique described in §III-D to recover the gain matrix.

F. Practical Calibration Fingerprinting Attacks

To launch a calibration fingerprinting attack, an adversary

can collect gyroscope samples from any device using an app

written by the attacker or that visits any website under the

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400 500
Sequence

G
yr

o
sc

o
p

e
O

u
tp

u
t

(d
eg

/s
)

Axis x y z

(a) Fused gyroscope data

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400 500
Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 G

yr
o

sc
o

p
e

O
u

tp
u

ts
 (

d
eg

/s
)

Axis x y z

(b) After differencing

Fig. 4: Gyroscope data collected via JavaScript (iPad Air)

attacker’s control. The attacker can then generate a device

fingerprint (i.e., GYROID) from the samples and store it in

a database. Then, the adversary can query the database to

determine when a particular physical device uses a particular

app or visits a particular website. The details of the generation

and query of the GYROID in the database differ depending on

the collecting source (app or web) and device model.

There are two cases to consider if the GYROID is generated

from raw sensor data. First, if the device contains an M-series

motion coprocessor, the adversary can apply the approach

presented in §III-D2 to generate the GYROID; this GyroID

is exact and uniquely identifies the device. Otherwise, if the

device does not have an M-series coprocessor (e.g., iPhone

4, iPhone 4S, and iPhone 5), adversaries have two options

to determine whether two GYROID entries in the database

represent the same physical device.

• Option 1 (Clustering): the adversary can directly use the

estimated gain matrix G̃ as the GYROID and store it in a

database. For every new device with the same model, the

attacker can calculate its G̃ and compare the Euclidean

distance between its G̃ and the ones in the databases. If

they are close, then they can know they came from the

same device.

• Option 2 (Rounding): For devices without an M-series

coprocessor, we find that if we use Equation 8 to generate

the GYROID, this deviates from the true GYROID by at

most ±1 for each of the 9 values in the gain matrix.

By way of an example, the estimated gain matrix of

an iPhone 5 is given in Appendix B. Therefore, an

adversary can simply store the estimated gain matrix and

perform a fuzzy query (i.e. accept a ±1 fluctuation for

each element). Note that this option provides less entropy

compared with Option 1.

The bias correction applied to the JavaScript API means that

iPhone 5S

0 500 1000 1500 2000
−0.4

−0.2

0.0

0.2

0.4

Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 M

ag
n

et
o

m
et

er
 O

u
tp

u
ts

 (
μ

T
)

Axis x y z

(a) Type I

iPhone 6S

0 500 1000 1500 2000

−0.1

0.0

0.1

Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 M

ag
n

et
o

m
et

er
 O

u
tp

u
ts

 (
μ

T
)

Axis x y z

(b) Type II

iPhone 8

0 500 1000 1500 2000

−0.1

0.0

0.1

Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 M

ag
n

et
o

m
et

er
 O

u
tp

u
ts

 (
μ

T
)

Axis x y z

(c) Type III

iPhone XS Max

0 500 1000 1500 2000

−0.1

0.0

0.1

Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 M

ag
n

et
o

m
et

er
 O

u
tp

u
ts

 (
μ

T
)

Axis x y z

(d) Type IV

Fig. 5: Consecutive differences between raw magnetometer measurements for different devices

an attacker cannot achieve the same precision as is possible

with raw gyroscope data. In this case, the adversary also has

two choices:

• Option 1 (Clustering): the adversary can collect multiple

batches of gyroscope samples from the device and cal-

culate the estimated gain matrix G̃ for each batch. Then,

they can use the set of G̃ as the device fingerprint and

compare it with records in the database using a clustering

algorithm. If the set of G̃ shows the same pattern as the

one in the database, then it is likely that they are the same

device (the entropy of G is discussed in §V-A).

• Option 2 (Rounding): the adversary can round values in

G̃ to the nearest integer in units of 2−16 dps. Because

there is a varying bias drift, the rounded G̃ may not

be equal to the rounded G. However, the adversary can

implement a grid search for each element in the rounded

G̃ by increasing or decreasing its value by a small integer.

Then, adversaries can update G̃ by the combination

that produces the minimum estimation error Ee, and the

results will be passed to the Validity Check process for

further checking. In our experiments, we found that the

check will only pass if the device is almost stationary

(e.g., on a desk or held in hand) during sampling, and the

difference between values in the estimated G̃ and that in

the rounded G is in ±1. If the device is under intense

movement, the algorithm will collect another batch of

data and keep trying until the device is nearly stationary.

G. Fingerprinting Other Motion Sensors

We also investigated whether our approach can be applied to

recover the gain matrix of the accelerometer and magnetome-

ter. As a result, we found that our approach does not directly

apply to the accelerometer of iOS devices. However, we

discovered that the accelerometer in Google Pixel 2/3 devices

can be fingerprinted (§V-D). In addition, the magnetometer in

iOS devices is also fingerprintable. Similar to the gyroscope,

the raw readings from the magnetometer only have a resolution

of 2−16 μT (microtesla). As shown in Fig. 5, after subtracting

consecutive raw magnetometer measurements for every device

model in our dataset, we observed four types of pattern:

• Type I (different sensitivity, negligible fluctuation): Type

I devices have a different but similar sensitivity for each

magnetometer axis. As shown in Fig. 5 (a), the sensitivity

of z axis is clearly lower than that of the x and y axes.

The fluctuation within each cluster is negligible. In this

case, the nonorthogonality matrix N in Equation 1 is

nearly an identity matrix. However, the scale factor matrix

S may be different across devices, which could be used

as a fingerprint.

• Type II (fixed sensitivity, moderate fluctuation): Type II

devices all have a same fixed sensitivity (4915×2−16 μT)

for every axis. Therefore, the scale factor matrix S does

not provide us with any entropy. However, there is a

moderate fluctuation within each cluster, which indicates

the existence of a non-identity nonorthogonality matrix

N. The nonorthogonality matrix N may be different

across devices, which could be used as a fingerprint.

• Type III (different sensitivity, moderate fluctuation): Type

III devices have different but similar sensitivity for each

axis and there is a moderate fluctuation within each

cluster. Nevertheless, the quantization of the data is still

evident in this case.

• Type IV (different sensitivity, intense fluctuation): Type

IV devices show an intense fluctuation on the magne-

tometer output. In this case, the quantization of the data

is not as evident as in the other cases.

We summarize the magnetometer type of different iOS

TABLE II: Magnetometer type of different iOS device models

Type Model Nominal Gain

Type I
iPhone 4S/5/5C/5S/6/6 Plus

0.35/0.28/0.17∗
All iPad models

Type II iPhone 6S/6S Plus/7/7 Plus/SE 0.075

Type III iPhone 8/8 Plus 0.075

Type IV iPhone X/XS/XS Max 0.075

∗ Type I devices have three possible nominal gain values.

device models and their estimated nominal gain in Table II.

Overall, the observation of the four patterns reveals the dif-

ferent underlying calibration procedures. For all four types of

devices, we can use the same approach described in §III-D to

obtain the magnetometer fingerprint (i.e., MAGID). Although

the gain matrix of the magnetometer does not appear to be

stored at 2−16 μT resolution, adversaries can use the same

techniques discussed in §III-F to launch an attack by either

clustering or rounding.

Compared with the gyroscope, the raw magnetometer data

is not currently accessible in major browsers. Nevertheless, the

MAGID provides additional entropy to the GYROID. Thus, we

can combine them together when analyzing apps as a finer-

grained fingerprint. In this paper, we define the SENSORID

as a combination of distinctive sensor calibration fingerprints.

In the case of iOS devices, the SENSORID includes both the

GYROID and MAGID.

IV. EVALUATION

We developed both a website4 and an iOS app to collect

sensor data. The iOS app collects raw data from the gyroscope

and magnetometer at 200 Hz and does not ask users to put

the device in any particular position. Additionally, it uses an

embedded webview to collect fused gyroscope data and a

standard iOS API call to record the current device model (e.g.,

“iPhone10,3”).

The website is only able to collect fused gyroscope data

and the device model. For both the app and website, we

use the Fingerprintjs2 [14] library in the default configuration

to generate a browser fingerprint for evaluation purposes. In

addition to volunteers, we recruited participants from both the

Amazon Mechanical Turk5 and Prolific6 to download the app

and contribute sensor data. The public data collection exercise

has been approved by the ethics committee of the Department

of Computer Science and Technology in the University of

Cambridge.

The SENSORID app has collected data from 795 unique iOS

devices. In particular, 761 of them contain an M-series motion

coprocessor. In addition, the website has collected fused data

from another 75 devices. Some users chose to participate in

this study multiple times. Thus, there might be more than

one record for each unique device. For both the app and the

4https://sensorid.cl.cam.ac.uk/
5https://www.mturk.com
6https://prolific.ac

TABLE III: MAGID Fingerprinting Result

Type # Devices Group Size # Groups

Type I 213
1 193
2 10

Type II 434 1 434

Type III 96 1 96

Type IV 52 1 52

website, we ask users to tell us whether they have submitted

the data from this device before.

A. Results

Using the raw gyroscope data collected from the 761 iOS

devices with an M-series coprocessor, we are able to recover

the gain matrix of their gyroscope exactly and generate the

GYROID. For the other 34 devices that do not contain an M-

series coprocessor, we use the rounding option in §III-F to

generate the GYROID due to the small sample size. Based on

the GYROID, we successfully identify multiple records that

are submitted by the same device. This is confirmed by user-

supplied data about whether they have submitted samples from

this device before and the device IP address when they submit.

The GYROID of each device is distinct.

Since the website only collects fused gyroscope data, we

choose the rounding option in §III-F to generate the GYROID.

Then, we compare it with the GYROID of the 795 devices

that we recovered from the raw data. As a result, we identify

3 devices that submitted through both the website and the

app. The app also collects fused sensor data from the built-

in webview. For this data, we use the clustering approach to

generate a group of gain matrix estimates. Then, we apply

the Multivariate ANalysis Of VAriance (MANOVA) technique

to analyze these estimates and successfully identify all 795

unique devices in the dataset. In particular, we also identify

6 devices that submitted multiple times through the app. The

results are the same as we obtained from the raw data.

In addition, we apply the improved approach to fingerprint

the magnetometer with the rounding option. After generating

the MAGID, we group devices by their MAGID and present

the results in Table III. In the table, the group size records

the number of different devices sharing the same MAGID.

Therefore, a group of size 1 means the device has a unique

MAGID in our dataset. In addition, Table III categorizes the

results based on the device type and presents the number of

unique devices in each category. As shown in the table, some

Type I devices share the same MAGID. It reveals that Type

I devices have a higher chance of collision on MAGID than

others. The reason is that the entropy of the MAGID for Type

I devices is only provided by the scale matrix (i.e., main-

diagonal elements in MAGID). Nevertheless, the MAGID is

orthogonal to the GYROID, and thus, they can be combined

together to provide additional entropy.

We also compare the GYROID and MAGID with the Fin-

gerprintjs2 fingerprint, which utilizes font detection, canvas

TABLE IV: Comparison of Different Device Fingerprints

Fingerprint GYROID MAGID Fingerprintjs2

Devices 870 795 870

Group Size 1 1 2 1 2 3 4 5 6 7 9 10 11 13 14 19 22 28 36 45

Groups 870 775 10 391 43 22 12 2 4 2 1 1 2 2 1 1 1 1 1 1

fingerprint, WebGL fingerprint, etc. Table IV shows that

both the GYROID and MAGID provide more entropy than

traditional browser fingerprinting techniques. While GYROID

is unique for every device in our dataset, 45 out of 135 iPhone

7 devices have the same Fingerprintjs2 fingerprint.

B. Proof of Concept

We have developed a proof of concept app for iOS devices

with an M-series motion coprocessor. The app implements the

improved approach (§III-D2) to generate the GYROID of the

test device. The code is written in Swift 4.1 and compiled by

XCode 9.4.1. The screenshots of the app are shown in Fig. 8

in Appendix C. After the user clicks the “Generate GyroID”

button (Fig. 8 (a)), the app collects 100 raw gyroscope samples

and attempts to generate the GYROID. If it fails (due to

intense shaking of the phone) the app automatically collects

another 100 raw samples and repeats the process. Fig. 8 (b)

shows the result from a handheld iPhone XS running iOS

12.1.1. As seen in the Figure, it takes about 0.5 seconds to

collect 100 gyroscope samples and the whole data processing

procedure finishes within 0.01 seconds. We have also tested

shaking the device during data collection. Vigorous movement

during extraction may require additional samples, but the task

nevertheless completes within a few hundred samples and

takes a few seconds. Regardless of the device movement and

CPU load, the generated GYROID always stays the same.

V. DISCUSSION

In this section, we discuss some possible threats that could

impair the validity of this research.

A. Is SENSORID unique?

The first question to ask is whether SENSORID has enough

entropy to be used as a device fingerprint. In other words, is

SENSORID likely to be unique? To answer this question, we

studied the GYROID of all iOS devices with an estimated

nominal gain of 61 mdps. Device models included in this

category can be found in Table I. We chose this category

for two reasons. First, all device models in this category are

modern devices which contain an M-series motion coprocessor

and this makes possible to extract their exact gain matrix. Sec-

ond, devices with different default gain may have a different

GYROID distribution, so we select the larger size group, which

contains 693 devices in total. Fig. 9 in Appendix D presents the

distribution of each element in GYROID for the 693 devices.

For simplicity, we denote the GYROID as D ∈ Z
3×3 in the

following analysis.

Normality Analysis. Through analyzing the GYROID of

the 693 devices, we find that each element in D appears

to be normally distributed. To test for normality, we applied

both the Kolmogorov-Smirnov test and the Shapiro-Wilk test

of normality for each element in D. Results show that ele-

ments that are not in the the main diagonal of D, including

D12,D13,D21,D23,D31,D32, have a strong normality. Ele-

ments in the main diagonal (D11, D22, D33) are rejected by

both tests at the 0.05 significance level. Fig. 10 in Appendix D

presents the Q-Q plot of each Dij ∈ D that gives an intuitive

view of the normality of each element.

The result implies that the non-diagonal elements are nor-

mally distributed, and we can use this to estimate their entropy.

In addition, it shows that we may need finer-grained analysis to

calculate the entropy of diagonal elements. The elements in the

main diagonal of D are strongly affected by the default gain.

Although we only choose device models with an estimated

gain of 61 mdps, the actual default gain of each device model

may deviate from our estimation. Therefore, we need to do per-

device type analysis for each element in the main diagonal.

When we run a normality test on data from each per-device

type separately we find that the diagonal elements appear to

be normally distributed.

Correlation Analysis. We also investigate whether elements

in D are strongly correlated with each other. For this purpose,

we run the Pearson correlation test on each Dij and find

that D12 and D13 are correlated with D21 and D31 at the

0.01 significance level, respectively. Based on this result, we

regard both D21 and D31 as dependent variables and do not

include them in our entropy calculation. An intuitive view of

the correlation between different elements in D is presented

in Fig. 11 in Appendix D.

Entropy Calculation. We first calculate the entropy of

non-diagonal elements in D, excluding D21 and D31. For

each non-diagonal element, we estimate the parameters of

the normal distribution, including the mean μ and standard

deviation σ, from the dataset. Technically, it is not a strict

normal distribution since each element can only be an integer.

Nevertheless, the quantization is a result of rounding. Thus, we

can still apply the concept of normal distribution to estimate

the entropy.

In general, the entropy of a discrete random variable X ,

which is denoted as H(X), can be calculated by:

H(X) = −
∑
xi∈X

P(xi) log2 P(xi) (10)

where P(xi) is the probability of X being equal to xi. In

our case, we regard the element Dij as the variable X . Then,

we have xi ∈ {−65535, . . . , 65535} because of the 16-bit

TABLE V: Comparison of Different Device Fingerprints

Variable D11 D12 D13 D22 D23 D32 D33 D

Entropy
(bits)

5.0 6.7 7.2 5.0 6.5 6.5 5.4 42.3

resolution. Suppose X ∼ N (μ, σ2) with the density function

f(x), then we can calculate P(xi) as follows:

P(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ xi+0.5

xi−0.5

f(x) dx, if xi ∈ (−65535, 65535)

∫
−65534.5

−∞

f(x) dx, if xi = −65535∫ +∞

65534.5

f(x) dx, if xi = 65535

(11)

By this equation, we calculate the entropy of D12, D13,

D23, and D32. Results are presented in Table V.

For elements in the main diagonal (i.e., D11, D22, and

D33), we need to calculate their entropy on a per device

type basis. Here, we use the iPhone 6S as an example to

calculate the GYROID entropy because it is the most popular

device model in our dataset (127 devices). Similar to the

entropy calculation for non-diagonal elements, we estimate the

parameters of normal distribution for diagonal elements from

the 127 GYROID matrices. Then, we apply both Equation 10

and 11 to calculate the entropy. Table V depicts the GYROID

entropy we estimated for the iPhone 6S. As seen in Table V,

the GYROID for the iPhone 6S has about 42 bits (≈ 4.4×1012

dits) of entropy. By the same analysis, we estimate the entropy

of the MAGID for the iPhone 6S. If adversaries launch the

attack using the rounding option (§III-F), each element could

have ±1 uncertainty. In this case, we estimate that the MAGID

contains about 25 bits of entropy. The MAGID should have

more entropy if adversaries choose the clustering option. Thus,

the 25 bits of entropy should be regarded as a lower bound

for the MAGID. We observe no evidence of strong correlation

between the MAGID and GYROID. Therefore, we estimate the

SENSORID for the iPhone 6S has around 67 bits of entropy.

Uniqueness Analysis. There were 728M active iPhones

worldwide in April 2017 and the iPhone 6S devices accounted

for 18% of them [15]. Therefore, there were around 131M

iPhone 6S devices. From the birthday problem, we know that

the chance of two iPhone 6S devices having the same SEN-

SORID is around 0.0058%, suggesting it is a globally unique

device fingerprint. In addition, the SENSORID is orthogonal

to other fingerprinting techniques. Therefore, adversaries can

combine the SENSORID with other metadata (e.g., system

language) or other fingerprinting techniques (e.g., canvas fin-

gerprinting) to further increase the fingerprint entropy.

B. Is SENSORID correlated with the manufacturing batch?

To answer this question, we first study the correlation

between the SENSORID and the country of the device, which

is inferred from the IP address when a user submits data.

We do not find any evidence of strong correction at the 0.05

significance level.

In addition, we collected gyroscope data from 25 iOS

devices in an Apple Store. Some of these devices have similar

serial numbers, which suggests they may come from the same

manufacturing batch. However, the GYROID of these devices

differs significantly. Furthermore, there is no significant differ-

ence in the GYROID distribution for devices from the Apple

Store and for devices that we collect otherwise.

C. Will SENSORID ever change?

We have not observed any change in the SENSORID of our

test devices in the past half year. Our dataset includes devices

running iOS 9/10/11/12. We have tested compass calibration,

factory reset, and updating iOS (including the latest iOS 12);

the SENSORID always stays the same. We have also tried

measuring the sensor data at different locations and under

different temperatures; we confirm that these factors do not

change the SENSORID either.

D. Factory calibration in Android devices

We have observed that the scale factors of the accelerometer

on Google Pixel 2 and Pixel 3 devices are different for each

axis (similar to Fig. 5 (a)), which suggest some form of

factory calibration has been applied. For Pixel 3, the factory

calibration values are stored in local files when the system is

first booted. If the device is rooted, the calibration values can

be directly read from these files. We use a similar approach

to estimate the gain matrix of the accelerometer. The gain

matrices we estimated from the sensor outputs of two Pixel 3

devices match the values stored in these local files and they

are distinct. We only have access to a few Pixel devices,

and therefore we are unable to perform the same analysis

as we have done on iOS devices to determine whether the

fingerprint we obtain for Pixel devices is globally unique or

not. The IMU in other Android devices is also likely factory

calibrated but the calibration is typically restricted to offsets

(i.e., bias compensation). Our approach targets the gain matrix

and cannot recover bias compensation.

E. Impact and coordinated disclosure

Overall, all iOS devices that have a gyroscope or magne-

tometer can be fingerprinted by this approach, including the

latest iPhone XS and iPhone XS Max. A SENSORID can

be generated by both apps and mobile websites and requires

no user interaction. Both mainstream iOS browsers (Safari,

Chrome, Firefox, and Opera) and privacy-enhanced browsers

(Brave and Firefox Focus) are vulnerable to this calibration-

based fingerprinting attack, even with the fingerprinting pro-

tection mode turned on. A recent study shows that motion

sensor data is accessed by 2,653 of the Alexa top 100K

websites, including more than 100 websites exfiltrating motion

sensor data to remote servers [16]. This is troublesome since it

is likely that the SENSORID can be calculated with exfiltrated

data, allowing retrospective device fingerprinting.

We followed a coordinated disclosure procedure and re-

ported this vulnerability to Apple on 3rd August 2018. On iOS

12.2, Apple adopted our suggestion (§VI) and added random

noise to the ADC outputs. Apple also removed access to mo-

tion sensors from Mobile Safari by default. This vulnerability

is disclosed to Google on 10th December 2018. Google has

contacted us and is investigating this issue.

VI. COUNTERMEASURES

As shown in §IV and §V, the SENSORID is a reliable device

fingerprint that is easy and efficient to generate. In addition,

this technique does not require any permission from the user

and it works on both mobile apps and websites. As far as

we know, the app review process currently enforced by Apple

does not check the usage of sensor-related APIs. Therefore, it

poses a big threat to user privacy.

To address this problem, manufacturers could regularly

update the gain matrix through recalibration, either remotely or

locally. However, this approach is not recommended. The gain

matrix after recalibration is likely to be close to (or the same

as) the original one, which may still give adversaries enough

entropy to fingerprint the device. Furthermore, adversaries

can still exploit the SENSORID to fingerprint devices during

the recalibrate-free time period. Apple could introduce run-

time permissions for sensor APIs. However, existing work

has shown that users tend to provide blind authorization to

permission requests [17]. Additionally, it does not prevent apps

that require access to motion sensors from fingerprinting users.

Apple could also stop factory calibrating motion sensors in

future iOS devices, but this will reduce sensor data quality

and impair device usability; this also does not stop adversaries

from fingerprinting existing iOS devices.

Here, we suggest two easier and more reliable countermea-

sures. Recall that our approach to recover the gain matrix is

based on the fact that the values in the ADC output, A, are all

integers. This property allows us to recover the values of ΔA

using Equation 6. However, if we add random noise ε ∈ R
3×1,

from the uniform distribution in the range [−0.5, 0.5], to each

ADC output A. Then we have:

O = G(A+ ε) +B (12)

It is clear to see that the application of random noise with

distribution ε ∼ U(−0.5, 0.5) followed by a truncation of the

output down to 16-bit resolution means there is no easy way to

recover the values of ΔA. Therefore, attackers can no longer

generate the SENSORID using the approach described in this

paper. The cost of adding ε is negligible in most cases, but it

offers significant advantages in terms of user privacy.

Alternatively, we could round the factory calibrated sensor

output to the nearest multiple of the nominal gain to prevent

recovering the gain matrix. This approach is more practical

to apply and it does not require knowing the gain matrix in

advance. Therefore, mobile browsers can adopt this approach

to protect user privacy.

In addition, the World Wide Web Consortium (W3C) made

a candidate recommendation of the generic sensor API, which

allows web developers to access the magnetometer readings

and possibly raw motion sensor data [18]. We believe this

is detrimental to user privacy if a countermeasure is not

deployed. Therefore, we suggest both the standards organiza-

tion (e.g., W3C) and browser vendors treat the sensor-related

API carefully and understand the privacy implications before

adopting it.

VII. RELATED WORK

A. Traditional Device Fingerprinting Techniques

Device fingerprinting is an important way for app devel-

opers and advertisers to track their users. The IP address

is one of the earliest identifiers used to fingerprint devices.

However, the adoption of dynamic IP allocation and Network

Address Translation (NAT), particularly for home PCs and

mobile devices, has greatly reduced the effectiveness of this

approach. Cookies are also commonly used to track users

across websites. However, cookies are stored locally and can

be changed by users at any time. In fact, many privacy-focused

browsers, such as Brave, by default block all third-party

cookies. In addition, regulations in the US and Europe require

websites to obtain user-permission before using cookies, which

also decreases the usability of this approach [19].

A variety of IDs in the device can be used as fingerprints,

including the IMEI, UDID, and MAC address of hardware

modules. A study in 2011 showed that these identifiers were

widely used in mobile apps [20]. However, both Apple and

Google have adopted more stringent privacy policies to pre-

vent developers from accessing these unique IDs. Addition-

ally, many information flow tracking systems, such as Taint-

Droid [21] and Panorama [22], can capture these malicious

behaviors and report them to users.

B. Passive Device Fingerprinting

Passive device fingerprinting is the action of characterizing

a target device by observing its network traffic. It analyzes

the captured data to reveal fingerprintable patterns (e.g., the

software, operating system, or hardware components). Since

passive fingerprinting only relies on network traffic, it is

compatible with more devices, difficult to discover, and can

track users across different browsers.

In general, most passive fingerprinting techniques rely on

machine learning models to differentiate devices. Uluagac

et al. applied Artificial Neural Networks (ANNs) to classify

devices based on the time-variant behavior in their traffic [23].

Neumann et al. evaluated several features extracted from

network traffic and found that the frame inter-arrival time,

which is correlated with the hardware status and installed

applications, is the most effective feature for device finger-

printing [24]. Machine learning approaches usually require

more computing resources and a large amount of data for

training. Thus, passive fingerprinting techniques usually have

a longer response time than active fingerprinting techniques.

C. Active Device Fingerprinting

Active fingerprinting techniques deploy embedded code to

actively gather information about a device and use these

characteristics to make a distinction between different devices.

For example, Fingerprintjs2 [14] is a popular browser finger-

printing library that utilizes the characteristics of a browser,

including the User-Agent (UA), version, plugins, font, and

canvas. Apple has realized the risk of browser fingerprinting.

From Mac OS Mojave, Safari scrubs most distinctive browser

data, exposing only generic configuration information and

default fonts [25]. The information about the operating system

(e.g., version and root permission) and system configurations

(e.g., network and flash configurations) can also be used to

identify devices. Although this information cannot uniquely

identify a device, it can be combined with other features from

browsers and embedded hardware to increase precision.

D. Hardware Fingerprinting

In general, hardware imperfections are inevitable during

manufacture, which implies the existence of fingerprints.

Hardware modules that have been studied for fingerprinting

purposes include: WiFi chipsets [26], [27], motion sensors [3],

[28], camera [29], [30], and microphones [31].

For smartphones, hardware fingerprints are the most con-

sistent identifier among the active fingerprinting sources. In

general, it is difficult to replace the embedded hardware. Some

embedded hardware, such as motion sensors, can be accessed

by both JavaScript running in a web browser and by mobile

apps installed on the device. In addition, accessing motion

sensor data does not require any permission from users.

Existing hardware fingerprinting techniques are mostly

based on machine learning approaches. Fridrich showed that

the Photo-Response Non-Uniformity (PRNU) noise of imag-

ing sensors can be estimated and used as a camera fin-

gerprint [29]. Bojinov et al. demonstrated it is possible to

fingerprint both the speakerphone-microphone system and

the accelerometer using typical clustering approaches [28].

However, they only correctly identified 53% of the devices

in their dataset even after integrating the UA string into their

model. Das et al. applied several supervised machine learning

models to make a distinction between devices based on the

gyroscope and accelerometer readings [32]. To increase the

accuracy, they used inaudible sound to stimulate the motion

sensors. As a countermeasure, they suggested that manufac-

turers should perform better calibration of the motion sensors.

However, they did not realize that the calibration process

could leak information if not properly implemented. More

recently, they further improved its accuracy by introducing

a voting scheme among different classifiers [4]. Nevertheless,

their approach requires a lot of computing resources, which

cannot be implemented locally on the device. Even then, their

approach achieved less than 60% F1 score in an open-world

setting when devices were held in hand. They also applied

their approach to make a distinction between 85 iPhone 6

devices. When devices were held in hand, only 60% of these

devices produced unique fingerprints, which, by reference to

the birthday problem, indicates that their approach provides

around 13 bits of entropy. Based on the motion sensor data that

they collected through JavaScript, we correctly identify all iOS

devices in the dataset based on the calibration behavior without

knowing the device model in advance. Most recently, Das et al.

studied the sensor API usage in popular websites [16]. They

showed that 2,653 of the Alexa top 100K websites accessed

motion sensor data and 63% of the scripts for accessing motion

sensors also engaged in browser fingerprinting. Although the

prior art has realized the idiosyncrasies across different sen-

sors, none of them, to the best of our knowledge, has exploited

the calibration information as a fingerprint. This paper fills this

gap and shows that the calibration matrix of motion sensors

can be utilized as a globally unique fingerprint for iOS devices.

VIII. CONCLUSION

In this paper we introduced the calibration fingerprinting

attack: a new method of fingerprinting devices with embedded

sensors by careful analysis of the sensor output alone. We

demonstrated the effectiveness of this attack on iOS devices

and found the lack of precision in the M-series co-processor

helps the generation of such a fingerprint. Our attack is easy

to conduct by a website or an app in under 1 second, requires

no special permissions, does not require user interaction, and

is computationally efficient. Our attack can also be applied

retrospectively to a historic archive of sensor data. Using

the iPhone 6S as an example, we showed that the GYROID

contains about 42 bits of entropy and the MAGID provides an

additional 25 bits of entropy. Furthermore, we demonstrated

that the combination of the MAGID and GYROID – the

SENSORID – is globally unique for the iPhone 6S, does

not change on factory reset or after a software update. In

addition to iOS devices, we find that Google Pixel 2 and

Pixel 3 can also be fingerprinted by our attack. To prevent this

fingerprinting attack, we recommend the addition of uniformly

distributed random noise to the output of the sensor before any

calibration is applied or round the calibrated sensor output to

the nearest multiple of nominal gain.

The idea of a calibration fingerprint attack is widely appli-

cable. Although this paper mainly targets the gyroscope and

magnetometer found in iOS devices, we anticipate calibration

information used in other embedded sensors may also be

recovered and used as a fingerprint, and therefore we expect

future research will successfully perform calibration finger-

printing attacks on other types of sensor.

ACKNOWLEDGMENT

Jiexin Zhang is supported by the China Scholarship Council.

Alastair R. Beresford is partly supported by The Boeing

Company and EPSRC under Grant No.: EP/M020320/1. We

thank Nokia Bell Labs for supporting this work and valuable

discussions. The opinions, findings, and conclusions or rec-

ommendations expressed are those of the authors and do not

necessarily reflect those of the funders. We thank Stephan A.

Kollmann, Diana A. Vasile, Ricardo Mendes, Andrew Rice,

and Amanda Prorok for helpful discussion and insight. We also

thank our shepherd Adam Bates and anonymous reviewers for

their feedback on the paper.

REFERENCES

[1] comScore. (2017) 2017 u.s. cross-platform fu-
ture in focus. [Online]. Available: https://www.
comscore.com/Insights/Presentations-and-Whitepapers/2017/
2017-US-Cross-Platform-Future-in-Focus

[2] J. P. Achara, “Unveiling and controlling online tracking,” Ph.D. disser-
tation, Université Grenoble-Alpes, 2016.

[3] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accelprint:
imperfections of accelerometers make smartphones trackable,” in Pro-

ceedings of the 2014 Network and Distributed System Security (NDSS)

Symposium, 2014.

[4] A. Das, N. Borisov, and E. Chou, “Every move you make: exploring
practical issues in smartphone motion sensor fingerprinting and counter-
measures,” Proceedings on Privacy Enhancing Technologies Symposium

(PETS), vol. 2018, no. 1, pp. 88–108, 2018.

[5] S. Poddar, V. Kumar, and A. Kumar, “A comprehensive overview of
inertial sensor calibration techniques,” Journal of Dynamic Systems,

Measurement, and Control, vol. 139, no. 1, p. 011006, 2017.

[6] A. Grammenos, C. Mascolo, and J. Crowcroft, “You are sensing, but
are you biased? a user unaided sensor calibration approach for mobile
sensing,” Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies (IMWUT), vol. 2, no. 1, p. 11, 2018.

[7] D. Tedaldi, “Imu calibration without mechanical equipment,” Ph.D.
dissertation, University of Padova, 2013.

[8] T. Michel, P. Genevès, H. Fourati, and N. Layaı̈da, “On attitude estima-
tion with smartphones,” in Pervasive Computing and Communications

(PerCom), 2017 IEEE International Conference on. IEEE, 2017, pp.
267–275.

[9] D. Tedaldi, A. Pretto, and E. Menegatti, “A robust and easy to implement
method for imu calibration without external equipments,” in 2014 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3042–3049.

[10] W. Ren, T. Zhang, H. Zhang, L. Wang, Y. Zhou, M. Luan, H. Liu, and
J. Shi, “A research on calibration of low-precision mems inertial sen-
sors,” in 2013 25th Chinese Control and Decision Conference (CCDC).
IEEE, 2013, pp. 3243–3247.

[11] I. Frosio, F. Pedersini, and N. A. Borghese, “Autocalibration of mems
accelerometers,” IEEE Transactions on Instrumentation and Measure-

ment, vol. 58, no. 6, pp. 2034–2041, 2009.

[12] STMicroelectronics. (2010) L3g4200d: three axis digital output
gyroscope. [Online]. Available: https://www.elecrow.com/download/
L3G4200 AN3393.pdf

[13] ——. (2009) Lis331dlh: Mems digital output motion sensor. [Online].
Available: http://www.st.com/resource/en/datasheet/lis331dlh.pdf

[14] Valve. (2018) Modern & flexible browser fingerprinting library.
[Online]. Available: https://github.com/Valve/fingerprintjs2

[15] J. Dunn. (2018) It looks like apple will have plenty
of iphone owners that could use an upgrade this
holiday season. [Online]. Available: http://uk.businessinsider.com/
apple-iphone-most-popular-model-newzoo-chart-2017-7

[16] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The web’s sixth sense:
a study of scripts accessing smartphone sensors,” in Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2018.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security.
ACM, 2012, p. 3.

[18] W3C. (2018) Generic sensor api. [Online]. Available: https://www.w3.
org/TR/generic-sensor

[19] Wikipedia. (2002) Privacy and electronic communications directive
2002. [Online]. Available: https://en.wikipedia.org/wiki/Privacy and
Electronic Communications Directive 2002

[20] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of
android application security.” in USENIX Security Symposium, vol. 2,
2011, p. 2.

[21] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[22] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer

and communications security (CCS). ACM, 2007, pp. 116–127.
[23] A. S. Uluagac, S. V. Radhakrishnan, C. Corbett, A. Baca, and R. Beyah,

“A passive technique for fingerprinting wireless devices with wired-
side observations,” in 2013 IEEE Conference on Communications and

Network Security (CNS). IEEE, 2013, pp. 305–313.
[24] C. Neumann, O. Heen, and S. Onno, “An empirical study of passive

802.11 device fingerprinting,” in 2012 32nd International Conference

on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2012,
pp. 593–602.

[25] L. H. Newman. (2018) Apple just made safari the good
privacy browser. [Online]. Available: https://www.wired.com/story/
apple-safari-privacy-wwdc

[26] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fin-
gerprinting,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, pp. 93–108, 2005.

[27] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identi-
fication with radiometric signatures,” in Proceedings of the 14th ACM

International Conference on Mobile Computing and Networking. ACM,
2008, pp. 116–127.

[28] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device
identification via sensor fingerprinting,” Computing Research Repository

(CoRR), 2014. [Online]. Available: https://arxiv.org/abs/1408.1416
[29] J. Fridrich, “Digital image forensics,” IEEE Signal Processing Magazine,

vol. 26, no. 2, 2009.
[30] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, “Compressed

fingerprint matching and camera identification via random projections,”
IEEE Transactions on Information Forensics and Security, vol. 10, no. 7,
pp. 1472–1485, 2015.

[31] A. Das, N. Borisov, and M. Caesar, “Do you hear what i hear?
fingerprinting smart devices through embedded acoustic components,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security (CCS). ACM, 2014, pp. 441–452.
[32] ——, “Tracking mobile web users through motion sensors: attacks and

defenses.” in Proceedings of the 2016 Network and Distributed System

Security (NDSS) Symposium, 2016.

APPENDIX

A. Nominal gain estimation

Figure 6 shows the estimated gyroscope nominal gain from

two iPhone X devices. Both devices were at rest on a desk

during the data collection. To show the results more clearly,

The figure only presents a small range of data. As shown

in the figure, the difference between the estimated gyroscope

nominal gain from these two devices is tiny. Therefore, we can

use the estimated nominal gain from one device to estimate

the gain matrix of another device. It is also clear from the

figure that the degree of fluctuations around the nominal gain

is different for these two devices, which indicates that their

gain matrix is different and may be used as a fingerprint.

B. Gain Matrix Estimations of an iPhone 5

The estimations of the gyroscope gain matrix of an iPhone

5 is shown in Fig. 7. Here, values in each column are corre-

sponding to the nine gain matrix values estimated from one

batch of data (five batches in total), subtracting the nominal

gain (unit: 2−16 dps).

C. Screenshots of the GYROID Proof of Concept App

Screenshots of the GYROID proof of concept app is shown

in Fig. 8.

D. Distribution of the GYROID

Results are presented in Fig. 9, 10, and 11.

iPhone X (1) iPhone X (2)

0 500 1000 1500 2000 0 500 1000 1500 2000

0.059

0.061

0.063

0.065

Sequence

D
if

fe
re

n
ce

 b
et

w
ee

n
 G

yr
o

sc
o

p
e

O
u

tp
u

ts
 (

d
eg

/s
)

Axis x y z

Fig. 6: Estimation of the gyroscope nominal gain from two iPhone X devices. The dash line marks the estimated nominal gain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−39.862363137944158 −39.815935280377744 −39.822619103792022 −39.807082121390522 −39.817704006855820
36.746838108661962 36.725833955351305 36.751195821364234 36.752406611083359 36.751266990517692
20.321937017717612 20.276563465382658 20.302206619012743 20.304280744909118 20.293839012434400
−25.775903878528148 −25.826990327452950 −25.865651673449992 −25.824470693110083 −25.830236948855958
19.070418546381916 19.087074948988629 19.124401486623356 19.120464786337834 19.117788287737312
−29.059409132023614 −29.082230352356362 −29.029881179984351 −29.043929037666555 −29.056049474283022
31.344396673396361 31.364984433906649 31.347831819184396 31.359581874031452 31.366435779636262
−35.131464999438137 −35.144073074775363 −35.126381870264737 −35.138736688905318 −35.140984092442856
−74.091971345986167 −74.128105301813775 −74.093537886235026 −74.123911828207383 −74.131598201240195

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 7: Gain Matrix Estimations of an iPhone 5

(a) (b)

Fig. 8: Screenshots of the GYROID proof of concept app

Fig. 9: Distribution of each element in the GYROID (nominal gain = 61 mdps)

-2 0 2

Observed Value

-50

0

50

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D11

-2 0 2

Observed Value

-100

0

100
E

xp
ec

te
d

N
or

m
al

Normal Q-Q plot of D12

-2 0 2

Observed Value

-200

-100

0

100

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D13

-2 0 2

Observed Value

-100

0

100

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D21

-2 0 2

Observed Value

0

50

100

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D22

-2 0 2

Observed Value

-100

0

100

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D23

-2 0 2

Observed Value

-200

0

200

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D31

-2 0 2

Observed Value

-100

0

100

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D32

-2 0 2

Observed Value

-20

0

20

40

E
xp

ec
te

d
N

or
m

al

Normal Q-Q plot of D33

Fig. 10: Q-Q plot of each element in the GYROID (nominal gain = 61 mdps). If the distribution of a variable is normal, its

Q-Q plot should appear linear

Fig. 11: Scatter plot matrix of elements in the GYROID (nominal gain = 61 mdps). Each scatter plot shows the relationship

between two elements. Pairs with significant correlation are highlighted in red.

