
Dominance as a New Trusted Computing Primitive
for the Internet of Things

Meng Xu∗†, Manuel Huber‡†, Zhichuang Sun§†, Paul England¶, Marcus Peinado¶,
Sangho Lee¶, Andrey Marochko¶, Dennis Mattoon¶, Rob Spiger‖ and Stefan Thom‖

∗Georgia Institute of Technology ‡Fraunhofer AISEC §Northeastern University ¶Microsoft Research ‖Microsoft

Abstract—The Internet of Things (IoT) is rapidly emerging
as one of the dominant computing paradigms of this decade.
Applications range from in-home entertainment to large-scale
industrial deployments such as controlling assembly lines and
monitoring traffic. While IoT devices are in many respects
similar to traditional computers, user expectations and deploy-
ment scenarios as well as cost and hardware constraints are
sufficiently different to create new security challenges as well
as new opportunities. This is especially true for large-scale IoT
deployments in which a central entity deploys and controls a
large number of IoT devices with minimal human interaction.

Like traditional computers, IoT devices are subject to attack
and compromise. Large IoT deployments consisting of many
nearly identical devices are especially attractive targets. At the
same time, recovery from root compromise by conventional
means becomes costly and slow, even more so if the devices
are dispersed over a large geographical area. In the worst case,
technicians have to travel to all devices and manually recover
them. Data center solutions such as the Intelligent Platform
Management Interface (IPMI) which rely on separate service
processors and network connections are not only not supported
by existing IoT hardware, but are unlikely to be in the foreseeable
future due to the cost constraints of mainstream IoT devices.

This paper presents CIDER, a system that can recover IoT de-
vices within a short amount of time, even if attackers have taken
root control of every device in a large deployment. The recovery
requires minimal manual intervention. After the administrator
has identified the compromise and produced an updated firmware
image, he/she can instruct CIDER to force the devices to reset and
to install the patched firmware on the devices. We demonstrate
the universality and practicality of CIDER by implementing it on
three popular IoT platforms (HummingBoard Edge, Raspberry
Pi Compute Module 3 and Nucleo-L476RG) spanning the range
from high to low end. Our evaluation shows that the performance
overhead of CIDER is generally negligible.

I. INTRODUCTION

The Internet of Things (IoT) continues to experience rapid
growth. The number of IoT devices is believed to have
surpassed the number of mobile phones in 2018 and is expected
to reach 18 billion devices by 2022, thus accounting for almost
two thirds of all internet-connected computing devices [1]. This
growth is driven by a wide range of applications including
home automation (e.g., smart locks and thermostats), industrial
automation, connected vehicles, smart cities, water manage-
ment, agriculture [2], and even vending machines [3].
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In a world in which the great majority of internet-connected
devices are IoT devices and in which many aspects of critical
infrastructure, industrial production, and everyday life depend
on such devices, the Internet of Things becomes an attractive
target for attackers [4]. In addition to simple resource hijacking,
as demonstrated by the Mirai and Hajime Botnets [5–7], new
and more pernicious types of ransomware, targeting production
facilities and critical infrastructure like the power grid [8],
are likely threats. The first instances of IoT ransomware have
already appeared in the wild [9–11].

At the same time, IoT devices have many of the properties
that have allowed traditional computing devices to be compro-
mised on countless occasions. There is no reason to believe that
the operating systems and applications running on IoT devices
will be free from vulnerabilities, especially since much of the
software running on these devices (e.g., the Linux kernel) were
ported from traditional devices. Configuration errors such as
those exploited by Mirai are also likely to persist into the future.
All these problems are exacerbated by the market dynamics
of a rapidly evolving emerging technology for which time-
to-market pressures have traditionally taken precedence over
software assurance.

Rather than attempting to design IoT devices that cannot be
exploited—a daunting task under commercial constraints—this
paper aims to unconditionally recover IoT devices even after
the most severe compromise of the device firmware. More
precisely, our goal is to enable the owner or administrator of
a large IoT deployment to install and run a firmware version
of his or her choice even if the device firmware is under the
control of an attacker and actively resists recovery. We call the
ability of one computing device (i.e., the owner’s IoT back-
end server) to control the software configuration of another
computing device dominance.

Dominance can be seen as a stronger version of attes-
tation [12–15]. Whereas attestation allows the back-end to
identify the software on a device, dominance enables the back-
end to dictate it. Attestation has been a critical primitive in
the design of many trusted computing systems [16–21] that
protect confidentiality and privacy—but not availability—with
a small trusted computing base (TCB). In contrast, in this
paper, availability of the device is one of our central goals.

The need to recover from software failure or compromise
has existed for a long time, and solutions with properties



akin to dominance have emerged in other areas of computing.
In the server and data center space, the Intelligent Platform
Management Interface (IPMI) [22] allows data center adminis-
trators to install software updates on all servers irrespective of
their state. Such solutions rely on separate control processors
running separate operating systems (e.g., Intel Management
Engine (IME) [23]) and accessing the network through either
dedicated interfaces or special interfaces with sidebands [24].
Thus, while effective in the server domain, this approach
appears unsuitable for resource-constrained IoT devices. More
generally, the traditional last line of defense after a severe
compromise has been for the administrator to assert dominance
by taking physical control of the compromised device and
cleaning it up or installing a new operating system on it. As
the ratio of devices to administrators for IoT deployments is
often orders of magnitude larger than in personal computing,
even this approach becomes impractical.

This paper presents CIDER, a system that implements domi-
nance for IoT deployments. CIDER allows the administrator
to specify a firmware update and ensures that the update will
be deployed and executed on all devices within a time-bound.
This includes compromised devices executing adversarial code
that is actively trying to avoid being evicted from the device.
CIDER works with existing IoT hardware and requires only
minimal changes in the hardware configuration and firmware.

A key design choice in CIDER was to avoid concurrent
execution of trusted and untrusted code. CIDER device code
runs during boot immediately after a device reset. After
ensuring that the device firmware is in accordance with policy,
CIDER enables simple hardware protections and relinquishes
control to the firmware until the next reset. This design
obviates the need for runtime isolation and the complex
security hardware and software needed to support it (e.g.,
ring protections, memory management units, virtualization
support, trusted execution environments). The complexity and
limitations of runtime isolation have given rise to critical
implementation bugs [25–27] and a multitude of side channels
including speculative execution attacks [28–30]. While most
processors contain hardware support for runtime isolation,
CIDER does not use it, and it is not part of its TCB.

Instead, CIDER uses two much simpler hardware primitives
to enforce isolation in time: latches and an authenticated
watchdog timer (AWDT). A latch is a protection that software
can enable but not disable. Once enabled, latch protection
remains on until the next reset. Latches allow CIDER to protect
itself such that the firmware cannot remove the protections
even though it is in full control of the device.

The AWDT is a new primitive that allows CIDER to regain
control of a device from the firmware unconditionally by forc-
ing a reset. The AWDT behaves like a conventional watchdog
timer in the sense that it resets the system if the watchdog is not
periodically serviced. However, in contrast to a conventional
watchdog, an AWDT requires cryptographically protected
keepalive messages issued by the remote administrator to defer
the platform reset. Hence, it cannot be serviced independently
by local firmware. We show how to implement an AWDT by

repurposing simple existing hardware.
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HummingBoard Edge (HBE) [31], the Raspberry Pi Compute
Module 3 (CM3) [32], and the STMicroelectronics Nucleo-
L476RG (NL476RG) [33], representing high-, middle-, and
low-end IoT devices respectively, while addressing various
implementation challenges in each of the device families. Our
evaluation shows that CIDER does not interfere with existing
operating systems or bare-metal apps that typically run on
top of these platforms, and introduces minimal overhead in a
reasonable production setting.

The goal of ensuring availability makes the software TCB of
CIDER larger than that of other trusted computing systems that
limit themselves to confidentiality and integrity [16–21]. The
CIDER device code comprises around 23k lines of code (LoC).
This includes device initialization, a storage driver and a small
networking stack. We isolate the networking code to prevent
network-based attacks from compromising CIDER. We shield
the remaining core CIDER code from the adversary through
isolation in time and by checking the integrity of all inputs using
the formally verified High-Assurance Cryptographic Library
(HACL) [34].

In summary, this paper makes the following contributions:

• We propose dominance, a new trusted computing primitive
that allows a remote administrator to unconditionally
recover and configure a device even after a complete
compromise of the device firmware.

• We design CIDER, a practical system that brings dom-
inance to IoT deployments without disrupting normal
device operations. Our design avoids the need for runtime
isolation which allows for a significant reduction in the
hardware complexity and software TCB.

• We introduce the AWDT as a new hardware construct
and present practical AWDT implementations in existing
hardware and in software.

• We demonstrate how large amounts of off-the-shelf driver
code can be used safely by shielding them from adversarial
inputs.

• We have prototyped CIDER on three popular IoT devices.
Our evaluation shows that CIDER is compatible with
existing firmware and introduces a tolerable boot-up delay
and a negligible runtime overhead.

II. BACKGROUND

A typical IoT system consists of multiple components. A
possibly large number of devices that may be geographically
dispersed interact with the physical world through sensors and
actuators. The devices connect over the internet to one or
more back-end servers (the hub) which are often located in the
cloud, but could also be managed by an enterprise. The hub
may store and analyze the sensor data sent by the devices and
send instructions to the devices. In addition to these application-
specific interactions, the connection between the hub and the
devices may be used for device maintenance such as firmware
updates. The hub exposes interfaces that allow the owners or



users of the IoT system to access the data gathered by the
devices or to configure the system.

IoT devices are simple computers, typically equipped with
various peripheral sensors (e.g., thermometers, cameras or
accelerometers) or actuators (e.g., traffic light controls or
motors). Low-end IoT devices may be built around a low-power
system-on-chip (SoC) consisting of a single-core microcon-
troller running at moderate clock rates (e.g., tens of MHz) and
small amounts of RAM (e.g., tens to hundreds of kB) and flash
(e.g., hundreds to thousands of kB). Such devices typically
run an application either bare-metal or on top of an embedded
operating system such as mbed OS or FreeRTOS. High-end
devices may feature multicore 64-bit CPUs running at GHz
clock rates, several GBs of DRAM, external storage devices
and a full operating system such as Linux, allowing them to
run multiple applications.

A. IoT Examples

This section presents three IoT scenarios. Our goal is to
provide examples of systems to which CIDER could be applied
that are both concrete and representative of broader classes of
IoT applications.
Air-quality monitoring system. Several organizations have
deployed air-quality sensors in many locations across the globe.
The sensors (i.e., IoT devices) measure various types of air
pollution (e.g., ozone, PM2.5, carbon monoxide) and send the
measured data to a server (i.e., hub). The hub may process the
raw data in several ways (e.g., analytics, visualizations). The
results can be accessed through web interfaces [35].
Traffic monitoring and control system. Traffic cameras
and other traffic sensors have been deployed in many cities.
The cameras may (or may not) process the images to infer
traffic density, traffic jams or accidents. The raw or processed
sensor data are sent to the hub which gathers and stores the
sensor data and can run various analytics jobs. This can enable
applications in which the hub computes traffic light settings
that optimize global traffic flows and sends these settings to
internet-connected traffic lights [36].
Remote elevator inspection. The devices are microcontrollers
in elevators. In addition to running the elevators, the devices
periodically gather readings from various sensors and send
them to the hub. The hub can run various analytics jobs to
identify elevators that may need a more thorough inspection
by maintenance personnel [37].
Discussion of examples. At one extreme, pure sensor devices
simply read the current values from peripheral sensors (e.g.,
air quality sensors) and send them directly to the hub. In the
absence of an internet connection, these devices are useless.
At the other extreme are hybrid devices such as the elevator
controller that have IoT functions (e.g., sending diagnostics
information to the hub) in addition to operational functions
(e.g., running the elevator).

B. Building Blocks

This section provides background on components that we
use to build CIDER.

Latches. A hardware latch is a simple state machine with
only two states: {open, locked}. Its initial state is open and
software can cause it to transit into the locked state (e.g., by
writing to a hardware register). However, only a device reset
will cause the latch to transition back into the open state. Each
latch has an associated security function which is enabled if
and only if the latch is in the locked state. We are interested
in two types of latches that operate on persistent storage:

• A read-write latch (RWLatch) that once applied, blocks
any read or write access to one or more storage regions.

• A write latch (WRLatch) that once applied, blocks any
write access to one or more storage regions (read access
is allowed).

CIDER uses RWLatches to protect per-device secrets and
WRLatches to protect its code against unauthorized modifica-
tion or deletion.

Orderly reset. CIDER requires that device reset and power-on
provide a clean-state environment in which early boot code can
execute deterministically, regardless of the actions of software
that was running prior to the reset. We assume this behavior
for CPUs. However, if a CPU is embedded in a platform with
additional active devices (e.g., devices that can bus-master or
reset the main CPU), then these devices must also be reset
when the main CPU is reset. The resets of latched devices
must be tightly coupled to resets of the main CPU.

Attestation. Attestation in CIDER is based on the Device
Identifier Composition Engine (DICE) [38]. DICE supports
device identity and attestation requiring only minimal hardware
support. To support DICE, a device must be equipped with a
256-bit unique per-device secret—KPLATFORM—which must
be read-latchable. Trusted early-boot code uses this secret to
enable untrusted code that may run subsequently to perform
attestations. The hardware requirements of DICE are far simpler
than those of alternatives such as TPM-based attestation.

In a nutshell, DICE code running during early boot reads
KPLATFORM and then latches it so that it becomes inaccessible
to later software. DICE then uses a deterministic key-generation
algorithm to create two asymmetric key pairs: the DeviceID
key pair and the Alias key pair.

The DeviceID key pair is derived solely from KPLATFORM
and remains the same for the life of the device. The Alias key
pair is derived from KPLATFORM and the hash of the device
firmware. Thus, the Alias key pair will change if the firmware
is updated. DICE uses the DeviceID private key to certify the
Alias public key and the hash of the device firmware. Before
passing control to the firmware, DICE deletes KPLATFORM
and the DeviceID private key from RAM and registers, but
passes the Alias private key and the Alias public key certificate
on to the firmware. The firmware can use these keys to make
attestation claims to a server by signing a server-generated
nonce.

Entropy source. We require a source of entropy such as a
true random number generator (TRNG) in order to generate
nonces that an adversary cannot predict.



III. ADVERSARY MODEL

We model a realistic and powerful remote attacker who
tries to hack into the devices taking advantage of firmware
vulnerabilities or configuration errors such as weak passwords.
Attacks requiring physical access or proximity lie outside the
scope of this paper, as we focus on scalable attacks.

The device firmware, while originally benign, is subject to
exploitation by the adversary, resulting in the device executing
the adversary’s code. The adversary’s capabilities are only
restricted by the properties of the hardware which we assume
to work correctly (i.e., according to specification). For example,
the adversary is neither able to overwrite early boot code
in Read-Only Memory (ROM) nor revert hardware latches
without device resets. In addition, we assume that at least a
critical subset of the CIDER code works correctly and is free
of vulnerabilities. With a focus on device security, we assume
the hub is trusted and secure. Securing the hub is out of this
paper’s scope.

The adversary may also attempt to eavesdrop on, tamper
with or block the communications between devices and the hub
with the goal of obtaining sensitive information, controlling the
devices indirectly and preventing the hub from controlling or
recovering devices, respectively. However, we assume that the
adversary cannot block the communication indefinitely because
long-lasting attacks can typically be detected and remediated
by network operators. Symantec observed during Q3 of 2015
that less than one percent of network layer DDoS attacks lasted
more than 24 hours [39].

A. Problem Statement

Our goal is to enable the hub to unconditionally recover
control of all managed devices even after a complete com-
promise of the device firmware: a property commonly called
availability. With control recovered, the hub may subsequently
issue firmware updates to patch the vulnerability or change the
security settings that led to the exploit and evict the adversary
from the device. It may further request evidence from the
device that the updates have been applied correctly.

Control recovery is challenging because an attacker may
execute his/her code at the highest privilege and refuse to
cooperate with the hub. However, once this challenge is solved,
the security benefit of control recovery can be amplified by
what the hub can do after regaining control.

Recovery from a complete software compromise inevitably
requires hardware features or even new hardware constructs.
For the sake of practicality, the hardware features we rely
on must be either readily available on popular IoT devices
or easy to obtain and integrate. More precisely, our design
must be implementable on existing, unmodified mass market
chips (i.e., microcontrollers, storage), as it is very hard to
achieve broad adoption of custom chip designs. In contrast,
modifications or extensions at the board level are much easier
to implement and mass deploy. Many IoT boards have various
hardware extension interfaces precisely to allow the user to
attach additional hardware to the board. We take advantage of
this option in a variety of ways.

In addition, any security mechanism we introduce should not
significantly interfere with the functionality and performance
of the existing firmware. We also should neither change the
deployment model (e.g., increasing manual effort) nor require
hardware that would significantly increase the cost of the
devices.

IV. DESIGN

In this section, we define dominance and identify two simpler
primitives, gated boot and a reset trigger, that are sufficient to
implement it. We present a simple secure design that achieves
dominance but has several usability problems. The next section
will describe the complete CIDER design which resolves these
problems.

A. Defining Dominance

Definition. The hub dominates a device if the hub can choose
arbitrary code and force the device to run it within a bounded
amount of time.

In the example of a smart traffic control system [36], the
bounded amount of time might be 1 hour, and the arbitrary
code can either be the patched firmware with vulnerabilities
fixed or a temporary operation routine (e.g., flashing red lights).

We decompose dominance into two simpler but related
components, gated boot and reset trigger, each designed to
address one functional requirement.
Gated boot. Gated boot ensures that the device will boot
firmware that is authorized by the hub at that time. If, no
such firmware is on the device at boot time (e.g., because the
hub demands a newer version of the firmware or because the
firmware was compromised), gated boot will first obtain and
install an acceptable firmware version on the device before
booting into it.
Reset trigger. After gated boot, the firmware has complete
control over the device (subject only to hardware constraints).
As the firmware was chosen by the hub, it can, in general,
cooperate in performing regular maintenance tasks such as
installing firmware updates requested by the hub. However, if
the device is taken over by an attacker, this will not be the case.
In order to prevent the attacker’s code from running on the
device indefinitely, the hub needs a mechanism to force a device
reset (i.e., a reset trigger). This will preempt the firmware and
invoke gated boot, which can examine and update the firmware
as requested by the hub.

B. Security Primitives and Protocols

CIDER uses cryptography to provide communications secu-
rity and endpoint authentication and attestation. The essential
security building-blocks and protocols are described in this
section.
Hub authentication. A hub public key is installed in
the device during initial provisioning, and devices perform
signature verification to ensure that messages from the hub are
authentic.
Device authentication and attestation. CIDER devices
are furnished with globally unique DICE secrets (i.e.,
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Fig. 1: An overview of a simple dominance design. The firmware
cannot compromise the confidentiality and integrity of the system.
However, this design has usability problems (frequent resets) and large
attack surface (exposed networking stack). The improved, complete
CIDER design is presented in Figure 2.

KPLATFORM). The hub stores the derived DeviceID public
key for each device during provisioning. This allows CIDER
devices to authenticate themselves using their Alias key pairs
and Alias key certificates.
Replay protection. CIDER protects all relevant hub-to-device
and device-to-hub messages from replay attacks using nonces.

C. A Simple Dominance Scheme

Figure 1 displays a dominance scheme designed to be as
simple as possible. However, it is a secure design under our
threat model (§III) and protects itself from the firmware with
the necessary hardware features.
Gated boot. Gated boot is implemented in the software that
runs immediately after a reset. Some devices are hardwired to
run small amounts of code in ROM first. In those cases, the
gated boot code runs immediately after the ROM code.

The first task of gated boot is to run DICE to derive
the DeviceID and Alias key pairs. This includes applying a
RWLatch such that any attempts to read or write KPLATFORM
will be blocked until the next device reset. The next step is to
ascertain if the hub authorizes the firmware that is currently on
the device to run. Gated boot computes a cryptographic digest
of the firmware’s initial binary (digest), requests a nonce from
the hub and sends <digest|nonce> signed by the DeviceID
private key to the hub. While this only ensures the integrity
of the initial binary, firmware features such as dm-verity [40]
can extend integrity assurances to large parts of the firmware.

If the hub approves the received firmware digest, it replies
with <"OK"|nonce> signed by the hub private key. Upon
receiving the OK message, gated boot secures the device before
transferring control to the firmware. In particular, it sets the
WRLatch for the parts of storage where CIDER’s code and
data reside and enables the reset trigger which guarantees
that CIDER will regain control within a bounded time interval.
With these hardware protections enabled, gated boot loads the
firmware’s initial binary and transfers control to it.

If the hub does not approve the firmware, it replies with
<patch-id|nonce> (signed by its private key), and gated boot
will first download the firmware update from the hub according
to the patch-id and use it to replace the old firmware on
storage. In both cases, the net effect of gated boot is that the
device will boot a firmware image that is approved by the hub.

This behavior differs from prior work. Secure boot [41] will
not boot at all if the firmware is unexpected. Authenticated
boot [42] will boot any firmware and simply report to the hub
what that firmware was.
Reset trigger. The simplest form of a reset trigger is a very
simple timer that is akin to many existing watchdog timers.
Once the timer is set, it cannot be disabled or deferred. When
it expires, it resets the platform (unless the platform resets
itself before that). The reset will invoke gated boot again.

D. Limitations

This simple design has several limitations which we will
resolve in the next section:
Disruptive resets. If the reset trigger causes frequent and
uncoordinated device resets, it may interrupt the device during
a critical operation or cause in-memory state to be lost. Many
IoT applications may not be able to tolerate this.
Boot delay. Gated boot adds a network interaction with the
hub to every boot. This adds a noticeable delay.
Networking stack. The gated boot code includes a networking
stack which, being large and exposed to attacks from the
network, is a potential threat to the integrity of the CIDER
TCB.

The next section will present an improved design that avoids
these shortcomings. We will address the third problem by
isolating the networking stack. We will solve the first two prob-
lems by making disruptive resets and network interactions at
boot time rare events that should only occur under exceptional
circumstances such as when the device is indeed compromised
or there is a firmware update. The key to achieving this will be
to enlist the help of the untrusted firmware. This help includes
obtaining cryptographic tokens from the hub that allow forced
resets and network interactions at boot time to be avoided.
Failure to cooperate will result in a reset, invocation of gated
boot and, possibly, the installation of a firmware patch.

V. AN IMPROVED DESIGN

This section presents the complete CIDER design. We
describe how CIDER solves each of the three problems of
the simple design and finally summarize the overall workflow
of CIDER.

A. Avoiding Network Interactions at Boot Time

The basic version of gated boot has to contact the hub over
the network each time the device boots, which can easily add
seconds to an otherwise very fast boot sequence. Fortunately,
the network interaction can be avoided completely under normal
circumstances by offloading it to the firmware, which can
overlap hub-communication with other activities, or perform it
at a time when it is not disruptive.

Cooperating firmware may proactively fetch an authorization
from the hub, named a BootTicket, that allows CIDER to boot
the firmware directly without contacting the hub during the
next boot. To enable this, gated boot generates a nonce (the
boot-nonce) and WRLatches it, such that the firmware can
read but not modify it. After control has been transferred



to the firmware, the latter includes the boot-nonce in a
DICE-attested request to the hub for a BootTicket. In other
words, the firmware can request a BootTicket by sending
<digest|boot-nonce> signed by the Alias private key as well
as the Alias public key certificate signed by the DeviceID
private key.

If the firmware digest is within hub policy, the hub signs
a BootTicket which includes the boot-nonce and sends it to
the device, where the firmware will save it to unprotected
persistent storage. After the next reset, gated boot will find the
BootTicket, verify its signature and compare the boot-nonce
from the BootTicket to the boot-nonce that it had originally
generated and WRLatched the last time it ran. It will also
compare the current firmware digest with the digest from the
previous boot. If all tests succeed, it will start the firmware
immediately, omitting the attestation step and the associated
network interaction. Otherwise, or if no BootTicket exists,
gated boot will fall back to the behavior described in the
previous section including a network-based attestation step.
Gated boot replaces the boot-nonce with a new random number
on every boot. Thus, old boot-nonces simply become invalid
and cannot be replayed.

If the firmware digest does not comply with hub policy, a
new firmware version must be installed. The hub may choose to
do this in collaboration with the current firmware. Alternatively,
it may simply refuse to issue a BootTicket which will cause
gated boot to install a new firmware version at the next reboot
using its own update mechanism.

With this optimization, gated boot will only incur the cost of
network transactions if the previous execution of the firmware
failed to obtain a valid BootTicket. The latter should only
happen only if 1) the firmware is uncooperative (either because
of an attack or software failure), 2) the hub refuses to let the
current firmware version continue its execution on the device
or 3) a prolonged interruption in network connectivity. The
security trade-off of the optimization is that, after obtaining the
BootTicket, the firmware will be able to survive one more reset,
even if the hub discovers that it is outdated or compromised.
However, this can be compensated by shortening the timeout
period of the reset trigger.

B. Avoiding Uncoordinated Resets at Runtime

As noted in §IV-D, the simple reset trigger can seriously
disrupt the device if it frequently causes unexpected resets.
Here, we describe a reset trigger whose disruption is not worse
than that of a regular software update (e.g., patch Tuesday). For
cooperating devices, resets can be pre-announced and should
only happen when the hub requires a firmware update but does
not trust the existing firmware to apply it. We assume this to
be a rare event.
Authenticated watchdog timer (AWDT). We define an
AWDT as a new abstract hardware device and describe how
CIDER uses an AWDT to implement a reliable, non-disruptive
reset trigger. Since the AWDT is a new device, there is no
off-the-shelf implementation of it. We will present our own

AWDT implementations that repurpose existing hardware in
§VI.

An AWDT is a device that can be programmed to trigger a
reset after a given amount of time unless the reset is deferred
in an authenticated way. Formally, let AWDT_Init(T, K) be
the function that starts the AWDT. The AWDT will trigger a
reset T seconds after AWDT_Init is called. The K parameter is
a public key for signature verification. AWDT_Init is a latched
operation. Once AWDT_Init has been called, its effect cannot
be undone nor can it be called again until the next reset.

However, AWDT expiration can be deferred in an authen-
ticated way. If the AWDT is provided with a voucher signed
with the private key that corresponds to the public key K, it will
extend the time-to-reset by the number of seconds stated in the
voucher. We call such a voucher a DeferralTicket. It has three
components: a nonce (to avoid replays), the number of seconds
by which the reset should be deferred and a signature over the
other components. The second AWDT interface AWDT_GetNonce
returns the nonce while the third interface AWDT_PutTicket
hands over a DeferralTicket to the AWDT. AWDT_PutTicket
checks the nonce and the signature on the DeferralTicket
and, if both tests succeed, extends the time-to-reset.

AWDT in CIDER. CIDER gated boot calls AWDT_Init(T, K)
to initialize the reset trigger, where K is the hub public key and
T is an appropriate timeout period (e.g., one day). Once control
has passed to the firmware, it is the task of the firmware to
obtain DeferralTickets to prevent the AWDT from resetting
the device. The mechanics of this are analogous to those of
obtaining a BootTicket. The firmware calls AWDT_GetNonce
and sends a DICE-attested request for a DeferralTicket to
the hub. The hub decides whether to issue a DeferralTicket
based on the firmware hash and the DeviceID. If the hub is
satisfied, it issues a DeferralTicket and sends it to the device.
The firmware can then forward the ticket to the AWDT by
calling AWDT_PutTicket.

If the hub is dissatisfied with the attestation, it may try to
coordinate an orderly update and restart with the existing
firmware. This could involve issuing it a shorter-duration
DeferralTicket to enable the device to run until the next
convenient time to apply the update and restart the device.

The main difference between an AWDT and a conventional
watchdog timer is the servicing mechanism. Regular watchdog
timers are serviced through unauthenticated software actions
such as writing a constant to a register. In our setting, the
untrusted firmware can delay the reset from regular watchdog
timers indefinitely by servicing them. In contrast, an AWDT
can only be serviced with the help of a fresh DeferralTicket
issued by the hub.

The gated boot code informs the firmware about the initial
AWDT time-to-reset. The firmware can also see the deferral
time in every DeferralTicket it obtains from the hub for the
AWDT. Thus, the firmware knows when the AWDT will reset
the device and can make appropriate preparations, such as
hibernating itself, putting the environment into a safe state
and/or restarting the device at a time that is least disruptive.
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Fig. 2: An overview of the complete CIDER design. Neither the
firmware nor the recovery module (with its isolated networking stack)
can compromise the confidentiality and integrity of CIDER.

C. Isolating the Networking Stack

We isolate the networking stack together with a small
amount of control logic into a separate recovery module. The
exact security implications of this step are discussed in §VII.
CIDER gated boot will invoke the recovery module if no valid
BootTicket is present. The task of the recovery module is to
obtain a BootTicket or a firmware update from the hub.

The recovery module is a separate binary. We isolate it
using the same isolation-in-time mechanism that CIDER uses
to protect itself from the firmware. Before invoking the recovery
module, CIDER activates all latches and the AWDT, loads the
binary, places its input parameters into memory and transfers
control to it. The input parameters include the digest of the
firmware as well as a set of DICE credentials for the recovery
module including an Alias key pair.

When invoked, the recovery module performs a DICE
attestation of the firmware digest to the hub and requests
a BootTicket. If the firmware digest is in accordance with
hub policy, the hub returns the BootTicket. Otherwise, the
hub sends a firmware update. Either way, the recovery module
saves the result to persistent storage an returns control to CIDER
gated boot by resetting the device. All network communications
are secured with nonces and signatures.

D. An Improved Dominance Scheme

Figure 2 summarizes the complete CIDER design. It inte-
grates the enhancements described in this section into the basic
design of Figure 1.

After a reset, CIDER gated boot initializes DICE. This
includes reading KPLATFORM, computing the DeviceID and
Alias keys and RWLatching KPLATFORM. If a firmware update
was staged during the previous run, CIDER will validate and
install it and reset the device. This mechanism can also update
CIDER itself by replacing its binaries or configuration data on
the storage device. This also includes reprovisioning CIDER
with a new hub public key (e.g., to change device ownership)
or with new network credentials.

In the absence of a staged firmware update, CIDER will
WRLatch its code and data and look for a BootTicket. If a
valid BootTicket is present, CIDER will enable the AWDT and
transfer control to the firmware. In all other cases, CIDER will
apply the same protections and invoke the recovery module.
During its execution, the firmware (or possibly the recovery
module) will periodically interact with the AWDT and the hub
to serve the AWDT valid DeferralTickets to postpone the
reset.

E. Safe Mode

Both gated boot and the AWDT assume the ability to
communicate with the hub for BootTicket fetching and AWDT
servicing. However, our threat model allows for the network
to become temporarily unavailable, e.g., because of a DDoS
attack. There are a range of options for CIDER to handle this
case, representing various trade-offs between availability and
integrity. The optimal choice depends on the application. For
example, for pure sensor devices that merely send data to the
hub while having no offline function, it may be acceptable to
just wait until gated boot can reach the hub again.

For hybrid devices with offline functionality, booting into
a “safe mode” firmware image that is stored on the device
and protected by a WRLatch may be the best option. The
safe mode firmware allows the device to perform its offline
tasks but does not enable network or other functionality that
could cause the device to be compromised (e.g., by keeping
the network interface controller (NIC) off). For example, safe
mode elevator firmware may allow the elevator to operate, but
not support remote diagnostics. This does not appear to give
up any functionality since, by assumption, the connection to
the hub is not available. After some time, the AWDT or the
safe mode firmware itself may reset the device to give gated
boot another opportunity to contact the hub.

VI. IMPLEMENTATION

We have implemented CIDER on three popular IoT plat-
forms:

• SolidRun HummingBoard Edge (HBE), priced ~$240,
representing a high-end, powerful computing board;

• Raspberry Pi Compute Module 3 (CM3), priced ~$35, in
conjunction with the CM3 IO Board ($120), representing
a mid-end, generic multi-purpose board;

• STMicroelectronics Nucleo-L476RG (NL476RG), priced
~$15, representing a low-end, resource-constrained board.

We separated the implementation of CIDER into a platform-
independent part and a hardware abstraction layer (HAL). The
HAL for each platform implements a common interface on the
hardware available on the platform. The platform-independent
part implements the logic flow as described in §V-D over the
HAL interface and consists of about 6,300 lines of C code.
Most of this code is made up by the crypto library (3,600
LoC). We used the digital signature algorithm (Ed25519) and
SHA2-256 components of the formally verified High-Assurance
Cryptographic Library (HACL) library [34, 43]. We begin by
describing our hub and AWDT implementations which apply to



all three platforms. After that, we describe the device-specific
aspects of the implementation for each of our target platforms.

A. Hub

We built a simple hub prototype to test CIDER end-to-end.
The hub prototype consists of 2,500 lines of C# code based
on Azure Functions [44], using the Bouncy Castle crypto
library [45] and Azure SQL Database for state storage [46].

B. AWDT

The AWDT is a new primitive. No existing MCU implements
it. However, we believe that adding such functionality would
be easy. For example, the HBE’s MCU already has all major
building blocks (i.e., TRNG, crypto accelerator, conventional
watchdog timer), and would only require simple control logic
to implement an AWDT.

Not being able to change the MCU, we present two
alternative AWDT implementations: 1) using simple hardware
that we attach to the main board and 2) using only software.
Hardware AWDT. We implemented an external authenticated
watchdog timer (eAWDT) using a separate STMicroelec-
tronics Nucleo-L053R8 (NL053R8) board [47], featuring
a 32 MHz STM32L053R8 MCU (ARM Cortex-M0+). The
STM32L053R8 cost less than $3 at volume. We chose the
NL053R8 board to simplify our implementation work. The
hardware cost could be reduced to less than $1 by com-
bining a cryptographic co-processor such as the Microchip
ATECC608A [48] (for nonce generation and signature verifi-
cation) with an 8-bit microcontroller such as the Microchip
ATtiny412 [49] (for control logic and universal asynchronous
receiver/transmitter (UART) communication).

We used 200 lines of C code to implement the three functions
of the AWDT interface (i.e., AWDT_Init, AWDT_GetNonce and
AWDT_PutTicket). In addition, we had to include our crypto
library (3,600 lines of code) for the signature check on the
DeferralTicket. The main board calls these functions by
communicating over the UART interface.
AWDT_Init sets the initial counter value and initiates a

periodic timer interrupt (triggered every 1 s) that executes
a callback function to decrease and check the counter value.
When the value becomes zero, it signals one of the general-
purpose input/output (GPIO) pins of the NL053R8 board. This
pin should be connected to the reset pin of the main board
to reset it from the outside. The eAWDT then resets itself
as well by executing SYSRESETREQ. AWDT_GetNonce uses the
NL053R8’s TRNG to generate cryptographically secure nonce
values.

The simplicity of the AWDT interface provides strong
protection of the AWDT against attacks from the main board
and vice versa.
Software AWDT. As an alternative to the eAWDT, we also
implemented the AWDT in software running in TrustZone
on the HBE and the CM3 and using the Memory Protection
Unit (MPU) on the NL476RG. This software implementation
relies on runtime isolation. However, as the AWDT contains

no secrets and, thus, does not require confidentiality, it is not
subject to known side channel or speculative execution attacks.

Our software implementation uses minor variants of the
200 lines of C code running on the eAWDT. On processors
that support TrustZone, we implemented the AWDT code as a
pseudo trusted application (PTA) on OP-TEE [50] in TrustZone.
Our code programs an existing, regular timer whose control
registers can only be accessed from within TrustZone. On the
NL476RG which lacks TrustZone support, we used the MPU
to isolate our AWDT implementation. Due to space limitations,
the rest of this paper discusses only the eAWDT.

C. SolidRun HummingBoard Edge (HBE)
Our HBE features an NXP i.MX6Quad (ARM Cortex-A9)

quad-core processor running at 1 GHz. This processor supports
a variety of security features, including protected key storage,
a cryptographic accelerator, ARM TrustZone, a TRNG, and a
secure real-time clock. The board also has a gigabit Ethernet
controller, 2 GB of DRAM and an 8 GB Embedded Multi-
Media Card (eMMC).

We integrated our boot code into the U-BOOT [51] Sec-
ondary Program Loader (SPL). U-BOOT is a popular boot
loader. The SPL is a small subset of U-BOOT. Its purpose is to
initialize the hardware to the point that full U-BOOT can run.
The SPL for the HBE has to turn on DRAM and processor
caches, load the full U-BOOT binary from eMMC into DRAM
and transfer control to it. We inserted the CIDER boot code into
the SPL after the end of the hardware initialization but before
the loading of the U-BOOT binary. This freed us from having
to write device-specific initialization code and provided us
with a basic runtime environment and an MMC storage driver.
Table I displays the line counts. As CIDER’s protections (i.e.,
latches, AWDT) are turned on in the SPL, CIDER is protected
from U-BOOT and any binaries it might load (e.g., Linux).
Networking. For convenience, we built the recovery module
out of a stripped-down version of U-BOOT. U-BOOT contains
a driver for the i.MX6 Ethernet controller and a simple
networking stack, which we augmented to support TCP with a
patch [52]. We removed all unnecessary U-BOOT components.
RWLatch protected key storage. The Cryptographic Accel-
eration and Assurance Module (CAAM) of the HBE’s MCU
(i.MX6) provides confidentiality and integrity protection for
critical data blobs with a key that is only accessible by the
CAAM itself. Critically, use of the key is gated by a RWLatch.
The PRIBLOB bits in the Security Configuration Register (SCGFR)
must be 0 for the key to be readable. Software can set the bits
to 1 at any time. Once set to 1, the PRIBLOB bits will retain this
value until the next reset. We use this mechanism to protect
the device private key. At each boot, the CAAM will decrypt
the private key for CIDER. Gated boot then sets the PRIBLOB
bits to 1, disabling access until the next reset.
WRLatch protected code and data storage. The eMMC
standard supports power-on write protection. This feature
allows software to instruct the eMMC device to make parts of
storage read-only until the next reset. All storage of the eMMC
device can be write-protected in this way at 8 MB granularity.



Unfortunately, the HBE does not couple eMMC reset tightly
to processor reset. Instead, it allows the eMMC reset pin to
be controlled by software via GPIO. We solve this problem
with the help of the SECURE_WP_MODE feature of the
eMMC 5.1 standard that allows power-on write protection to
be locked such that resets do not remove it [53]. The lock
and unlock commands are authenticated with a secret number.
At installation time, CIDER sets this number and keeps an
encrypted copy (using the RWLatch). When setting power-on
write protection, CIDER also issues the lock command to the
eMMC device to guard against spurious resets. When needed,
CIDER removes the power-on write protections by issuing the
unlock command and subsequently resetting the eMMC device
by signaling its reset pin via GPIO.
Authenticated watchdog timer. We connected our eAWDT
board to the mikroBus interface on the HBE. We connected the
eAWDT’s reset wire to the reset pin (RST_n) of the mikroBus.
Furthermore, the HBE exposes the HBE’s UART2 through the
mikroBus which we connect to the eAWDT’s UART interface.
Firmware support. We added CIDER support to Windows
10 IoT Core [54] and Debian [55] firmware by including an
application in the firmware that communicates with the AWDT
and obtains BootTickets and DeferralTickets. The applica-
tion is periodically woken up at the desired DeferralTicket
fetch interval. It calls AWDT_GetNonce on the eAWDT, requests
a DeferralTicket from the hub and calls AWDT_PutTicket.
The application runs as part of the untrusted firmware and is
not part of the CIDER TCB. The Windows IoT version is a
Universal Windows Platform (UWP) application consisting of
750 lines of C# code. The Debian version is a Posix application
comprising about 1,100 lines of C code. In both cases, the
majority of the code supports the network communication with
the hub.

D. Raspberry Pi Compute Module 3 (CM3)

The CM3 board features the Broadcom BCM2837 architec-
ture, including an ARM Cortex-A53 quad-core CPU running at
1.2 GHz and 1 GB DRAM. It also has a 4 GB eMMC storage
device and a TRNG, but lacks a RWLatch. As in the case of
the HBE, we integrated the CIDER boot code into the U-BOOT
SPL.
Networking. The CM3 has no built-in networking hardware,
so we connected a USB Ethernet Adapter (around $1.5) to it.
We reused the networking code from the HBE implementation—
except for a different NIC driver.
RWLatch protected key storage. The CM3 lacks a RWLatch.
To solve this problem, we bought an OPTIGA SLB 9670 chip
which supports the TPM 2.0 specification [12] at an extra
cost of $2.09 and connected it to the CM3 IO board through
GPIO pins. We used the internal non-volatile storage of the
TPM to host the device private key. We used the commands
TPM2_NV_ReadLock and TPM2_NV_WriteLock to implement the
RWLatch over the internal storage of the TPM. We could also
have used any other TPM 2.0 chip. For example, the AT97SC*
series from Microchip can be as cheap as $0.85 per chip.

WRLatch protected code and data storage. We use
the power-on write protection feature of the eMMC device.
Unfortunately, the CM3 does not connect the eMMC’s reset
pin RST_n to any reset signal. Instead, RST_n is permanently
connected to a pull-up resistor [56]. The result is that power-on
write protection stays on even after a reset. We solved this
problem by soldering a wire to RST_n and connecting it to the
CM3 IO Board’s RUN pin to let them share the same external
reset signal.
Authenticated watchdog timer. The CM3 IO Board exposes
54 GPIO pins. We programmed GPIO 40 and 41 to carry the
UART’s transmit (Tx) and receive (Rx) signals and connected
the corresponding wires of the eAWDT. We also connected
the eAWDT’s reset wire to the IO Board’s RUN pin, allowing
the eAWDT to reset both the processor and the eMMC device.
Firmware support. We added CIDER support to both
Raspbian and Buildroot-based firmware [57, 58] by including
the same ticket fetching application we had used for Debian
on the HBE.

E. STMicroelectronics Nucleo-L476RG (NL476RG)

The NL476RG board features an STM32L476RG MCU
(based on ARM Cortex-M4) running at 80 MHz with 1,024 kB
flash memory and 128 kB SRAM, as well as a TRNG. Since U-
BOOT does not run on the NL476RG board, we wrote CIDER
as a bare-metal application. We modified the NL476RG’s linker
script to physically separate the flash memory regions for
CIDER and the firmware, and flashed them independently.
Networking. Since the NL476RG board has no networking
hardware, we connected an ESP8266 ESP-12E Wi-Fi module
(around $1) to the board via the UART interface. The module
includes a stand-alone networking stack that supports TCP/IP.
RWLatch protected key, code and data storage. We used
the STM32L476RG MCU’s firewall feature [59] as a RWLatch.
The firewall makes it possible to block all access to specific
address ranges until the next reset.

Right before transferring control to the firmware, CIDER
configures the firewall to block all access to the flash memory
segment storing its secret keys, code and data. The mechanics
of the firewall require us to copy the code that enables it to an
unprotected region. Any CIDER data that need to be read by the
firmware (e.g., the boot-nonce) are also copied to unprotected
storage before the firewall is enabled. Any attempt to access
the protected region results in a device reset.
Authenticated watchdog timer. The NL476RG provides 47
GPIO pins. We chose PA9 and PA10 which can be used for
UART Tx and Rx, respectively, and connected them to the
eAWDT. The NL476RG also has a pin (NRST) to receive an
external reset signal; we connected this pin to the eAWDT’s
reset wire.
Firmware support. Lacking an operating system, we inserted
the ticket fetching code directly into the target applications
while registering a timer interrupt handler to periodically
execute the code. The code mirrors largely that of the Debian
application.



Software TCB LoC Exposed Defense

Boot module
CIDER gated boot 2,700 × Isolation in time, Firewalling
CPU & board init 4,700 × Isolation in time, Firewalling
Device drivers 4,500 × Isolation in time, Firewalling
Crypto lib 3,600 � Formal verification

Recovery module
CIDER control logic 200 � Firewalling, Compartmentalization
Networking stack 5,200 � Firewalling, Compartmentalization
Networking driver 1,600 � Firewalling, Compartmentalization
Crypto lib 3,600 � Formal verification

eAWDT
CIDER control logic 200 � Firewalling, Simplicity
Crypto lib 3,600 � Formal verification

TABLE I: Software TCB of CIDER and the measures CIDER takes
to secure it. The Line of Code (LoC) count is based on CIDER’s
prototype implementation on HBE.

VII. SECURITY ANALYSIS

In this section, we analyze the software TCB of CIDER. We
enumerate its components and describe the techniques we used
to secure it. For concreteness, we focus the discussion on the
HBE variant of the CIDER implementation.

A. Summary of the Software TCB

The CIDER implementation consists of three discrete mod-
ules: the boot module, the recovery module and the AWDT.
Each module contains the same formally verified cryptographic
library. Table I lists the main components of each module.
Boot module. In addition to the core part of CIDER gated
boot, the boot module contains device initialization code and
device drivers from the U-BOOT SPL. This includes code
for initializing DRAM and the CPU caches as well as MMC
storage, UART and GPIO drivers.
Recovery module. The recovery module encapsulates the
U-BOOT networking stack augmented with TCP and the HBE
NIC driver. It also contains the U-BOOT MMC storage driver
and a small amount of CIDER control logic for managing the
interaction with the hub, including DICE attestation.
AWDT. The eAWDT software consists of code implementing
the AWDT control logic as well as low-level code for accessing
the UART and the TRNG.

B. Defending the Software TCB

The need to ensure device availability adds a storage driver, a
networking stack, and device-dependent low-level initialization
code to our TCB. As shown in Table I, these components
add a substantial amount of code to CIDER. Much of the
existing work on trusted computing has excluded this code
from its TCB by making availability a non-goal. In this setting,
a modest amount of cryptography and protocol code (e.g., SSL,
encrypted disks) are sufficient to protect the confidentiality
and integrity of data sent to untrusted storage and network
devices. No attempt is made to ensure that these devices are
functioning.

Rather than attempting to make the entire software TCB bug
free—a daunting task in a setting like ours—CIDER uses several
defensive techniques to ensure its integrity and availability

even in the presence of bugs. At the core of our defense
lies the following assertion: A bug in code can only become
an exploitable vulnerability if the attacker can influence the
environment (e.g., function parameters, stack content, heap
content) in which the code executes. Regular software testing
does not guarantee the absence of vulnerabilities, but it ensures
that code will behave correctly under normal conditions.
Attackers exploit vulnerabilities creating abnormal conditions
by carefully controlling the environment (e.g., heap spraying,
calling functions with unexpected parameters, concurrency).
Isolation in time. Isolation in time is a critical tool in
restricting an attacker’s influence on the environment in which
CIDER executes. Execution begins with a reset which creates
a clean-slate environment for CIDER to run in. No untrusted
code runs until CIDER completes execution. Before transferring
control to the firmware, CIDER write-protects its code and state,
preventing untrusted code from changing them. CIDER also
hides its secrets by zeroing out the memory used in gated
boot and applying the RWLatch. The only information that
explicitly flows from the untrusted code running on the device
to CIDER gated boot are firmware updates and BootTickets,
which will be rejected by CIDER unless properly signed by
the hub.
Firewalling. Firewalling aims at reducing the code exposed
to attackers, and hence, reducing the attack surface.

All messages from the hub are signed. After reading a
BootTicket or firmware patch from the storage device (raw
block read), CIDER checks its signature and ignores the
input if the check fails. This limits the code exposed to
adversarial inputs to a block read and a signature check.
The signature check is performed by the formally verified
HACL library. In summary, the only complex code in the
boot module that is exposed to untrusted inputs is formally
verified. The remaining code, which includes thousands of lines
of potentially vulnerable off-the-shelf driver code, runs under
nearly deterministic conditions and is shielded from untrusted
inputs. A similar argument applies to the DeferralTicket
validator in the AWDT.

Our eAWDT implementation is isolated on separate hardware
that only shares two UART wires and a reset wire with the
main device. The AWDT interface is very small and simple
(i.e., AWDT_GetNonce, AWDT_PutTicket), resulting in a small
attack surface.

Finally, CIDER runs the networking stack in a very limited
way. It has no open ports or incoming connections. All
network activity originates on the device and consists of TCP
connections with the hub. Although an adversary may try to
obtrude on such a connection by injecting packets at various
protocol layers, many such attacks can be recognized and
eliminated early by filtering out packets that do not meet the
constraints of connections between a CIDER device and the
hub.
Compartmentalization. The networking stack is the only
component of CIDER with a non-trivial attack surface. CIDER
isolates it such that even a potential exploit against the



networking stack will not compromise the device.
More precisely, the boot module treats the recovery module

which contains the networking stack exactly like the firmware.
Before invoking the recovery module, the boot module activates
all protections (i.e., RWLatch, WRLatch, AWDT). The recovery
module returns to the boot module by writing the hub’s
response to unprotected storage and invoking a reset. Thus, a
compromised recovery module will not give an attacker any
capabilities that he or she could not get from compromising
the firmware.

An exploitable vulnerability in the networking stack would
allow an adversary to take control of the device temporarily
until the next AWDT-triggered reset. For invocations of the
recovery module, CIDER sets the AWDT period based on the
expected time needed to complete the network transaction,
which can be much shorter than the period for the firmware
(e.g., seconds to minutes vs. hours to days).

After the reset, the boot module and the unaltered recovery
module will run again. The adversary may be able to re-infect
the still-vulnerable networking stack until the vulnerability is
patched. A possible mitigation involves having the Internet
Service Provider (ISP) set router or firewall rules to block attack
packets and allow CIDER to install the patched networking
code.

This scenario (i.e., a vulnerability in a critical CIDER
component that is exploitable in spite of several defense layers)
should be extremely rare. It will interrupt device availability
temporarily (i.e., until the ISP has blocked the attacker).
However, even this worst-case scenario has a clear recovery
path that does not require each device to be restored manually.

VIII. EVALUATION

In this section, we evaluate the practicality and performance
of CIDER. In particular, we answer the following questions:

• Does CIDER interfere with existing IoT software given its
extra resource consumption and periodic ticket fetching?

• How much delay does CIDER introduce to the device
boot-up process in various scenarios?

• What is the runtime overhead due to the eAWDT on
various devices?

A. Software Compatibility

The variety of use cases for IoT devices and the diversity
of IoT firmware make it inherently challenging to argue that
a technology such as CIDER is compatible with all possible
IoT firmware. However, we can gain confidence empirically
that CIDER is compatible with commonly used firmware that
typically runs on the tested IoT boards.

To do this, we installed both CIDER and standard firmware
containing an operating system (for the HBE and CM3) or
a bare-metal app (for the NL476RG). We ran the battery of
tests summarized in Table II on each of the boards without
observing any abnormal behavior or other interference from
CIDER.

In particular, we tested each device with two different types
of firmware, and for each firmware, we tested two scenarios:

1) an extremely frequent ticket fetching policy (i.e., every 15
seconds) to stress the system over a short time period; and
2) a more realistic ticket fetching policy (i.e., every 4 hours)
for a long-running system (i.e., 1 day). We did not observe
abnormal behavior during any of the experiments. All the
operations worked as expected.

B. Performance

We measured the device boot-time delay and runtime
overhead introduced by CIDER. In the following experiments,
the devices have to interact with the hub. Instead of running
our own server to host the hub, we deployed our hub prototype
in the cloud on Azure Functions (a serverless compute
service) [44], simulating the actual management model of
cloud-managed IoT devices. We used the gigabit Ethernet NIC
on the HBE and Ethernet over USB for the CM3 to connect
these boards to the internet. We connected the NL476RG to
the internet through Wi-Fi using the ESP8266 module.
Boot-time delay. CIDER runs immediately after a device reset
and thus, may affect the boot time of the device depending
on whether a BootTicket is available or whether a firmware
update is required. We measured how long CIDER takes to
perform a gated boot before jumping to the firmware. On the
HBE and the CM3, we used the ARM processor’s Cycle Count
Register for accurate measurement. We divided the CPU cycle
count by the clock rate to obtain the elapsed time. Since the
NL476RG’s Cortex-M4 does not have a Cycle Count Register,
we used a second NL476RG board to measure the boot time.
We connected one GPIO pin of the measurement board to the
reset pin (NRST) of the target board. We connected a second
GPIO pin on the measurement board to a GPIO pin on the
target board. To measure the boot time, the measurement board
resets the target board and waits for code that we inserted into
the beginning of the application to signal the second GPIO
pin. We measured the time between these two events.

Table III shows the results for all three platforms. The w/o
CIDER baseline configuration is the unchanged original device
configuration. The remaining three measurements correspond
to different gated boot scenarios. First, in the w/ BootTicket
case, the device already has a BootTicket and can boot the
firmware without having to access the network. The overhead
arises primarily from from the crypto operations performed
during DICE initialization and is most pronounced on the
relatively slow NL476RG. This should be the standard case
for devices that run cooperating firmware.

In the next case (w/o BootTicket), the device has no valid
BootTicket because the firmware did not fetch it before the
last reset. Thus, the CIDER recovery module has to obtain a
BootTicket from the hub and reset the device. This is followed
by execution of the w/ BootTicket case. The additional
network-based attestation and reset increase the boot time.

In the last case (i.e., w/ patch), the hub has demanded a
firmware update and it did not issue a BootTicket before the
last reset. As a result, CIDER has to fetch a firmware patch
from the hub via the recovery module, go through a reset to
apply the patch, and then follow the steps of the previous case.



Device Firmware Ticket fetch Operations Normal?

HBE

Windows 15 seconds Boot; Login; Install the InternetRadio app; Launch the app; Wait for 2 minutes; Terminate; Logout; Shutdown �
IoT Core [54] 4 hours Boot; Login; Leave the OS running for 24 hours; Logout; Shutdown �

Debian [55] 15 seconds Boot; Login; apt-get install radiotray; Launch the app; Wait for 2 minutes; Terminate; Logout; Shutdown �
4 hours Boot; Login; Leave the OS running for 24 hours; Logout; Shutdown �

CM3
Raspbian [57] 15 seconds Boot; Login; wget <link-to-a-large-file>; Wait for 2 minutes; Terminate; Logout; Shutdown �

4 hours Boot; Login; Leave the OS running for 24 hours; Logout; Shutdown �

Buildroot [58] 15 seconds Boot; Login; mkfile -n 2g TestFile; Wait for 2 minutes; Terminate; Logout; Shutdown �
4 hours Boot; Login; Leave the OS running for 24 hours; Logout; Shutdown �

NL476RG
FFT [60] 15 seconds Reset; Leave the sound sampling and Fast Fourier Transform (FFT) analysis program running �

4 hours Reset; Leave the sound sampling and Fast Fourier Transform (FFT) analysis program running �

TLC [61] 15 seconds Reset; Leave the traffic light controller (TLC) running �
4 hours Reset; Leave the traffic light controller (TLC) running �

TABLE II: Tests performed to verify that the deployment of CIDER does not interfere with various firmwares and bare-metal applications.

Boot Config HBE CM3 NL476RG

w/o CIDER 0.98 1.25 0.01
w/ BootTicket 1.25 (+0.27) 1.73 (+0.48) 4.35 (+4.34)
w/o BootTicket 6.42 (+5.44) 8.61 (+7.35) 17.50 (+17.50)
w/ patch 15.60 (+14.60) 20.80 (+19.50) 30.20 (+30.20)

TABLE III: The boot-up time and (+delay) in seconds of the three
IoT platforms with CIDER according to whether a BootTicket exists
and whether a firmware patch has been staged.

The extra delay is primarily caused by the time needed to
download the firmware patch and install it. In the experiments,
we downloaded a small patch of size 4 kB. Larger patches
will require more time depending on the speed of the network
connection and of the storage device.

Runtime overhead. The firmware has to periodically interact
with the eAWDT and the hub to keep the eAWDT from
resetting the device. This introduces runtime overhead. We
measured the execution time of various benchmarking programs
with and without CIDER enabled. On the HBE and CM3,
we ran the SPEC CPU2006 benchmark suite [62] on Debian
and on Raspbian, respectively. We cross compiled and ran all
C and C++ SPEC applications, except for applications that
the arm-linux-gnueabihf toolchain (version 7.3.0) failed to
compile (perlbench, dealII and soplex) or that suffered from
runtime errors due to incompatibilities (gcc, zeusmp, omnetpp
and sphinx3). This left a total of 21 SPEC applications. Since
both the HBE and CM3 have multi-core processors, we pinned
the applications as well as the code responsible for the overhead,
i.e., a daemon that fetches a DeferralTicket and interacts with
the eAWDT, to the same core. This ensures that the overhead
is not hidden through execution on an idle core. At the same
time, this is likely to overestimate the overhead, as it is charged
to a single core rather than being amortized across multiple
cores.

Porting a diverse set of user mode applications like SPEC
CPU2006 into the bare-metal environment of the NL476RG
poses several difficulties. Instead, we used the CoreMark
benchmark [63] developed to test the performance of MCUs.
We added a periodic timer interrupt handler executing the code
to interact with the eAWDT and the hub to CoreMark.

On all platforms, we ran each benchmark application without

Interval HBE CM3 NL476RG

1 min 0.28% (0.54%) 0.32% (0.97%) 0.64% (0.30%)
5 min 0.15% (0.33%) 0.09% (0.58%) 0.16% (0.26%)

TABLE IV: Runtime overhead of the SPEC CPU2006 and CoreMark
benchmarks evaluated on the three IoT platforms with CIDER
according to various DeferralTicket fetching intervals (geometric
mean and standard deviation).

CIDER (baseline) and with CIDER using AWDT expiration
periods of 1 minute and 5 minutes. The period of 1 minute
is an extreme case to identify the worst-case performance
overhead.

Overall, the overheads were negligible (Table IV). The
numbers for the HBE and the CM3 are the geometric means
(and standard deviations) over the running times of the SPEC
applications. The numbers for the NL476RG are averaged over
ten runs of the CoreMark application. Even for the unreasonably
short AWDT period of 1 minute, the overheads were 0.28%
(HBE), 0.32% (CM3) and 0.64% (NL476RG) on average. This
was because the code interacting with the eAWDT and the
hub is mostly idle and occasionally performs short UART and
networking I/O tasks. For longer ticket fetching intervals, the
overhead was near zero and disappeared in the measurement
noise.

We examined the overhead sources by measuring the wall-
clock times for a call to AWDT_GetNonce and AWDT_PutTicket,
as well as the time required to fetch a DeferralTicket from
the hub. We found no significant difference between the three
IoT devices as the overhead is largely determined by external
factors: UART and eAWDT speed, and network delay. We
measured the following numbers on the CM3. On average,
AWDT_GetNonce takes 3.431 ms (standard deviation: 0.002) and
AWDT_PutTicket takes 0.014 ms (standard deviation: 0.002).
The numbers are averaged over 1,000 runs. AWDT_PutTicket is
fast because the eAWDT will verify the ticket asynchronously;
the caller does not have to wait for the eAWDT’s response.
The time to fetch a DeferralTicket, which heavily depends on
network conditions and server load, was 635.29 ms on average
(standard deviation: 565.51).

Although all three devices display similar wall-clock over-
heads, the HBE and CM3 can do useful work while the CIDER



thread is blocked waiting for a response from the network
or the eAWDT. The operating system can simply schedule a
different thread. In contrast, our simple, bare-metal NL476RG
implementation spends this time busy-waiting. However, ticket
fetching is a rare operation and does not cause significant
overhead even in this case.

IX. RELATED WORK

Several industry standards—the Intelligent Platform Man-
agement Interface [22], the Data Center Manageability In-
terface [64], the Redfish Scalable Platforms Management
API Specification [65] and Intel Active Management Tech-
nology [66]—enable the efficient remote configuration and
monitoring of servers. This functionality is akin to dominance.
However, these systems are not appropriate for the IoT space,
as they require a separate co-processor (with a significant
software TCB) and a special physical network interface that can
be used simultaneously by both the operating system and the
management system. In contrast, CIDER implements dominance
without requiring complex additional hardware and software.

A large body of work explores the definition, implementation
and use of several trusted computing primitives, focusing on
confidentiality and integrity. This includes secure and high-
assurance boot [41], measured boot and remote attestation [12–
15] and isolated or shielded execution [16–21]. One line of work
aims to enable attestation with minimal hardware support [67–
77]. Several dynamic attestation approaches based on creating
isolated execution environments have been proposed [78–
82], while allowing dynamic code loading [78, 82]. Security
architectures for process sandboxing and memory isolation [83–
85] or privilege separation [86, 87] have also been proposed for
resource-constrained devices, mitigating the effect of software
bugs and of the exploitation of vulnerabilities. This line of
work, however, does not consider availability (or recoverability),
mostly due to its potential complexity. In contrast, CIDER
ensures availability using simple security primitives.

Work on secure code updates for resource-constrained
devices comes closer to CIDER. Secure update mechanisms
were proposed primarily for nodes in sensor networks and
combined with attestation [88–93]. Work in this area aims
to improve the update protocol by making it robust against
broader classes of attacks [94], adapting it to the constraints
of embedded and IoT devices [95, 96] and reducing its
overhead [96]. Key security goals include reliably detecting
and blacklisting devices on which updates fail to install [88–
90, 92, 93], protecting the secrecy of the update [91] and
guaranteeing that rogue programs disguised as updates will
not be installed [94, 95]. CIDER is largely orthogonal to this
line of work. CIDER is a system architecture that guarantees
that an update mechanism will be invoked within a prescribed
amount of time. In principle, CIDER could be used to force
invocation of many existing update protocols.

Azure Sphere [97–99] and Android Things [100] are com-
mercial IoT platforms with a variety of security features
including secure boot, runtime isolation, attestation, hardware-
based key protection and software updates. Azure Sphere has

evolved from the Sopris system [99]. Sopris adds a hardware
security subsystem, including a separate security processor,
key storage, crypto accelerators and a TRNG to the MediaTek
MT7687 MCU. The addition of custom security hardware
into the MCU makes Sopris quite different from CIDER,
as it constitutes a fundamentally different trade-off between
compatibility with existing microcontrollers and several key
aspects of system design. Android Things uses a stripped-
down version of the Android operating system. Its update
mechanism is capable of recovering from compromised or
broken applications. However, there is no means of recovering
from OS compromise or secure boot failure after, for example,
a rootkit infection.

X. CONCLUSION

In this paper, we introduce dominance, a novel trusted
computing primitive for IoT. From a system administrator’s
point of view, dominance extends remote attestation and brings
manageability of IoT devices to a new level: beyond obtaining
evidence that a device is in good condition, dominance enables
the administrator to remotely dictate the software that runs on
the devices he/she manages via the hub, regardless of whether
the device firmware is out of control. Dominance is ensured
as long as the hub is secure.

In search of a practical scheme, we decompose dominance
into two components, gated boot and a reset trigger, where gated
boot ensures that only software allowed by the administrator
can be executed on the device, and the reset trigger ensures
that control can always return to gated boot within a bounded
amount of time at the discretion of the remote administrator.

We further identify a small set of hardware features required
to realize these primitives: including latches and an AWDT.
Latches are readily available on many devices and we show
that the AWDT can be easily realized.

Based on these ingredients, we propose an end-to-end
system: CIDER. CIDER features transparency in its design by
introducing minimum disruption when the device is operating
normally, and only brings visible effects (e.g., forcing the
device to reset) when the device does not respond to the
administrator’s requests, or a firmware update is necessary.

We show that CIDER has the potential to be adopted by
a broad class of IoT devices by developing fully-functional
prototypes of CIDER on three popular IoT platforms: Hum-
mingBoard Edge, Raspberry Pi Compute Module 3 and
Nucleo-L476RG. Our evaluation shows that the overhead of
CIDER is minimal and that it works seamlessly with complex
deployments, such as Windows 10 IoT Core, Debian, Raspbian,
and with bare-metal applications on constrained devices.
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