
Resource-Bounded Intruders in Denial of Service
Attacks

Abraão Aires Urquiza∗, Musab A. AlTurki†‡, Max Kanovich§¶,
Tajana Ban Kirigin‖, Vivek Nigam

x∗, Andre Scedrov††¶ and Carolyn Talcott‡‡

∗ Federal University of Paraíba, Brazil, Email: abraauc@gmail.com
† KFUPM, Dhahran, Saudi Arabia,Email: musab@kfupm.edu.sa

‡Runtime Verification Inc., USA
§ University College London, UK, Email: m.kanovich@ucl.ac.uk

¶ National Research University Higher School of Economics, Moscow, Russia
‖ University of Rijeka, Department of Mathematics, HR, Email: bank@math.uniri.hr

x
fortiss, Germany, Email: nigam@fortiss.org

††University of Pennsylvania, USA, Email: scedrov@math.upenn.edu
‡‡SRI International, USA, Email: clt@csl.sri.com

Abstract—Denial of Service (DoS) attacks have been a serious
security concern, as no service is, in principle, protected against
them. Although a Dolev-Yao intruder with unlimited resources
can trivially render any service unavailable, DoS attacks do not
necessarily have to be carried out by such (extremely) powerful
intruders. It is useful in practice and more challenging for formal
protocol verification to determine whether a service is vulnerable
even to resource-bounded intruders that cannot generate or
intercept arbitrary large volumes of traffic. This paper proposes
a novel, more refined intruder model where the intruder can
only consume at most some specified amount of resources in any
given time window. Additionally, we propose protocol theories that
may contain timeouts and specify service resource usage during
protocol execution. In contrast to the existing resource-conscious
protocol verification models, our model allows finer and more
subtle analysis of DoS problems. We illustrate the power of our
approach by representing a number of classes of DoS attacks, such
as, Slow, Asymmetric and Amplification DoS attacks, exhausting
different types of resources of the target, such as, number of
workers, processing power, memory, and network bandwidth. We
show that the proposed DoS problem is undecidable in general and
is PSPACE-complete for the class of resource-bounded, balanced
systems. Finally, we implemented our formal verification model
in the rewriting logic tool Maude and analyzed a number of DoS
attacks in Maude using Rewriting Modulo SMT in an automated
fashion.

I. INTRODUCTION

For the past decades, Denial of Service (DoS) attacks and

their distributed version (DDoS) have been a serious secu-

rity concern, as no service is, in principle, protected against

them. Indeed, if the intruder, such as the Dolev-Yao (DY)

intruder [15], has enough resources, he may render any service

unavailable by sending a large number of messages (flood-

ing attacks) or by intercepting all messages in the network

(jamming attacks). What makes the DoS threat even worse

is that these attacks do not necessarily have to be carried

out by (extremely) powerful intruders with almost unbounded

resources. Attacks such as slow DoS attacks [7], [8], [29],

[36], [37], [43], [44], asymmetric DoS attacks [34], [46], and

amplification attacks [42], [45], can all be carried out by

intruders using limited resources. For example, web-servers,

such as Apache [43] and NGinx [44] can be successfully

attacked by intruders with limited resources using, for instance,

mobile phones (SlowDroid [6]).

However, it is hard to determine whether a service is vul-

nerable to such attacks. While a very powerful intruder with

unbounded resources would simply flood the service rendering

it unavailable, a resource-bounded intruder carries out an attack

by exploiting the protocols used by the target service. He not

only triggers a particular sequence of events to consume the

service’s resources, but also cleverly tries to minimize his effort

by triggering events as lazily as possible, renewing service

timeouts as late as possible, or by enlisting the help of other

benign nodes in the network. Indeed, in many attacks [6], [43],

the volume of traffic generated by the intruder is comparable to

the volume of a legitimate client thus making it hard for network

administrators to even identify when the service is under attack.

Therefore, determining such vulnerabilities in advance may help

prevent attacks by installing suitable countermeasures.

Intruders can also exploit a wide range of types of resources.

For example, Slowloris consumes the limited number of workers

web-servers possess; Software Defined Network (SDN) TCAM

exhaustion attacks [36] consume the limited amount of TCAM

memory of switches; TLS renegotiation DoS attacks [21] con-

sume the server’s processing power; SIP forking amplification

attacks on Voice-over-IP (VoIP) systems [20], [40], [42], [45]

consume the network bandwidth.

While security issues relevant for DoS attacks have been

identified, e.g., in [32], where a taxonomy of DoS attacks is

given, our main contribution is on formal verification of DDoS.

More specifically, our main contributions are the following:

1) We formally define the DoS problem. In contrast to existing

definitions, such as, the one proposed in [31], our DoS prob-

lem takes into account timing aspects, i.e., duration of the

382

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Abraão Aires Urquiza. Under license to IEEE.
DOI 10.1109/CSF.2019.00033

attack. All contributions listed below build on this conceptual

advance. The key technical challenge is to formally specify

behaviors, formalized as traces, where services behave as

expected, e.g., triggering timeouts whenever applicable. This

is accomplished by specifying configurations that are not

allowed, called critical configurations. As we use dense

time domains, the notion of a trace that does not involve

critical configurations, called non-critical traces, becomes

much more elaborate than when using discrete domains,

as one cannot list all moments in dense time that the

trace covers. Therefore, ensuring that a trace is non-critical

requires checking that all possible decompositions of time

advancements, and there are infinitely many, do not contain

critical configurations.

2) We demonstrate the expressiveness of our model by modeling

a great number of types of attacks [32]. Besides traditional

attacks, such as the SYN flooding attack, our model can

also express the types of DoS attacks described above (Slow

DoS, Asymmetric and Amplification attacks). Additionally,

we also show how to model countermeasures based on traffic

monitoring, such as, defenses [38] deployed in web-servers

to mitigate the Slowloris attack.

3) We introduce protocol resource theories, which refine pro-

tocol theories of [16] with timeouts and resource usage.

We refine existing Timed Multiset Rewriting (MSR) models

of [26] with the notion of non-critical traces;

4) We introduce resource-bounded intruder models, which re-

fine the DY intruder with resource usage and action duration.

For formal verification, the traditional DY intruder is too

powerful for our purposes here, as he can trivially deny

any service by, for example, blocking all communication.

Inspired by the work [31], we propose, instead, a parametric

resource-bounded intruder model, where intruder’s actions

consume resources;

5) We prove that under suitable conditions, the non-critical

reachability problem for models with dense time is PSPACE-

complete, which non-trivially advances previous reachability

problems [26] that did not consider critical configurations.

From this general result, we prove that our DoS problem

is PSPACE-complete for a wide class of resource-bounded

intruders. Moreover, we prove that the DoS problem is

undecidable in general;

6) Finally, we automate the search for DoS attacks by imple-
menting our formal model in the rewrite tool Maude [12].

This implementation is available at [1]. It is able to find

known vulnerabilities within seconds.

The paper starts by describing some examples of known DoS

attacks in Section II. In Section III, we present modifications

of the Timed MSR of [26]. In Section IV we define protocol

resource theories and illustrate these theories with some ex-

amples. In Section V we introduce resource-bounded intruder

models and describe how our model can be used to specify

intruders that can only generate bounded traffic or have bounded

processing power. Section VI specifies the DoS problem and

illustrates this problem by specifying the Slowloris, Slow-

TCAM and TLS Renegotiation DoS attacks. In Section VII

we study the complexity of the DoS Problem. Section VIII

describes our results on automated search for DoS attacks.

Finally, in Section IX we conclude by discussing related work

and pointing to future work. Appendices contain supporting

material, such as some proofs of complexity results. More

details can also be found in the Technical Report [23].

II. MOTIVATING EXAMPLES

Traditional DoS attacks, known as flooding or brute-force

attacks, target the main service resource by generating large

amount of traffic. The most known example is the SYN flooding

attack. Such attacks are always possible in the presence of pow-

erful intruders, who can send or intercept an unbounded number

of messages. Resource-bounded intruders, on the other hand,

exploit protocols used by the target service to perform attacks

targeting specific service features related to, e.g., protocols or

applications used by the service, as detailed in below examples.

Hence, to fully capture various types DoS attacks, all relevant

resources should be included in the verification model.

We review some existing DoS attacks that can be carried out

by intruders with bounded resources. Attacks aim to consume

different resources of the target service, such as the service’s

threads/workers, available memory, processing power, or even

the network bandwidth. However, instead of generating a large

amount of traffic, intruders exploit the protocol used by the

target service to consume its resources in a lazy manner.

Attacks Consuming Workers/Threads. Web-servers, such as

Apache and NGinx, and VoIP servers, such as Asterisk, are

subject to attacks that consume all the available workers in their

pool of threads. Examples of such attacks include Slowloris,

RUDY, Slowread, and Coordinated Call attacks.

For example, Slowloris [43] is an attack on (connection-

based) web-servers such as Apache. The intruder exploits the

fact that when a web-server receives a GET request with an

incomplete header, it allocates one of its workers to attend to

this new request. However, since the GET request is incomplete,

the worker is left idle and waits for a new piece of the request

header until a timeout is triggered (typically 40 seconds). If a

new piece arrives and the header is complete, the worker an-

swers the request, but if the header continues to be incomplete,

the timeout is reset and the worker waits for another piece until

the timeout is triggered. To carry out the Slowloris attack, an

intruder sends a burst of incomplete GET requests large enough

to occupy all workers (typically 300-400 requests). The intruder

does not have to send another burst until a timeout gets close,

generating, as a result, very little traffic.

Attacks Consuming Memory. Intruders can target the service’s

memory. Examples include XML-bombs [46] and Second-

Order DDoS attacks [34]. As demonstrated recently [36], even

sophisticated networks, such as Software Defined Networks

(SDN), can be attacked by resource-bounded intruders. In

SDN, switches are general devices that use specialized mem-

ories called Ternary Content-Addressable Memory (TCAM)

for storing routing rules which are installed by a (powerful)

SDN controller. Since TCAMs are expensive and require much

383

energy, SDN switches have a limited amount of TCAM memory

capable of storing typically at most 5000 rules. This makes

SDN switches subject to Slow-TCAM attacks where the intruder

consumes a switch’s TCAM memory by forcing the installation

of sufficiently many rules. Moreover, to avoid having rules

removed, the intruder keeps them alive by sending sporadically

new packets that trigger the forwarding rules installed in the

switch. Indeed, the intruder can render an SDN switch unavail-

able by sending less than 4 packets per second.

Attacks Consuming Processing Power. Attacks can also target

the processing power of servers. An example of such attack

is the Transport Layer Security (TLS) renegotiation DoS at-

tack [21]. TLS is a cryptographic protocol widely used in

communications over the Internet. A private connection is

established between parties by sharing a private symmetric key

created during TLS initialization through a handshake using

available public keys. Parties can, however, renegotiate the

symmetric key. The initialization process, however, requires

more processing power from the server (10 times more effort)

than from the client. This amplification leads to the TLS

renegotiation DoS attack [21]. The attacker can thus consume

the processing power of the server denying its service by issuing

a large enough number of renegotiation requests.

Attacks Consuming Network Bandwidth. Instead of targeting

a specific resource on a designated server, an intruder with

limited resources may target the entire network of servers by

mounting an amplification DoS attack. Through this attack,

the intruder floods the network with messages by expending

minimal initial effort and exploiting the protocol to enlist the

help of other servers in the network, causing the number of

messages to amplify to an arbitrary large number while still

requiring minimal (or no) further work by the intruder.

An example is the well-known amplification vulnerability

in the Session Initiation Protocol (SIP) used to set up VoIP

calls [20], [40], [42], [45]. SIP uses a network of SIP proxies

to help locate VoIP clients and establish sessions. Generally,

to set up a call from client A to another client B, A sends

a SIP INVITE message (addressed to B) to A’s domain SIP

proxy, which forwards the message to a SIP proxy of the

domain of B, which in turn locates the IP address of B and

forwards the invite to B. Typically, however, A’s invite message

goes through multiple SIP proxies in between. Moreover, a SIP

proxy may fork an invite message and forward it to multiple

nodes (SIP proxies and/or users), a feature that, for example,

enables a session to be established with one of several users who

can act on behalf of B. However, forking of invite messages

makes SIP vulnerable to amplification attacks [20], [42], [45].

Ill-configured or compromised SIP proxies may turn a single

invite message into an arbitrarily large number of messages

(e.g. through forking loops), flooding the entire network and

denying service to users.

III. TIMED MULTISET REWRITING

We briefly review Timed Multiset Rewriting (MSR) with

dense time of [26] which is the language we extend to specify

resource-bounded intruders and protocols. Assume a finite first-

order typed alphabet, Σ, with variables, constants, function and

predicate symbols. Terms and facts are constructed as usual

(see [19]), by applying symbols with correct type. For instance,

if P is a predicate of type τ1 × τ2 × · · · × τn → o, where o
is the type for propositions, and u1, . . . , un are terms of types

τ1, . . . , τn, respectively, then P (u1, . . . , un) is a fact.
Timestamped facts are used to specify systems that explicitly

mention time. Timestamped facts have the form F@T , where

F is a fact and T is its timestamp, which can be a variable or a

non-negative real number. A special predicate T ime with arity

zero represents the global time. A configuration is a multiset

of ground timestamped facts, {T ime@t, F1@t1, . . . , Fn@tn},
with a single occurrence of a T ime fact. We often say facts

instead of timestamped facts, for simplicity.

Actions are multiset rewrite rules and are either Time Ad-

vancement action or Instantaneous Actions. The action repre-

senting the advancement of time, called T ick, has the form:

T ime@T −→ T ime@(T + ε) (1)

where ε can be instantiated by any positive real number. This

specifies that the global time of a configuration can advance

by any positive value. Applying the time advancement rule to

a given configuration {T ime@t, F1@t1, . . . , Fn@tn} yields the

configuration {T ime@(t+ ε), F1@t1, . . . , Fn@tn} where time

advances by ε. We also write T ickε when we refer to the T ick
rule (1) for a specific ε.

The remaining actions are instantaneous actions, which do

not affect the global time, but may rewrite the remaining facts.

They have the following shape:

T ime@T,W1@T1, . . . ,Wk@Tk, F1@T ′1, . . . , Fn@T ′n | C −→
∃ �X.[T ime@T,W1@T1, . . . ,Wk@Tk, Q1@(T +D1), . . .

. . . , Qm@(T +Dm)]

where D1, . . . , Dm are natural numbers and C is the guard

of the action which is a set of constraints involving the

time variables appearing in the pre-condition, i.e. the variables

T, T1, . . . , Tk, T
′
1, . . . , T

′
n. Facts W1@T1, . . . , Wk@Tk are pre-

served by the rule, while F1@T ′1, . . . , Fn@T ′n are replaced by

Q1@(T + D1), . . . , Qm@(T + Dm).1 Finally, all free vari-

ables appearing in the post-condition must appear in the pre-

condition. Constraints are of the form:

T ≥ T ′ ±D, T > T ′ ±D and T = T ′ ±D
where T and T ′ are time variables, and D is a natural number,

even though time is dense. In the above rules we omit the time

constraints whenever the set C of time constraints is empty.

1It has been shown in [26], [27] that relaxing any of the main conditions
on instantaneous rules leads to the undecidability of the reachability problem.
For example, undecidability is obtained in systems with time constraints that
involve three or more time variables. Furthermore, constants Ds and Dis that
appear in time constraints and timestamps of created facts are restricted only
to natural numbers for computational complexity issues. These values could be
generalized to rationals. In fact, for our results it suffces to assume that all these
numerical constants mentioned within the above constraints and timestamps are
commensurable.

384

An instantaneous rule of the form P | C −→ ∃ �X.P ′ can be

applied to a configuration S if there is a subset S0 ⊆ S and a

matching substitution θ, such that S0 = Pθ and Cθ evaluates

to true. The configuration resulting from the application of this

rule is (S \S0)∪ ((P ′σ)θ), where σ is a substitution that maps

the existentially quantified variables �X to fresh constants, that

is, constants not appearing in S. These fresh values are also

called nonces in protocol security literature [10], [16].2

A trace of timed MSR rules R from a given initial config-

uration S0 is a sequence of configurations S0 −→r1 S1 −→r2

· · · −→rn Sn starting from S0, such that for all 0 ≤ i ≤ n− 1,

Si+1 is a configuration obtained by applying ri+1 ∈ R to Si.
A. Goal and Critical Configurations, Non-Critical Traces

We are not interested in all possible traces, but only traces that

do not contain critical configurations and reach some goal. A

critical configuration (resp. goal configuration) is specified by a

critical configuration specification CS (resp. goal GS) which is

a set of pairs { 〈S1, C1〉, . . . , 〈Sn, Cn〉 } . Each pair 〈Sj , Cj〉 is

of the form: 〈 {F1@T1, . . . , Fp@Tp}, Cj 〉, where T1, . . . , Tp

are time variables, F1, . . . , Fp are facts and Cj is a set of time

constraints involving only variables T1, . . . , Tp.

We say that a configuration S is a critical configuration
w. r. t. CS (resp. a goal configuration w.r.t. GS) if for some

1 ≤ i ≤ n, there is a grounding substitution, σ, such that Siσ ⊆
S and Ciσ evaluates to true. For example, the configuration

{T ime@3.5, F@3.5, G@0.2} is critical w.r.t. the critical con-

figuration specification { 〈 {T ime@T, F@T1}, {T1 ≥ T }〉 }.
The task of security verification is to check whether a system

is vulnerable to an attack. Thus, as we specify in Section VI,

a goal configuration will denote that the service has suffered a

DoS attack. As we describe in Section IV, the purpose of critical

configurations will be to avoid traces where the service does not

behave as expected. This is accomplished by only considering

non-critical traces defined below.

In discrete time setting [27], a trace was considered critical if

it contained a critical configuration. This is no longer adequate

when using dense time. To illustrate this, consider, for example,

a trace in a timed MSR with dense time, containing the

following configurations and a T ick:

T ime@1.5, F@3.5 −→Tick3
T ime@4.5, F@3.5

which could potentially be considered as non-

critcal w.r.t. the critical configuration specification:

{〈{T ime@T, F@T1}, {T1 = T }〉}, as it does not contain

any critical configurations. However, a trace containing

rules T ick1 and T ick2: T ime@1.5, F@3.5 −→Tick2

T ime@3.5, F@3.5 −→Tick1
T ime@4.5, F@3.5, would be

critical w.r.t. the same critical configuration specification since

it contains the critical configuration {T ime@3.5, F@3.5 }.
Clearly this is not appropriate. A configuration that is not

critical may turn into a critical configuration purely because

the time is ticking. While in discrete time setting [27] one

could list all (discrete time) moments in a time window, this is

2Substitution application (Sθ) is defined as usual [19], i.e., by mapping
time variables in S to non-negative real numbers, nonce names to nonce names
(renaming of nonces) and term variables to terms.

not possible when time is dense. The definition of non-critical

traces in dense time setting is necessarily more involved.

Definition III.1 (Non-Critical Traces). Let R be a set of timed
MSR rules and CS be a critical configuration specification.
A trace P of R rules is non-critical if it contains no critical
configuration and if no critical configuration is reached along
any trace obtained by matching any subtrace of P on the left
below with the one on the right:
Si −→Tickε

Si+1 Si −→Tickε1
S ′ −→Tickε2

Si+1

where ε1 and ε2 are arbitrary non-negative real numbers, such
that, ε = ε1 + ε2 holds.

That is, one has to consider all possible ways to decompose

T icks in a trace. This ensures that the continuity of time and

the notion of non-critical traces are well combined. Checking

whether a given trace in a system with dense time is non-critical

is potentially more challenging than in the untimed setting [28]

and models with discrete time [27] as it requires potentially

checking through an infinite number of traces. This could

affect the complexity of the corresponding verification problem.

Fortunately, as presented in Section VII, by using abstract

representations, we are able to deal with these challenges in an

elegant manner that does not impact the problem complexity.

Balanced rules were introduced in [41]. Systems con-

taining only balanced rules represent an important class

of systems, balanced systems, for which several reachabil-

ity problems have been shown decidable [24]–[26]. A rule

is balanced if the number of facts appearing in its pre-

condition and in its post-condition is the same. As de-

scribed in [25], any unbalanced rule can be made balanced

by using dummy facts. For example, the unbalanced rule:

T ime@T, F1@T1 −→ T ime@T, F1@T1, F2@T2 can be turned

into a balanced rule by adding a dummy fact to its pre-condition,

T ime@T, F1@T1, P@T3 −→ T ime@T, F1@T1, F2@T2. Here,

we are going to consider two different types of dummy facts,

facts P (I) for intruders, and facts D(s) for services.

There are important implications when using balanced sys-

tems, e.g., balanced protocol specifications and balanced in-

truder models. The number of parallel protocol sessions running

at the same time is bounded, although the total number of

protocol sessions is unbounded. Moreover, the number of facts

(and thus symbols) that the balanced intruder can remember is

bounded. As shown in [25], however, many of the usual known

attacks on protocols can be carried out by balanced intruders.

Such balanced systems have the following important prop-

erty [41]:

Proposition III.2. Let R be a set of balanced rules. Let S0 be a
configuration with exactly m facts. Let S0 −→ · · · −→ Sn be
an arbitrary trace of rules R starting from S0. Then for all
0 ≤ i ≤ n, Si has exactly m facts.

For some of our complexity results (in Section VII), we will

assume an upper-bound on the size of facts. The size, |F@t|, of

a timed fact F@t is the number of symbols in F . For example,

|M(a, {a, b}k)@t| = 5.

385

B. Signature for Protocols and Resource-Bounded Intruders

For our DoS problem, we will use signatures containing the

constants, functions, and predicate symbols described below.

Message Expressions: We assume a message signature Σ
of constants and function symbols. Constants include nonces,

symmetric keys and player names. Messages are constructed

as usual, using constants, variables and at least the following

function symbols: sk(p) for the secret key of the player p,

pk(p) its public key, {m}k the encryption of m using key

k, and the tuple function 〈m1,m2, . . . ,mn〉 denoting a list

of messages m1,m2, . . . ,mn. (Other crypto constructs, such

as MAC and hash, can be also added as usual.) We define

(pk(p))−1 = sk(p) and k−1 = k if k is a symmetric key. We

also write interchangeably the singleton tuple 〈m〉 and m.

Resources: For simplicity, we will consider resources as natural

numbers. We could also use more abstract definitions as the

ones used in [31], e.g., monoids. The results in the paper are

not affected by this change. Each service s is associated with a

minimal service resource value, rsm, specifying the lower bound

on resources required by the service to work. For example, for

VoIP servers this would typically be 0 workers. Once resources

reach rsm, the service is considered exhausted. We will also

assume an initial service resource for a service s, written rsini.

Predicates: Besides the global time predicate T ime described

above, our signature contains the following predicate symbols.

The fact N(m)@t denotes that message m is on the network,

available for receipt from the moment t. Furthermore, the facts

Si(id, sid, r, �xi), where 0 ≤ i ≤ n, specify n+1 protocol states

for service id. The number of states and their arguments, �xi, are

protocol-specific. sid is a protocol session identification symbol,

which is unique per protocol session, ri is a natural number

specifying the number of resources allocated by the service to

maintain the protocol in the state Si, and the timestamp t of Si
specifies the moment until which the protocol is allowed to be

in state Si, i.e., the timeout of that protocol state. In addition,

R(id, r)@t, denotes that service/intruder id has r resources

available at moment t; Av(id)@t and Den(id)@t, denote, re-

spectively, that the service id is available or unavailable from

moment t; M(id,m)@t, denotes that the intruder id knows the

message m at moment t; and Rec(id, r)@t, denotes that the

intruder id can recover r resources at moment t.

IV. PROTOCOL SPECIFICATIONS

We introduce a language for formal protocol specification of

how resources are consumed during protocol execution and the

timeouts, which specify when protocols may be terminated and

resources recovered. We do so by extending protocol theories

proposed in [16], [25].

For readability and simplification of exposition of our model

and the related complexity results, our protocol and intruder

specifications contain exactly one resource. Generalization to

multiple resources is straightforward, by including specific

resource predicates for each of the relevant resources, such as

service’s threads/workers, CPU time, network bandwidth, etc.

Definition IV.1 (Protocol Resource Theory). A protocol re-
source theory of a service s is specified by a set of state
predicates S0, S1, . . . , Sn, its minimal resource rsm, and the
rules of the following form:
• protocol initialization rule:

T ime@T,R(s, rI +R+ rsm)@T1,N(mI)@T2

| T1 ≤ T, T2 ≤ T −→
∃Sid.[T ime@T, S0(s, Sid, rI , �x)@(T + tI),

R(s,R+ rsm)@T,W1]

where S0 is the initial state, rI is a natural number specifying
the initialization cost for the service, tI is a natural number
specifying the timeout of the initial service state, mI is
an initialization message, Sid is a fresh protocol session
identification token and W1 is a multiset of facts;

• protocol execution rules:

T ime@T, Si(s, Sid, ri, �xi)@T1,
R(s, rj − ri +R+ rsm)@T2,N(mi)@T3,W1,W
| T1 ≥ T, T2 ≤ T, T3 ≤ T −→

T ime@T, Sj(s, Sid, rj , �xj)@(T + tj),
R(s,R+ rsm)@T,W2,W

where for 0 ≤ i ≤ n, ri and rj are natural numbers,
specifying the execution costs associated to state Si and Sj ,
respectively, tj is the timeout of the service for state Sj , mi

is a (state transition) message, andW,W1,W2 are arbitrary
multisets of facts. We also assume here that rj−ri+R > 0,
that is, the service has enough resources;

• protocol state timeout rule: where 0 ≤ i ≤ n :

T ime@T,R(s,R)@T1, Si(s, Sid, ri, �xi)@T −→
T ime@T,R(s, ri +R)@T

• service availability rules:

T ime@T, R(s, rsm)@T,Av(s)@T2 −→
T ime@T, R(s, rsm)@T,Den(s)@T

T ime@T, R(s, rsm +R+ 1)@T,Den(s)@T2 −→
T ime@T, R(s, rsm +R+ 1)@T,Av(s)@T

Intuitively, a service may run a number of protocol sessions

in parallel. In order to maintain each protocol session, the

service may need to allocate resources, such as memory, CPU

time, workers, etc, for some time. In particular, the protocol

initialization rule specifies that the creation of a new protocol

session requires rI resources and these may be recovered tI
time units later. Notice the use of the existential quantifier that

creates a fresh protocol session identifier. Protocol execution

rules change the state of the protocol session from Si to Sj ,
updating the resources allocated and the timeout. At the same

time, validity of the current protocol state, i.e., protocol state

timeouts are checked through constraints involving timestamps

of protocol states and the global time T , T1 ≥ T . The protocol

timeout rule specifies that a protocol session is forgotten when

the timeout is reached. Service availability rules simply specify

that a service is denied when resources reach a minimum, and

available if the resources are greater than the minimum.

386

Protocol Critical Configuration Specification As rules can be

applied in a non-deterministic fashion, undesirable traces where

a service misbehaves are allowed. For example, it is possible to

construct traces where the protocol state timeout rule is never

applied, and thus the service never releases resources allocated

to protocol sessions that should have been ended by a timeout.

We will classify such traces where the service does not behave

as expected as critical. This is formally achieved by protocol

critical configuration specifications defined below:

Definition IV.2 (Protocol CS). The protocol critical configura-

tion specifications (protocol CS) for a given protocol theory of
a service s, with minimal resource rsm and with protocol state
predicates Si, with 0 ≤ i ≤ n, is composed of the three types
of critical configuration specifications:
• Timeout CS: for all 0 ≤ i ≤ n

〈{T ime@T, Si(s, Sid, Ri, �xi)@T1}, {T1 < T}〉;
• Denied CS: 〈{R(s, rsm)@T1,Av(s)@T2}, {T1 ≤ T2}〉;
• Available CS:

〈{R(s, rsm +R+ 1)@T1,Den(s)@T2}, {T1 ≤ T2}〉.
Timeout CS specifies that configurations denoting protocol

sessions for which the timeout has passed are critical. Denied

CS specifies that configurations are critical if a service is

considered available at a time its resources have been exhausted.

Similarly, as per Available CS , service should not be considered

denied at anytime when sufficient resources are available.

Definition IV.3 (Service). A service A has the following
components:
• A unique identification symbol s;
• A minimal service resource value rsm;
• An initial service resource value rsini, such that rsini > rsm;
• A set of protocol theories involving only s and their corre-

sponding protocol CS . We assume that the set of protocol
state predicates of different protocol theories are disjoint.

Additionally, we say that a service is balanced, if all protocol
theories are balanced. This is obtained using the dummy facts
D(s) (see Section III). Moreover, a balanced service also
contains a natural number ds specifying the number of D(s)
facts available.

Intuitively, balanced services can only maintain a bounded

number of parallel protocol sessions, since for each protocol

session a D fact is consumed and there is a bounded number,

ds, of D facts available.

A. Examples of Protocol Theories

We now describe four examples of protocol theories: GET-

HTTP, SDN rule insertion, TLS renegotiation and SIP forking.

While the GET-HTTP example is given in some detail along

with its protocol theory specification, the other three examples

are only briefly described for brevity. They can be modeled

similarly to the GET-HTTP protocol, but by using different

types of resources and states.

GET-HTTP: We specify (an abstract version of) the HTTP

GET method, which is subject to the Slowloris attack [43],

INIT: T ime@T, R(s, 1 +R+ rsm)@T1, N(INIT)@T2

| T1 ≤ T, T2 ≤ T −→
∃Sid.[T ime@T, S0(s, Sid, 1)@(T + 40),R(s,R+ rsm)@T]

GET: T ime@T, S0(s, Sid, 1)@T1, R(s,R)@T2, N(GET)@T3

| T1 ≥ T, T2 ≤ T, T3 ≤ T −→
T ime@T, S1(s, Sid, 1)@(T + 40), R(s,R)@T

INC: T ime@T, S1(s, Sid, 1)@T1, R(s,R)@T2, N(Inc)@T3

| T1 ≥ T, T2 ≤ T, T3 ≤ T −→
T ime@T, S1(s, Sid, 1)@(T + 40), R(s,R)@T

COM1: T ime@T, S0(s, Sid, 1)@T1, R(s,R)@T2, N(Com)@T3

| T1 ≥ T, T2 ≤ T, T3 ≤ T −→
T ime@T, S2(s, Sid, 1)@T, R(s,R)@T

COM2: T ime@T, S1(s, Sid, 1)@T1, R(s,R)@T2, N(Com)@T3

| T1 ≥ T, T2 ≤ T, T3 ≤ T −→
T ime@T, S2(s, Sid, 1)@T, R(s,R)@T

Fig. 1. Protocol Resource Theory for HTTP GET Protocol Method. We elide
the protocol state timeout rules and service availability rules.

exhausting the web-server’s workers, as described in Section II.

The initialization and execution rules are depicted in Fig. 1.

The protocol has three states, S0, S1 and S2, which, respec-

tively, correspond to the state when the HTTP protocol session

is initialized (S0), i.e., by performing the SYN-ACK which is

omitted for brevity, the state where a incomplete GET request is

received (S1), and the state where the GET request is completed

and the protocol session may end (S2).

Each protocol state requires one resource, corresponding to

one worker as is the case with connection based web-servers,

such as Apache. The timeout of each protocol state is 40 time

units, that is, if no further interaction is performed within 40

time units then the protocol session is terminated.

The rule INIT specifies the protocol initialization, where

one worker is allocated and a fresh protocol session Sid is

created. The rules GET, INC, COM1 and COM2 specify the

transitions between the states as described above. Notice that

in all states the allocated worker is kept allocated. Here we

use Inc to represent a message which has not completed the

GET header and Com for a message that has completed the

header. In practice, a message header is complete if it ends

with \r \n \r \n and incomplete otherwise. Thus, it is possible

to move from state S0 to the final state S2 (rule COM1) by

sending a complete message or from S1 to S2 by first sending

an incomplete message (rule INC) and then a complete message

(rule COM2).

SDN Rule Addition: Software Defined Networks (SDN) use

protocols, such as OpenFlow [35], to install rules in SDN

switches. We use as resources the number of available rules that

can be stored in an SDN Switch, typically at most 5000-8000

rules. Whenever an SDN switch receives a packet for which

there is no applicable SDN forwarding rule, it installs a new rule

after receiving rule installation approval from the centralized

SDN controller. This is modeled by a protocol initialization

rule. Rules come with a timeout. If no further packets arrive

that activate this rule before the timeout, then the forwarding

387

rule is dropped. This can be modeled with the protocol state

timeout rule. Otherwise, if a packet is received, then the timeout

is reset. This can be modeled using a protocol execution rule.

TLS Renegotiation: One can also model the Transport Layer

Security (TLS) renegotiation protocol using the number of hand-

shakes being processed as the resource. For example, according

to [21] a server can handle between 150-300 handshakes per

second. This is proportional to the CPU power of the server.

Whenever a new renegotiation is requested, the server consumes

processing power. TLS protocols also illustrate the use of

messages involving cryptographic operators for DoS attacks.

The use of asymmetric keys in handshakes and the creation of

fresh keys causes overheads to the server.

SIP invite forking: A protocol theory of SIP specifies the

mechanism of forwarding and forking invite messages, which

is known to be vulnerable to amplification attacks [42], [45].

As amplification targets the network’s bandwidth, we identify

the service s as the network and the resource r as the network’s

bandwidth (measured in terms of invite messages sent). When

an invite message is first introduced, a session is created. A

state in the protocol maintains the total number of forwarded

or forked invite messages for a session, along with the session’s

timeout. While both forwarding and forking messages reset the

timeout of their corresponding sessions, only forking increases

the amount of resources allocated for the session.

B. Modeling Time-Based Countermeasures

We now illustrate how we can extend our model to take

into account countermeasures (CMs) for DDoS attacks based on

timeouts, such as, ReqTimeOut [38] for mitigating the Slowloris

attack. The basic idea of timeout based CM is to trigger a

timeout whenever some condition on the traffic is satisfied, thus

forcing that a connection is closed and the service’s resources

are made available.

For example, for SYN flooding attacks, timeout based CMs

monitor whether a SYN-ACK handshake is completed within

some specified timeout. If a timeout is triggered, then the con-

nection is closed and the resources allocated by this connection

can be used by another connection. Similarly, ReqTimeOut is

a time based CM which monitors whether a packet header

or packet body is completed within some specified time. If

a timeout is triggered, then the connection is closed and the

allocated worker can be used to serve another connection. It is,

therefore, used to mitigate attacks such as Slowloris which take

too long to complete the header.

To formalize timeout based CM, we use the predicate:

• TimeCM(s, Sid)@T , denoting that the CM triggers a timeout

at time T which closes the connection Sid of service s.
This is specified by the following countermeasure timeout rule:

T ime@T,R(s,R)@T1, Si(s, Sid, ri, �xi)@T2,
TimeCM(s, Sid)@T −→ T ime@T,R(s, ri +R)@T

The protocol initialization and execution rules may update

TimeCM (contained in W1 in Definition IV.1). We specify,

additionally, the following critical configuration for CM:

〈{T ime@T,TimeCM(s, Sid)@T1}, {T1 < T}〉

This is similar to the timeout CS in Definition IV.2, as we only

consider traces where CMs trigger timeouts.

ReqTimeOut: Using the above machinery, we specify the

ReqTimeOut [38], a time-based CM available in the Apache

Web-Server for mitigating Slow-DoS attacks. One specifies

two natural numbers: Header Timeout (hTO) denoting the

maximum elapsed time for the connection to send the complete

header; Body Timeout (bTO) denoting the maximum elapsed

time for the connection to send the complete packet body.

Thus, a protocol with ReqTimeOut has three states: SHI ,

denoting a protocol state where the connection did not send a

complete header; SHC−BI , denoting a protocol state where the

connection sent a complete header, but not the complete packet

body; SBC , denoting a protocol state where the connection sent

a complete header and body.

The following protocol initialization rule sets the TimeCM:

T ime@T, R(s, 1 +R+ rsm)@T1, N(INIT)@T2

| T1 ≤ T, T2 ≤ T −→
∃Sid.[T ime@T, SHI(s, Sid, 1)@(T + 40),R(s,R+ rsm)@T,

TimeCM(s, Sid)@(T + hTO)]

The protocol execution rule specifies when the header is com-

pleted then the timeout is set for receiving the packet body:

T ime@T, SHI(s, Sid, 1)@T1, R(s,R)@T2, N(M)@T3,
TimeCM(s, Sid)@T4 | T1 ≥ T, T2 ≤ T, T3 ≤ T −→

T ime@T, SHC−BI(s, Sid, 1)@(T + 40), R(s,R)@T
TimeCM(s, Sid)@(T + bTO)

A similar rule specifies when the body of the packet is com-

pleted. We elide this rule.

Discussion It should be possible to model more refined time-

based CMs by adding suitable facts and rules. For example,

adding a predicate that remembers the number of bytes received

can be used to model more advanced configurations of the

ReqTimeOut, which is activated depending on the traffic rate.

V. RESOURCE-BOUNDED INTRUDER MODEL

This Section introduces a novel parametric intruder model

that is based on the powerful Dolev-Yao (DY) intruder [15],

but has bounded resources. In contrast to the DY intruder, the

resource-bounded intruder can only consume a bounded number

of his resources in any given time window.

Provided he has enough resources, the resource-bounded in-

truder can compose, decompose, encrypt and decrypt messages

for which he knows the appropriate key, and generate fresh

values. The rules corresponding to these actions, depicted in

Fig. 2, are based on the DY intruder rules [16], but refined

with the notion of time as in Timed DY intruders [33] and

with resource consumption. Each rule has an associated cost,

specified by a SPEC function, returning a triple of natural

numbers 〈δL, δR, rR〉: δL is the time for carrying out the action;

rR denotes resources consumed by the action, which can only

be re-used after δR time units. We assume all SPEC functions

are computable in polynomial time.

388

I/O Rules:
REC: T ime@T,N(X)@T1,R(I, Z + rR)@T2 | T ≥ T1 −→

T ime@T,M(I,X)@(T + δL),R(I, Z)@T,
Rec(I, rR)@(T + δR)

where SPECREC(X, I) = 〈δL, δR, rR〉
SND: T ime@T,M(I,X)@T1,R(I, Z + rR)@T2 | T ≥ T1 −→

T ime@T,N(X)@(T + δL),R(I, Z)@T,
Rec(I, rR)@(T + δR)

where SPECSND(X, I) = 〈δL, δR, rR〉
Message Composition and Decomposition Rules:

CMP: T ime@T,M(I,X)@T1,M(I, Y)@T2,R(I, Z + rR)@T3

−→ T ime@T,M(I, 〈X,Y 〉)@(T + δL),R(I, Z)@T,
Rec(I, rR)@(T + δR)

where SPECCOMP (X,Y, I) = 〈δL, δR, rR〉
DCM: T ime@T,M(I, 〈X,Y 〉)@T1,R(I, Z + rR)@T2 −→

T ime@T,M(I,X)@(T + δL),M(I, Y)@(T + δL),
R(I, Z)@T,Rec(I, rR)@(T + δR)

where SPECDCMP (〈X,Y 〉, I) = 〈δL, δR, rR〉
USE: T ime@T,M(I,X)@T1,R(I, Z + rR)@T2 −→

T ime@T,M(I,X)@T1,M(I,X)@(T + δL),
R(I, Z)@T,Rec(I, rR)@(T + δR),

where SPECUSE(X, I) = 〈δL, δR, rR〉
ENC: T ime@T,M(I,K)@T1,M(I,X)@T2,R(I, Z + rR)@T3

−→ T ime@T,M(I, {X}K)@(T + δL),M(I,K)@T1,
M(I,X)@T2,R(I, Z)@T,Rec@(I, rR)(T + δL)

where SPECENC(K,X, I) = 〈δL, δR, rR〉
DEC: T ime@T,M(I,K−1)@T1,M(I, {X}K)@T2,

R(I, Z + rR)@T3 −→
T ime@T,M(I,X)@(T + δL),M(I,K−1)@T1,
M(I, {X}K)@T2,R(I, Z)@T,Rec(I, rR)@(T + δR)

where SPECDEC(K
−1, {X}K , I) = 〈δL, δR, rR〉

GEN: T ime@T,R(I, Z + rR)@T1 −→
∃N.T ime@T,M(I,N)@(T + δL),R(I, Z)@T,

Rec(I, rR)@(T + δR)
where SPECGEN (I) = 〈δL, δR, rR〉
Resource Maintenance Rule:

RES: T ime@T,R(I, Z)@T1,Rec(I, rR)@T2 | T2 ≤ T −→
T ime@T,R(I, Z + rR)@T

Fig. 2. Bounded Resource Intruder Theory I

As with protocol theories introduced in Section IV, intruder

resources may represent e.g., traffic generation or CPU con-

sumption. Again, for simplicity of exposition, we consider

resources to be represented by natural numbers and use only

one resource.

Bounded resource intruder rules, given in Fig. 2, denote

the following intruder actions: REC rule specifies the intruder

action of receiving a message from the network. The rule’s cost

is specified by SPECREC(X, I) = 〈δL, δR, rR〉: the intruder I
consumes rR resources for receiving the message X , taking δL
time units to learn X;3 SND rule specifies sending of a message

to the network with the cost SPECSND(X, I) = 〈δL, δR, rR〉: I
consumes rR resources for sending the message X , taking δL

3Notice that we do not explicitly consider transmission time here. This can
be done by adding explicit delays if the network topology is known. However,
these delays are normally in a lower order of magnitude than service timeouts,
and they are not very relevant for DoS attacks. This is in contrast to Cyber-
Physical Security Protocols where transmission delays are relevant [26], [33].

time units; CMP rule specifies composing two messages known

to the intruder, costing SPECCOMP (X,Y, I) = 〈δL, δR, rR〉:
I consumes rR resources for composing messages X and Y
into message 〈X,Y 〉 in δL time units; DCM rule specifies

decomposing, costing SPECDCMP (X,Y, I) = 〈δL, δR, rR〉: I
consumes rR resources for decomposing 〈X,Y 〉 into X and Y
in δL time units; USE rule specifies the copying of a known

message, costing SPECUSE(X, I) = 〈δL, δR, rR〉: I consumes

rR resources for copying X in δL time units; ENC rule specifies

encryption, having the cost SPECENC(K,M, I) = 〈δL, δR, rR〉:
I consumes rR resources for encrypting M using the key K,

taking δL time units; DEC rule specifies decryption, costing

SPECDEC(K
−1,MK , I) = 〈δL, δR, rR〉: I consumes rR re-

sources for decrypting MK using the key K−1 and learning

the message M , taking δL time units; GEN rule specifies

creating of a fresh value, e.g., a nonce or a fresh key. Its cost is

SPECGEN (I) = 〈δL, δR, rR〉: I consumes rR resources, taking

δL time units; RES rule denotes recovery of available resources.

Definition V.1 (Resource-Bounded Intruder). A resource-
bounded intruder, I, consists of his unique identification
symbol I , his maximal resource rImax, a finite set M =
{M(I,m1)@0, . . . ,M(I,mn)@0} of M facts specifying in-
truder’s initial knowledge base and definitions of SPECR func-
tions, for each rule R given in Fig. 2.

Types of Resource-Bounded Intruders: Different bounded in-

truders can be specified by using different definitions of SPECR

functions. We illustrate this feature with some examples. As-

sume that the intruder has at most rImax resources.

Bounded Traffic Intruder Model represents the intruder that

can send only a number of messages at a given rate, e.g.,
messages per second. This is achieved by specifying SPECSND

and SPECREC accordingly, and setting SPECR = 〈0, 0, 0〉 for

the remaining rules. For example, setting SPECSND(X, I) =
SPECREC(X, I) = 〈1, 1, 1〉 for all X means that the intruder

can only generate/intercept traffic at a maximum rate of rImax

messages per time unit. This is because sending or receiving a

message consumes one of his resources for 1 time unit. Since

he has only rImax resources, he can send at most rImax messages

in a time unit. One could refine this even further by specifying

SPECSND(X, I) to depend on X , so that, e.g., the number of

resources is proportional to the number of symbols of X , so

that the intruder is only capable of sending rImax symbols per

time unit. Similarly, one could consider that sending encrypted

messages requires more resources than sending plaintext.

Bounded Processing Intruder Model: One can also specify

the intruder that can only carry out a bounded number of

actions in a given time window according to his processing

power. The maximum resources may be expressed in terms of

percentage of available CPU, i.e., rImax = 100, or even in the

number of CPU cycles for more precise models. Each action

would then consume CPU resources for some given time. For

example, the cost of encrypting and decrypting, SPECENC and

SPECDEC , will impact the CPU usage depending on the key

and message being encrypted or decrypted.

389

Bounded Memory Intruder Models: Bounded memory intruder

models are not specified by using SPECR functions, but by

using balanced intruder models as described in [25]. All the

rules of the intruder model are transformed into balanced rules

as described in Section III, using dummy facts P (I)@T . For

example, the balanced version of the REC rule is as follows:

T ime@T,N(X)@T1,R(I, Z + rR)@T2, P (I)@T3 | T ≥ T1 −→
T ime@T,M(I,X)@(T + δL),R(I, Z)@T,Rec(I, rR)@(T + δR)

Notice that a dummy fact is consumed when a message is

received. Since the number of dummy facts in a configuration

is bounded, the number of messages that can be learned from

the network is bounded. Memory bounded intruders should

also be able to manage their memory. This is specified by the

following memory maintenance rule that enables the intruder

to delete information form his memory:

DELM: T ime@T,M(I,X)@T1 −→ T ime@T, P (I)@T. (2)

All the rules of a balanced bounded resource intruder theory

are shown in Fig. 3.

Definition V.2 (Balanced Resource-Bounded Intruder). A bal-

anced resource-bounded intruder, I, consists of his unique
identification symbol I , his maximal resource rImax, a natural
number dum, specifying the number of dummy facts available
to the intruder, a finite set of M facts specifying the intruder’s
initial knowledge base, and definitions of SPECR functions, for
all balanced versions of the rules R given in Fig. 2 and DELM
rule (2).

Notice that if for all rules R, SPECR = 〈0, 0, 0〉, then the

(unbalanced) intruder model in Fig. 2 is equivalent to the DY

intruder [16]. All actions can be performed at no cost (in

time or resources) to the intruder. Indeed, he can generate and

intercept any number of messages. Finally, one can also imagine

a lattice of intruder models with order defined by the number of

resources where, clearly, the DY intruder is the most powerful.

VI. DOS PROBLEM

We now formulate DoS attacks in our framework, and con-

trast it with notions of DoS attack from existing literature.

In [31] a DoS attack is viewed as “the resource exhaustion

attack, in which an attacker, by initiating a large number of in-

stances of a protocol, causes a victim to exhaust his resources”.

According to [9], a DoS “is characterized by an explicit attempt

by attackers to prevent legitimate users of a service from using

that service”. As per US Department of Homeland Security

official website [14], a DoS attack occurs “when legitimate

users are unable to access information systems, devices, or other

network resources due to the actions of a malicious cyber threat

actor”. Our formulation of DoS attacks addresses the issues

from the above definitions. The notion of DoS attack from [31]

is further refined by an additional duration parameter that we

find is relevant for the following reasons. Flooding attacks are

always possible in the presence of powerful attackers. However,

very short service interruptions may be tolerated in practice,

while prolonged unavailability of service would be considered

as a successful DoS attack. As the access to server resources is

not instant, due to, e.g., network delays, users may not consider

a short delay in service as denial of service.

Intuitively, a DoS attack on a service is successful if the

service’s resources are exhausted for some duration, mdur.

More precisely, the verification task is to determine whether,

in the presence of attackers, some service is subject to a DoS

attack, by searching for a non-critical trace of the form:

S0 −→ S1 −→ · · · −→ Si −→ · · · −→ Si+m −→ · · · −→ Sn,
where, S0 is the initial configuration of the verification sce-

nario, the global time, ti, in the configuration Si, and the

global time, ti+m in the configuration Si+m, are such that

ti+m− ti ≥ mdur, and that for a service, s, its resources in all

configurations between Si and Si+m are less or equal to rsm.

Notice that the definition below of the DoS problem includes

a number of intruders, thus specifying DDoS attacks as well.

Definition VI.1 (Verification Scenario). A (respectively, bal-
anced) verification scenario V consists of the following compo-
nents:
• A finite set of (respectively, balanced) services {A1, . . . ,An}

(see Definition IV.3);
• A finite set of (respectively, balanced) resource-bounded

intruders {I1, . . . , Im};
• natural numbers mduri, specifying the minimal duration

that the resources of the service Ai have to be consumed
to represent a successful DoS attack.

The initial configuration of V , SV , contains exactly the following
timed facts, for 1 ≤ i ≤ n and 1 ≤ j ≤ m:
• T ime@0, specifying that the initial global time is 0;
• R(si, r

s
ini)@0, where si and rsini are the unique identification

symbol and initial service resource of service Ai;
• Av(si)@0, specifying that the service si is available;
• R(Ij , r

Ij
max)@0, where Ij and r

Ij
max are the unique identifi-

cation symbol and maximal resource of the intruder Ij;
• the facts in Mj , the initial knowledge base of Ij;
• for balanced verification scenario only, dumj dummy facts
P (Ij)@0, where dumj is the number of available dummy
facts specified in Ij , and dsi dummy facts D(si)@0, where
dsi is the number of dummy facts specified in Ai.

The goal of a verification scenario is as follows:

GSV = {〈{T ime@T,Den(si)@T1}, {T ≥ T1 +mduri}〉}

where 1 ≤ i ≤ n, and si is the unique identification symbol of
some Ai.
Finally, we construct the critical configuration specification of
the scenario CSV as the union of all the critical configuration
specifications of all services Ai.

The DoS problem associated to a verification scenario is

reduced to searching for non-critical traces as defined below.

Definition VI.2 (DoS Problem). Let V be a verification sce-
nario. The DoS problem is to determine whether there is a
non-critical trace w.r.t. CSV from SV to a goal configuration
w.r.t. GSV .

390

Notice the role of protocol critical configuration specifica-

tions (Definition IV.2). Without the Timeout CS, false DoS

attacks could be found as traces where the service simply does

not garbage-collect protocol sessions that have expired due to a

timeout. Similarly, without Denied CS and Available CS, there

would be traces where the facts Av and Den are not updated

according to the level of resources of the service. For example,

a trace would exist with a configuration where Den(s) is present

although the service s has enough resources.

Notice that if mdur = 0 in the verification scenario, we

model the DoS attacks with no duration attached, as in [31].

A. Attack Example - HTTP GET

We illustrate a DoS attack on a verification scenario involv-

ing the protocol theory of the HTTP GET described in Sec-

tion IV-A. The attack is very close to the Slowloris attack [43].

The values for service timeout and number of packets sent by

the intruder are the same as used in practice.

Assume a single service with the HTTP GET protocol theory

given in Fig. 1 with initially 300 workers available, that is,

rsini = 300 and rsm = 0, so the service is denied when the

service has no workers left.

Consider a bounded traffic intruder I (see Section V), with

the function SPECSND = 〈1, 30, 1〉, that is, intruder consumes

one resource when he sends a message and this resource can

only be used again after 30 time units and SPECR = 〈0, 0, 0〉 for

the remaining rules R. Moreover, assume that rImax = 350, that

is, he has 350 resources. This means that the intruder can only

send 350 messages in every 30 units time window. Finally, the

intruder knows the relevant information from the GET protocol,

namely, the set of timed facts:
M = { M(I, INIT)@0.0,M(I,GET)@0.0,

M(I, Inc)@0.0,M(I, Com)@0.0}.
Thus, the initial configuration is:

M ∪ {
T ime@0,R(s, 300)@0,R(I, 350)@0,Av(s)@0

}
.

Finally, assume that mdur = 300, that is, the service has to

be down for 300 time units for a successful DoS attack.

The attack follows by the intruder applying the USE rule

with M(I, INIT) 300 times, that is, making 300 copies

of this message. This has no cost. Then applying the SND
rule on M(I, INIT) 300 times, generating 300 copies of

N(INIT)@1. That is, the intruder sends a burst of 300 mes-
sages. Time then advances one time unit. Now the service ap-

plies the INIT rule 300 times generating 300 protocol sessions

facts S0 and consuming all the service’s resources. Thus the fact

Av(s) is replaced by Den(s) using the corresponding service

availability rule. At this point, 30 time units pass. The intruder

can then recover his resources by applying 300 instances of the

RES rule. The intruder then applies 300 times the USE rule

with M(Inc) and applying 300 times the SND rule generating

300 copies of N(Inc). That is, the intruder sends another burst

of messages. These facts are then used by the service moving

to state S1. By waiting another 30 time units, and re-generating

copies of N(Inc), i.e., sending periodic bursts of messages, the

intruder is able to consume the service’s resources to 0 for

indefinite time, leading to a DoS attack.

Notice that this attack, while captured by our model, has

a great deal of non-determinism, e.g., different rules can be

applied to a configuration. Moreover, the length of the witness

trace is quite large, making it challenging for automated verifi-

cation to find. In Section VIII, we show how Rewriting Modulo

SMT [39] can help automate the search for DoS attacks by using

symbolic search.

Finally, we also point out that traditional flooding attacks,

such as SYN flooding can also be modelled. For such attacks,

the attacker(s) has resources that allow him to send a very large

number of messages.

VII. COMPLEXITY RESULTS

Reachability and the related problems for MSR are unde-

cidable in general [24]. However, by imposing some reasonable

restrictions, such as using only balanced rules and bounding the

size of facts, these problems become decidable, even in timed

models with fresh values. A summary of related complexity

results is shown in Table I.

The undecidability of the general version of the DoS problem

follows from undecidability of secrecy problem for general

MSR theories [24], [25]. We show how to encode the secrecy

problem as an instance of a DoS problem in the proof of Lemma

VII.2 (see Appendix A).

For the complexity of the balanced version of the DoS

problem we rely on the PSPACE-completeness of the secrecy

problem for bounded memory intruder and balanced MSR

protocol theories [25] and on the complexity of the non-critical

reachability problem for dense time MSR, which we prove to

be PSPACE-complete. The technical challenges of this novel

complexity result are shortly discussed below. The complete

proof can be found in the technical report [23].

The following lemmas give the upper and lower bounds for

the complexity of DoS problems. Proofs of these lemmas can

be found in Appendix A.

Lemma VII.1. The DoS problem is an instance of the non-
critical reachability problem for MSR with real time.

Lemma VII.2. The secrecy problem for Dolev-Yao intruder
and MSR protocol theories is an instance of the DoS problem.
The secrecy problem for bounded memory Dolev-Yao intruder
and balanced MSR protocol theories is an instance of the DoS
problem for balanced verification scenarios.

Theorem VII.3 (DoS problem).
The DoS problem is undecidable in general.

Theorem VII.4 (Balanced DoS problem).
Assuming a bound on the size of facts, the DoS problem for
balanced verification scenarios is PSPACE-complete.

A. Complexity of non-critical reachability problem

For a given set of timed MSR rulesR, an initial configuration

S0, a goal GS and a critical configuration specification CS , Non-
critical Reachability Problem consists in checking whether there

is a non-critical trace that leads from S0 to a goal configuration.

391

TABLE I
SUMMARY OF THE COMPLEXITY RESULTS FOR THE REACHABILITY AND NON-CRITICAL REACHABILITY PROBLEMS, THAT IS, THE REACHABILITY PROBLEM

INVOLVING ONLY NON-CRITICAL TRACES.

MSR Reachability Problem Non-critical Reachability

Balanced

untimed PSPACE-complete [25], [28] PSPACE-complete [25], [28]

discrete time PSPACE-complete [27] PSPACE-complete [27]

dense time PSPACE-complete [26] PSPACE-complete [new]

Not necessarily balanced Undecidable [24] Undecidable [24]

Theorem VII.5 (Non-critical Reachability Problem).
The non-critical reachability problem is undecidable in general.
The non-critical reachability problem for balanced timed MSR
with dense time is PSPACE-complete when assuming a bound
on the size of facts.

When dealing with the complexity of the verification prob-

lems in timed MSR with dense time there are several challenges

that need to be addressed, starting with the underlying nonde-

terministic nature of the multiset rewriting formalism. Then,

an unbounded number of fresh values can appear in a trace.

Additionally, in our timed MSR there is no bound on the global

time value, i.e., on represented time periods. Furthermore, in the

dense time model, there is the additional non-determinism in the

choice of ε in time advancement T ick rule. Finally, as discussed

in Section III, the notion of non-critical traces in dense time

setting is much more elaborate than in the untimed and discrete

time models. Recall that, as per Definition III.1 showing that

a trace of a dense time MSR is non-critical involves not only

the configurations it contains, but also an infinite number of

configurations obtained by decomposing T ick rules in order to

faithfully capture the continuity of time.

The proof of Theorem VII.5 relies on the abstractions intro-

duced in [26], called circle-configurations, where it has been

shown that, with respect to the reachability problem (without

critical configurations) traces over circle-configurations are a

sound and complete representation of traces with dense time.

In particular, the T ick rule is represented by a collection of

rules defined over circle-configurations.

The addition of critical configurations and non-critical traces

involves a new auxiliary notion of immediate successor con-
figurations, related to satisfiability of relevant time constraints.

Using immediate successor configurations reduces the search

space when checking that a trace of dense time MSR is non-

critical. Furthermore, there is only a finite number of abstrac-

tions related to a given non-critical reachability problem, which

bounds the length of solution traces, resulting in a polynomial

space search space. Details appear in the Technical Report [23].

VIII. AUTOMATED VERIFICATION

We describe our steps towards automation of verification,

focusing on some key ideas to improve automation performance.

To test these ideas, we specified verification scenarios for

the Slowloris and Slow-TCAM attacks. The implementation is

available at [1].4

As illustrated by example in previous sections, MSR rules

generally lead to an enormous search space which makes

traditional automated verification impractical. For example, to

find the Slowloris attack in the scenario used in the example in

Section VI-A, one would need to search a tree of depth of at

least 500. Moreover, it is not possible to instantiate all values of

ε in the time advancement rule as there are infinite possibilities.

To reduce search space, we use symbolic search through

Rewriting Modulo SMT [39]. This allows us to perform sym-

bolic search relying on the power of off-the-shelf SMT solvers.

We considered three types of symbols:

Time Symbols: Instead of using concrete values for global

time, we use time symbols. Time symbols, ts, may be used

in expressions, such as in ts + 2.0;

Intruder and Service Resource Symbols: Instead of using

concrete values for intruder and service resources, we use

intruder resource symbols and service resource symbols;

Protocol Instance Symbols: Instead of creating one protocol

session, we allow the intruder to create several instances of a

protocol session representing a burst from the intruder. However,

we use symbolic values for the number of instances created.

The symbolic rewrite rules accumulate constraints on the

values and search stops whenever the set of accumulated

constraints is not satisfiable.

The intruder model used is based on the intruder model

proposed here, but weaker, limited to sending a pre-defined

set of messages. This limitation may be overcome by also

representing messages symbolically.

Table II summarizes our preliminary results using our sym-

bolic machinery. We additionally considered bounded model-

checking by bounding the following parameters. Thus, our

method, while sound, it is not complete.

Number of Parallel Symbolic Protocols (pxs): Allowing the

intruder to create an unbounded number of sessions increases

greatly the size of search space. We thus bound the number

of parallel symbolic protocols. Notice that this does not mean

that we are bounding the number of parallel sessions because

symbolic protocols still carry the number of instance symbol;

4Notice that the intruder model introduced here is different from the usual
Dolev-Yao like intruder models used in existing protocol security verification
tools, as the latter does not explicitly mention resources nor timeouts. Therefore,
it is not clear how they can be used to automatically verify systems.

392

TABLE II
AUTOMATED VERIFICATION RESULTS USING A 2.7 GHZ MACHINE WITH 8 GB MEMORY. SL [I] IS SLOWLORIS WITH mdur OF I TIMEOUTS. STCAM [I] IS A

SCENARIO WHERE THE INTRUDER REQUIRES i SYMBOLIC PROTOCOL SESSIONS IN PARALLEL TO CARRY OUT A SLOW-TCAM ATTACK. SEARCH WAS

INTERRUPTED AFTER 10 MINS.

No Bounding Bounded msgs1 Bounded pxs Bounded msgs1 and pxs

Attack States Time (s) States Time (s) States Time (s) States Time (s)

SL [1] 18 0.4 16 0.4 8 0.1 7 0.1
SL [2] 409 13 277 11.2 27 0.4 17 0.4
SL [3] – – – – 228 4.7 56 2.6
STCAM [2] 17 0.3 15 0.3 16 0.3 14 0.2
STCAM [3] 387 12.5 266 9.7 361 10.3 243 9.2
STCAM [4] – – – – 12783 561 6322 474

Number of Different Types of Messages at a Time (msgs1):
Messages of different types may be created. The greater the

types of messages the greater is the interleaving causing state

space to increase. We, therefore, bounded the number of types

of messages that can be generated.

We are able to discover the Slowloris attack using different

values for mdur up to 3 times the protocol timeout. This

information can be used by specifiers to build defenses to

mitigate such attacks. Moreover, we were able to discover

the SlowTCAM attack. We varied the power of the service

while using the same intruder. We have found the non-trivial

attacks where the intruder maintains protocol sessions due to

2 or 3 bursts, i.e., 2 or 3 symbolic protocol sessions. This

information can be used by specifiers to generalize attacks to

greater instances and investigate adequate defenses.

While these bounds (on parallel symbolic protocols and

messages to be processed) do not affect the soundness of our

approach as we are simply bounding the search engines choices,

it may affect the range of attacks that can be found. For example,

attacks that require more symbolic parallel protocols than the

bound would not be found. Indeed, setting this bound to one,

we were not able to find the SlowTCAM nor the PRA attacks.

Similarly, in order to discover a wider range of attacks or verify

security of a protocol, sufficient details about the server and the

protocol execution should be included in the model.

IX. CONCLUSIONS AND RELATED WORK

This paper introduced a new framework for analyzing the

security of systems against DoS attacks. The framework allows

reasoning about service’s and intruder’s resources and service

timeouts. We illustrate the power of the model with a number of

examples of attacks and intruder models. We study the complex-

ity of the DoS problem, showing it to be undecidable in general

and PSPACE-complete for balanced verification scenarios. For

the latter results, we provide new results on the complexity of

the non-critical reachability problem. Finally, we demonstrate

the use of Rewriting Modulo SMT for efficiently automating

the verification task.

While our work is inspired by the work [31], in contrast to the

model [31], our model mentions time explicitly. This means that

our model can reason about service timeouts, which are essential

for discovering vulnerabilities to Slow and Asymmetric Attacks.

Moreover, this leads to a more refined definition of DoS attacks

than the one proposed in [31]. Intuitively, a DoS attack is

defined as exhausting the target service’s resource for a certain

period of time. This duration can be specified in our model

with explicit time, thus reflecting the intuitive notion of a

DoS attack, which is to take down a service temporarily or

indefinitely. Finally, our model can also specify time-based

counter-measures, that issue timeouts whenever some condition

is applicable.

In [32] a taxonomy of DoS attacks and defense mechanisms

is presented. Some of the relevant security issues have clearly

been covered in our model. For example, attack rate dynamics

issue resulting in constant or variable rate attacks is captured

by recovery of resources within associated time through R and

Rec facts. We, however, did not go into details of all issues

identified in [32], e.g., means used to prepare and perform the

attack (manual, semi-automatic and automatic DDoS attacks)

nor into source address validity issue (spoofed vs. valid IPs),

impact on the victim (recoverable vs. non-recoverable attacks)

etc. Nevertheless, additional details could be introduced in the

model in relation to such security issues. By including various

resources of the service in the specification, we are able to

represent and differentiate between flooding attacks and more

sophisticated semantic attacks. This also applies to modelling

of DoS defense mechanisms.

Authors in [42] demonstrate a model checking technique,

called measure checking, for finding amplification attacks on

VoIP using rewriting logic (implemented in Maude). They do

not provide, however, general intruder models based on the DY

intruder as we do, nor the corresponding complexity results.

Finally, we also consider a wider range of attacks, such as slow

and CPU exhaustion attacks.

MSR frameworks [4], [16], [25], [26] have been proposed for

security verification. However, they were interested in authen-

tication and secrecy-related problems, and distance-bounding

protocols and not in DoS attacks, which is our main goal here.

Moreover, we also extend the model and the complexity results

of [26] by considering the non-critical reachability problem and

not only the simple reachability problem. We also build on the

work of [25] which considers bounded memory intruders. Our

intruders can be bounded with respect to a wider range of types

393

of resources.

Timed automata (TA) [5] have been used for the verification

of many systems involving real-time. The framework we pro-

pose is more closely related to security, as resources, intruder

models, and DoS problems are considered. This is obtained

by means of adding explicit notions of timeouts and also of

resources to rules. Using first-order rules in MSR versus finite

number of states and rules in TA, further affects comparisons of

complexity results. Also, our model has the additional feature of

non-critical traces, distinguishing among potential reachability

solutions only those traces that have no negative properties, i.e.,
are non-critical.

Protocol verification in [22], using timed automata, also

involves timing aspects of security protocols in the presence of

DY intruder, as well as automated tools. They investigate timed

authentication properties, based on expected time intervals for

completion of successful protocol sessions. Such an approach

may not be as adequate for our DoS problems, as the service

resources may also be consumed by sessions that have not

successfully completed. Also, we consider more general proto-

col theories with varied execution time of a correct sessions,

due to, e.g., possibility of sending incomplete headers in a

correct protocol execution, or even loops in protocols which

are, differently from [22], allowed in our protocol theories etc.

Also, we investigate the computational complexity related to

the verification.

A decidability result relating to timing attacks in security

protocols is given in [11]. The result is based on symbolic

equivalence of traces, applied, in particular on verification of

privacy properties, not DoS. Similar to our parametrized action

execution, formalized using SPEC function, they also deal with

computation time w.r.t. to length of inputs. The model allows

representation of other “side-channel" resources that can be

leaked by the execution, such as power consumption. As this

approach is based on the reduction of time trace equivalence to

length trace equivalence, it remains to be investigated whether

such an approach may be applicable to the general DoS prob-

lem, covering protocol theories with varied execution time, as

already discussed above.

Statistical Model Checking has been used to investigate the

effectiveness of attack defense [2], [3], [13], [17], [18], [30].

We believe that the search space reduction due to the use of

symbolic search can improve the performance of these methods

for the verification of defense. This is left for future work.

Also, we expect that in our model we are able to capture a

larger class of security problem closely related to DoS attacks,

including other types of attacks that may include a DoS as

a component, attempts to prevent a particular individual from

accessing a service, attempts to disrupt service to a specific

system or person, as well as poor service performance resulting

from intruder interference.

Finally, we would like to investigate how different resource-

bounded intruder models can be compared. For example,

whether it is possible to define a partial order relating the

strength of intruders. This is left for future work.

ACKNOWLEDGMENTS

Part of this work was done during the visits to the University of Pennsylvania
by Alturki, Ban Kirigin, Kanovich, Nigam, and Talcott, which were partially
supported by ONR grant N00014-15-1-2047 and by the University of Pennsyl-
vania. Ban Kirigin is supported in part by the Croatian Science Foundation under
the project UIP-05-2017-9219. Scedrov is partially supported by ONR grants
N00014-15-1-2047 and N00014-18-1-2618. The participation of Kanovich and
Scedrov in the preparation of this article was partially within the framework of
the HSE University Basic Research Program funded by the Russian Academic
Excellence Project ’5-100’. Talcott is partly supported by ONR grant N00014-
15-1-2202 and NRL grant N0017317-1-G002. Nigam is partially supported by
NRL grant N0017317-1-G002, and CNPq grant 303909/2018-8.

REFERENCES

[1] Resource bounded intruder implementation in Maude https://github.com/
viveknigam/boundedIntruder. 2018.

[2] M. AlTurki, J. Meseguer, and C. A. Gunter. Probabilistic modeling and
analysis of DoS protection for the ASV protocol. Electr. Notes Theor.
Comput. Sci., 234:3–18, 2009.

[3] M. A. AlTurki, M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and
C. Talcott. Statistical model checking of distance fraud attacks on the
Hancke-Kuhn family of protocols. In Proceedings of the 2018 Workshop
on Cyber-Physical Systems Security and PrivaCy, pages 60–71. ACM,
2018.

[4] M. A. AlTurki, M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and
C. Talcott. A multiset rewriting model for specifying and verifying timing
aspects of security protocols. http://nigam.info/docs/CM_timed_intruders.
pdf, 2019.

[5] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183 – 235, 1994.

[6] E. Cambiaso, G. Papaleo, and M. Aiello. Slowdroid: Turning a smartphone
into a mobile attack vector. In Future Internet of Things and Cloud
(FiCloud), 2014 International Conference on, pages 405–410. IEEE, 2014.

[7] E. Cambiaso, G. Papaleo, G. Chiola, and M. Aiello. Slow DoS attacks:
definition and categorisation. International Journal of Trust Management
in Computing and Communications, 1(3-4):300–319, 2013.

[8] E. Cambiaso, G. Papaleo, G. Chiola, and M. Aiello. Mobile executions
of slow DoS attacks. Logic Journal of IGPL, pages 54–67, 2015.

[9] CERT Coordination Center, Denial of Service Attacks. www.cs.columbia.
edu/~danr/courses/6761/Fall00/week14/cert.ps.

[10] I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. A
meta-notation for protocol analysis. In CSFW, pages 55–69, 1999.

[11] V. Cheval and V. Cortier. Timing attacks in security protocols: symbolic
framework and proof techniques. In International Conference on Princi-
ples of Security and Trust, pages 280–299. Springer, 2015.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
C. Talcott. All About Maude: A High-Performance Logical Framework,
volume 4350 of LNCS. Springer, 2007.

[13] Y. G. Dantas, V. Nigam, and I. E. Fonseca. A selective defense for
application layer DDoS attacks. In IEEE JISIC 2014, pages 75–82, 2014.

[14] Department of Homeland Security, Understanding Denial-of-Service At-
tacks. https://www.us-cert.gov/ncas/tips/ST04-015.

[15] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[16] N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting
and the complexity of bounded security protocols. Journal of Computer
Security, 12(2):247–311, 2004.

[17] J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer, and M. Wirsing.
Stable availability under denial of service attacks through formal patterns.
In FASE, pages 78–93, 2012.

[18] J. Eckhardt, T. Mühlbauer, J. Meseguer, and M. Wirsing. Statistical model
checking for composite actor systems. In WADT, pages 143–160, 2012.

[19] H. B. Enderton. A mathematical introduction to logic. Academic Press,
1972.

[20] P. Gupta and V. Shmatikov. Security analysis of voice-over-ip protocols.
In 20th IEEE Computer Security Foundations Symposium, Venice, Italy,
pages 49–63. IEEE Computer Society, 2007.

[21] IETF. [TLS] SSL Renegotiation DOS. Available at https://www.ietf.org/
mail-archive/web/tls/current/msg07553.html.

[22] G. Jakubowska and W. Penczek. Modelling and checking timed authenti-
cation of security protocols. Fundamenta Informaticae, 79(3-4):363–378,
2007.

394

[23] M. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. Talcott.
Compliance in real time multiset rewriting models. Available at https:
//arxiv.org/abs/1811.04826.

[24] M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collaborative
systems. In CSF ’09: Proceedings of the 2009 22nd IEEE Computer
Security Foundations Symposium, pages 218–233, Washington, DC, USA,
2009. IEEE Computer Society.

[25] M. I. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded
memory Dolev-Yao adversaries in collaborative systems. Inf. Comput.,
238:233–261, 2014.

[26] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. L. Tal-
cott. Time, computational complexity, and probability in the analysis of
distance-bounding protocols. Journal of Computer Security, 25(6):585–
630, 2017.

[27] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, C. L. Talcott, and
R. Perovic. A rewriting framework and logic for activities subject to
regulations. Mathematical Structures in Computer Science, 27(3):332–
375, 2017.

[28] M. I. Kanovich, P. Rowe, and A. Scedrov. Collaborative planning with
confidentiality. J. Autom. Reasoning, 46(3-4):389–421, 2011.

[29] M. O. O. Lemos, Y. G. Dantas, I. Fonseca, V. Nigam, and G. Sampaio.
A selective defense for mitigating coordinated call attacks. In 34th
Brazilian Symposium on Computer Networks and Distributed Systems
(SBRC), 2016.

[30] M. O. O. Lemos, Y. G. Dantas, I. E. Fonseca, and V. Nigam. On the
accuracy of formal verification of selective defenses for TDoS attacks. J.
Log. Algebr. Meth. Program., 94:45–67, 2018.

[31] C. A. Meadows. A cost-based framework for analysis of denial of service
networks. Journal of Computer Security, 9(1/2):143–164, 2001.

[32] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and DDoS
defense mechanisms. ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[33] V. Nigam, C. Talcott, and A. A. Urquiza. Towards the automated
verification of cyber-physical security protocols: Bounding the number
of timed intruders. In European Symposium on Research in Computer
Security (ESORICS), 2016.

[34] O. Olivo, I. Dillig, and C. Lin. Detecting and exploiting second order
denial-of-service vulnerabilities in web applications. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 616–628, New York, NY, USA, 2015. ACM.

[35] OpenFlow. Open Networking Foundation (ONF). https://www.
opennetworking.org/. Accessed in: 02 de Setembro de 2016.

[36] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, and V. Nigam. Slow TCAM
exhaustion DDoS attack. In ICT Systems Security and Privacy Protection
(IFIP SEC), 2017.

[37] r-u-dead yet. https://code.google.com/p/r-u-dead-yet/. 2013.
[38] ReQTimeOut. https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.

html. 2014.
[39] C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and

open system analysis. J. Log. Algebr. Meth. Program., 86(1):269–297,
2017.

[40] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853,
4320, 4916, 5393.

[41] P. Rowe. Policy compliance, confidentiality and complexity in collabora-
tive systems. PhD thesis, University of Pennsylvania, 2009.

[42] R. Shankesi, M. AlTurki, R. Sasse, C. A. Gunter, and J. Meseguer. Model-
checking DoS amplification for VoIP session initiation. In ESORICS,
pages 390–405, 2009.

[43] slowloris. http://ha.ckers.org/slowloris/. 2013.
[44] slowread. https://code.google.com/p/slowhttptest/. 2013.
[45] R. Sparks, S. Lawrence, A. Hawrylyshen, and B. Campen. Addressing an

Amplification Vulnerability in Session Initiation Protocol (SIP) Forking
Proxies. RFC 5393 (Proposed Standard), Dec. 2008.

[46] B. Sullivan. Application-level denial of service attacks and defenses, 2011.
[Online; Accessed 16-December-2016].

APPENDIX

A. DoS Problem PSPACE Complexity Proofs
Proof of Lemma VII.1

Proof. Given a verification scenario V , with all the notation as per Definition
VI.1, we construct an instance of the non-critical reachability problem, D, such

that D has a solution trace T iff V is vulnerable to a DoS attack as per
witness trace T . This follows easily from the definition of the problem D, by
inspecting the protocol and intruder rules, critical and goal configurations.

We set the non-critical reachability problem D as follows. We set MSR
rules R to consist of intruder rules Ij , 1 ≤ j ≤ m, and rules of protocol
theories Ai, 1 ≤ i ≤ n. The initial coniguration of D is set to be S0, the inital
configuration of verification scenario V . Also, the goal of D is specified by the
goal of V:

〈 T ime@T,Den(si)@T ′, T − T ′ ≥ dmin〉 .

We set critical configuration specification CS of D as CSV , i.e., to consist of
protocol CSes ofA1, . . . ,An. Notice that, as per protocol critical configuration
specifications, CS of D contains:
〈T ime@T,Si(Sid, R, �xi)@T ′ | T ′ < T 〉 , for all i > 0, forcing timeouts
of protocol states, and

〈 R(Sid, r
Sid
m)@T,Av(Sid)@T ′ | T > T ′〉 and

〈 R(Sid, R+ 1 + r
Sid
m)@T,Den(Sid)@T ′ | T > T ′〉

for the auxiliary flags, Den, Av, used for modelling insufficient server resources.

Proof of Lemma VII.2

Proof. Secrecy problem of whether or not an intruder can discover a secret
originally known only to another protocol participant, is undecidable in gen-
eral [16], and PSPACE-complete for bounded memory intruder and balanced
MSR protocol theories [25].

We encode the secrecy problem as an instance of a DoS problem. In
particular, we specify that a DoS problem can occur only if the intruder
discovers the secret.

We describe the case of balanced intruder and protocol models. The general
case follows by simply ignoring dummy facts.

Let S0 be the initial configuration of the given secrecy problem D.
We assume S0 to contain the facts representing initial knowledge, such as
participants names and keys, a fact denoting that a secret α is known to some
participant, as well as the initial intruder knowledge and a number of dummy
facts P and D representing intruder and system memory, respectively. Let R
be the given protocol theory. Its rules have one of the following forms:

W P (∗)→W S0(�x)
S0(. . .) P (∗) W → ∃�z.Sl(. . .) N(. . .) W ′
Si(. . .) N(. . .) W → ∃�z.Sj(. . .) N(. . .) W ′
Sh(. . .) N(. . .) W → ∃�z.Sk(. . .) P (∗) W ′
Sk → P (∗)

(3)

where l > 0, j > i, k > h, Sk is the final state of one of the protocol role
theories, and W and W ′ are multisets of facts containing no role states nor
any N facts.

Intruder theory I is given as bounded memory intruder rules depicted in
Fig. 4.

I/O Rules:
REC: N(x) R(∗)→ D(x) P (∗)
SND: C(x) P (∗)→ N(x) R(∗)

Composition and Decomposition Rules:
COMP: M(x) M(y)→M(〈x, y〉) P (∗)
DCMP: M(〈x, y〉) P (∗)→M(x) M(y)

USE: M(x) P (∗)→M(x) M(x)

ENC: KP (kd, ke) M(ke) M(x)→
KP (kd, ke) M(ke) M(enc(ke, x))

DEC: M(kd) KP (ke, kd) M(enc(ke, x)) R(∗)
→M(kd) KP (ke, kd) M(x) M(enc(ke, x))

GEN: P (∗)→ ∃n.M(n)

Memory maintenance rules:
DELM: M(x)→ P (∗)

Fig. 4. Bounded Memory Intruder Theory

395

I/O Rules:
REC: T ime@T,N(X)@T1,R(Iid, Z + rR)@T2, P (Iid)@T3 | T ≥ T1 −→

T ime@T,M(Iid, X)@(T + δL),R(Iid, Z)@T,Rec(iid, rR)@(T + δR)
where SPECREC(X, Iid) = 〈δL, δR, rR〉

SND: T ime@T,M(Iid, X)@T1,R(Iid, Z + rR)@T2, P (Iid)@T3 | T ≥ T1 −→
T ime@T,N(X)@(T + δL),R(Iid, Z)@T,Rec(Iid, rR)@(T + δR)

where SPECSND(X, Iid) = 〈δL, δR, rR〉
Message Composition and Decomposition Rules:

COMP: T ime@T,M(Iid, X)@T1,M(Iid, Y)@T2,R(Iid, Z + rR)@T3 −→
T ime@T,M(Iid, 〈X,Y 〉)@(T + δL),R(Iid, Z)@T,Rec(Iid, rR)@(T + δR)

where SPECCOMP (X,Y, Iid) = 〈δL, δR, rR〉
DCMP: T ime@T,M(Iid, 〈X,Y 〉)@T1,R(Iid, Z + rR)@T2, P (Iid)@T3, P (Iid)@T4 −→

T ime@T,M(Iid, X)@(T + δL),M(Iid, Y)@(T + δL)R(iid, Z)@T,Rec(iid, rR)@(T + δR)
where SPECDCMP (〈X,Y 〉, iid) = 〈δL, δR, rR〉

USE: T ime@T,M(Iid, X)@T1,R(Iid, Z + rR)@T2, P (Iid)@T3, P (Iid)@T4 −→
T ime@T,M(Iid, X)@T1,M(Iid, X)@(T + δL),R(Iid, Z)@T,Rec(Iid, rR)@(T + δR),

where SPECUSE(X, Iid) = 〈δL, δR, rR〉
ENC: T ime@T,M(Iid,K)@T1,M(Iid, X)@T2,R(Iid, Z + rR)@T3, P (Iid)@T4, P (Iid)@T5 −→

T ime@T,M(Iid,K)@T1,M(Iid, X)@T2,M(Iid, {X}K)@(T + δL),
R(Iid, Z)@T,Rec@(Iid, rR)(T + δL)

where SPECENC(K,X, Iid) = 〈δL, δR, rR〉
DEC: T ime@T,M(Iid,K

−1)@T1,M(Iid, {X}K)@T2,R(Iid, Z + rR)@T3, P (Iid)@T4, P (Iid)@T5 −→
T ime@T,M(Iid,K

−1)@T1,M(Iid, {X}K)@T2,M(Iid, X)@(T + δL),
R(Iid, Z)@T,Rec(Iid, rR)@(T + δR)

where SPECDEC(K
−1, {X}K , Iid) = 〈δL, δR, rR〉

GEN: T ime@T,R(Iid, Z + rR)@T1, P (Iid)@T2, P (Iid)@T3 −→
∃N.T ime@T,M(Iid, N)@(T + δL),R(Iid, Z)@T,Rec(Iid, rR)@(T + δR)

where SPECGEN (Iid) = 〈δL, δR, rR〉
Maintenance Rules:

RES: T ime@T,R(Iid, Z)@T1,Rec(Iid, rR)@T2 | T2 ≤ T −→ T ime@T,R(Iid, Z + rR)@T, P (Iid)@T

DELM: T ime@T,M(Iid, X)@T1 −→ T ime@T, P (Iid)@T

Fig. 3. Balanced Bounded Resource Intruder Theory

The intruder I naturally corresponds the balanced resource-bounded intruder
I′ with an identifier i, as shown in Fig. 3, with SPECR = 〈0, 0, 0〉, for all
intruder rules R. Notice that the intruder spends no resources for his actions.

To the above given secrecy problem we relate the following verification
scenario V .

Protocol resource theory of the service with identifier s is obtained by
translating the above rules (3), simply by adding e.g., resource facts R, obtaining
thus protocol initialization and execution rules, and by adding the protocol state
timeout and service availability rules, as per Definition IV.1. All the facts in
the obtained rules are timestamped with time variables, the fact T ime@T is
added, as well as the corresponding time constraints, as per Definition IV.1.
Here we set all state timeout values to 1, rsm = 0 as well as having initial
resources rsini = 1, and 0 initialization and execution costs for all the rules.
We also set mdur = 0.

Initial configuration contains all the facts of S0 timestamped with 0, and
additional facts T ime@0, Av(s)@0, R(s, 1)@0 and R(i, 0)@0.

We finally add a special protocol resource theory of service s that is enabled
whenever the secret α is released on the network:

T ime@T,R(s,R+ 1)@T1,N(α)@T2 | T2 ≤ T −→
∃Sid.[T ime@T, S0(s, Sid, 1)@(T + 1),R(s,R)@T]

(4)

Notice that this rule is the only rule with non-zero cost. It has the cost 1, and
is applicable only when intruder knows the secret α.

Therefore, it follows that the secrecy problem D has a solution (i.e., the
secret is released onto the network) iff above rule (4) is followed by the service
availability rule (obtaining a fact Den(s)), that is, because mdur is 0, iff the
related scenario V allows a DoS attack.

396

