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Abstract—Collaborative machine learning and related tech-
niques such as federated learning allow multiple participants,
each with his own training dataset, to build a joint model by
training locally and periodically exchanging model updates.

We demonstrate that these updates leak unintended informa-
tion about participants’ training data and develop passive and
active inference attacks to exploit this leakage. First, we show that
an adversarial participant can infer the presence of exact data
points—for example, specific locations—in others’ training data
(i.e., membership inference). Then, we show how this adversary
can infer properties that hold only for a subset of the training
data and are independent of the properties that the joint model
aims to capture. For example, he can infer when a specific person
first appears in the photos used to train a binary gender classifier.

We evaluate our attacks on a variety of tasks, datasets, and
learning configurations, analyze their limitations, and discuss
possible defenses.

I. INTRODUCTION

Collaborative machine learning (ML) has recently emerged
as an alternative to conventional ML methodologies where
all training data is pooled and the model is trained on this
joint pool. It allows two or more participants, each with his
own training dataset, to construct a joint model. Each partic-
ipant trains a local model on his own data and periodically
exchanges model parameters, updates to these parameters, or
partially constructed models with the other participants.

Several architectures have been proposed for distributed,
collaborative, and federated learning [9, 11, 33, 38, 62, 68]:
with and without a central server, with different ways of
aggregating models, etc. The main goal is to improve the
training speed and reduce overheads, but protecting privacy of
the participants’ training data is also an important motivation
for several recently proposed techniques [35, 52]. Because
the training data never leave the participants’ machines, col-
laborative learning may be a good match for the scenarios
where this data is sensitive (e.g., health-care records, private
images, personally identifiable information, etc.). Compelling
applications include training of predictive keyboards on char-
acter sequences that users type on their smartphones [35],
or using data from multiple hospitals to develop predictive
models for patient survival [29] and side effects of medical
treatments [30].

Collaborative training, however, does disclose information
via model updates that are based on the training data. The
key question we investigate in this paper is: what can be

inferred about a participant’s training dataset from the
model updates revealed during collaborative model training?

Of course, the purpose of ML is to discover new information
about the data. Any useful ML model reveals something
about the population from which the training data was drawn.
For example, in addition to accurately classifying its inputs,
a classifier model may reveal the features that characterize
a given class or help construct data points that belong to
this class. In this paper, we focus on inferring “unintended”
features, i.e., properties that hold for certain subsets of the
training data, but not generically for all class members.

The basic privacy violation in this setting is membership
inference: given an exact data point, determine if it was used
to train the model. Prior work described passive and active
membership inference attacks against ML models [24, 53],
but collaborative learning presents interesting new avenues for
such inferences. For example, we show that an adversarial
participant can infer whether a specific location profile was
used to train a gender classifier on the FourSquare location
dataset [64] with 0.99 precision and perfect recall.

We then investigate passive and active property inference
attacks that allow an adversarial participant in collaborative
learning to infer properties of other participants’ training data
that are not true of the class as a whole, or even independent of
the features that characterize the classes of the joint model. We
also study variations such as inferring when a property appears
and disappears in the data during training—for example,
identifying when a certain person first appears in the photos
used to train a generic gender classifier.

For a variety of datasets and ML tasks, we demonstrate
successful inference attacks against two-party and multi-party
collaborative learning based on [52] and multi-party federated
learning based on [35]. For example, when the model is trained
on the LFW dataset [28] to recognize gender or race, we infer
whether people in the training photos wear glasses—a property
that is uncorrelated with the main task. By contrast, prior
property inference attacks [2, 25] infer only properties that
characterize an entire class. We discuss this critical distinction
in detail in Section III.

Our key observation, concretely illustrated by our exper-
iments, is that modern deep-learning models come up with
separate internal representations of all kinds of features, some
of which are independent of the task being learned. These
“unintended” features leak information about participants’



training data. We also demonstrate that an active adversary can
use multi-task learning to trick the joint model into learning
a better internal separation of the features that are of interest
to him and thus extract even more information.

Some of our inference attacks have direct privacy implica-
tions. For example, when training a binary gender classifier on
the FaceScrub [40] dataset, we infer with high accuracy (0.9
AUC score) that a certain person appears in a single training
batch even if half of the photos in the batch depict other
people. When training a generic sentiment analysis model on
Yelp healthcare-related reviews, we infer the specialty of the
doctor being reviewed with perfect accuracy. On another set
of Yelp reviews, we identify the author even if their reviews
account for less than a third of the batch.

We also measure the performance of our attacks vis-à-
vis the number of participants (see Section VII). On the
image-classification tasks, AUC degrades once the number of
participants exceeds a dozen or so. On sentiment-analysis tasks
with Yelp reviews, AUC of author identification remains high
for many authors even with 30 participants.

Federated learning with model averaging [35] does not
reveal individual gradient updates, greatly reducing the infor-
mation available to the adversary. We demonstrate successful
attacks even in this setting, e.g., inferring that photos of a
certain person appear in the training data.

Finally, we evaluate possible defenses—sharing fewer
gradients, reducing the dimensionality of the input space,
dropout—and find that they do not effectively thwart our
attacks. We also attempt to use participant-level different
privacy [36], which, however, is geared to work with thousands
of users, and the joint model fails to converge in our setting.

II. BACKGROUND

A. Machine learning (ML)

An ML model is a function fθ : X �→ Y parameterized by
a set of parameters θ, where X denotes the input (or feature)
space, and Y the output space.

In this paper, we focus on the supervised learning of
classification tasks. The training data is a set of data points
labeled with their correct classes. We work with models that
take as input images or text (i.e., sequences of words) and
output a class label. To find the optimal set of parameters
that fits the training data, the training algorithm optimizes the
objective (loss) function, which penalizes the model when it
outputs a wrong label on a data point. We use L(x, y; θ) to
denote the loss computed on a data point (x, y) given the
model parameters θ, and L(b; θ) to denote the average loss
computed on a batch b of data points.

Stochastic Gradient Descent (SGD). There are many methods
to optimize the objective function. Stochastic gradient descent
(SGD) and its variants are commonly used to train artificial
neural networks, but our inference methodology is not specific
to SGD. SGD is an iterative method where at each step the
optimizer receives a small batch of the training data and
updates the model parameters θ according to the direction of

Algorithm 1 Parameter server with synchronized SGD
Server executes:

Initialize θ0
for t = 1 to T do

for each client k do
gkt ←ClientUpdate(θt−1)

end for
θt ← θt−1 − η

∑
k g

k
t � synchronized gradient updates

end for

ClientUpdate(θ):
Select batch b from client’s data
return local gradients ∇L(b; θ)

the negative gradient of the objective function with respect to
θ and scaled by the learning rate η. Training finishes when the
model has converged to a local minimum, where the gradient
is close to zero. The trained model is tested using held-out
data, which was not used during training. A standard metric
is test accuracy, i.e., the percentage of held-out data points
that are classified correctly.

Hyperparameters. Most modern ML algorithms have a set of
tunable hyperparameters, distinct from the model parameters.
They control the number of training iterations, the ratio of
the regularization term in the loss function (its purpose is to
prevent overfitting, i.e., a modeling error that occurs when a
function is too closely fitted to a limited set of data points),
the size of the training batches, etc.

Deep learning (DL). A family of ML models known as
deep learning recently became very popular for many ML
tasks, especially related to computer vision and image recog-
nition [32, 51]. DL models are made of layers of non-linear
mappings from input to intermediate hidden states and then
to output. Each connection between layers has a floating-point
weight matrix as parameters. These weights are updated during
training. The topology of the connections between layers is
task-dependent and important for the accuracy of the model.

B. Collaborative learning

Training a deep neural network on a large dataset can be
time- and resource-consuming. A common scaling approach
is to partition the training dataset, concurrently train separate
models on each subset, and exchange parameters via a param-
eter server [9, 11]. During training, each local model pulls the
parameters from this server, calculates the updates based on
its current batch of training data, then pushes these updates
back to the server, which updates the global parameters.

Collaborative learning may also involve participants who
want to hide their training data from each other. We review
two architectures for privacy-preserving collaborative learning
based on, respectively, [52] and [35].

Collaborative learning with synchronized gradient
updates. Algorithm 1 shows collaborative learning with
synchronized gradient updates [52]. In every iteration of
training, each participant downloads the global model from
the parameter server, locally computes gradient updates based



Algorithm 2 Federated learning with model averaging
Server executes:

Initialize θ0
m ← max(C ·K, 1)
for t = 1 to T do

St ← (random set of m clients)
for each client k ∈ St do

θkt ←ClientUpdate(θt−1)
end for
θt ← ∑

k
nk

n
θkt � averaging local models

end for

ClientUpdate(θ):
for each local iteration do

for each batch b in client’s split do
θ ← θ − η∇L(b; θ)

end for
end for
return local model θ

on one batch of his training data, and sends the updates to
the server. The server waits for the gradient updates from all
participants and then applies the aggregated updates to the
global model using stochastic gradient descent (SGD).

In [52], each client may share only a fraction of his
gradients. We evaluate if this mitigates our attacks in Sec-
tion VIII-A. Furthermore, [52] suggests differential privacy to
protect gradient updates. We do not include differential privacy
in our experiments. By definition, record-level differential
privacy bounds the success of membership inference, but does
not prevent property inference that applies to a group of
training records. Participant-level differential privacy, on the
other hand, bounds the success of all attacks considered in this
paper, but we are not aware of any participant-level differential
privacy mechanism that enables collaborative learning of an
accurate model with a small number of participants. We
discuss this further in Section VIII-D.

Federated learning with model averaging. Algorithm 2
shows the federated learning algorithm [35]. We set C, the
fraction of the participants who update the model in each
round, to 1 (i.e., the server takes updates from all partici-
pants), to simplify our experiments and because we ignore the
efficiency of the learning protocol when analyzing the leakage.

In each round, the k-th participant locally takes several steps
of SGD on the current model using his entire training dataset
of size nk (i.e., the globally visible updates are based not on
batches but on participants’ entire datasets). In Algorithm 2,
n is the total size of the training data, i.e., the sum of all
nk. Each participant submits the resulting model to the server,
which computes a weighted average. The server evaluates the
resulting joint model on a held-out dataset and stops training
when performance stops improving.

The convergence rate of both collaborative learning ap-
proaches heavily depends on the learning task and the hy-
perparameters (e.g., number of participants and batch size).

III. REASONING ABOUT PRIVACY IN MACHINE LEARNING

If a machine learning (ML) model is useful, it must reveal
information about the data on which it was trained [13]. To
argue that the training process and/or the resulting model
violate “privacy,” it is not enough to show that the adversary
learns something new about the training inputs. At the very
least, the adversary must learn more about the training inputs
than about other members of their respective classes. To
position our contributions in the context of related work
(surveyed in Section X) and motivate the need to study unin-
tended feature leakage, we discuss several types of adversarial
inference previously considered in the research literature.

A. Inferring class representatives

Given black-box access to a classifier model, model inver-
sion attacks [16] infer features that characterize each class,
making it possible to construct representatives of these classes.

In the special case—and only in this special case—where all
class members are similar, the results of model inversion are
similar to the training data. For example, in a facial recognition
model where each class corresponds to a single individual, all
class members depict the same person. Therefore, the outputs
of model inversion are visually similar to any image of that
person, including the training photos. If the class members are
not all visually similar, the results of model inversion do not
look like the training data [53].

If the adversary actively participates in training the model
(as in the collaborative and federated learning scenarios con-
sidered in this paper), he can use GANs [22] to construct class
representatives, as done by Hitaj et al. [25]. Only in the special
case where all class members are similar, GAN-constructed
representatives are similar to the training data. For example,
all handwritten images of the digit ‘9’ are visually similar.
Therefore, a GAN-constructed image for the ‘9’ class looks
similar to any image of digit 9, including the training images.
In a facial recognition model, too, all class members depict the
same person. Hence, a GAN-constructed face looks similar to
any image of that person, including the training photos.

Note that neither technique reconstructs actual training
inputs. In fact, there is no evidence that GANs, as used in [25],
can even distinguish between a training input and a random
member of the same class.

Data points produced by model inversion and GANs are
similar to the training inputs only if all class members are
similar, as is the case for MNIST (the dataset of handwritten
digits used in [25]) and facial recognition. This simply shows
that ML works as it should. A trained classifier reveals the
input features characteristic of each class, thus enabling the
adversary to sample from the class population. For instance,
Figure 1 shows GAN-constructed images for the gender clas-
sification task on the LFW dataset, which we use in our
experiments (see Section VI). These images show a generic
female face, but there is no way to tell from them whether an
image of a specific female was used in training or not.

Finally, the active attack in [25] works by overfitting the
joint model’s representation of a class to a single participant’s



Fig. 1: Samples from a GAN attack on a gender classification model
where the class is “female.”

training data. This assumes that the entire training corpus for
a given class belongs to that participant. We are not aware
of any deployment scenario for collaborative learning where
this is the case. By contrast, we focus on a more realistic
scenario where the training data for each class are distributed
across multiple participants, although there may be significant
differences between their datasets.

B. Inferring membership in training data

The (arguably) simplest privacy breach is, given a model and
an exact data point, inferring whether this point was used to
train the model or not. Membership inference attacks against
aggregate statistics are well-known [14, 27, 50], and recent
work demonstrated black-box membership inference against
ML models [24, 34, 53, 58], as discussed in Section X.

The ability of an adversary to infer the presence of a specific
data point in a training dataset constitutes an immediate
privacy threat if the dataset is in itself sensitive. For example,
if a model was trained on the records of patients with a
certain disease, learning that an individual’s record was among
them directly affects his or her privacy. Membership inference
can also help demonstrate inappropriate uses of data (e.g.,
using health-care records to train ML models for unauthorized
purposes [4]), enforce individual rights such as the “right
to be forgotten,” and/or detect violations of data-protection
regulations such as the GDPR [19]. Collaborative learning
presents interesting new avenues for such inferences.

C. Inferring properties of training data

In collaborative and federated learning, participants’ training
data may not be identically distributed. Federated learning
is explicitly designed to take advantage of the fact that
participants may have private training data that are different
from the publicly available data for the same class [35].

Prior work [2, 16, 25] aimed to infer properties that char-
acterize an entire class: for example, given a face recognition
model where one of the classes is Bob, infer what Bob looks
like (e.g., Bob wears glasses). It is not clear that hiding this
information in a good classifier is possible or desirable.

By contrast, we aim to infer properties that are true of
a subset of the training inputs but not of the class as a
whole. For instance, when Bob’s photos are used to train
a gender classifier, we infer that Alice appears in some of
the photos. We especially focus on the properties that are
independent of the class’s characteristic features. In contrast
to the face recognition example, where “Bob wears glasses”
is a characteristic feature of an entire class, in our gender

classifier study we infer whether people in Bob’s photos wear
glasses—even though wearing glasses has no correlation with
gender. There is no legitimate reason for a model to leak this
information; it is purely an artifact of the learning process.

A participant’s contribution to each iteration of collaborative
learning is based on a batch of his training data. We infer
single-batch properties, i.e., detect that the data in a given
batch has the property but other batches do not. We also infer
when a property appears in the training data. This has serious
privacy implications. For instance, we can infer when a certain
person starts appearing in a participant’s photos or when the
participant starts visiting a certain type of doctors. Finally, we
infer properties that characterize a participant’s entire dataset
(but not the entire class), e.g., authorship of the texts used to
train a sentiment-analysis model.

IV. INFERENCE ATTACKS

A. Threat model

We assume that K participants (where K ≥ 2) jointly
train an ML model using one of the collaborative learning
algorithms described in Section II-B. One of the participants
is the adversary. His goal is to infer information about
the training data of another, target participant by analyzing
periodic updates to the joint model during training. Multi-
party (K > 2) collaborative learning also involves honest
participants who are neither the adversary, nor the target. In
the multi-party case, the identities of the participants may not
be known to the adversary. Even if the identities are known but
the models are aggregated, the adversary may infer something
about the training data but not trace it to a specific participant;
we discuss this further in Section IX-D.

The updates that adversary observes and uses for inference
depend on both K and how collaborative training is done.

As inputs to his inference algorithms, the adversary uses the
model updates revealed in each round of collaborative training.
For synchronized SGD [52] with K = 2, the adversary
observes gradient updates computed on a single batch of the
target’s data. If K > 2, he observes an aggregation of gradient
updates from all other participants (each computed on a
single batch of the respective participant’s data). For federated
learning with model averaging [35], the observed updates
are the result of two-step aggregation: (1) every participant
aggregates the gradients computed on each local batch, and
(2) the server aggregates the updates from all participants.

For property inference, the adversary needs auxiliary train-
ing data correctly labeled with the property he wants to infer
(e.g., faces labeled with ages if the goal is to infer ages).
For active property inference (Section IV-E), these auxiliary
data points must also be labeled for the main task (e.g., faces
labeled with identities for a facial recognition model).

B. Overview of the attacks

Figure 2 provides a high-level overview of our inference
attacks. At each iteration t of training, the adversary down-
loads the current joint model, calculates gradient updates as
prescribed by the collaborative learning algorithm, and sends



Fig. 2: Overview of inference attacks against collaborative learning.

his own updates to the server. The adversary saves the snapshot
of the joint model parameters θt. The difference between
the consecutive snapshots Δθt = θt − θt−1 =

∑
k Δθkt is

equal to the aggregated updates from all participants, hence
Δθt −Δθadv

t are the aggregated updates from all participants
other than the adversary.

Leakage from the embedding layer. All deep learning models
operating on non-numeric data where the input space is
discrete and sparse (e.g., natural-language text or locations)
first use an embedding layer to transform inputs into a lower-
dimensional vector representation. For convenience, we use
word to denote discrete tokens, i.e., actual words or specific
locations. Let vocabulary V be the set of all words. Each word
in the training data is mapped to a word-embedding vector via
an embedding matrix Wemb ∈ R

|V |×d, where |V | is the size of
the vocabulary and d is the dimensionality of the embedding.

During training, the embedding matrix is treated as a
parameter of the model and optimized collaboratively. The
gradient of the embedding layer is sparse with respect to the
input words: given a batch of text, the embedding is updated
only with the words that appear in the batch. The gradients
of the other words are zeros. This difference directly reveals
which words occur in the training batches used by the honest
participants during collaborative learning.

Leakage from the gradients. In deep learning models, gra-
dients are computed by back-propagating the loss through the
entire network from the last to the first layer. Gradients of a
given layer are computed using this layer’s features and the
error from the layer above. In the case of sequential fully
connected layers hl, hl+1 (hl+1 = Wl · hl, where Wl is the
weight matrix), the gradient of error E with respect to Wl is
computed as ∂E

∂Wl
= ∂E

∂hl+1
· hl. The gradients of Wl are inner

products of the error from the layer above and the features
hl. Similarly, for a convolutional layer, the gradients of the
weights are convolutions of the error from the layer above
and the features hl. Observations of gradient updates can thus
be used to infer feature values, which are in turn based on the
participants’ private training data.

C. Membership inference

As explained above, the non-zero gradients of the embed-
ding layer reveal which words appear in a batch. This helps
infer whether a given text or location appears in the training

dataset or not. Let Vt be the words included in the updates Δθt.
During training, the attacker collects a vocabulary sequence
[V1, . . . , VT ]. Given a text record r, with words Vr, he can
test if Vr ⊆ Vt, for some t in the vocabulary sequence. If r
is in target’s dataset, then Vr will be included in at least one
vocabulary from the sequence. The adversary can use this to
decide whether r was a member or not.

D. Passive property inference

We assume that the adversary has auxiliary data consisting
of the data points that have the property of interest (Dadv

prop) and
data points that do not have the property (Dadv

nonprop). These data
points need to be sampled from the same class as the target
participant’s data, but otherwise can be unrelated.

The intuition behind our attack is that the adversary can
leverage the snapshots of the global model to generate aggre-
gated updates based on the data with the property and updates
based on the data without the property. This produces labeled
examples, which enable the adversary to train a binary batch
property classifier that determines if the observed updates are
based on the data with or without the property. This attack is
passive, i.e., the adversary observes the updates and performs
inference without changing anything in the local or global
collaborative training procedure.

Batch property classifier. Algorithm 3 shows how to build a
batch property classifier during collaborative training. Given a
model snapshot θt, calculate gradients gprop based on a batch
with the property badv

prop ⊂ Dadv
prop and gnonprop based on a batch

without the property badv
nonprop ⊂ Dadv

nonprop. Once enough labeled
gradients have been collected, train a binary classifier fprop.

For the property inference attacks that exploit the
embedding-layer gradients (e.g., the attack on the Yelp dataset
in Section VI-B), we use a logistic regression classifier. For all
other property inference attacks, we experimented with logistic
regression, gradient boosting, and random forests. Random
forests with 50 trees performed the best. The input features
in this case correspond to the observed gradient updates.
The number of the features is thus equal to the model’s
parameters, which can be very large for a realistic model.
To downsample the features representation, we apply the
max pooling operator [21] on the observed gradient updates.
More specifically, max pooling performs a max filter to non-



Algorithm 3 Batch Property Classifier

Inputs: Attacker’s auxiliary data Dadv
prop, D

adv
nonprop

Outputs: Batch property classifier fprop
Gprop ← ∅ � Positive training data for property inference
Gnonprop ← ∅ � Negative training data for property inference
for i = 1 to T do

Receive θt from server
Run ClientUpdate(θt)
Sample badv

prop ⊂ Dadv
prop, b

adv
nonprop ⊂ Dadv

nonprop

Calculate gprop = ∇L(badv
prop; θt), gnonprop = ∇L(badv

nonprop; θt)
Gprop ← Gprop ∪ {gprop}
Gnonprop ← Gnonprop ∪ {gnonprop}

end for
Label Gprop as positive and Gnonprop as negative
Train a binary classifier fprop given Gprop, Gnonprop

overlapping subregions of the initial features representation,
thus reducing the computational cost of the attack.
Inference algorithm. As collaborative training progresses, the
adversary observes gradient updates gobs = Δθt − Δθadv

t .
For single-batch inference, the adversary simply feeds the
observed gradient updates to the batch property classifier fprop.

This attack can be extended from single-batch properties to
the target’s entire training dataset. The batch property classifier
fprop outputs a score in [0,1], indicating the probability that
a batch has the property. The adversary can use the average
score across all iterations to decide whether the target’s entire
dataset has the property in question.

E. Active property inference
An active adversary can perform a more powerful attack

by using multi-task learning. The adversary extends his local
copy of the collaboratively trained model with an augmented
property classifier connected to the last layer. He trains this
model to simultaneously perform well on the main task and
recognize batch properties. On the training data where each
record has a main label y and a property label p, the model’s
joint loss is calculated as:

Lmt = α · L(x, y; θ) + (1− α) · L(x, p; θ)
During collaborative training, the adversary uploads the up-
dates ∇θLmt based on this joint loss, causing the joint model
to learn separable representations for the data with and without
the property. As a result, the gradients will be separable too
(e.g., see Figure 7 in Section VI-E), enabling the adversary to
tell if the training data has the property.

This adversary is still “honest-but-curious” in the cryp-
tographic parlance. He faithfully follows the collaborative
learning protocol and does not submit any malformed mes-
sages. The only difference with the passive attack is that this
adversary performs additional local computations and submits
the resulting values into the collaborative learning protocol.
Note that the “honest-but-curious” model does not constrain
the parties’ input values, only their messages.

V. DATASETS AND MODEL ARCHITECTURES

The datasets, collaborative learning tasks, and adversarial
inference tasks used in our experiments are reported in Table I.

Dataset #Records Main tasks Inference tasks
LFW 13.2k Gender/Smile/Age Race/Eyewear

Eyewear/Race/Hair
FaceScrub 18.8k Gender Identity
PIPA 18.0k Age Gender
CSI 1.4k Sentiment Membership,

Region/Gender/Veracity
FourSquare 15.5k Gender Membership
Yelp-health 17.9k Review score Membership,

Doctor specialty
Yelp-author 16.2K Review score Author

TABLE I: Datasets and tasks used in our experiments.

Our choices of hyperparameters are based on the standard
models from the ML literature.

Labeled Faces In the Wild (LFW). LFW [28] contains 13,233
62x47 RGB face images for 5,749 individuals with labels such
as gender, race, age, hair color, and eyewear.

FaceScrub. FaceScrub [40] contains 76,541 50x50 RGB
images for 530 individuals with the gender label: 52.5% are
labeled as male, the rest as female. For our experiments, we
selected a subset of 100 individuals with the most images, for
a total of 18,809 images.
On both LFW and FaceScrub, the collaborative models are
convolutional neural networks (CNN) with three spatial con-
volution layers with 32, 64, and 128 filters, kernel size set
to (3, 3), and max pooling layers with pooling size set to 2,
followed by two fully connected layers of size 256 and 2. We
use rectified linear unit (ReLU) as the activation function for
all layers. Batch size is 32 (except in the experiments where
we vary it), SGD learning rate is 0.01.

People in Photo Album (PIPA). PIPA [67] contains over
60,000 photos of 2,000 individuals collected from public
Flickr photo albums. Each image includes one or more people
and is labeled with the number of people and their gender,
age, and race. For our experiments, we selected a subset of
18,000 images with three or fewer people and scaled the raw
images to 128x128.

The collaborative model for PIPA is a VGG-style [54]
10-layer CNN with two convolution blocks consisting of
one convolutional layer and max pooling, followed by three
convolution blocks consisting of two convolutional layers and
max pooling, followed by two fully connected layers. Batch
size is 32, SGD learning rate is 0.01.

Yelp-health. We extracted health care-related reviews from the
Yelp dataset1 of 5 million reviews of businesses tagged with
numeric ratings (1-5) and attributes such as business type and
location. Our subset contains 17,938 reviews for 10 types of
medical specialists (see the leftmost column of Table IV).

Yelp-author. We also extracted a Yelp subset with the reviews
of the top 10 most prolific reviewers, 16,207 in total.

On both Yelp datasets, the model is a recurrent neural net-
work with a word-embedding layer of dimension 100. Words
in a review are mapped to a sequence of word-embedding
vectors, which is fed to a gated recurrent unit (GRU [10])

1https://www.yelp.com/dataset



layer that maps it to a sequence of hidden vectors. We add a
fully connected classification layer to the last hidden vector of
the sequence. SGD learning rate is 0.05.

FourSquare. In [63, 64], Yang et al. collected a global
dataset of FourSquare location “check-ins” (userID, time,
location, activity) from April 2012 to September 2013. For
our experiments, we selected a subset of 15,548 users who
checked in at least 10 different locations in New York City
and for whom we know their gender [65]. This yields 528,878
check-ins. The model is a gender classifier, a task previously
studied by Pang et al. [44] on similar datasets.

CLiPS Stylometry Investigation (CSI) Corpus. This annually
expanded dataset [60] contains student-written essays and
reviews. We obtained 1,412 reviews, equally split between
Truthful/Deceptive or Positive/Negative and labeled with at-
tributes of the author (gender, age, sexual orientation, region
of origin, personality profile) and the document (timestamp,
genre, topic, veracity, sentiment). 80% of the reviews are
written by females, 66% by authors from Antwerpen, the rest
from other parts of Belgium and the Netherlands.

On both the FourSquare and CSI datasets, the model, which
is based on [31], first uses an embedding layer to turn non-
negative integers (locations indices and word tokens) into
dense vectors of dimension 320, then applies three spatial con-
volutional layers with 100 filters and variable kernel windows
of size (3, 320), (4, 320) and (5, 320) and max pooling layers
with pooling size set to (l−3, 1), (l−4, 1), and (l−5, 1) where
l is the fixed length to which input sequences are padded. The
hyperparameter l is 300 on CSI and 100 on FourSquare. After
this, the model has two fully connected layers of size 128 and
2 for FourSquare and one fully connected layer of size 2 for
CSI. We use RELU as the activation function. Batch size is
100 for FourSquare, 12 for CSI. SGD learning rate is 0.01.

VI. TWO-PARTY EXPERIMENTS

All experiments were performed on a workstation running
Ubuntu Server 16.04 LTS equipped with a 3.4GHz CPU i7-
6800K, 32GB RAM, and an NVIDIA TitanX GPU card.
We use MxNet [8] and Lasagne [12] to implement deep
neural networks and Scikit-learn [48] for conventional ML
models. The source code is available upon request. Training
our inference models takes less than 60 seconds on average
and does not require a GPU.

We use AUC scores to evaluate the performance of both
the collaborative model and our property inference attacks.
For membership inference, we report only precision because
our decision rule from Section IV-C is binary and does not
produce a probability score.

A. Membership inference

The adversary first builds a Bag of Words (BoW) represen-
tation for the input whose membership in the target’s training
data he aims to infer. We denote this as the test BoW. During
training, as explained in Section IV-C, the non-zero gradients
of the embedding layer reveal which “words” are present in

Yelp-health FourSquare
Batch Size Precision Batch Size Precision

32 0.92 100 0.99
64 0.84 200 0.98

128 0.75 500 0.91
256 0.66 1,000 0.76
512 0.62 2,000 0.62

TABLE II: Precision of membership inference (recall is 1).

Main T. Infer T. Corr. AUC Main T. Infer T. Corr. AUC
Gender Black -0.005 1.0 Gender Sunglasses -0.025 1.0
Gender Asian -0.018 0.93 Gender Eyeglasses 0.157 0.94
Smile Black 0.062 1.0 Smile Sunglasses -0.016 1.0
Smile Asian 0.047 0.93 Smile Eyeglasses -0.083 0.97
Age Black -0.084 1.0 Race Sunglasses 0.026 1.0
Age Asian -0.078 0.97 Race Eyeglasses -0.116 0.96
Eyewear Black 0.034 1.0 Hair Sunglasses -0.013 1.0
Eyewear Asian -0.119 0.91 Hair Eyeglasses 0.139 0.96

TABLE III: AUC score of single-batch property inference on LFW.
We also report the Pearson correlation between the main task label
and the property label.

each batch of the target’s data, enabling the adversary to build
a batch BoW. If the test BoW is a subset of the batch BoW, the
adversary infers that the input of interest occurs in the batch.

We evaluate membership inference on the Yelp-health and
FourSquare datasets with the vocabulary of 5,000 most fre-
quent words and 30,000 most popular locations, respectively.
We split the data evenly between the target and the adversary
and train a collaborative model for 3,000 iterations.

Table II shows the precision of membership inference for
different batch sizes. As batch size increases, the adversary
observes more words in each batch BoW and the attack
produces more false positives. Recall is always perfect (i.e., no
false negatives) because any true test BoW must be contained
in at least one of the batch BoWs observed by the adversary.

B. Single-batch property inference

We call a training batch bnonprop if none of the inputs in
it have the property, bprop otherwise. The adversary aims to
identify which of the batches are bprop. We split the training
data evenly between the target and the adversary and assume
that the same fraction of inputs in both subsets have the
property. During training, 1

m of the target’s batches include
only inputs with the property (m = 2 in the following).

LFW. Table III reports the results of single-batch property
inference on the LFW dataset. We chose properties that
are uncorrelated with the main classification label that the
collaborative model is trying to learn. The attack has perfect
AUC when the main task is gender classification and the
inference task is “race:black” (the Pearson correlation between
these labels is -0.005). The attack also achieves almost perfect
AUC when the main task is “race: black” and the inference
task is “eyewear: sunglasses.” It also performs well on several
other properties, including “eyewear: glasses” when the main
task is “race: Asian.”

These results demonstrate that gradients observed during
training leak more than the characteristic features of each
class. In fact, collaborative learning leaks properties of the



(a) pool1 (b) pool2 (c) pool3 (d) fc

Fig. 3: t-SNE projection of the features from different layers of the joint model on LFW gender classification; hollow circle point is female,
solid triangle point is male, blue point is the property “race: black” and red point is data without the property.

(a) FaceScrub (b) Yelp-author

Fig. 4: AUC vs. the fraction of the batch that has the property on FaceScrub and Yelp-author.

Health Service Top Words in Positive Class
Obstetricians pregnancy, delivery, women, birth, ultrasound
Pediatricians pediatrics, sick, parents, kid, newborn
Cosmetic Surgeons augmentation, plastic, breast, facial, implants
Cardiologists cardiologist, monitor, bed, heart, ER
Dermatologists acne, dermatologists, mole, cancer, spots
Ophthalmologists vision, LASIK, contacts, lenses, frames
Orthopedists knee, orthopedic, shoulder, injury, therapy
Radiologists imaging, SimonMed, mammogram, CT, MRI
Psychiatrists psychiatrist, mental, Zedek, depression, sessions
Urologists Edgepark, pump, supplies, urologist, kidney

TABLE IV: Words with the largest positive coefficients in the
property classifier for Yelp-health.

training data that are uncorrelated with class membership.
To understand why, we plot the t-SNE projection [59] of the
features from different layers of the joint model in Figure 3.
Observe that the feature vectors are grouped by property in
the lower layers pool1, pool2 and pool3, and by class label
in the higher layer. Intuitively, the model did not just learn
to separate inputs by class. The lower layers of the model
also learned to separate inputs by various properties that are
uncorrelated with the model’s designated task. Our inference
attack exploits this unintended extra functionality.

Yelp-health. On this dataset, we use review-score classifica-
tion as the main task and the specialty of the doctor being
reviewed as the property inference task. Obviously, the latter
is more sensitive from the privacy perspective.

We use 3,000 most frequent words in the corpus as the
vocabulary and train for 3,000 iterations. Using BoWs from
the embedding-layer gradients, the attack achieves almost

perfect AUC. Table IV shows the words that have the highest
predictive power in our logistic regression.

Fractional properties. We now attempt to infer that some of
the inputs in a batch have the property. For these experiments,
we use FaceScrub’s top 5 face IDs and Yelp-author (the latter
with the 3,000 most frequent words as the vocabulary). The
model is trained for 3,000 iterations. As before, 1/2 of the
target’s batches include inputs with the property, but here we
vary the fraction of inputs with the property within each such
batch among 0.1, 0.3, 0.5, 0.7, and 0.9.

Figure 4 reports the results. On FaceScrub for IDs 0, 1, and
3, AUC scores are above 0.8 even if only 50% of the batch
contain that face, i.e., the adversary can successfully infer that
photos of a particular person appear in a batch even though
(a) the model is trained for generic gender classification, and
(b) half of the photos in the batch are of other people. If the
fraction is higher, AUC approaches 1.

On Yelp-author, AUC scores are above 0.95 for all identities
even when the fraction is 0.3, i.e., the attack successfully infers
the authors of reviews even though (a) the model is trained
for generic sentiment analysis, and (b) more than two thirds
of the reviews in the batch are from other authors.

C. Inferring when a property occurs

Continuous training, when new training data is added
to the process as it becomes available, presents interesting
opportunities for inference attacks. If the occurrences of a
property in the training data can be linked to events outside the
training process, privacy violation is exacerbated. For example,
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Fig. 5: Inferring occurrence of a single-batch property.

suppose a model leaks that a certain third person started
appearing in another participant’s training data immediately
after that participant uploaded his photos from a trip.

PIPA. Images in the PIPA dataset have between 1 to 3
faces. We train the collaborative model to detect if there is
a young adult in the image; the adversary’s inference task is
to determine if people in the image are of the same gender.
The latter property is a stepping stone to inferring social
relationships and thus sensitive. We train the model for 2,500
iterations and let the batches with the “same gender” property
appear in iterations 500 to 1500.

Figure 5a shows, for each iteration, the probability output by
the adversary’s classifier that the batch in that iteration has the
property. The appearance and disappearance of the property in
the training data are clearly visible in the plot.

FaceScrub. For the gender classification model on FaceScrub,
the adversary’s objective is to infer whether and when a certain
person appears in the other participant’s photos. The joint
model is trained for 2,500 iterations. We arrange the target’s
training data so that two specific identities appear during
certain iterations: ID 0 in iterations 0 to 500 and 1500 to 2000,
ID 1 in iterations 500 to 1000 and 2000 to 2500. The rest of the
batches are mixtures of other identities. The adversary trains
three property classifiers, for ID 0, ID 1, and also for ID 2
which does not appear in the target’s dataset.

Figure 5b reports the scores of all three classifiers. ID 0
and 1 receive the highest scores in the iterations where they
appear, whereas ID 2, which never appears in the training data,
receives very low scores in all iterations.

These experiments show that our attacks can successfully
infer dynamic properties of the training dataset as collaborative
learning progresses.

D. Inference against well-generalized models
To show that our attacks work with (1) relatively few ob-

served model updates and (2) against well-generalized models,
we experiment with the CSI corpus. Figure 6 reports the
accuracy of inferring the author’s gender. The attack reaches
0.98 AUC after only 2 epochs and improves as the training
progresses and the adversary collects more updates.

Figure 6 also shows that the model is not overfitted. Its
test accuracy on the main sentiment-analysis task is high and
improves with the number of the epochs.

Fig. 6: Attack performance with respect to the number of collabora-
tive learning epochs.

E. Active property inference

To show the additional power of the active attack from Sec-
tion IV-E, we use FaceScrub. The main task is gender classi-
fication, the adversary’s task is to infer the presence of ID 4
in the training data. We assume that this ID occurs in a single
batch, where it constitutes 50% of the photos. We evaluate the
attack with different choices of α, which controls the balance
between the main-task loss and the property-classification loss
in the adversary’s objective function.

Figure 7a shows that AUC increases as we increase α.
Figure 7b and Figure 7c show the t-SNE projection of the final
fully connected layer, with α = 0 and α = 0.7, respectively.
Observe that the data with the property (blue points) is grouped
tighter when α = 0.7 than in the model trained under a passive
attack (α = 0). This illustrates that as a result of the active
attack, the joint model learns a better separation for data with
and without the property.

VII. MULTI-PARTY EXPERIMENTS

In the multi-party setting, we only consider passive prop-
erty inference attacks. We vary the number of participants
between 4 and 30 to match the deployment scenarios and
applications proposed for collaborative learning, e.g., hospitals
or biomedical research institutions training on private medical
data [29, 30]. This is similar to prior work [25], which was
evaluated on MNIST with 2 participants and face recognition
on the AT&T dataset with 41 participants.



(a) ROC for different α (b) t-SNE of the final layer for α = 0 (c) t-SNE of the final layer for α = 0.7.

Fig. 7: Active property inference attack on FaceScrub. For (b) and (c), hollow circle point is female, solid triangle point is male, blue point
is the property “ID 4” and red point is data without the property.

(a) LFW (b) Yelp-author

Fig. 8: Multi-party learning with synchronized SGD: attack AUC score vs. the number of participants.

A. Synchronized SGD

As the number of honest participants in collaborative learn-
ing increases, the adversary’s task becomes harder because
the observed gradient updates are aggregated across multiple
participants. Furthermore, the inferred information may not
directly reveal the identity of the participant to whom the data
belongs (see Section IX-D).

In the following experiments, we split the training data
evenly across all participants, but so that only the target
and the adversary have the data with the property. The joint
model is trained with the same hyperparameters as in the two-
party case. Similar to Section VI-B, the adversary’s goal is
to identify which aggregated gradient updates are based on
batches bprop with the property.

LFW. We experiment with (1) gender classification as the
main task and “race: black” as the inference task, and (2)
smile classification as the main task and “eyewear: sunglasses”
as the inference task. Figure 8a shows that the attack still
achieves reasonably high performance, with AUC score around
0.8, when the number of participants is 12. Performance then
degrades for both tasks.

Yelp-author. The inference task is again author identification.
In the multi-party case, the gradients of the embedding layer
leak the batch BoWs of all honest participants, not just
the target. Figure 8b reports the results. For some authors,
AUC scores do not degrade significantly even with many
participants. This is likely due to some unique combinations

of words used by these authors, which identify them even in
multi-party settings.

B. Model averaging

In every round t of federated learning with model averaging
(see Algorithm 2), the adversary observes θt − θt−1 =
∑

k
nk

n θkt −
∑

k
nk

n θkt−1 =
∑

k
nk

n (θkt −θkt−1), where θkt −θkt−1

are the aggregated gradients computed on the k-th participant’s
local dataset.

In our experiments, we split the training data evenly among
honest participants but ensure that in the target participant’s
subset, p̂% of the inputs have the property, while none of the
other honest participants’ data have it. During each epoch of
local training, every honest participant splits his local training
data into 10 batches and performs one round of training.

We assume that the adversary has the same number of inputs
with the property as the target. As before, when the adversary
trains his binary classifier, he needs to locally “emulate” the
collaborative training process, i.e., sample data from his local
dataset, compute aggregated updates, and learn to distinguish
between the aggregates based on the data without the property
and aggregates where one of the underlying updates was based
on the data with the property.

We perform 8 trials where a subset of the training data has
the property and 8 control trials where there are no training
inputs with the property.

Inferring presence of a face. We use FaceScrub and select
two face IDs (1 and 3) whose presence we want to infer.



(a) Face ID 1, K = 3 (b) Face ID 1, K = 5 (c) Face ID 3, K = 3 (d) Face ID 3, K = 5

Fig. 9: Multi-party learning with model averaging. Box plots show the distribution of the adversary’s scores in each trial: in the 8 trials on
the left, one participant’s data has the property; in the 8 trials on the right, none of the honest participants have the data with the property.

Fig. 10: Inferring that a participant whose local data has the property
of interest has joined the training. K = 2 for rounds 0 to 250, K = 3
for rounds 250 to 500.

Property / % parameters update 10% 50% 100%
Top region (Antwerpen) 0.84 0.86 0.93
Gender 0.90 0.91 0.93
Veracity 0.94 0.99 0.99

TABLE V: Inference attacks against the CSI Corpus for different
fractions of gradients shared during training.

In the “property” case, p̂ = 80%, i.e., 80% of one honest
participant’s training data consist of the photos that depict
the person in question. In the control case, p̂ = 0%, i.e., the
photos of this person do not occur in the training data. Figure 9
shows the scores assigned by the adversary’s classifier to the
aggregated updates with 3 and 5 total participants. When the
face in question is present in the training dataset, the scores
are much higher than when it is absent.

Success of the attack depends on the property being in-
ferred, distribution of the data across participants, and other
factors. For example, the classifiers for Face IDs 2 and 4,
which were trained in the same fashion as the classifiers
for Face IDs 1 and 3, failed to infer the presence of the
corresponding faces in the training data.

Inferring when a face occurs. In this experiment, we aim to
infer when a participant whose local data has a certain property
joined collaborative training. We first let the adversary and
the rest of the honest participants train the joint model for
250 rounds. The target participant then joins the training at
round t = 250 with the local data that consists of photos
depicting ID 1. Figure 10 reports the results of the experiment:
the adversary’s AUC scores are around 0 when face ID 1 is not
present and then increase almost to 1.0 right after the target
participant joins the training.

Fig. 11: Uniqueness of user profiles with respect to the number of
top locations.

VIII. DEFENSES

A. Sharing fewer gradients

As suggested in [52], participants in collaborative learning
could share only a fraction of their gradients during each
update. This reduces communication overhead and, potentially,
leakage, since the adversary observes fewer gradients.

To evaluate this defense, we measure the performance of
single-batch inference against a sentiment classifier collabora-
tively trained on the CSI Corpus by two parties who exchange
only a fraction of their gradients. Table V shows the resulting
AUC scores: when inferring the region of the texts’ authors,
our attack still achieves 0.84 AUC when only 10% of the
updates are shared during each iteration, compared to 0.93
AUC when all updates are shared.

B. Dimensionality reduction

As discussed in Section IV-B, if the input space of the
model is sparse and inputs must be embedded into a lower-
dimensional space, non-zero gradient updates in the embed-
ding layer reveal which inputs are present in the training batch.

One plausible defense is to only use inputs that occur many
times in the training data. This does not work in general, e.g.,
Figure 11 shows that restricting inputs to the top locations in
the FourSquare dataset eliminates most of the training data.

A smarter defense is to restrict the model so that it only uses
“words” from a pre-defined vocabulary of common words. For
example, Google’s federated learning for predictive keyboards
uses a fixed vocabulary of 5,000 words [35]. In Table VI,
we report the accuracy of our membership inference attack



CSI FourSquare
Top N Attack Model Top N Attack Model
words Precision AUC locations Precision AUC
4,000 0.94 0.91 30,000 0.91 0.64
2,000 0.92 0.87 10,000 0.86 0.59
1,000 0.92 0.85 3,000 0.65 0.51

500 0.82 0.84 1,000 0.52 0.50

TABLE VI: Membership inference against the CSI Corpus and
FourSquare for different vocabulary sizes.

Dropout Prob. Attack AUC Model AUC
0.1 0.94 0.87
0.3 0.97 0.87
0.5 0.98 0.87
0.7 0.99 0.86
0.9 0.99 0.84

TABLE VII: Inference of the top region (Antwerpen) on the CSI
Corpus for different values of dropout probability.

and the accuracy of the joint model on its main task—gender
classification for the FourSquare dataset, sentiment analysis for
the CSI Corpus—for different sizes of the common vocabulary
(locations and words, respectively). This approach partially
mitigates our attacks but also has a significant negative impact
on the quality of the collaboratively trained models.

C. Dropout

Another possible defense is to employ dropout [56], a
popular regularization technique used to mitigate overfitting
in neural networks. Dropout randomly deactivates activations
between neurons, with probability pdrop ∈ [0, 1]. Random
deactivations may weaken our attacks because the adversary
observes fewer gradients corresponding to the active neurons.

To evaluate this approach, we add dropout after the max
pool layers in the joint model. Table VII reports the accuracy
of inferring the region of the reviews in the CSI Corpus, for
different values of pdrop. Increasing the randomness of dropout
makes our attacks stronger while slightly decreasing the
accuracy of the joint model. Dropout stochastically removes
features at every collaborative training step, thus yielding more
informative features (similar to feature bagging [7, 26]) and
increasing variance between participants’ updates.

D. Participant-level differential privacy

As discussed in Section II-B, record-level ε-differential
privacy, by definition, bounds the success of membership
inference but does not prevent property inference. Any applica-
tion of differential privacy entails application-specific tradeoffs
between privacy of the training data and accuracy of the
resulting model. The participants must also somehow choose
the parameters (e.g., ε) that control this tradeoff.

In theory, participant-level differential privacy bounds the
success of inference attacks described in this paper. We im-
plemented the participant-level differentially private federated
learning algorithm by McMahan et al. [36] and attempted
to train a gender classifier on LFW, but the model did
not converge for any number of participants (we tried at
most 30). This is due to the magnitude of noise needed
to achieve differential privacy with the moments accountant

bound [1], which is inversely proportional to the number
of users (the model in [36] was trained on thousands of
users). Another participant-level differential privacy mecha-
nism, presented in [20], also requires a very large number of
participants. Moreover, these two mechanisms have been used,
respectively, for language modeling [36] and handwritten digit
recognition [20]. Adapting them to the specific models and
tasks considered in this paper may not be straightforward.

Following [20, 36], we believe that participant-level dif-
ferential privacy provide reasonable accuracy only in settings
involving at least thousands of participants. We believe that
further work is needed to investigate whether participant-level
differential privacy can be adapted to prevent our inference
attacks and obtain high-quality models in settings that do not
involve thousands of users.

IX. LIMITATIONS OF THE ATTACKS

A. Auxiliary data

Our property inference attacks assume that the adversary
has auxiliary training data correctly labeled with the property
he wants to infer. For generic properties, such data is easy to
find. For example, the auxiliary data for inferring the number
and genders of people can be any large dataset of images
with males and females, single and in groups, where each
image is labeled with the number of people in it and their
genders. Similarly, the auxiliary data for inferring the medical
specialty of doctors can consist of any texts that include words
characteristic of different specialties (see Table IV).

More targeted inference attacks require specialized auxiliary
data that may not be available to the adversary. For example,
to infer that photos of a certain person occurs in another
participant’s dataset, the adversary needs (possibly different)
photos of that person to train on. To infer the authorship of
training texts, the adversary needs a sufficiently large sample
of texts known to be written by a particular author.

B. Number of participants

In our experiments, the number of participants in collab-
orative training is relatively small (ranging from 2 to 30),
while some federated-learning applications involve thousands
or millions of users [35, 36]. As discussed in Section VII-A,
performance of our attacks drops significantly as the number
of participants increases.

C. Undetectable properties

It may not be possible to infer some properties from model
updates. For example, our attack did not detect the presence
of some face identities in the multi-party model averaging
experiments (Section VII-B). If for whatever reason the model
does not internally separate the features associated with the
target property, inference will fail.

D. Attribution of inferred properties

In the two-party scenarios considered in Section VI, attri-
bution of the inferred properties is trivial because there is only
one honest participant. In the multi-party scenarios considered



in Section VII, model updates are aggregated. Therefore, even
if the adversary successfully infers the presence of inputs with
a certain property in the training data, he may not be able to
attribute these inputs to a specific participant. Furthermore, he
may not be able to tell if all inputs with the property belong to
one participant or are distributed across multiple participants.

In general, attribution requires auxiliary information specific
to the leakage. For example, consider face identification. In
some applications of collaborative learning, the identities of
all participants are known because they need to communicate
with each other. If collaborative learning leaks that a particular
person appears in the training images, auxiliary information
about the participants (e.g., their social networks) can reveal
which of them knows the person in question. Similarly, if
collaborative learning leaks the authorship of the training texts,
auxiliary information can help infer which participant is likely
to train on texts written by this author.

Another example of attribution based on auxiliary infor-
mation is described in Section VI-C. If photos of a certain
person first appear in the training data after a new participant
has joined collaborative training, the adversary may attribute
these photos to the new participant.

Note that leakage of medical conditions, locations, images
of individuals, or texts written by known authors is a privacy
breach even if it cannot be traced to a specific participant or
multiple participants. Leaking that a certain person appears
in the photos or just the number of people in the photos
reveals intimate relationships between people. Locations can
reveal people’s addresses, religion, sexual orientation, and
relationships with other people.

X. RELATED WORK

Privacy-preserving distributed learning. Transfer learning
in combination with differentially private (DP) techniques
tailored for deep learning [1] has been used in [45, 46]. These
techniques privately train a “student” model by transferring,
through noisy aggregation, the knowledge of an ensemble of
“teachers” trained on the disjoint subsets of training data.
These are centralized, record-level DP mechanisms with a
trusted aggregator and do not apply to federated or collab-
orative learning. In particular, [45, 46] assume that the adver-
sary cannot see the individual models, only the final model
trained by the trusted aggregator. Moreover, record-level DP
by definition does not prevent property inference. Finally, their
effectiveness has been demonstrated only on a few specific
tasks (MNIST, SVHN, OCR), which are substantially different
from the tasks considered in this paper.

Shokri and Shmatikov [52] propose making gradient up-
dates differentially private to protect the training data. Their
approach requires extremely large values of the ε parameter
(and consequently little privacy protection) to produce an
accurate joint model. More recently, participant-level differ-
entially private federated learning methods [20, 36] showed
how to protect participants’ training data by adding Gaussian
noise to local updates. As discussed in Section VIII-D, these
approaches require a large number of users (on the order

of thousands) for the training to converge and achieve an
acceptable trade-off between privacy and model performance.
Furthermore, the results in [36] are reported for a specific
language model and use AccuracyTop1 as the proxy, not the
actual accuracy of the non-private model.

Pathak et al. [47] present a differentially private global
classifier hosted by a trusted third-party and based on locally
trained classifiers held by separate, mutually distrusting par-
ties. Hamm et al. [23] use knowledge transfer to combine a
collection of models trained on individual devices into a single
model, with differential privacy guarantees.

Secure multi-party computation (MPC) has also been used
to build privacy-preserving neural networks in a distributed
fashion. For example, SecureML [37] starts with the data
owners (clients) distributing their private training inputs among
two non-colluding servers during the setup phase; the two
servers then use MPC to train a global model on the clients’
encrypted joint data. Bonawitz et al. [5] use secure multi-party
aggregation techniques, tailored for federated learning, to let
participants encrypt their updates so that the central parameter
server only recovers the sum of the updates. In Section VII-B,
we showed that inference attacks can be successful even if the
adversary only observes aggregated updates.

Membership inference. Prior work demonstrated the feasi-
bility of membership inference from aggregate statistics, e.g.,
in the context of genomic studies [3, 27], location time-
series [50], or noisy statistics in general [14].

Membership inference against black-box ML models has
also been studied extensively in recent work. Shokri et al. [53]
demonstrate membership inference against black-box super-
vised models, exploiting the differences in the models’ outputs
on training and non-training inputs. Hayes et al. [24] focus
on generative models in machine-learning-as-a-service appli-
cations and train GANs [22] to detect overfitting and recognize
training inputs. Long et al. [34] and Yeom et al. [66] study
the relationship between overfitting and information leakage.

Truex et al. [58] extend [53] to a more general setting and
show how membership inference attacks are data-driven and
largely transferable. They also show that an adversary who
participates in collaborative learning, with access to individual
model updates from all honest participants, can boost the
performance of membership inference vs. a centralized model.
Nasr et al. [39] design a privacy mechanism to adversarially
train centralized machine learning models with provable pro-
tections against membership inference.

Other attacks on machine learning models. Several tech-
niques infer class features and/or construct class represen-
tatives if the adversary has black-box [16, 17] or white-
box [2] access to a classifier model. As discussed in detail
in Section III, these techniques infer features that characterize
an entire class and not specifically the training data, except in
the cases of pathological overfitting where the training sample
constitutes the entire membership of the class.

Hitaj et al. [25] show that a participant in collaborative deep
learning can use GANs to construct class representatives. Their



technique was evaluated only on models where all members
of the same class are visually similar (handwritten digits and
faces). As discussed in Section III-A, there is no evidence that
it produces actual training images or can distinguish a training
image and another image from the same class.

The informal property violated by the attacks of [2, 16, 17,
25] is: “a classifier should prevent users from generating an
input that belongs to a particular class or even learning what
such an input looks like.” It is not clear to us why this property
is desirable, or whether it is even achievable.

Aono et al. [49] show that, in the collaborative deep learning
protocol of [52], an honest-but-curious server can partially
recover participants’ training inputs from their gradient up-
dates under the (greatly simplified) assumption that the batch
consists of a single input. Furthermore, the technique is
evaluated only on MNIST where all class members are visually
similar. It is not clear if it can distinguish a training image and
another image from the same MNIST class.

Song et al. [55] engineer an ML model that memorizes
the training data, which can then be extracted with black-
box access to the model. Carlini et al. [6] show that deep
learning-based generative sequence models trained on text data
can unintentionally memorize training inputs, which can then
be extracted with black-box access. They demonstrate this
for sequences of digits artificially introduced into the text,
which are not affected by the relative word frequencies in
the language model.

Training data that is explicitly incorporated or otherwise
memorized in the model can also be leaked by model stealing
attacks [41, 57, 61].

Concurrently with this work, Ganju et al. [18] developed
property inference attacks against fully connected, relatively
shallow neural networks. They focus on the post-training,
white-box release of models trained on sensitive data, as
opposed to collaborative training. In contrast to our attacks,
the properties inferred in [18] may be correlated with the main
task. Evaluation is limited to simple datasets and tasks such as
MNIST, U.S. Census tabular data, and hardware performance
counters with short features.

XI. CONCLUSION

In this paper, we proposed and evaluated several inference
attacks against collaborative learning. These attacks enable a
malicious participant to infer not only membership, i.e., the
presence of exact data points in other participants’ training
data, but also properties that characterize subsets of the
training data and are independent of the properties that the
joint model aims to capture.

Deep learning models appear to internally recognize many
features of the data that are uncorrelated with the tasks they
are being trained for. Consequently, model updates during
collaborative learning leak information about these “unin-
tended” features to adversarial participants. Active attacks are
potentially very powerful in this setting because they enable
the adversary to trick the joint model into learning features of

the adversary’s choosing without a significant impact on the
model’s performance on its main task.

Our results suggest that leakage of unintended features
exposes collaborative learning to powerful inference attacks.
We also showed that defenses such as selective gradient
sharing, reducing dimensionality, and dropout are not effective.
This should motivate future work on better defenses. For
instance, techniques that learn only the features relevant to
a given task [15, 42, 43] can potentially serve as the basis
for “least-privilege” collaboratively trained models. Further, it
may be possible to detect active attacks that manipulate the
model into learning extra features. Finally, it remains an open
question if participant-level differential privacy mechanisms
can produce accurate models when collaborative learning
involves relatively few participants.
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under the GAN: Information leakage from collaborative
deep learning. In CCS, 2017.

[26] T. K. Ho. Random decision forests. In DAR, 1995.
[27] N. Homer, S. Szelinger, M. Redman, D. Duggan,

W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan,
S. F. Nelson, and D. W. Craig. Resolving individuals
contributing trace amounts of DNA to highly complex
mixtures using high-density SNP genotyping microar-
rays. PLoS Genetics, 4(8), 2008.

[28] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-
Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments.
Technical Report 07–49, University of Massachusetts,

Amherst, 2007.
[29] A. Jochems, T. M. Deist, I. El Naqa, M. Kessler,

C. Mayo, J. Reeves, S. Jolly, M. Matuszak, R. Ten Haken,
J. van Soest, et al. Developing and validating a survival
prediction model for NSCLC patients through distributed
learning across 3 countries. Int J Radiat Oncol Biol Phys,
99(2):344–352, 2017.

[30] A. Jochems, T. M. Deist, J. Van Soest, M. Eble, P. Bu-
lens, P. Coucke, W. Dries, P. Lambin, and A. Dekker. Dis-
tributed learning: Developing a predictive model based
on data from multiple hospitals without data leaving the
hospital–a real life proof of concept. Radiother Oncol,
121(3):459–467, 2016.

[31] Y. Kim. Convolutional neural networks for sentence
classification. arXiv:1408.5882, 2014.

[32] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 2015.

[33] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. In ICLR, 2018.

[34] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang,
H. Tang, C. A. Gunter, and K. Chen. Understand-
ing membership inferences on well-generalized learning
models. arXiv:1802.04889, 2018.

[35] H. B. McMahan, E. Moore, D. Ramage, S. Hampson,
et al. Communication-efficient learning of deep networks
from decentralized data. In AISTATS, 2017.

[36] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang.
Learning differentially private language models without
losing accuracy. In ICLR, 2018.

[37] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In S&P,
2017.

[38] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jor-
dan. SparkNet: Training deep networks in Spark.
arXiv:1511.06051, 2015.

[39] M. Nasr, R. Shokri, and A. Houmansadr. Machine
learning with membership privacy using adversarial reg-
ularization. In CCS, 2018.

[40] H.-W. Ng and S. Winkler. A data-driven approach to
cleaning large face datasets. In ICIP, 2014.

[41] S. J. Oh, M. Augustin, M. Fritz, and B. Schiele. Towards
reverse-engineering black-box neural networks. In ICLR,
2018.

[42] S. A. Osia, A. S. Shamsabadi, A. Taheri, K. Katevas,
S. Sajadmanesh, H. R. Rabiee, N. D. Lane, and H. Had-
dadi. A hybrid deep learning architecture for privacy-
preserving mobile analytics. arXiv:1703.02952, 2017.

[43] S. A. Osia, A. Taheri, A. S. Shamsabadi, K. Katevas,
H. Haddadi, and H. R. Rabiee. Deep private-feature
extraction. TKDE, 2019.

[44] J. Pang and Y. Zhang. DeepCity: A feature learning
framework for mining location check-ins. In ICWSM
(Poster Papers), 2017.

[45] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and
K. Talwar. Semi-supervised knowledge transfer for deep



learning from private training data. In ICLR, 2017.
[46] N. Papernot, S. Song, I. Mironov, A. Raghunathan,
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