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Abstract—A multi-signature scheme allows a group of signers
to collaboratively sign a message, creating a single signature that
convinces a verifier that every individual signer approved the
message. The increased interest in technologies to decentralize
trust has triggered the proposal of highly efficient two-round
Schnorr-based multi-signature schemes designed to scale up to
thousands of signers, namely BCJ by Bagherzandi et al. (CCS
2008), MWLD by Ma et al. (DCC 2010), CoSi by Syta et al. (S&P
2016), and MuSig by Maxwell et al. (ePrint 2018). In this work,
we point out serious security issues in all currently known
two-round multi-signature schemes (without pairings). First, we
prove that none of the schemes can be proved secure without
radically departing from currently known techniques. Namely,
we show that if the one-more discrete-logarithm problem is
hard, then no algebraic reduction exists that proves any of
these schemes secure under the discrete-logarithm or one-more
discrete-logarithm problem. We point out subtle flaws in the
published security proofs of the above schemes (except CoSi,
which was not proved secure) to clarify the contradiction between
our result and the existing proofs. Next, we describe practical sub-
exponential attacks on all schemes, providing further evidence
to their insecurity. Being left without two-round multi-signature
schemes, we present mBCJ, a variant of the BCJ scheme that
we prove secure under the discrete-logarithm assumption in the
random-oracle model. Our experiments show that mBCJ barely
affects scalability compared to CoSi, allowing 16384 signers to
collaboratively sign a message in about 2 seconds, making it a
highly practical and provably secure alternative for large-scale
deployments.

1. INTRODUCTION

A multi-signature scheme allows a group of signers, each
having their own key pair (pk i, sk i), to collaboratively sign a
single message m. The result is a single signature σ that can be
verified using the set of public keys {pk1, . . . , pkn}, assuring
a verifier that every signer approved message m. While multi-
signature schemes have been studied for decades [IN83],
[OO93], [MOR01], [Bol03], [LOS+06], [BN06], [BCJ08],
[MWLD10], they have recently received renewed interest
because of the rise of distributed applications that aim to
decentralize trust such as Bitcoin [Nak08] and more generally
blockchain. Such applications typically involve many users or
nodes that need to approve particular actions, which naturally
matches the multi-signature setting where many signers must
collaborate in order to create a joint multi-signature.

Motivated by such applications, Syta et al. [STV+16] pre-
sented the CoSi multi-signature scheme, a highly scalable
multi-signature scheme that allows a tree of 8192 signers
to sign in less than two seconds. Since its recent intro-
duction, CoSi has already led to a large body of follow-
up work, including a distributed protocol to create secure
randomness [SJKK+17], improving the scalability of Bit-
coin [SJKK+17], and introducing a decentralized software
update framework [NKJ+17].

More recently, the Bitcoin community is actively looking
into integrating Schnorr signatures as these could support
multi-signatures and aggregate signatures, allowing many
signatures that go into the same block to be merged
into one, significantly reducing the overall size of the
blockchain [bit17]. To this end, Maxwell et al. published
the MuSig scheme [MPSW18a] that is tailored specifically
to the needs of Bitcoin. The MuSig scheme was presented
with a security proof under the one-more discrete-logarithm
assumption, while the security of CoSi was never formally
analyzed.

One of the main problems when designing provably secure
Schnorr-based multi-signature schemes is that in order to
simulate the honest signer, the reduction cannot simply use
the zero-knowledge property and program the random oracle,
because the random-oracle entry that must be programmed
depends on the output of the adversarial signers. Bellare
and Neven [BN06] got around this issue by introducing
a preliminary round in the signing protocol where signers
exchange commitments to their first rounds. Bagherzandi et
al.’s BCJ scheme [BCJ08] eliminated the need for this extra
round by using homomorphic trapdoor commitments, while
Ma et al.’s MWLD scheme [MWLD10] simulates signatures
by exploiting the witness-indistinguishability of Okamoto sig-
natures [Oka93].

Impossibility result. Our first result essentially shows that
none of the existing two-round schemes can be proved secure
under standard assumptions. More precisely, we prove that
if the one-more discrete logarithm problem (OMDL) is hard,
then there cannot exist an algebraic black-box reduction that
proves the CoSi, MuSig, BCJ, or MWLD schemes secure
under the discrete logarithm (DL) or OMDL assumption.

This is surprising, because all of these schemes, barring
CoSi, were published with a security proof under the DL
(BCJ, MWLD) or OMDL (MuSig) assumption. We explain
the obvious contradiction by pointing out subtle flaws in their
proofs. The problem is that simulating signing queries in com-
bination with a rewinding argument (so-called forking [PS00])
is especially delicate, because the forger may be forked at
a point where it has an “open” signing query. If that is the
case, the reduction has to come up with a second response
for the same first round of the signing protocol, which leaks
the signing key that it was hoping to extract from the forger.
The actual impossibility proof is a bit more involved, but it
exploits exactly this difficulty in simulating signing queries.

The class of reductions covered by our result essentially
encompasses all currently known proof techniques, including
those that rewind the adversary an arbitrary number of times.
Also, given that all of the covered schemes are derived from
Schnorr signatures [Sch91], it would be very surprising if



their security could be proved under an assumption that is
not implied by DL or OMDL. So while in theory our result
does not completely rule out the existence of a security proof,
in practice it does mean that a security proof under standard
assumptions is extremely unlikely as it would have to use
currently unknown techniques—unless OMDL turns out to be
easy while DL is still hard, in which case our result becomes
moot.

Sub-exponential attacks. If the above impossibility result
still leaves a glimmer of hope that the existing schemes might
be safe for practical use, our second result clearly indicates
that this is not the case. Namely, we provide attacks that
apply to all schemes based on Wagner’s algorithm for the
generalized birthday problem [Wag02]. Because the attacks
run in sub-exponential time, but not in polynomial time, they
don’t supersede our impossibility result, but for reasonable
parameter choices they are efficient enough to form a realistic
threat. We show that an attacker performing �− 1 concurrent
signing queries can create a forgery in O(� ·2lg q/(1+lg �)) time
and space, where q is the order of the group. For practical
values such as lg q = 256, this means that even for 15 con-
current signing queries, a forgery can be computed in 262

steps, which is feasible on modern clusters. For 127 concurrent
queries, one can compute a forgery in less than 245 steps.
We describe our attacks for CoSi, but they also extend to
MuSig, BCJ, and MWLD, as well as to important applications
of CoSi such as the RandHound scheme from [SJKK+17].
While asymptotically speaking these attacks can be thwarted
by increasing the group order, doing so will render the schemes
impractical, and even then provable security remains an elusive
goal due to our impossibility result.

A secure two-round multi-signature scheme. Our
negative results apply to all known two-round multi-
signature schemes without pairings. There are pairing-
based non-interactive multi-signature schemes from BLS
signatures [BLS01], [Bol03], [RY07], [BDN18] and from
Waters signatures [Wat05], [LOS+06], but one may wonder
whether secure two-round multi-signatures without pairings
exist at all. We answer this question in the positive by
presenting mBCJ, a variant of the BCJ scheme that uses
the same homomorphic commitment scheme to let signers
commit to their first rounds as the BCJ scheme, but lets
the commitment parameters be determined by the output of
a random oracle applied to the message being signed. We
provide a rigorous security proof of the mBCJ scheme under
the DL assumption in the random-oracle model.

Table I summarizes the efficiency and security of multi-
signature schemes. Our mBCJ scheme is the only secure two-
round multi-signature scheme. Even though it is less efficient
in terms of signature size and verification time than some
of its (insecure) precedents, it does have the advantage of
supporting key aggregation. For applications that involve large
numbers of signers, it is crucial that verification time can be
kept constant (i.e., independent of the number of signers) by
verifying against a constant-size aggregate public key. The
verifier computes the aggregate public key once from the set
of individual public keys to have (amortized) constant-time
verification afterwards.

One may wonder what the cost is of provable security
by comparing the mBCJ scheme against the highly efficient
CoSi scheme. To investigate the real-world effects of this
difference, we performed large-scale experiments on prototype
implementations of both schemes. For a network round-trip
delay of 200 milliseconds, we found that a group as large
as 16,384 signers can collaboratively sign a message using
mBCJ in about 2 seconds, showing no significant difference
with CoSi. The mBCJ scheme on average needs 73% more
CPU time than CoSi for small amounts of signers. For large
amounts of signers the difference becomes smaller, and the
average CPU time per signer remains under 0.25 milliseconds
when signing with 16,384 signers. Our results show that mBCJ
is only marginally less efficient than CoSi, so that any protocol
based on the insecure CoSi scheme should instead be built on
the provably secure mBCJ scheme.

Restricted security of CoSi. Our impossibility proof and
attacks on CoSi crucially rely on the adversary being able to
engage in concurrent queries with the signing oracle. A natural
question to ask is whether CoSi could still be secure when the
adversary is limited to sequential signing queries. We show
that this is indeed the case, but only in the weaker knowledge
of secret key (KOSK) model. More specifically, we prove
CoSi secure against sequential attacks (or even logarithmically
many concurrent attacks) under the OMDL assumption in the
KOSK setting in the random-oracle model. Hence, one could
still consider using CoSi in very specific scenarios where the
KOSK setting can be considered reasonable and where one
can naturally limit the number of parallel signing sessions to
a small constant.

2. PRELIMINARIES

2.1 Discrete Logarithm Problems

Definition 1 (Discrete Log Problem). For a group G = 〈g〉
of prime order q, we define AdvdlG of an adversary A as

Pr
[
y = gx : y ←$

G, x ←$ A(y)
]
,

where the probability is taken over the random choices of A
and the random selection of y. A (τ, ε)-breaks the discrete
log problem if it runs in time at most τ and has AdvdlG ≥ ε.
Discrete log is (τ, ε)-hard if no such adversary exists.

Definition 2 (n-One-More Discrete Log Problem [BNPS03],
[BP02]). For a group G = 〈g〉 of prime order q, let Odlog(·)
be a discrete logarithm oracle that can be called at most n
times. We define Advn-omdl

G of an adversary A as

Pr
[ n∧
i=0

yi = gxi : (y0, . . . , yn) ←$
G

n+1,

(x0, . . . , xn) ←$ AOdlog(·)(y0, . . . , yn)
]
,

where the probability is taken over the random choices of A
and the random selection of y0, . . . , yn. A (τ, ε)-breaks the
n-one-more discrete log problem if it runs in time at most τ
and has Advn-omdl

G ≥ ε. n-one-more discrete log is (τ, ε)-hard
if no such adversary exists.



Scheme KVf KAg Sign Vf Rounds pk domain Signature
domain

PK
domain

Security

BCJ1 [BCJ08] 1G2 1G2 + 1G3 3G2 2 G× Z2
q G2 × Z3

q G Insecure
BCJ2 [BCJ08] 1G+ 2G2 1Gn+1 + 2G2 2 G G3 × Z3

q G Insecure
MWLD [MWLD10] 1G2 1Gn+2 2 G Z3

q Gn Insecure
CoSi [STV+16] 1G2 1G 1G2 2 G× Z2

q Z2
q G Insecure

MuSig [MPSW18a] 1Gn 1G 1G2 2 G G× Zq G Insecure
mBCJ (this work) 1G2 1G2 + 1G3 3G2 2 G× Z2

q G2 × Z3
q G DL, ROM

BN [BN06] 1G 1Gn+1 3 G G× Zq Gn DL, ROM
BDN-MSDL [BDN18], [MPSW18b] 1Gn 1G 1G2 3 G G× Zq G DL, ROM
B-Pop [Bol03], [RY07] 2P 1G1 2P 1 G1 × G2 G1 G2 co-CDH, ROM
WM-Pop [LOS+06], [RY07] 2P 1G1 + 1G2 2P 1 G1 × G2 × GT G1 × G2 GT co-CDH
BDN-MSP [BDN18] 1Gn

2 1G1 2P 1 G2 G1 G2 co-CDH, ROM

TABLE I: Efficiency of multi-signatures in the key verification model. The first block of schemes depicts all known two-
round multi-signature schemes without pairings. For completeness, we also include existing three-round schemes as well as
non-interactive pairing-based schemes in the second and third blocks. Columns 2–5 show the computational efficiency of the
individual algorithms by counting the number of (multi-)exponentiations and pairings, where “G” denotes an exponentiation
in group G, “Gk” denotes an k-multi-exponentiation in group G, “P ” denotes a pairing operation, and n denotes the number
of signers. Column 6 shows the number of communication rounds and columns 7–9 show the size of the individual signer’s
public key, the signature, and the aggregated public key, respectively, where any “proof-of-possession” of the secret key is
considered to be part of the public key, and q denotes the order of the groups. Column 10 shows the assumptions under which
the scheme is proved secure, if any, where “ROM” indicates a proof in the random-oracle model.

2.2 Algebraic Algorithms

Boneh and Venkatesan [BV98] define algebraic algorithms
to study the relation between breaking RSA and factoring. An
algorithm working in some group is algebraic if it only uses the
group operations to construct group elements. More precisely,
it can test equality of two group elements, perform the group
operation on two elements to obtain a new element, and invert
a group element. This means that an algebraic algorithm that
receives group elements y1, . . . , yn as input can only construct
new group elements y for which it knows α1, . . . , αn such that
y =

∏n
i=1 y

αi
i .

We use the formalization by Paillier and Vergnaud [PV05]:

Definition 3. An algorithm A that on input group elements
(y1, . . . , yn) is algebraic if it admits a polynomial time algo-
rithm Extract that given the code of A and its random tape
outputs (α1, . . . , αn) such that h =

∏n
i=1 y

αi
i for any group

element h that A outputs.

2.3 Generalized Forking Lemma

We recall here a slight modification of the forking lemma
of Bagherzandi, Cheon, and Jarecki [BCJ08]. Let A be an
algorithm that is given an input in as well as randomness f =
(ρ, h1, . . . , hqH), where ρ is A’s random tape and h1, . . . , hqH

are random values from Zq . Let Ω be the space of all such
vectors f and let f |i = (ρ, h1, . . . , hi−1). We consider an
execution of A on input in and randomness f with access
to oracle O , denoted AO (in, f), as successful if it outputs a
tuple (J, {outj}j∈J , aux ), where J is a multi-set that is a non-
empty subset of {1, . . . , qH}, {outj}j∈J is a multi-set of side
outputs, and aux is an additional set of auxiliary outputs. We
say that A failed if it outputs J = ∅. Let ε be the probability
that A(in, f) is successful for fresh randomness f ←$ Ω and
for an input in ←$ IG generated by an input generator IG.

For a given input in , the generalized forking algorithm GFA
is defined as follows:

GFA(in):
f = (ρ, h1, . . . , hqH) ←$ Ω
(J, {outj}j∈J , aux ) ← AO (in, f)
If J = ∅ then output fail
Aux ← aux
Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn
For i = 1, . . . , n do

succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′′|ji = f |ji
Let f ′′ = (ρ, h1, . . . , hji−1, h

′′
ji
, . . . , h′′

qH)
(J ′′, {out ′′j }j∈J ′′ , aux ) ← AO (in, f ′′)
Aux ← Aux ∪ aux
If h′′

ji
	= hji and J ′′ 	= ∅ and ji ∈ J ′′ then

out ′ji ← out ′′ji ; succi ← 1
If succi = 1 for all i = 1, . . . , n
Then output (J, {outj}j∈J , {out ′j}j∈J ,Aux )
Else output fail

We say that GFA succeeds if it doesn’t output fail. The
difference to Bagherzandi et al.’s forking lemma [BCJ08] is
A’s access to the oracle O and the additional auxiliary output
aux that gets accumulated in Aux over all runs of A, including
failed runs. If the oracle O is deterministic, meaning that it
always answers the same query with the same response, it is
easy to see that these extensions do not impact the bounds of
their forking lemma, so the following statement continues to
hold.

Lemma 1 (Generalized Forking Lemma [BCJ08]). Let IG be
a randomized algorithm and A be a randomized algorithm
running in time τ with access to a deterministic oracle O that
succeeds with probability ε. If q > 8nqH/ε, then GFA(in)
runs in time at most τ · 8n2qH/ε · ln(8n/ε) and succeeds
with probability at least ε/8, where the probability is over
the choice of in ←$ IG and over the coins of GFA.



2.4 Security of Multi-Signatures
We follow the syntax and security model due to Bagherzandi

et al. [BCJ08], which follows the so-called key-verification
model, as introduced by Bagherzandi and Jarecki [BJ08],
where individual public keys must be verified by the signature
verifier. We adapt the model to support signers that are
organized in a tree structure for more efficient communication.
Prior work always assumed a communication setting where
every cosigner communicates directly with the initiator, which
our tree-based modeling supports by choosing a tree in which
every cosigner is a direct child of the initiator. Moreover,
we formalize the notion of an “aggregated key” of a group
of signers, by adding an algorithm that computes a single
aggregated public key from a set of public keys, and this
aggregated key will be used by the verification algorithm. The
idea of splitting key aggregation from verification is that if a
group of signers will repeatedly sign together, a verifier will
only once compute the aggregate public key and reuse that
for later verifications. If the aggregated key is smaller than
the set of public keys, or even constant size, this will allow
for more efficient schemes. Note that this change does not
exclude multi-signature schemes that do not have this feature:
indeed, such schemes can simply use the identity function as
key aggregation algorithm.

A multi-signature scheme consists of algorithms Pg, Kg,
Sign, KAg, KVf, and Vf. A trusted party generates the
system parameters par ← Pg. Every signer generates a
key pair (pk , sk) ←$ Kg(par), and signers can collectively
sign a message m by each calling the interactive algorithm
Sign(par , sk , T ,m), where T describes a tree between the
signers that defines the intended communication between the
signers. At the end of the protocol, the root of the tree T
obtains a signature σ. Algorithm KAg on input parameters par
and a set of public keys PK outputs a single aggregate public
key PK . A verifier can check the validity of a signature σ
on message m under an aggregate public key PK by running
Vf(par ,PK ,m, σ) which outputs 0 or 1 indicating that the
signatures is invalid or valid, respectively. Anybody can check
the validity of a public key by using key verification algorithm
KVf(par , pk).

First, a multi-signature scheme should satisfy completeness,
meaning that 1) for any par ← Pg and any (pk , sk) ←
Kg(par), we have KVf(par , pk) = 1, and 2) for any n, if
we have (pk i, sk i) ← Kg(par) for i = 1, . . . , n, and any tree
T containing exactly these n signers, and for any message
m, if all signers input Sign(par , sk i, T ,m), then the root
of T will output a signature σ such that Vf(par ,KAg(par ,
{pk i}ni=1),m, σ) = 1.

Second, a multi-signature scheme should satisfy unforge-
ability. Unforgeability of a multi-signature scheme MS =
(Pg,Kg, Sign,KAg,Vf,KVf) is defined by a three-stage game.

a) Setup: The challenger generates the parameters
par ← Pg and a challenge key pair (pk∗, sk∗) ←$ Kg(par). It
runs the adversary on the public key A(par , pk∗).

b) Signature queries: A is allowed to make signature
queries on a message m with a tree T , meaning that it has
access to oracle OSign(par ,sk∗,·,·) that will simulate the honest
signer interacting in a signing protocol to sign message m

Children Ci Signer Si Parent Pi

m� m�
{(PK j , tj)}j∈Ci� r ←$

Zq

ti ← gr
∏

j∈Ci
tj

PK i ← yi
∏

j∈Ci
PK j

(ti,PK i)�
(t̄,PK )� c ← H0(t̄, m) (t̄,PK )�
{sj}j∈Ci � si ← r + csk i

+
∑

j∈Ci
sj mod q si �

Fig. 1: The CoSi signing protocol for signer Si with secret
key sk i and public key pk = (yi, πi). If Si is the leader then,
instead of sending (ti,PK i) to its parent, it sends (t̄,PK ) =
(ti,PK i) to its children, and instead of sending si to its parent,
it outputs (c, s) = (c, si) as the signature.

with intended communication tree T . Note that A may make
any number of such queries concurrently.

c) Output: Finally, the adversary halts by outputting a
multi-signature forgery σ, a message m and a set of public
keys PK. In the key-verification setting, the adversary wins
if pk∗ ∈ PK, KVf(par , pk) = 1 for every pk ∈ PK with
pk 	= pk∗, PK ← KAg(par ,PK), Vf(par ,PK , σ,m) = 1,
and A made no signing queries on m. A special case of
the key-verification model is the plain public key model,
where there is no need to verify individual public keys, i.e.,
KVf always returns 1.1 In the weaker knowledge-of-secret-
key (KOSK) setting, the adversary is required to additionally
output corresponding secret keys skpk for all pk ∈ PK, pk 	=
pk∗.

Definition 4. We say A is a (τ, qS, qC, qH, ε)-forger for multi-
signature scheme MS = (Pg,Kg, Sign,Vf) if it runs in time
τ , makes qS signing queries such that at most qC signing
protocols are concurrently active (i.e., started but not yet
finished) at any given time, makes qH random oracle queries,
and wins the above game with probability at least ε. MS
is (τ, qS, qC, qH, ε)-unforgeable if no (τ, qS, qC, qH, ε)-forger
exists.

2.5 The CoSi Multi-Signature Scheme

CoSi is a multi-signature scheme introduced by Syta et
al. [STV+16] that follows a long line of work on Schnorr-
based multi-signatures [MOR01], [BN06], [RY07], [BCJ08],
[MWLD10]. With a two-round signing protocol and verifi-
cation as efficient as verifying a single Schnorr signature,
CoSi is more efficient than prior schemes, but it was proposed
without a formal security proof. By organizing signers in a tree
structure, thousands of signers can create a multi-signature in
seconds, as demonstrated by the open source implementation.2

Since its recent introduction, CoSi has already led to a large

1The distinction between the key-verification model and plain public key
model is a bit informal, as they are in fact equivalent: any multi-signature
scheme that is unforgeable in the key-verification model is also secure in the
plain public key model, where the key verification is simply considered part
of the verification algorithm.

2The implementation is available at github.com/dedis/cothority.



body of follow-up work [KJG+16], [SJKK+17], [BKJ+17],
[NKJ+17], [KKJG+18].

Below, we describe a slight variant of the original CoSi
scheme where we add a proof of possession to the public
key, and where during signing the cosigners receive the final
commitment value t̄ instead of just the hash c = H(t̄, m). The
first change was already suggested in the original paper, the
latter is necessary because the scheme is insecure without it,
since signers are unable to ensure that they are signing the
message that they intended to sign.
Parameters generation. The Pg algorithm sets up a group
G = 〈g〉 of order q, where q is a κ-bit prime. It also
chooses two hash functions H0,H1 : {0, 1}∗Zq . Output par ←
(G, g, q,H0,H1).
Key generation. The key generation algorithm Kg(par) sam-
ples sk ←$

Zq and computes y ← gsk . It then generates a proof
of possession π = (c, s) by choosing r ←$

Zq and computing
s ← r + H1(g

r, y). Output pk ← (y, π) and sk .
Signing. Signing is a four-step protocol. A signer Si on input
Sign(par , sk i,m, T ) behaves as follows.
Announcement. If Si is the leader (i.e., the root of tree T ),
it initiates the protocol by sending an announcement to its
children, which consists of a unique identifier for this signing
session ssid . If Si is not the leader, it waits to receive an
announcement message and forwards it to its children in T .
After doing so, Si proceeds with the commitment phase.
Commitment. Let Ci denote the set of children of Si in tree
T . Si waits to receive all values (tj ,PK j) for j ∈ Ci. Note
that if Si has no children (i.e., it is a leaf in tree T ), it will
proceed immediately. Si chooses ri ←$

Zq and computes ti ←
gri ·∏j∈Ci

tj and PK i ← yi ·
∏

j∈Ci
PK j for pk i = (yi, πi).

If Si is not the leader, it sends ti to its parent. If Si is the
leader, Si proceeds with the challenge phase.
Challenge. If Si is the leader, it sets t̄ ← ti and PK ← PK i,
computes c ← H0(t̄, m), and sends (t̄,PK ) to its children.
If Si is not the leader, it waits to receive a message (t̄,PK ),
computes c ← H0(t̄, m), and sends (t̄,PK ) to its children.
Response. Si waits to receive all values sj for j ∈ Ci (note that
if Si is a leaf it will proceed immediately), and then computes
si ← ri + c · sk i +

∑
j∈Ci

sj . It sends si to its parent, unless
Si is the root, then Si sets s ← si and outputs σ ← (c, s).
Key Aggregation. On input a set of public keys PK, KAg
checks for all (y, (c, s)) ∈ PK that c = H1(g

sy−c, y). If so,
it outputs aggregate public key PK ← ∏

(y,π)∈PK y.
Verification. Vf on input an aggregate public key PK , a
signature σ = (c, s), and a message m, checks that

c
?
= H0

(
gs · PK−c,m

)
.

2.6 The BCJ Multi-Signature Schemes

Whereas Bellare and Neven [BN06] solved the problem
of signature simulation in the security proof by letting all
signers commit to their contribution in a preliminary round of
the signing protocol, the BCJ scheme due to Bagherzandi et
al. [BCJ08] avoids this extra round by using a multiplicatively
homomorphic equivocable commitment scheme. Since the
only known instantiation of such a commitment scheme is

included in the same paper, we describe the BCJ scheme for
that instantiation here. We also adapt the scheme to support
signers in a tree structure.
Parameters generation. Pg sets up a group G of order q
with generators g1, h1, g2, and h2, where q is a κ-bit prime.
Choose hash functions H0,H1 : {0, 1}∗ → Zq and output
par ← (G, g1, h1, g2, h2, q,H0,H1).
Key generation. The key generation algorithm Kg(par) takes
sk ←$

Zq and sets y ← gsk1 . Compute proof-of-posession π =
(c, s) by taking r ←$

Zq , c ← H1(y, g
r
1), s ← r + c · sk . Let

pk ← (y, π) and output (pk , sk).
Signing. Signing is the four-step protocol. A signer Si on input
Sign(par , sk i,m, T ) behaves as follows.
Announcement. If Si is the leader (i.e., the root of tree T ),
it initiates the protocol by sending an announcement to its
children, which consists of a unique identifier for this signing
session ssid . If Si is not the leader, it waits to receive an
announcement message and forwards it to its children in T .
After doing so, Si proceeds with the commitment phase.
Commitment. Let Ci denote the set of children of Si in tree
T . Si waits to receive all values (tj,1, tj,2,PK j) for j ∈ Ci.
Note that if Si has no children (i.e., it is a leaf in tree T ), it
will proceed immediately. Si chooses (ri, αi,1, αi,2) ←$

Z
3
q and

computes ti,1 ← g
αi,1

1 h
αi,2

1 ·∏j∈Ci
tj,1 and ti,2 ← g

αi,1

2 h
αi,2

2 ·
gri1 ·∏j∈Ci

tj,2, and PK i ← yi ·
∏

j∈Ci
PK j . If Si is not the

leader, it sends (ti,1, ti,2,PK i) to its parent. If Si is the leader,
Si proceeds with the challenge phase.
Challenge. If Si is the leader, it sets t̄1 ← ti,1, t̄2 ← ti,2,
and PK ← PK i. It computes c ← H0(t̄1, t̄2,PK ,m), and
sends (t̄1, t̄2,PK ) to its children. If Si is not the leader,
it waits to receive a message (t̄1, t̄2,PK ), computes c ←
H0(t̄1, t̄2,PK ,m), and sends (t̄1, t̄2,PK ) to its children.
Response. Si waits to receive all values (sj , γj,1, γj,2) for j ∈
Ci (note that if Si is a leaf it will proceed immediately), and
then computes si ← ri + c · sk i +

∑
j∈Ci

sj , γi,b ← αi,b +∑
j∈Ci

γj,b for b ∈ {1, 2}. It sends (si, γi,1, γi,2) to its parent,
unless Si is the root, then Si sets s ← si, γ1 ← γi,1, γ2 ←
γi,2, and outputs σ ← (t̄1, t̄2, s, γ1, γ2).
Key Aggregation. KAg on input a set of public keys PK
parses every pk i ∈ PK as (yi, (ci, si)), and if this public key
has not been validated before, check that ci = H1(yi, g

si
1 y−ci

i ).
Output aggregate public key PK ← ∏

(y,π)∈PK y.
Verification. Vf on input aggregate public key PK , a sig-
nature σ = (t̄1, t̄2, s, γ1, γ2), and a message m, compute
c ← H0(t̄1, t̄2,PK ,m) and check that t̄1

?
= gγ1

1 hγ2

1 and
t̄2

?
= gγ1

2 hγ2

2 gs1PK
−c.

2.7 The MWLD Multi-Signature Scheme

The MWLD scheme due to Ma et al. [MWLD10] ad-
dresses the signature simulation problem by using a witness-
indistinguishable proof based on Okamoto signatures [Oka93],
yielding shorter signatures and more efficient signing than the
BCJ scheme. We present a slightly modified scheme here to
support signers organized in a tree structure.
Parameters generation. Pg sets up a group G of order q
with generators g and h, where q is a κ-bit prime. Choose



two hash functions H0,H1 : {0, 1}∗ → Zq and output par ←
(G, g, h, q).
Key generation. The key generation algorithm Kg(par) takes
(sk1, sk2) ←$

Z
2
q and sets pk ← gsk1hsk2 .

Signing. Signing is the four-step protocol. A signer Si on input
Sign(par , (sk1, sk2),m, T ) behaves as follows.
Announcement. If Si is the leader (i.e., the root of tree T ),
it initiates the protocol by sending an announcement to its
children, which consists of a unique identifier for this signing
session ssid . If Si is not the leader, it waits to receive an
announcement message and forwards it to its children in T .
After doing so, Si proceeds with the commitment phase.
Commitment. Let Ci denote the set of children of Si in tree T .
Si waits to receive all values (tj , Lj) for j ∈ Ci. Note that if
Si has no children (i.e., it is a leaf in tree T ), it will proceed
immediately. Si chooses (ri,1, ri,2) ←$

Z
2
q and computes ti ←

gri,1hri,2 ·∏j∈Ci
tj and Li ← {pk i}∪(

⋃
j∈Ci

Lj). If Si is not
the leader, it sends (ti, Li) to its parent. If Si is the leader, Si

proceeds with the challenge phase.
Challenge. If Si is the leader, it sets t̄ ← ti and L ← Li,
computes c ← H0(t̄, L,m), and sends (t̄, L) to its children.
If Si is not the leader, it waits to receive a message (t̄, L),
computes c ← H0(t̄, L,m), and sends (t̄, L) to its children.
Response. Si waits to receive all values (sj,1, sj,2) for j ∈ Ci
(note that if Si is a leaf it will proceed immediately), and
then computes vi = H1(c, pk i) and si,b ← ri,b + vi · sk i,b +∑

j∈Ci
sj,b for b ∈ {1, 2}. It sends (si,1, si,2) to its parent,

unless Si is the root, then Si sets s1 ← si,1, s2 ← si,2, and
outputs σ ← (c, s1, s2).
Key Aggregation. This scheme does not support a compressed
public key, i.e., KAg(par ,PK) = PK.
Verification. Vf on input a set of public keys PK, a signature
σ = (c, s1, s2), and a message m, checks that

c
?
= H0

⎛
⎝gs1hs2 ·

∏
pki∈PK

pk
−H1(c,pki)
i ,PK,m

⎞
⎠ .

3. THE SECURITY OF TWO-ROUND MULTI-SIGNATURES
USING REWINDING

In this section, we analyze the security of existing two-round
multi-signature schemes that use rewinding in their security
proof. We first look at CoSi and present a metareduction,
proving that if the OMDL assumption is hard, there cannot
exist an algebraic black-box reduction that proves CoSi secure
under the OMDL assumption, making it unlikely that CoSi can
be proven secure. Then, we show that the same metareduction
with small modifications can be applied to MuSig, the MWLD
scheme, and the BCJ scheme, showing that all those schemes
cannot be proven secure with an algebraic black-box reduction
to OMDL if OMDL is hard, and indicating that the presented
security proofs for those schemes contain flaws.

3.1 Impossiblity of Proving CoSi Secure

We first provide an intuition behind the impossibility of
proving CoSi secure by sketching why common proof tech-
niques for Schnorr signatures fail in the case of CoSi. We

then formalize this and use a metareduction to prove that there
cannot be a security proof for CoSi in the ROM under the
OMDL assumption.

In the classical security proof of Schnorr signatures under
the DL assumption [PS00], the reduction feeds its discrete-
logarithm challenge y as public key pk = y to the adversary.
It uses the zero-knowledge property of the Schnorr protocol
to simulate signatures without knowing the secret key. More
precisely, the reduction first picks (c, s) at random, then
chooses t such that the verification equation gs = t·pk c holds,
and programs the random oracle H(t,m) = c. The reduction
then applies the forking lemma to extract two forgeries from
the adversary, from which the discrete logarithm of pk = y
can be computed.

The crucial difference between standard Schnorr signatures
and CoSi is that in CoSi, the final t̄-value included in the
hash is the product of individual ti-values, rather than being
determined by a single signer. Therefore, whenever the honest
signer is not the leader in the signing query, the adversary
learns the final t̄ value before the simulator does, and can
prevent the simulator from programming the random-oracle
entry H(t̄, m). One way around this is to prove security
under the OMDL assumption [BP02], [MPSW18a], so that
the simulator can use its discrete-logarithm oracle to simulate
signing queries. Namely, the simulator would use its first target
point y0 as public key pk = y0 and use target points y1, . . . , yn
as values t1, . . . , tn when simulating signing queries. Using
the forking lemma, it can extract the discrete logarithm of
pk = y0, and, based on this value and the responses to
its previous discrete-logarithm queries, compute the discrete
logarithms of the other target points t1, . . . , tn. Overall, the
reduction computes the discrete logarithms of n + 1 target
points using only n queries to the DL oracle.

Unfortunately, this intuitive argument conveys a subtle flaw.
Namely, the forking lemma may rewind the adversary to a
point where it has an “open” signing query, meaning, a signing
query where the simulator already output its ti value but
did not yet receive the final t̄ value. The problem is that
the adversary may choose a different t̄ value in its second
execution than it did in its first execution, thereby forcing the
simulator to make a second DL query for the same signing
query and ruining the simulator’s chances to solve the OMDL
problem. Indeed, Maxwell et al. [MPSW18a] overlooked this
subtle issue that invalidates their security proof. Note that the
same problem does not occur in the proof of Schnorr as an
identification scheme [BP02] because the adversary does not
have access to an identification oracle during the challenge
phase.

So in order to correctly simulate signing queries in a
rewinding argument, the reduction must be able to provide
correct responses si and s′i for the same value ti but for
different challenge values c = H(t̄, m) and c′ = H(t̄′,m). This
means, however, that the reduction must already have known
the secret key corresponding to pk , as it could have computed
it itself as sk = (si − s′i)/(c − c′) mod q. Stronger even, the
adversary can give the reduction a taste of its own medicine
by forcing the reduction to provide two such responses si and
s′i, and extract the value of sk from the reduction!



This sudden turning of the tables, surprising as it may be
at first, already hints that the reduction was doomed to fail.
Indeed, our proof below exploits this exact technique to build a
successful forger: in its first execution, the forger uses the DL
oracle to compute a forgery, but in any subsequent rewinding,
it will extract the secret key from the reduction and simply
create a forgery using the secret key. The meta-reduction
thereby ensures that it uses at most one DL oracle query for
each of the k “truly different” executions of the forger. By
additionally embedding a OMDL target point in its forgery, the
meta-reduction reaches a break-even of k DL oracle queries to
invert k target points. If the reduction succeeds in solving the
n-OMDL problem given access to this forger, then the meta-
reduction can use its solution to solve the (n + k)-OMDL
problem.

While this captures the basic idea of our proof, some
extensions are needed to make it work for any reduction.
For example, one could imagine a reduction using a modified
forking technique that makes sure that the same challenge
value c = H(t̄, m) is always used across timelines, e.g., by
guessing the index of that random-oracle query. To corner
such a reduction, our forger makes several signing queries in
parallel and chooses one of two challenges at random for each
query. When the reduction rewinds the forger, the reduction
will with overwhelming probability be forced to respond to
a different challenge on at least one of the signing queries,
allowing the forger to extract.

Below, we formally prove that if the OMDL assumption
holds, then there cannot exist a reduction (with some con-
straints, as discussed later) that proves the security of CoSi
under the OMDL assumption. Our proof roughly follows the
techniques of Baldimtsi and Lysyanskaya [BL13] for Schnorr-
based blind signature schemes, in the sense that we also
present a forger and a meta-reduction that, given a reduction
that solves the OMDL problem when given black-box access
to a forger, solves the OMDL problem by extracting a discrete
logarithm from the reduction. Our proof is different, however,
in the sense that we cover a different class of reductions
(algebraic black-box reductions, as opposed to “naive random-
oracle replay reductions”), and because the multi-signature
scheme requires a more complicated forger because challenges
used by the signing oracle must be random-oracle outputs, as
opposed to arbitrary values in the case of [BL13]. The class
of reductions that we exclude is large enough to encompass
all currently known proof techniques for this type of schemes,
making it extremely unlikely that CoSi will ever be proven
secure under the DL or OMDL assumption.

Theorem 1. If the (n + k)-OMDL problem is (τ + τext +
O(n + k�), ε − k2/2�)-hard, then there exists no algebraic
black-box reduction B that proves CoSi to be ((2�+1)τexp +
O(�), �, �, 3, 1 − 1/q)-unforgeable in the KOSK setting in the
random-oracle model under the assumption that the n-OMDL
problem is (τ, ε)-hard. Here, τext is the running time of
Extract as per Definition 3, τexp is the time to perform an
exponentiation in G, and k is the amount of times that B runs
A through rewinding, and � is a security parameter.

Before proving the theorem, we provide some guidance on

how to interpret its result. In a nutshell, the theorem says that
if the OMDL problem is hard, then there is hardly any hope
to prove CoSi secure under the DL or OMDL assumption,
even in the KOSK setting and in the random-oracle model.
It thereby also excludes, a fortiori, any security proofs in the
key-verification and plain public-key settings or in the standard
model.

For concreteness, let us set k = � = 128, and let us say that
we have a forger that breaks CoSi with overwhelming prob-
ability using just 257 exponentiations, 128 signature queries,
and 3 random-oracle queries. That would indeed be a pretty
serious security breach, certainly serious enough to rule out
any further use of CoSi in practice. Yet still, even for such a
strong forger, Theorem 1 says that, if the 128-OMDL problem
is hard, then there cannot exist a reduction B that uses this
forger to solve the DL problem. More generally, it says that if
the (n+ 128)-OMDL problem is hard, then neither can there
exist a reduction that solves the n-OMDL problem. If such a
reduction would exist, then that reduction would immediately
give rise to a solution for the (n + 128)-OMDL problem
without needing access to any forger, meaning that the OMDL
assumption was false to begin with.

The only room left by Theorem 1 are for a number of al-
ternative proof approaches, but none of them look particularly
hopeful. First, the theorem becomes moot when the OMDL
problem turns out to be easy but the DL problem remains
hard, or when the (n+ k)-OMDL problem is easy but the n-
OMDL problem is still hard. At present, however, there is no
evidence suggesting that any of these problems may be easier
than the others. Second, it does not rule out the existence of
non-algebraic or non-black-box reductions. The former type
of reduction would imply strange properties of the underlying
group. The latter would have to obtain a special advantage
from inspecting the code of the forger, rather than just being
able to execute it. While some cryptographic uses of non-
black-box techniques exist [Bar04], to the best of our knowl-
edge they have never been used in practical constructions such
as CoSi. Finally, our theorem does not rule out security proofs
under assumptions that are not implied by n-OMDL or proving
security in the generic group model [Sho97]. However, this
would mean that much stronger assumptions are required than
one would expect from a Schnorr-based protocol.

Proof of Theorem 1. We prove the theorem by constructing a
forger F and a meta-reduction M such that, if there exists a
reduction B that uses F to break the n-OMDL problem, then
M can use B to break the (n+ k)-OMDL problem. Figure 2
depicts the execution setting of all three algorithms.

Let y0, . . . , yn+k denote the n + k + 1 OMDL challenge
points that M receives as input. It will provide B with an
environment that simulates the n-OMDL game by handing
y0, . . . , yn as input to B and responding to B’s Odlog queries
using its own Odlog oracle. We have to provide reduction B
with a successful forger F against CoSi, where B is free to run
and rewind F. To simplify the arguments about rewinding, we
will describe a deterministic forger F, so that the behavior of
F only depends on the inputs and oracle responses provided
by B, not on its random coins.
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Fig. 2: Our metareduction M in the proof of Theorem 1, which
simulates forger F towards any reduction B that would prove
the security of CoSi under the OMDL assumption, and uses
B to break the OMDL problem.

We describe a forger F in terms of three subroutines
target, rand, and forge that F can call out to but that will
be implemented by the meta-reduction M. Subroutine target
takes � + 1 group elements (pk , t1, . . . , t�) as input and on
the i-th invocation with a combination of inputs that it hasn’t
been called with before, returns M’s target point yn+i. Any
invocations of target on previously used inputs consistently
return the same output. The subroutine rand implements a truly
random function G

�+1 × Z
3
q → {0, 1}�, which is simulated

by M through lazy sampling. The subroutine forge, finally,
creates a forgery by returning an s-value, given a t̄ value,
a public key, and a c-value; we will specify later how M
implements this routine.

Let pk i be the public key that B provides to F in its i-th
execution of F. The forger F then proceeds as follows:

• On input pk i, F initiates � signing queries on the same
message m and for the same tree T consisting of two
signers: a leader with public key pk = g and a child that
is the target signer with public key pk i.

• After receiving the results of the first round ti,1, . . . , ti,�,
F sets t̄∗i ← target(pk i, ti,1, . . . , ti,�).

• F makes a random-oracle query H(t̄∗i ,m
∗) for a fixed

message m∗ 	= m, yielding a response c∗i .
• F makes two additional random-oracle queries on
H(1G,m) and H(g,m), yielding responses ci,0 and ci,1,
respectively.

• If ci,0 = ci,1, then F aborts. Otherwise, it continues
the � open signing sessions by generating random bits
bi,1‖ . . . ‖bi,� ← rand((pk i, ti,1, . . . , ti,�), (c

∗
i , ci,0, ci,1))

and sending the final t̄-value for the j-th signing session
as t̄i,j ← gbi,j for j = 1, . . . , �.

• When F receives the values si,1, . . . , si,� in the � signing
protocols, it verifies that gsi,j = ti,j · pk

ci,bi,j
i , aborting

if an invalid signature is detected.
• F outputs a forgery (c∗i , s

∗
i ) on message m∗ with public

keys PK = {pk i} by computing s∗i ← forge(t̄∗i , pk i, c
∗
i ).

Observe that F makes � signing queries, three random-
oracle queries, and performs at most (2�+1) exponentiations
so that F runs in time (2�+1)τexp+O(�). It outputs a success-
ful forgery unless ci,0 = ci,1, which happens with probability
1/q. Therefore, F is a ((2�+1)τexp+O(�), �, 3, 1−1/q)-forger
for CoSi. Note that F works in the KOSK setting because the
forgery doesn’t include any signer other than the target signer.

Suppose that there exists an algebraic reduction B that,
when given black-box access to the above forger F, (τ, ε)-
breaks the n-OMDL problem. We now describe a meta-
reduction M that breaks the (n+k)-OMDL problem, where k
is the number of times that B runs F. As mentioned earlier, M,
on input target points y0, . . . , yn+k, runs B on input y0, . . . , yn
and forwards B’s Odlog queries to its own Odlog oracle.
It implements the subroutines target and rand as explained
above, and implements the forge subroutine as follows:

• If the i-th execution of F invokes the subroutine
forge(t̄∗i , pk i, c

∗
i ) and there exists a previous execution

i′ 	= i that already computed the secret key sk i corre-
sponding to pk i, then the subroutine computes and return
the requested s-value as s∗i ← s∗i′+(c∗i −c∗i′)·sk i mod q .

• If the i-th execution of F invokes the subroutine forge(t̄∗i ,
pk i, c

∗
i ) and there exists a previous execution i′ 	= i with

(pk i′ , ti′,1, . . . , ti′,�) = (pk i, ti,1, . . . , ti,�), then it checks
whether (ci′,bi′,1 , . . . , ci′,bi′,�) = (ci,bi,1 , . . . , ci,bi,�). If
so, then M halts and outputs failure. If not, then there
exists at least one index j such that ci′,bi′,j 	= ci,bi,j , so
that M can compute the secret key sk i corresponding to
pk i as sk i ← si,j−si′,j

ci,bi,j−ci′,b
i′,j

mod q . It can then compute

and return the requested s-value as s∗i ← s∗i′ +(c∗i − c∗i′) ·
sk i mod q .

• Else, M uses Odlog and returns s∗i ← Odlog(t̄∗i · pk
c∗i
i ) .

If B is successful, then B will output x0, . . . , xn such that
yi = gxi for i = 0, . . . , n after having made at most n queries
to its Odlog oracle. Now M proceeds to compute the discrete
logarithms xn+1, . . . , xn+k of yn+1, . . . , yn+k as follows.

Let P be the partition of {1, . . . , k} where i and i′ are
considered equivalent (and are therefore in the same com-
ponent C ∈ P ) if the i-th and i′-th executions are such
that (pk i, ti,1, . . . , ti,�) = (pk i′ , ti′,1, . . . , ti′,�). Because of
the way M instantiated the target subroutine, we know
that M used the same target point yjC as the value t̄∗i for
all executions i that are in the same component C ∈ P ,
meaning that during the full simulation of B, M used target
points yn+1, . . . , yn+|P |. Let P0 be the set of components
C ∈ P such that F never invoked the forge subroutine in any
execution i ∈ C, let P1 contain C ∈ P such that F invoked



the forge exactly once over all executions i ∈ C, and let P2+

contain the components C ∈ P such that F invoked forge at
least twice in total over all executions i ∈ C. It is clear that
|P | = |P0|+ |P1|+ |P2+|.

We will now show that M, using a total of |P | queries to
its Odlog oracle, can derive a system of |P | independent linear
equations in the |P | unknowns xn+1, . . . , xn+|P |. Namely,
for every component C ∈ P0, M simply makes a discrete-
logarithm query αC ← Odlog(yjC ), which adds an equation
of the form

xjC = αC . (1)

For every component C ∈ P1, there exists exactly one
execution i ∈ C that caused M to make a query s∗i ←
Odlog(yjC ·pk c∗i

i ). Since B is algebraic and only obtains group
elements g, y0, . . . , yn+k as input, for all pk i output by B, M
can use Extract to obtain coefficients βi, βi,0, . . . , βi,n+k ∈ Zq

such that sk i = logg(pk i) = βi +
∑n+k

j=0 βi,jxj mod q. For
every C ∈ P1 it therefore has an equation of the form

s∗i = xjC + c∗i (βi +
n+k∑
j=0

βi,jxj) mod q . (2)

Note that x0, . . . , xn are known values above, as they were
output by B. For every component C ∈ P2+, M made one
discrete-logarithm query s∗i ← Odlog(yjC · pk c∗i

i ) during the
first invocation of forge, and extracted the value of sk i during
the second invocation of forge. It can therefore add an equation
of the form

s∗i = xjC + c∗i sk i mod q . (3)

Finally, for the unused target points yj , j ∈ {n + |P | +
1, . . . , n + k}, M can make an additional query αj ←
Odlog(yj) to obtain an equation

xj = αj . (4)

The metareduction M created a system of |P0| equations of
the form (1), |P1| equations of the form (2), |P2+| equations
of the form (3), and k − |P | equations of the form (4),
so that overall it has a system of k linear equations in k
unknowns. The equations of the form (1), (3), and (4) are
clearly linearly independent, as each of these equations affects
a single and different unknown xj . Equations of the form (2)
are independent as well, because at the time that B produces
pk i, its view is independent of yji′ for i′ > i. One can
therefore order the equations of the form (2) such that each
contains one unknown xjC that does not occur in any of the
preceding equations.

Solving this linearly independent system of k equations in
k unknowns yields all the values for xn+1, . . . , xk. M can
therefore output (x0, . . . , xn+k) after having made exactly one
Odlog query for each of the k equations and at most n Odlog

queries to respond to B’s Odlog queries, meaning at most n+k
queries in total.

The metareduction M runs in time τ + τext + O(n + k�)
and wins the (n + k)-OMDL game whenever B wins the n-
OMDL game, unless M outputs failure. The latter happens
when in the i-th execution of F, there exists a previous exe-
cution i′ < i with (pk i′ , ti′,1, . . . , ti′,�) = (pk i, ti,1, . . . , ti,�)

and (ci′,bi′,1 , . . . , ci′,bi′,�) = (ci,bi,1 , . . . , ci,bi,�). We know
that ci,0 	= ci,1, because otherwise F would have aborted
earlier, meaning that at most one choice for bi,j will cause
ci′,bi′,j = ci,bi,j . Therefore, at the moment that bi,1‖ . . . ‖bi,� is
chosen at random from {0, 1}� in a call to the rand subroutine,
for each execution i′ 	= i there is at most one bad choice
for bi,1‖ . . . ‖bi,� that causes M to output failure, meaning
that there are at most k bad choices overall. (Note that the
output of rand is fresh because it takes the full transcript of
the protocol so far as an argument. If the arguments of rand
are equal in the i-th and i′-th execution, then the executions
are simply identical. Also note that B learns F’s choice for
bi,1‖ . . . ‖bi,� before F calls the forge subroutine, so that it
could keep many candidate executions i′ open at the same
time.) The probability that the choice of bi,1‖ . . . ‖bi,� hits any
of these k bad choices causing M to output failure in any of
the k executions is at most k2/2�. The success probability in
solving the (n+ k)-OMDL game is therefore ε− k2/2�.

3.2 Applicability to MuSig

While our metareduction is written for CoSi, the same
technique can be applied to the similar multi-signature scheme
MuSig as recently introduced by Maxwell et al. [MPSW18a].
The main difference between CoSi and MuSig is in how
they avoid rogue-key attacks. While CoSi uses the key-
verification model to avoid these attacks, MuSig works in
the plain public key model by using a more involved key
aggregation procedure. Rather than simply multiplying the
individual keys together, they raise the individual keys to a
hash function output, and present a security proof under the
OMDL assumption. However, the problem in proving CoSi
secure is not related to rogue-key attacks, as demonstracted
by the fact that our metareduction holds in the KOSK setting,
but due to the fact that many signing queries can be made
in parallel, and rewinding may force the reduction to know
the signer’s secret key. Indeed, the same metareduction (with
some minor changes in bookkeeping and including the more
involved key aggregation) is applicable to MuSig, proving
that their security proof overlooked this case and that it is
very unlikely that MuSig can be proven secure under standard
assumptions. In response to this work, the authors updated
MuSig to use a 3-round signing algorithm [MPSW18b].

3.3 Applicability to MWLD

Our metareduction can be applied to the MWLD scheme
with small modifications. This means that the security proof
under the DL assumption [MWLD10] is flawed.3 While the
metareduction is mostly unchanged, the forger and the forge-
routine slightly change to account for the double generator and
the double hashing.

3Claim 4 of [MWLD10] is incorrect: while the view of the forger is
independent of (sk1, sk2) in a single run of the forger, the joint input of
different rewindings of the forger are not independent of (sk1, sk2), and
hence the keys that the reduction extracts from these different rewindings are
not independent of (sk1, sk2) either. Their event E1 may therefore occur
with a non-negligible probability.



3.4 Applicability to BCJ

Our metareduction can be applied to the BCJ key-
verification model scheme with small modifications. This
means that the security proof under the DL assump-
tion [BCJ08] is flawed.4

4. SUB-EXPONENTIAL ATTACKS ON MULTI-SIGNATURE
SCHEMES

In this section we state the k-sum problem [Wag02], which
is a k-dimensional generalization of the birthday problem.
We show that the security of CoSi, MuSig, MWLD, and
BCJ multi-signature schemes can be reduced to this problem.
Wagner [Wag02] proposed an algorithm that solves the k-
sum problem in sub-exponential time. Together these re-
sults allow us to break the above multisignature schemes.
Finally, we point out that the public-randomness generator
RandHound [SJKK+17] is insecure, which stems from its use
of the CoSi scheme.

Our attacks are related to the ROS-based attack on blind
signatures [Sch01], which can also be reduced to the k-sum
problem [Wag02]. However, for subtle reasons our attacks on
multi-signatures need to use the k-sum problem directly.

4.1 The k-Sum Problem

We now define the k-sum problem and provide the com-
plexity estimates for solving it.

Definition 5 (k-Sum Problem). The k-sum problem in group
(Zq,+) for an arbitrary q provides k lists L1, . . . , Lk of equal
size, each containing elements sampled uniformly and inde-
pendently from Zq , and requires to find x1 ∈ L1, . . . , xk ∈ Lk

such that x1+ . . .+xk ≡ 0 mod q. We say that adversary A
(τ, sL, ε)-breaks the k-sum problem if it runs in time at most τ ,
uses lists L1, . . . , Lk each containing sL elements, and solves
the k-sum problem with probability Advk-sum

Zq
(A) ≥ ε.

For any parameters k and n, Wagner [Wag02] defines the
k-tree algorithm that (τ, sL, ε)-breaks the k-sum problem on
n-bit long list elements for τ ∈ O(k · 2n/(1+lg k)), sL =
2n/(1+lg k) and ε some non-negligible function. The k-tree
algorithm roughly requires to merge k−1 pairs of sL-element
lists. This means that the 4-sum problem with lists of size
2n/3 can be solved with a non-negligible probability in time
O(2n/3). Furthermore, if k = 2

√
n then the k-sum problem

with lists of size 2
√
n can be solved in sub-exponential time

4The security proof distinguishes two forgery events: In E1, the forger
broke the binding property of the commitment scheme, and in E2, the
reduction can extract the secret key of the honest signer. It considers two
different reductions, B0 which embeds the DL challenge in the commitment
parameters and simulates signing queries by knowing the honest signer secret
key, and B1 which embeds the DL challenge as the honest signer public key
and simulates signing queries by knowing the backdoor to the commitment
scheme. The DL challenge is solved if E1 occurs with B1 or if E2 occurs
with B0. The proof argues that, because the simulation strategies of B0 and
B1 are indistinguishable, for each event it holds that the difference between
the probabilities that it occurs in reduction B0 and B1 is negligible. However,
while it is true that the forger cannot distinguish between the oracle simulation
strategies of B0 and B1 in a single execution, the events E1 and E2 are
defined based on the joint outputs of multiple rewindings of the forger, which
do depend on the simulation strategy. The events may therefore occur with
non-negligibly different probability in both reductions, invalidating the proof.

O(22
√
n). The analysis of the k-tree algorithm by Minder

and Sinclair [MS09] suggests that ε ≈ 1/4. Some further
improvements to the k-tree algorithm are provided by Nikolić
and Sasaki [NS15].

4.2 Attack on CoSi

We state the reduction from the unforgeability of CoSi to
the k-sum problem, and discuss the implications of our result
to the choice of CoSi parameters.

4.2.1 Reduction to the k-Sum Problem

The attack uses a 2-node tree T where the challenger
controls the leaf node with some secret key sk∗, and the
adversary controls the root node with a secret key sk . The
adversary chooses an arbitrary message m and initiates k− 1
concurrent calls to the signing oracle, using m, T as inputs to
each of the oracle queries. At the beginning of the challenge
phase of each concurrent oracle call i ∈ {1, . . . , k − 1} the
adversary chooses a malicious t̄i (we show how to choose it
below). Note that there are no restrictions on the choice of t̄i,
because it fully depends on adversary’s commitment in the root
node at the end of the commitment phase. During the response
phase the adversary obtains from T ’s leaf node si = ri+ci·sk∗

for all i ∈ {1, . . . , k − 1}, one for each concurrent call to the
signing oracle. Here ri is uniformly random (and unknown
to the adversary) and ci = H0(t̄i,m). The adversary then
constructs a signature σ = (c∗, s∗) for some message m∗ 	= m
such that c∗ =

∑k−1
i=1 ci and s∗ =

∑k−1
i=1 si + c∗ · sk . We now

show how to choose the t̄i’s such that σ is a valid signature
for m∗.

By expanding the above, we get s∗ =
∑k−1

i=1 ri+
∑k−1

i=1 ci ·
(sk∗+sk) =

∑k−1
i=1 ri+c∗·(sk∗+sk). Let h = g

∑k−1
i=1 ri , which

is computable from the challenger’s commitment values. Note
that σ is a valid signature if c∗ = H0(g

∑k−1
i=1 ri ,m∗) =

H0(h,m
∗). But from the above we only know that c∗ =∑k−1

i=1 ci =
∑k−1

i=1 H0(t̄i,m). So in order to produce a forgery,
the adversary needs to find values m, m∗ and t̄i for all
i ∈ {1, . . . , k − 1} such that H0(h,m

∗) =
∑k−1

i=1 H0(t̄i,m)
modulo the group order.

We reduce this to the k-sum problem where list Li for each
i ∈ {1, . . . , k− 1} will contain sL outputs of H0(t̄i,m), filled
by evaluating the hash function on distinct values of t̄i. List Lk

will contain sL outputs of H0(h,m
∗), each for some distinct

value of m∗. This requires that the message space is large
enough to produce a sufficient number of list elements for list
Lk. In Section 4.2.3 we show how to extend this attack in case
if the message space is limited.

Note that the unforgeability of CoSi can be broken in
any tree T where the challenger controls a non-root node
(recall that our security notion allows only a single non-
adversarial tree node). Even though the values of PK j , tj and
sj propagate and accumulate throughout the tree, the adversary
can cancel out the contributed shares from all adversarial nodes
regardless of the tree structure, obtaining the shares that belong
specifically to the challenger’s node.

Furthermore, our attack can be extended to forge signatures
in any tree T where the attacker controls only the root node



(note that our security notion does not model this case). In
order to do this, the attacker should treat all non-root nodes as
a single challenger node, meaning it should multiply together
all commitments and add together all responses acquired from
its children. Running the above attack would then produce a
forgery with respect to the sum of all secret keys that belong
to the non-root nodes in the tree. The extended attack requires
the same amount of resources as the basic attack against a
single challenger node.

Theorem 2. Let G = 〈g〉 be a cyclic group of prime order q.
Let A be an adversary that (τ, sL, ε)-breaks the k-sum problem
in group (Zq,+). Then there exists an adversary B that is
a (τ ′, qS, qC, qH, ε)-forger for CoSi in group G, where τ ′ =
τ +O(k · sL · lg q), qS = qC = k − 1 and qH = k · sL.

Proof of Theorem 2. We build a CoSi forger B. Recall that
adversary B playing against the unforgeability of CoSi takes
par , pk∗ as input, and is provided with an access to the random
oracle H0 : G × {0, 1}∗ → Zq and to the signing oracle
OSign(par ,sk∗,·,·). Here par are parameters and (pk∗, sk∗) is
a challenge key-pair generated by the security game. Upon
halting, the adversary has to return σ,m,PK, where σ is a
forgery for message m with respect to set of public keys PK.
Let B perform the following steps:

• Choose an arbitrary message m ∈ {0, 1}∗. Set T equal to
a 2-node tree of depth 1 where the leaf node corresponds
to the challenge key pair pk∗, sk∗, and the root node is
controlled by the adversary. Sample an adversarial key
pair (pk , sk) ←$ Kg(par) that will be used for the root
node. Parse pk∗ as (y∗, π∗) and pk as (y, π), then set
PK = y∗ · y. According to the key generation algorithm,
we have PK = gsk

∗+sk .
• Simultaneously initiate k−1 queries to the signing oracle
OSign(par ,sk∗,·,·) with m and T as input. For each i ∈
{1, . . . , k−1}, pause the i-th concurrent interaction with
the signing oracle after the commitment phase, having
acquired the commitment value pair (ti, pk∗) where ti =
gri for ri ∈ Zq that was chosen uniformly at random and
is not known to B. Set h =

∏k−1
i=1 ti.

• Create empty tables T : {1, . . . , k − 1} × Zq → G and
Tk : Zq → Zq . For each i ∈ {1, . . . , k − 1} create an
empty list Li and fill it with xi,j = H0(t̄j ,m) for all
j ∈ {1, . . . , sL}, such that {t̄1, . . . , t̄sL} are distinct ele-
ments from G. Set T [i, xi,j ] = t̄j accordingly. Create an
empty list Lk and fill it with xk,j = q−H0(h,m

∗
j ) mod q

for j ∈ {1, . . . , sL}, such that {m∗
1, . . . ,m

∗
sL} are distinct

elements from {0, 1}∗ \ {m}. Set Tk[xk,j ] = m∗
j accord-

ingly.
• Run adversary A on lists L1, . . . , Lk to get a solution

to the k-list problem, meaning A returns to B a list of
elements c1, . . . ck ∈ Zq such that c1 + . . . + ck ≡ 0
mod q, and ci ∈ Li for all i ∈ {1, . . . , k}. Set m∗ =
Tk[ck] and c∗ = H0(h,m

∗). Note that c1+. . .+ck−1 ≡ c∗

mod q if adversary A returned a correct solution to the
k-sum problem.

• For each i ∈ {1, . . . , k − 1} set t̄i = T [i, ci] and
pass (t̄i,PK ) as the challenge value pair to the i-th

concurrent interaction with the signing oracle to get back
the response si = ri + ci · sk∗.

• Compute s∗ =
∑k−1

i=1 si+c∗ ·sk mod q. Let σ = (c∗, s∗),
and let PK = {pk∗, pk}. Return σ,m∗,PK.

Assume that adversary A returned a valid solution to the k-
sum problem. Denote r∗ =

∑k−1
j=1 ri. Then we have s∗ =∑k−1

j=1 ri+
∑k−1

j=1 cj ·sk∗+c∗·sk = r∗+c∗·(sk∗+sk). It follows
that c∗ = H0(h,m

∗) = H0(g
r∗ ,m∗) = H0(g

s∗ · PK−c∗ ,m∗),
meaning σ is a valid signature for message m∗ with respect
to the aggregated public key PK .

4.2.2 Parameter Choices

When using the k-tree algorithm in the attack against CoSi,
we have n = lg q. If the number of parallel signing queries
is 3 then the adversary solves the 4-sum problem using 4 ·
q1/3 random oracle queries in time O(q1/3). Furthermore, if
k = 2

√
lg q and the adversary uses (k − 1) parallel signing

oracle queries, then it solves the k-sum problem using 22
√
lg q

random oracle queries in time O(22
√
lg q). More generally, if

the adversary uses (k − 1) parallel signing queries for any
k, then it has to solve the k-sum problem using qH = k ·
2lg q/(1+lg k) random oracle queries (to generate k lists of size
sL = 2lg q/(1+lg k)) and runtime τ ∈ O(k · 2lg q/(1+lg k)).

4.2.3 Producing a forgery for a fixed message

In the attack on CoSi described above, the list Lk is filled
using distinct values of m∗. This requires that the message
space is large enough to produce a sufficient number of list
elements for Lk. It also prohibits from producing a forgery for
some a priori fixed message m∗. We now extend the attack
to remove these restrictions. We will show how to produce a
forgery for an arbitrary message m∗.

Compared to the initial attack, the adversary will now
construct a signature σ = (c∗, s∗) for some message m∗ such
that c∗ = a · ∑k−1

i=1 ci and s∗ = a · ∑k−1
i=1 si + c∗ · sk for

an arbitrary group exponent a. The purpose of value a is to
re-randomize possible values of c∗, allowing to add a new
element to list Lk for each distinct a. We now again show
how to choose the t̄i’s such that σ is a valid signature for m∗.

From the above, we get s∗ = a ·∑k−1
i=1 ri + c∗ · (sk∗ + sk).

Let h = g
∑k−1

i=1 ri . Note that σ is a valid signature if c∗ =

H0(g
a·∑k−1

i=1 ri ,m∗) = H0(h
a,m∗). But we only know that

c∗ = a·∑k−1
i=1 ci = a·∑k−1

i=1 H0(t̄i,m). So in order to produce
a forgery, the adversary needs to find values a, m, m∗ and
t̄i for all i ∈ {1, . . . , k − 1} such that H0(h

a,m∗) · a−1 =∑k−1
i=1 H0(t̄i,m) modulo the group order.
We reduce this to the k-sum problem where list Li for each

i ∈ {1, . . . , k− 1} will contain sL outputs of H0(t̄i,m), filled
by evaluating the hash function on distinct values of t̄i. List
Lk will contain sL outputs of H0(h

a,m∗) ·a−1, each for some
distinct value a.

The following steps change in the reduction to the k-sum
problem:

• In the first step of the attack, adversary B now chooses
two arbitrary distinct messages m,m∗ ∈ {0, 1}∗.

• In the third step of the attack, the list Lk is now
populated with xk,j = q − H0(h

aj ,m∗) · a−1
j mod q



for j ∈ {1, . . . , sL}, such that {a1, . . . , asL} are distinct
elements from Zq . Set Tk[xk,j ] = aj accordingly.

• In the fourth step of the attack, B runs A to acquire a list
of elements c1, . . . ck ∈ Zq as before. It sets a = Tk[ck]
and c∗ = H0(h

a,m∗). Note that a(c1 + . . .+ ck−1) ≡ c∗

mod q if adversary A returned a correct solution to the
k-sum problem.

• In the final step of the attack, compute s∗ = a·∑k−1
i=1 si+

c∗ ·sk mod q. Let σ = (c∗, s∗), and let PK = {pk∗, pk}.
Return σ,m∗,PK.

Assume that adversary A returned a valid solution to the k-
sum problem. Denote r∗ = a ·∑k−1

j=1 ri. Then we have s∗ =

a ·∑k−1
j=1 ri+a ·∑k−1

j=1 cj · sk∗+ c∗ · sk = r∗+ c∗ · (sk∗+ sk).
It follows that c∗ = H0(h

a,m∗) = H0(g
r∗ ,m∗) = H0(g

s∗ ·
PK−c∗ ,m∗), meaning σ is a valid signature for message m∗

with respect to the aggregated public key PK .
Note that if h = 1 then Lk will contain elements that are

not sampled uniformly and independently. This happens with
probability 1/q. Therefore, the success probability of B is (1−
1/q) times that of A.

4.3 Applicability to MuSig

The two-round version of MuSig [MPSW18a] can be at-
tacked in the same way as CoSi. Compared to CoSi, the main
change in MuSig is their use of a more complicated key
aggregation. This affects the above attack only syntactically,
so we omit the details. Our attack does not affect the updated
three-round version of MuSig [MPSW18b].

4.4 Applicability to BCJ

The attack against BCJ closely follows the attack against
CoSi. We consider a 2-node tree T , where the challenger
controls the leaf node. Let PK be the aggregated public key
of T , and let m be an arbitrary message. Let sk be the
secret key of the root node (controlled by the adversary).
The adversary starts k − 1 concurrent signing oracle queries
with the challenger, obtaining values t1,i and t2,i for all
i ∈ {1, . . . , k − 1}, where i denotes an index of the signing
oracle query. Next, the adversary creates lists L1, . . . , Lk. For
each i ∈ {1, . . . , k − 1} the list Li is filled with H0(t1,i ·
gα1
1 hα2

1 , t2,i · gα1
2 hα2

2 gr1,PK ,m) for arbitrary distinct tuples
(α1, α2, r) ∈ Z

3
q . Let t̄∗1 =

∏k−1
i=1 t1,i and t̄∗2 =

∏k−1
i=1 t2,i.

The list Lk is filled with −H0(t̄
∗
1, t̄

∗
2,PK ,m∗) for distinct

messages m∗ ∈ {0, 1}∗ such that m∗ 	= m. The adversary
chooses the values for the challenge phase based on the
solution to the k-sum problem, and gets back responses si for
all i ∈ {1, . . . , k−1}. Let m∗ be the message that corresponds
to the element of Lk that is included in the solution to the
k-sum problem, and let c∗ = H0(t̄

∗
1, t̄

∗
2,PK ,m∗). Then the

adversary returns a forged signature σ∗ = (t̄∗1, t̄
∗
2, s

∗, γ∗
1 , γ

∗
2 )

for m∗, where s∗ =
∑k−1

i=1 si+c∗ ·sk and γ∗
1 , γ

∗
2 are the sums

of the corresponding γ values returned by the challenger at
the end of the signing oracle queries.

4.5 Applicability to MWLD

The attack is again similar to the attack on CoSi. We
consider a 2-node tree T , where the challenger controls the

leaf node with public key pk∗, and the adversary controls the
root node with keys pk , sk1, sk2. Let L = {pk∗, pk}, and let
m be an arbitrary message. The adversary starts k − 1 con-
current signing oracle queries with the challenger, obtaining a
commitment ti for each i ∈ {1, . . . , k−1}, where i denotes an
index of the signing oracle query. Next, the adversary creates
lists L1, . . . , Lk. For each i ∈ {1, . . . , k − 1} the list Li is
filled with H1(H0(t̄i, L,m), pk∗) for distinct values of t̄i ∈ G.
The list Lk is filled with −H1(H0(

∏k−1
i=1 ti, L,m

∗), pk∗) for
distinct messages m∗ ∈ {0, 1}∗ such that m∗ 	= m. The
adversary chooses the values for the challenge phase based on
the solution to the k-sum problem, and gets back responses
s1,i and s2,i for all i ∈ {1, . . . , k − 1}, where i denotes the
number of a concurrent oracle query. Let m∗ be the message
that corresponds to the element of Lk that is included in the
solution to the k-sum problem. Let c∗ = H0(

∏k−1
i=1 ti, L,m

∗)
and let v∗ = H1(c

∗, pk∗). Then adversary produces a forgery
σ = (c∗, s∗1, s

∗
2) for message m∗, where s∗b =

∑k−1
i=1 sb,i+v∗ ·

sk b for each b ∈ {1, 2}.

4.6 Attack on RandHound

RandHound is a public-randomness generator introduced
in [SJKK+17]. The protocol allows a client to interact with
a set of RandHound servers to generate a random string.
It uses CoSi to ensure that the result is publicly verifiable.
Our attack against CoSi allows the client to forge a transcript
that serves as a third-party verifiable proof of the produced
randomness. Hence the client can maliciously claim to have
acquired randomness that is beneficial to them.

In the RandHound protocol, the client communicates with
each of the servers directly. Let n denote the number of the
servers participating in the protocol. Then the protocol runs the
CoSi scheme for an (n+1)-node tree T of depth 1 where the
client is the leader (i.e. is represented by the root node), and
each of the n servers is represented by a leaf node directly
connected to the root. Our attack against the RandHound
protocol will essentially run the CoSi attack against each of
the n servers.

In Section 4.2 we discussed that the CoSi attack can
be extended to the case when the adversary controls only
the root node. This attack would immediately work against
RandHound if the protocol always used the same set of
servers. However, the set of servers that participate in
RandHound may change in each separate execution of the
protocol. To circumvent this limitation, we now show that it
is possible to produce a forgery with respect to an arbitrary
set of servers in RandHound, even if they never produced a
joint signature. The attacker will run the CoSi attack against
each of the servers separately, and then construct a signature
with respect to all servers simultaneously. This will require the
adversary to open k− 1 concurrent signing queries to each of
the n servers, for a total of n · (k−1) concurrent queries. The
adversary will then run a variant of the earlier CoSi attack n
times, each involving the k − 1 concurrent signing queries to
a single targeted server at a time.

The RandHound protocol uses the CoSi scheme to sign
messages that contain a unique session identifier, along with



information about the subset of servers whose secret shares
will be used to compute shared randomness. In order to attack
RandHound, an adversary has to choose some fixed message
m∗ and forge a valid signature σ = (c∗, s∗) for this message
with respect to the set PK = {pk∗

1, . . . , pk
∗
n} containing a

public key for each of the n servers.
We now describe the attack. For each z ∈ {1, . . . , n} let

Tz be a 2-node tree where the adversary controls the root
node with a secret key sk , and the challenger is the z-th of n
servers controlling the leaf node with some secret key sk∗

z (the
client does not participate in the RandHound signature, but for
notational consistency here we assume otherwise). Adversary
chooses an arbitrary message m∗, and for each z ∈ {1, . . . , n}
concurrently runs a variant of the earlier CoSi attack in tree
Tz as follows:

• The adversary chooses mutually distinct messages
mz,1, . . . ,mz,k−1 ∈ {0, 1}∗ \ {m∗} and initiates k − 1
concurrent calls to the signing oracle, using mz,i, Tz as an
input to the oracle query, one for each i ∈ {1, . . . , k−1}.

• At the end of the commitment phase, adversary receives
a commitment tz,i = grz,i for each concurrent oracle
call i ∈ {1, . . . , k − 1}, where rz,i is not known to the
adversary.

• At the beginning of the challenge phase the adversary
chooses and distributes a malicious t̄z,i that is used to
compute the challenge cz,i = H0(t̄z,i,mz,i) for each i ∈
{1, . . . , k − 1} (we show how to choose t̄z,i’s below).

• During the response phase the adversary obtains from
Tz’s leaf node sz,i = rz,i + cz,i · sk∗

z for each i ∈
{1, . . . , k − 1}.

The adversary constructs the signature σ = (c∗, s∗) for
message m∗ where c∗ = H0(

∏n
z=1

∏k−1
i=1 tz,i,m

∗) and s∗ =∑n
z=1

∑k−1
i=1 sz,i + c∗ · sk . We now show how to choose the

t̄z,i’s such that σ is a valid signature for m∗.
Let r∗ =

∑n
z=1

∑k−1
i=1 rz,i. By expanding the above, we get

c∗ = H0(g
r∗ ,m∗) and s∗ = r∗+

∑n
z=1

∑k−1
i=1 cz,i·sk∗

z+c∗·sk .
Note that σ is a valid signature if

∑k−1
i=1 cz,i = c∗ for each z ∈

{1, . . . , n}, which would give us s∗ = r∗ + c∗ · (∑n
z=1 sk

∗
z +

sk). So in order to produce a forgery, for each z ∈ {1, . . . , n}
the adversary needs to find values t̄z,i for all i ∈ {1, . . . , k−1}
such that c∗ =

∑k−1
i=1 H0(t̄z,i,mz,i) modulo the group order.

This can be reduced to a variant of the k-sum problem that
given a constant c∗ and k−1 lists L1, . . . , Lk−1 of uniformly
random elements, requires to find x1 ∈ L1, . . . , xk−1 ∈ Lk−1

such that x1 + . . . + xk−1 ≡ c∗ mod q. Here list Li for
each i ∈ {1, . . . , k− 1} will contain outputs of H0(t̄z,i,mz,i)
for some distinct values of t̄z,i. This problem can be solved
using the k-tree algorithm [Wag02] just as before, but finding
the solution requires more resources because we now lost one
degree of freedom (the choice of elements from the k-th list),
so each of the remaining lists will have to be populated with
a larger number of elements.

5. A SECURE TWO-ROUND MULTI-SIGNATURE FROM BCJ

The metareduction in Section 3 shows that none of the
existing two-round multi-signature schemes (without pairings)
can be proved secure, raising the question whether such
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∑
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Fig. 3: The mBCJ signing protocol for signer Si with se-
cret key sk i and public key pk = (yi, πi). If Si is the
leader then, instead of sending (ti,1, ti,2,PK i) to its parent,
it sends (t̄1, t̄2,PK ) = (ti,1, ti,2,PK i) to its children, and
instead of sending (si, γi,1, γi,2) to its parent, it outputs
(t̄1, t̄2, s, γ1, γ2) = (t̄1, t̄2, si, γi,1, γi,2) as the signature.

schemes can exist at all. In this section we answer that question
in the positive by presenting a modification of the BCJ scheme
that avoids the pitfalls exploited by the metareduction. Namely,
the metareduction exploits the fact that, when the reduction
rewinds the forger, the forger can extract the signing key
from the reduction, or some other information that can be
used to forge signatures. In the following scheme, we ensure
that the extracted information can only be used to create new
signatures on the same message as the one being signed, but
cannot be used to sign different messages.

5.1 The Modified Scheme

The mBCJ scheme uses the same homomorphic commit-
ment scheme to let signers commit to their first rounds as
the BCJ scheme, but lets the parameters of the commitment
scheme be given by the message through a random oracle.
Namely, the scheme uses three hash functions H0,H1 :
{0, 1}∗ → Zq and H2 : {0, 1}∗ → G

3

Parameters generation. Pg sets up a group G of order q
with generator g1, where q is a κ-bit prime. Output par ←
(G, g1, q).
Key generation. Kg(par) chooses sk ←$

Zq and sets y ← gsk1 .
The proof-of-possession π = (c, s) is computed by choosing
r ←$

Zq and computing c ← H1(y, g
r
1) and s ← r+c ·sk mod

q. Let pk ← (y, π) and output (pk , sk).
Signing. The two-round signing protocol is depicted
in Figure 3. More precisely, a signer Si running
Sign(par , (sk i, yi, πi),m, T ) behaves as follows.
Announcement. If Si is the leader, then it sends a unique
session identifier ssid to its children. Otherwise, it waits for
this message and forwards it to its set of children Ci in T .
Commitment. Si waits to receive all values (tj,1, tj,2,PK j)
for j ∈ Ci. It then generates the commitment parameters
(g2, h1, h2) ← H2(m), chooses (ri, αi,1, αi,2) ←$

Z
3
q , and



computes ti,1 ← g
αi,1

1 h
αi,2

1 ·∏j∈Ci
tj,1 and ti,2 ← g

αi,1

2 h
αi,2

2 ·
gri1 · ∏j∈Ci

tj,2, and PK i ← yi ·
∏

j∈Ci
PK j . If Si is not

the leader, it sends (ti,1, ti,2,PK i) to its parent, otherwise it
proceeds to the next phase.
Challenge. If Si is the leader, it sets t̄1 ← ti,1, t̄2 ← ti,2,
and PK ← PK i. It computes c ← H0(t̄1, t̄2,PK ,m), and
sends (t̄1, t̄2,PK ) to its children. If Si is not the leader,
it waits to receive a message (t̄1, t̄2,PK ), computes c ←
H0(t̄1, t̄2,PK ,m), and sends (t̄1, t̄2,PK ) to its children.
Response. Si waits to receive all values (sj , γj,1, γj,2) for j ∈
Ci (note that if Si is a leaf it will proceed immediately), and
then computes si ← ri + c · sk i +

∑
j∈Ci

sj , γi,b ← αi,b +∑
j∈Ci

γj,b for b ∈ {1, 2}. It sends (si, γi,1, γi,2) to its parent,
unless Si is the root, then Si sets s ← si, γ1 ← γi,1, γ2 ←
γi,2, and outputs σ ← (t̄1, t̄2, s, γ1, γ2).
Key Aggregation. KAg on input a set of public keys PK
parses every pk i ∈ PK as (yi, (ci, si)), and if this public key
has not been validated before, check that ci = H1(yi, g

si
1 y−ci

i ).
Output aggregate public key PK ← ∏

yi.
Verification. Vf on input aggregate public key PK , a sig-
nature σ = (t̄1, t̄2, s, γ1, γ2), and a message m, compute
(g2, h1, h2) ← H2(m), c ← H0(t̄1, t̄2,PK ,m) and check that
t̄1

?
= gγ1

1 hγ2

1 and t̄2
?
= gγ1

2 hγ2

2 gs1PK
−c.

5.2 Security

To prove security of the mBCJ scheme, we construct an
algorithm A around the forger F that simulates the random
oracle H3(m) either with commitment parameters with known
trapdoors, or with binding commitment parameters that are a
re-randomization of the challenge public key. It then hopes
that all signing queries are on messages with commitment
parameters of the first type, so that it can use the trapdoor to
equivocate commitments and simulate signatures. If moreover
the forgery is on a message of the second type, then we show
that A can be used in a forking lemma to compute discrete
logarithms.

Theorem 3. mBCJ is a secure multi-signature scheme in the
key-verification setting under the discrete-logarithm assump-
tion in the random-oracle model. More precisely, mBCJ is
(τ, qS, qC, qH, ε)-unforgeable in the random-oracle model if
q > 64e(N + 1)(qH + qS + 1)(qS + 1)/ε and if the discrete-
logarithm problem is (τ ·64e(N+1)2(qH+qS+1)(qS+1)/ε ·
ln(8e(N + 1)(qS + 1)/ε), ε/(8e(qS + 1)))-hard, where N is
the maximum number of signers involved in a single multi-
signature, e is the base of the natural logarithm, and τexp is
the time of a multi-exponentiation in G.

Proof. Given a (τ, qS, qC, qH, ε) forger F against the mBCJ
multi-signature scheme, consider an input generator IG that
outputs y∗ ←$

G and an algorithm A that on input y∗ and
randomness f = (ρ, h1, . . . , hqH) proceeds as follows.

Algorithm A simulates the self-signed certificate π∗ =
(d∗, w∗) by picking d∗, w∗ ←$

Zq and computing v∗ ←
gd

∗
1 y∗−d∗

. It then runs the forger F on input pk∗ = (y∗, π∗)
with random tape ρ. It responds to F’s k-th random-oracle
query to H0 or H1 with hk, except when F makes a query
H1(y

∗, v∗) it responds with d∗. Moreover, when F makes a

query H0(t̄1, t̄2,PK ,m), then A internally simulates a query
H3(m). We assume that A never makes the same random-
oracle query twice.

For each query H3(m), tosses a biased coin that comes
out heads with probability δ and tails with probability 1− δ.
If the coin comes out heads, then it chooses ω1, ω2, ω3 ←$

Zq , computes h1 ← gω1
1 , g2 ← gω2

1 , and h2 ← y∗ω3 , stores
(m, 0, (ω1, ω2, ω3)), and returns (h1, g2, h2). If it comes out
tails, then A chooses ω ←$

Zq and g2, h2 ←$
G, computes

h1 ← y∗ω , stores (m, 1, ω), and returns (h1, g2, h2).
To answer signing queries for a message m as signer Si

in a tree T , A proceeds as follows. If F did not yet query
H3(m), then A internally simulates such a query. If A does not
have a record (m, 0, ω1, ω2, ω3), then it aborts by outputting
(∅, ∅). Otherwise, it receives all values (tj,1, tj,2,PK j) from
its children j ∈ Ci in T , chooses r̂i, ŝi, ĉ ←$

Zq and computes
ti,1 ← gr̂i1 ·∏j∈Ci

tj,1 and ti,2 ← gŝi1 y∗ĉ ·∏j∈Ci
tj,2.

When the forger sends (t̄1, t̄2,PK ), A simulates a query
c ← H0(t̄1, t̄2,PK ,m), then A waits for its children j ∈ Ci to
send (sj , γj,1, γj,2) and computes γ′

i,2 ← (c + ĉ)/ω3 mod q,
γ′
i,1 ← r̂i − ω1γ

′
i,2 mod q, and s′i ← ŝi − ω2γ

′
i,1 mod q. It

then sends γi,1 ← γ′
i,1 +

∑
j∈Ci

γj,1 mod q, γi,2 ← γ′
i,2 +∑

j∈Ci
γj,2 mod q, and si ← s′i +

∑
j∈Ci

sj mod q to its
parent. One can see that, if the co-signers behave honestly,
these values yield a valid signature because

g
γi,1−

∑
j∈Ci

γj,1

1 h
γi,2−

∑
j∈Ci

γj,2

1 = g
γ′
i,1

1 h
γ′
i,2

1

= g
r̂i−ω1γ

′
i,2

1 g
ω1γ

′
i,2

1

= gr̂i1

= ti,1/
∏
j∈Ci

tj,1

and

g
γi,1−

∑
j∈Ci

γj,1

2 h
γi,2−

∑
j∈Ci

γj,2

2 g
si−

∑
j∈Ci

sj

1 y∗−c

= g
γ′
i,1

2 h
γ′
i,2

2 g
s′i
1 y∗−c

= g
ω2γ

′
i,1

1 y∗c+ĉg
ŝi−ω2γ

′
i,1

1 y∗−c

= gŝi1 y∗ĉ

= ti,2/
∏
j∈Ci

tj,2

as in the real signing protocol. Moreover, the responses are
correctly distributed due to the random choices of r̂i, ŝi, and
ĉ.

When F fails to output a successful forgery, then A outputs
fail. Otherwise, let F’s forgery is σ = (t̄1, t̄2, s, γ1, γ2) on
message m∗ for a set of public keys PK∗. Without loss of
generality, we assume that F makes all hash queries involved
in verifying the forgery and the proofs of possession in PK∗.
If there doesn’t exist a record (m∗, 1, ω), then A aborts by
outputting (∅, ∅). Otherwise, let jf be the index of A’s random-
oracle query H0(t̄1, t̄2,PK ,m∗) = hjf = c where PK ∗ =∏

(y,π)∈PK∗ y, and let outjf = (t̄1, t̄2, c, s, γ1, γ2,PK, ω). For
each pk = (y, (d, w)) ∈ PK∗ \ {pk∗}, let jy be the index of
A’s random-oracle query H1(y, v) = d where v = gw1 y

−d, and
let outjy = (y, v, d, w). Algorithm A outputs (J, {outj}j∈J ,
where J = {jy}(y,π)∈PK∗ ∪ {jf}.



Algorithm A runs in time at most τ + (3qH + 5qS + N +
6) · τexp + O(NqS +N) and succeeds whenever F succeeds
and A doesn’t abort prematurely, meaning that all F’s signing
queries were on messages m where the biased coin in H3(m)
came out heads, and the one in H3(m

∗) came out tails. The
success probability of A is therefore εA ≥ δqS(1−δ) ·ε. Using
δ = qS/(qS + 1), we have that

εA ≥
(

1

1 + 1/qS

)qS

· 1

qS + 1
· ε ≥ ε

e(qS + 1)
,

where we use the fact that (1/(1 + 1/qS))
qS ≥ e for qS > 0.

We prove the theorem by constructing an algorithm B
that, on input a group element y∗ and given a forger F,
solves the discrete logarithm problem in G. Namely, B runs
the generalized forking algorithm GFA from Lemma 1 on
input y∗ with the algorithm A described above. If GFA
outputs fail, then B also outputs fail. If GFA outputs
(J, {outj}j∈J , {out ′j}j∈J), then B proceeds as follows.

Let outjf = (t̄1, t̄2, c, s, γ1, γ2,PK∗, ω) and out ′jf =

(t̄′1, t̄
′
2, c

′, s, γ′
1, γ

′
2,PK∗′, ω′) be the two outputs of A related

to the forgery. For every (y, π) ∈ PK∗ \ {pk∗}, there are two
outputs outjy = (y, v, d, w) and out ′jy = (y′, v′, d′, w′) such

that gw1 = vyd and gw
′

1 = v′y′d
′
. From the construction of

GFA, we know that y = y′ and v = v′ because they were part
of the arguments to F’s jy-th random-oracle query. Dividing
the two verification equations yields gw−w′

1 = yd−d′
, from

which we can compute the secret key sky = (w − w′)/(d −
d′) mod q such that y = g

sky

1 , because by the construction of
GFA we have that d 	= d′.

Let outjf = (t̄1, t̄2, s, γ1, γ2,PK∗, ω) and out ′jf =
(t̄′1, t̄

′
2, s

′, γ′
1, γ

′
2,PK∗, ω′). From the validity of the forgeries,

we have that t̄1 = gγ1

1 y∗ωγ2 and t̄′1 = g
γ′
1

1 y∗ω
′γ′

2 . From the
construction of GFA, we know that t̄1 = t̄′1, and because
A internally simulates a query H3(m) as soon as a query
H0(t̄1, t̄2,PK ,m) is made, we also have that ω = ω′. We
therefore have that gγ1−γ′

1
1 = y∗ω(γ′

2−γ2). If γ2 	= γ′
2, then B

outputs the discrete logarithm of y∗ as γ1−γ′
1

ω(γ′
2−γ2)

mod q .

If γ2 = γ′
2, then by the fact that gγ1−γ′

1
1 = y∗ω(γ′

2−γ2) it
must also hold that γ1 = γ′

1. The validity of the signatures
gives us that

t̄2 = gγ1

2 hγ2

2 gs1PK
−c and t̄′2 = g′γ

′
1

2 h′γ′
2

2 gs1PK
′−c′

,

where g2, h2, g
′
2, h

′
2 are determined by the output of H3(m

∗)
latest during the simulation of F’s jf -th random-oracle
query. By the construction of GFA, we therefore have that
(g2, h2, t̄2,PK ) = (g′2, h

′
2, t̄

′
2,PK

′) and c 	= c′ so that
dividing the two equations above yields gs−s′

1 = PK c−c′ .

We also have that PK =
∏

(y,π)∈PK∗ y = g
∑

(y,π)∈PK∗ sky

1 ,
where B already extracted all sky except sky∗ . It can therefore
compute the discrete logarithm of y∗ as

s− s′

c− c′
−

∑
(y,π)∈PK∗\{(y∗,π∗)}

sky mod q .

The running time of B is at most that of GFA plus O(N)
operations, so that the bounds in the theorem follow from
Lemma 1.

5.3 Variants and Caveats
a) Obtaining security in the plain public-key model:

The mBCJ scheme as described above thwarts rogue-key
attacks in the key-verification model by letting signers add
self-signed certificates to their public keys. Alternatively, one
could prevent such attacks in the plain public-key model
(i.e., without requiring certificates) by using a different hash
values as exponents for each public key in the verification
equation [BN06], or by using a product of hash values as
exponents [MWLD10], [MPSW18a]. However, these schemes
would be less efficient in terms of verification and key aggre-
gation time, respectively, because they would require a number
of exponentiations that is linear in the group size for large or
frequently changing groups.

b) Simplifications for the KOSK model: Because security
in the key-verification setting implies security in the KOSK
setting, mBCJ can readily be used in the KOSK model, and we
can even simplify the scheme a bit. Most importantly, the self-
signed credentials preventing rogue-key attacks are no longer
neccessary, as these are avoided by the KOSK setting. Also,
the aggregate public key PK no longer needs to be included in
the hash and setting c ← H0(t̄1, t̄2,m) is sufficient. In the key-
verification setting we needed PK to be included in the hash to
be able to “divide out” the signatures of cosigners and extract a
solution to the DL problem. In the KOSK setting this is much
simpler, as we know the secret key of every corrupt signer,
and PK can be omitted. This saves some bandwith as PK no
longer has to be propagated down the tree of signers. We stress
that this simplified scheme should only be used in a setting
where one is assured that every key is honestly generated.

c) Extension to multi-sets: It is also easy to extend the
mBCJ scheme to multi-sets of signers, where each signer
can participate multiple times in the same signing protocol.
In a highly distributed setting, this could offer the advan-
tage that signers do not have to keep track in which sign-
ing protocol they already participated. The key aggregation
algorithm would simply have to be modified to compute
PK ← ∏

pk∈PK yny as the aggregate public key, where ny is
the multiplicity of public key y in the multi-set PK.

Note that this extension is only secure because mBCJ
includes the aggregate public key PK in the hash
H0(t̄1, t̄2,PK ,m). Without including PK , as was done for
example in the CoSi scheme, the extension to multi-sets
becomes insecure, because a signature on message m and
public key y is easily transformed into a valid signature on
a different message m′ for public key y with multiplicity
c/c′ = H0(t̄1, t̄2,m)/H0(t̄1, t̄2,m

′) mod q.
d) Collision attacks: Bagherzandi et al.’s forking

lemma [BCJ08] imposes that the random oracle H maps into
the full exponent set of Zq , where q is typically a 256-bit
prime, rather than a subset Z2� for � < |q|. Standard Schnorr
signatures are well known to remain secure for much shorter
hash outputs, around 128 bits [Sch91], [NSW09] because their
security does not rely on the collision resistance of the hash
function. It is worth noting that the same is not true for the
case of multi-signatures, because unlike standard signatures,
collisions in the hash function actually do lead to forgeries on
the multi-signature scheme.



Namely, consider a forger F that performs a signing query
for a message m and a tree of signers where F is the leader
with an honestly generated public key y = gsk1 and the honest
signer with public key y∗ the only child. On input m, the
honest signer returns t1,1, t1,2. The forger then repetitively
generates random values α2,1, α2,2, r2 ←$

Zq and computes
t̄1 ← g

α2,1

1 h
α2,2

1 · t1,1 and t̄2 ← g
α2,1

2 h
α2,2

2 · gr21 · t1,2 and hash
values H(t̄1, t̄2,PK ,m) and H(t̄1, t̄2,PK ,m′) for PK = y·y∗
and m′ 	= m until it finds two pairs (t̄1, t̄2) and (t̄′1, t̄

′
2) such

that H(t̄1, t̄2,PK ,m) = H(t̄′1, t̄
′
2,PK ,m′), which for an �-bit

hash function is expected to happen after O(2�/2) tries. It then
sends (t̄1, t̄2,PK ) to the honest signer, who responds with
s1, γ1,1, γ1,2. If α2,1, α2,2, r2, α

′
2,1, α

′
2,2, r

′
2 are the random

values that F used to generate (t̄1, t̄2) and (t̄′1, t̄
′
2), then F

outputs (t̄′1, t̄
′
2, s

′ = s− r2+ r′2, γ
′
1 = γ1+−α2,1+α′

2,1, γ
′
2 =

γ2 − α2,2 + α′
2,2) as a valid forgery on m′.

6. RESTRICTED SECURITY OF CoSi

In the previous sections, we showed that CoSi cannot be
proved secure as a multi-signature scheme and presented actual
sub-exponential attacks. Both the impossibility proof and the
attacks, however, crucially rely on the adversary being able to
engage in many concurrent queries with the signing oracle. So
a natural question to ask is whether CoSi can be proved secure
against an adversary that is limited to sequential attacks.

Below, we answer this question in the positive, but with
some important caveats. We show that, in the knowledge of
secret key (KOSK) model, CoSi can be proved secure against
sequential attacks (or even logarithmically many concurrent
attacks) in the knowledge of secret key (KOSK) model under
the one-more discrete-logarithm assumption. The idea of the
proof is that the reduction answers most of its signing queries
using its discrete-logarithm oracle, but simulates the open
queries at the moment of the fork by programming a simulated
transcript into the random oracle. In order to do so, it guesses
the indices of all open signing queries at the moment of
the fork, as well as the indices of the random-oracle queries
involved in those queries, resulting in a tightness loss of qqCS ,
where qS is the number of signing queries and qC is the
maximum number of concurrently open queries.

Theorem 4. CoSi is a secure multi-signature scheme in the
knowledge of secret key (KOSK) setting under the one-more
discrete-logarithm assumption in the random-oracle model
for logarithmic number of concurrent signing queries. More
precisely, CoSi is (τ, qS, qC, qH, ε)-unforgeable in the KOSK
setting in the random-oracle model if q > 8qH/ε and if the
one-more discrete-logarithm problem is(
kmax · τ + kmax(qS +1) · τexp) ,

ε

8qHq
qC
S

− q2Sk
2
max

q

)
-hard,

where kmax = 8qH/ε · ln(8n/ε) and τexp is the time of a
multi-exponentiation in G.

Due to space constraints, we refer the reader to the full
version of this work for the proof.

It is worth noting that the above proof does not extend to the
key verification model with proofs of possession. The reason
is that the reduction would in that case have to guess the open

queries at each of the N forking points corresponding to the
N proofs of possession for the public keys in the forgery,
resulting in a tightness loss of (qSqH)

NqC . This would mean
that the scheme is secure for at most a handful of signers, i.e.,
barely useful as a multi-signature.

The proof technique does work for a polynomial number
of signers in a restricted model where the adversary has
to commit to all potential signers’ public keys before being
granted access the signing oracle. Alternatively, one could use
a scheme in the plain public-key model (i.e., without requiring
certificates) by using a different hash value as exponents for
each public key in the verification equation [BN06], or by
using a product of hash values as exponents [MWLD10],
[MPSW18a].

7. EVALUATION

We presented mBCJ as an alternative to CoSi, where the
provable security comes at the price of an increased signature
size and a slightly increased computational cost. In this
section, we evaluate the performance of mBCJ and show that
the increased size and computational cost will not have a
significant impact on the efficiency of the system.

7.1 Experiment Setup

a) Prototype: We implemented mBCJ in the Go pro-
gramming language as an extension to the Collective Authority
project (Cothority). We used the Cothority [Ded18b] and
Onet [Ded18a] libraries to provide support for the tree-based
collective signing as used in all three CoSi and mBCJ. This
experiment compares the latest version of CoSi to an imple-
mentation of mBCJ. Note that CoSi has been further developed
since its original publication [STV+16], which explains the
small differences in performance measurements between their
work and our results.

b) Physical configuration: A DeterLab [Det18] testbed
was used to evaluate our system. The testbed consists of
28 physical machines, each containing an Intel Xeon E3-
1260L processor and 16GB of RAM. Every physical machine
simulated up to 586 signers for a total of 16,384 signers. A
round-trip delay of 200 milliseconds between the machines
is enforced to simulate an international connection, and all
the signers that communicate with each other are deployed to
different physical machines to correctly simulate the network
delay.

c) Tree Configuration: mBCJ requires a tree structure
between the different signers. For a given amount of signers,
we can choose either a tree with a lower depth but a higher
branching factor, or accept a higher depth but a lower branch-
ing factor. The overall network delay is linear in the depth
of the tree, and the computation cost and network usage in
each node scale linearly in the branching factor. We find that
a depth of 3 (excluding the root of the tree) yields low network
delays while keeping the computation cost and network usage
manageable, and therefore use this setting for our following
experiments, choosing a branching factor according to the
number of signers.
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(a) Comparing end-to-end latency of CoSi
and mBCJ signing with varying amounts of
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(b) Bandwidth consumption (sent and re-
ceived combined) of CoSi and mBCJ with
varying amounts of signers.
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Fig. 4: Our experimental results comparing the performance of CoSi and mBCJ.

d) Experiment: We simulate the signing process of CoSi
and mBCJ to evaluate the system. In each experiment, the
leader initiates the signing protocol for an arbitrary message,
and the resulting signature is verified against the aggregate
public key. Every experiment is repeated 10 times, taking the
average of the individual runs.

7.2 Results

a) Signing Latency: To evaluate the scalability of mBCJ,
we measured the end-to-end latency of the signing process,
meaning the time between the moment that the root initiates
the signing protocol and that it outputs the signature, from 128
up to 16,384 signers. Fig. 4a depicts the results, showing that
mBCJ can easily scale to 16,384 signers, yielding a signature
in about 2 seconds. It can readily be seen that the network
delay dominates the overall latency, as the 1.2 seconds is
exactly two rounds of three round trips over the depth of
the tree. The results confirm our prediction that mBCJ scales
as well as CoSi does, only marginally increasing the overall
latency compared to them.

b) Bandwidth: Our second experiment measures the
amount of data that every signer sends and receives. While
leaf-signers (signers without children in the tree) send and
receive less data, we here look at the data sent and received
by the root signer, who always has the maximum amount of
children. Fig. 4b shows that the bandwidth consumption of
CoSi5 and mBCJ are independent of the number of signers.
mBCJ uses two points ti,1 and ti,2 in the commitment instead
of one and it has three values s, γ1 and γ2 in the response
which creates the additional cost with respect to CoSi. One
may expect that these changes result in a more significant
difference in bandwidth usage, however, the overhead of the
connection and communicating the tree structure reduced the
gap between the schemes. We believe a 20% increase in the
bandwidth is a very acceptable overhead to gain provable
security and will not hinder the system’s scalability.

5We observed a tenfold improvement in the bandwidth of the current version
of CoSi over the original one. After further investigation, we found out that
the original CoSi aggregated the bandwidth cost over the ten rounds instead
of the average.

c) Computation Cost: Our final experiment compares the
computational cost between CoSi and mBCJ, by measuring the
total CPU time used to run all the signers (that is, the total
time should be divided by the number of signers to obtain the
average time spent per signer). We gathered both user time
and system time of running processes to compute the CPU
time, Fig. 4c shows the results. We observe a 75% average
increase from CoSi to mBCJ. The major factor in CoSi time
increase are the two multi-exponentiations required in mBCJ
to compute ti,1 and ti,2.

Overall, mBCJ is still extremely efficient, as even with
16,384 signers, the average CPU time per signer is under
0.29 milliseconds.

8. CONCLUSION

Our work provides evidence that all currently known two-
round Schnorr-based multi-signature schemes (BCJ, MWLD,
CoSi, and MuSig) are insecure. On the one hand, we show
that they cannot be proved asymptotically secure under stan-
dard assumptions, and on the other hand, we give sub-
exponential attacks that can actually be mounted in practice
for reasonable parameter choices. We then propose the mBCJ
scheme as a provably secure yet highly efficient alternative.
Compared to the original CoSi scheme, our experiments yield
a 73% increase in CPU time and no noticeable difference
in signing latency, showing that mBCJ is just as scalable
as CoSi or any of the other schemes and is a viable alter-
native for use in large-scale decentralized systems. Alterna-
tive secure multi-signature schemes include non-interactive
schemes based on pairings [BLS01], [Bol03], [BDN18] or
three-move schemes based on discrete logarithms without
pairings [BN06], [BDN18], [MPSW18b]. The construction
of quantum-safe multi-signatures or efficient multi-signatures
in the plain public-key model without random oracles are
interesting open problems.

Our results demonstrate the usefulness as well as the
limitations of provable security. Schemes without security
proofs clearly have no place in modern cryptographic design,
especially if efficient provably secure alternatives exist. Appar-
ent resistance against obvious attacks says nothing about the
security of a scheme because, as the sub-exponential attacks in



this paper have shown, subtler attacks may always be hiding
beneath the surface.

But a security proof does not provide an absolute guarantee
either. Security proofs can contain subtle flaws that, as some of
the flaws that we pointed out in this work, may go unnoticed
for years. Rewinding arguments, e.g., using the forking lemma,
are particularly delicate, but are often brushed aside because
of the complexity of the analysis. On the one hand, our
results show the importance of writing out detailed proofs and
carefully reviewing these proofs, but on the other hand, they
also show the need for better tools, manual or automated, to
create and verify proofs. Provable security may not be a perfect
tool, but it’s certainly the best tool that we have at the moment.
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