
Optimising Faceted Secure Multi-Execution

Maximilian Algehed

Computer Science and Engineering
Chalmers

Gothenburg, Sweden

algehed@chalmers.se

Alejandro Russo

Computer Science and Engineering
Chalmers

Gothenburg, Sweden

russo@chalmers.se

Cormac Flanagan

Computer Science and Engineering
University of California, Santa Cruz

Santa Cruz, USA

cormac@ucsc.edu

Abstract—Language-Based Information Flow Control (IFC)
provides strong security guarantees for untrusted code, but often
suffers from a non-negligible rate of false alarms. Multi-execution
based techniques promise to provide security guarantees without
raising any false alarms. However, all known multi-execution
approaches introduce extraneous performance overheads which
are rarely studied. In this work, we lay down the foundations
for optimisation techniques aimed at reducing these overheads
to a managable level, thus helping to make multi-execution more
practical. We characterise our optimisations as data- and control-
oriented. Data-oriented optimisations reduce storage overheads—
which also helps to remove unnecessary repeated computations.
In contrast, computation-oriented optimisations rely on program
annotations in order to reduce needless computation. These
annotations motivate the need for a new, stronger, theoretical
notion of transparency— i.e., a stronger notion for characterising
the lack of false alarms. To show the efficacy of our optimisation
techniques, we apply them to two case-studies: a secure (faceted)
database and a chat server written in a multi-execution based IFC
framework. Our case-studies clearly show that our optimisations
significantly reduce the storage and computational overhead,
sometimes from exponential to polynomial order. All of our
formal results are accompanied by mechanised proofs in Agda.

Keywords-Faceted Values, Secure Multi-Execution, Multiple-
Facets, Optimisation, Information Flow Control

I. INTRODUCTION

Information flow control [1] (IFC) is a promising tech-

nology for preserving confidentiality of data. Many IFC ap-

proaches are designed to prevent sensitive data from influ-

encing what attackers can observe from a program’s public

behavior—a security policy known as non-interference [2].

Researchers have proposed numerous enforcement mecha-

nisms for non-interference based on, for instance, type systems

[3, 4, 5] as well as execution monitors [6, 7]. While sound

w.r.t. non-interference, such IFC approaches typically suffer

from false alarms [8, 9, 10]. This phenomenon occurs due to

IFC mechanisms sometimes needing to be overly cautious.

To remove false alarms, researchers have recently proposed

IFC techniques based on multi-execution [9, 11, 12, 13]:

many copies of a given program (or parts of it) get executed
while carefully adapting their semantics to avoid information
leakage. Secure Multi-Execution [11] (SME) and Multiple

Facets [9] (MF) are two approaches based on this idea. The

price to pay for multi-execution, however, is a degradation

in both computation time and memory consumption due to

repeated computations.

Faceted Secure Multi-Execution [12] (FSME) is a recent

multi-execution technique capable of adjusting the perfor-

mance of multi-executions by exchanging degradation of

memory consumption for computation time and vice versa.

FSME achieves both of these while ensuring non-interference

in a setting involving a decentralised security lattice [14], a

lattice which allows mutually distrusting principals to inde-

pendently impose confidentiality and integrity requirements on

data. By adjusting the trade-off, FSME can behave as SME,

MF, or something “in between”—thus providing a unifying

framework for multi-execution. This unification has enabled

the first apples-to-apples comparison and benchmarking of

the mentioned multi-execution techniques—which before were

only contrasted in either an informal qualitative [9] or theo-

retical [15] manner.

FSME is attractive for building systems since developers

can choose where performance degradation can be tolerated

by offering a choice between memory consumption and com-

putation time. In this work, we argue that this trade-off is not

enough to build practical systems: memory and time can be
exponential in the number of principals aggregating data. In

these (not uncommon) situations, FSME programs could trade-

off a large amount of memory for a long computing time or

vice verse—an undesirable situation regardless what resource

developers favor. This exponential blowup is not exclusive of

FSME and also occurs in MF and SME when considering

decentralised or large lattices [13]. Furthermore, the memory

blowup can be translated to persistent storage when serialising

data into databases [16]. In this light, it becomes necessary to

introduce optimisations that mitigate both time and memory

consumption.

In this work, we present novel optimisations for the FSME

framework which we classify as data- and computation-

oriented, respectively. The former are designed to reduce

memory consumption as well as unnecessary repeated com-

putations, while the latter aim to reduce computation time

alone. We demonstrate, both formally and empirically, that

our optimisations can change an exponential consumption of

resources to more manageable polynomial sized overheads.

Our techniques work for a wide-range of security lattices,

from finite to decentralised ones. We also note that while our

empirical contributions concern the Multef framework, which

implements FSME, the insights of this work also apply in other

multi-execution settings. Furthermore, all our claims have been

1

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Maximilian Algehed. Under license to IEEE.
DOI 10.1109/CSF.2019.00008

mechanised in the Agda proof assistant and are available as

supplimentary material to this paper 1.

Data-oriented optimisations are designed to simplify the

internal representation of values in FSME as well as faceted

databases [16]. Values are represented by a tree-structure,

where each leaf captures a view for a given set of observers.

For instance, the faceted value 〈Alice ? 42 : 0〉 indicates

that the (secret) value 42 belongs to the principal Alice,

while any other principal will see the corresponding public

value 0. Programs operate in a manner which is agnos-

tic to the faceted structure. All operations in the language

work uniformly on faceted values in a way which respects

their structure. Such operations often result in deeply nested

trees. For instance, 〈Alice ? 42 : 0〉+ 〈Bob ? 5 : 2〉 results in

〈Alice ? 〈Bob ? 47 : 44〉 : 〈Bob ? 5 : 2〉〉 — a tree of depth two

and with four leaves. It is easy to imagine how quickly faceted

values can grow if nothing is done to prevent it.

In this work, we present a novel set of rewrite rules capable

of removing redundant leaves in faceted values. For that, we

first formalise an equivalence relation to ensure that our rules

do not change the observable views (i.e., who observes what)

encoded by faceted values (see Section III). In a nutshell,

the rewrite rules are targeted at shrinking nested structures

based on the relation among parent- and child-labels. However,

to maximise rewriting opportunities, we build on the notion

of lattice residuation [17] in order to systematically simplify
children’s labels based on the parents’—a step which may

lead to further simplifications. While residuation works out of

the box for standard security lattices, it is more challenging for

decentralised ones. We provide, to the best of our knowledge,

the first definition of residuation for the decentralised security

lattice of DC-labels [14]. We also present a case study (based

on [16]) where our rewriting rules shrink faceted values until

they become manageable in size.

Computation-oriented optimisations, on the other hand, aim

to avoid introducing leaves that are never meant to be accessed

by the computation. For instance, if we know that a sub-

computation will only ever write its result to Bob’s file, it

makes sense to never compute the values of leaves supposed

to be seen by Alice. More generally speaking, if we know that

a computation writes to a sink at level �, it makes sense to

only focus on computing leaves for observers at level �′ such

that �′ � �—the other leaves will never be accessed by the

computation and thus they are not needed! While it is simple

to see how this works when a computation is known to write

only to a single level, we show that the idea extends to more

complex situations as well. In previous work [9, 12, 13], au-

thors provide a notion of projection responsible for obtaining

from a faceted value the value observable at a certain level,

written f ↓ � (where f is a faceted value)—observe that this

operator is almost exactly what we need! Unfortunately, the

projection operator has never been considered as part of the

language, but as an artifact of the proof technique used for

proving security and the absence of false alarms—a property

1https://github.com/OctopiChalmers/OptimisingFSME

known as transparency.

One contribution of this work is to show how to internalise

the projection operator into the language in a sound way,

written f ⇓ e, where e is a boolean expression over labels

(explained below). In this manner, developers can use it

as a mechanism to explicitly avoid computing unnecessary

leaves, thus saving computing time. By considering boolean

expressions (see Section IV), developers can naturally specify

which leaves of a given faceted value to compute. For example,

f ⇓ ¬Alice will throw away the leaves corresponding to

Alice while f ⇓ (¬Alice∧Bob) does the same but keeping

the leaves at least as sensitive as Bob. Unfortunately, the

internalisation of projection is incompatible with existing

formulations of transparency [9, 12, 13] (Section IV). In this

light, we introduce the notion of focused transparency, which

says that transparency holds for those security levels which

match the assumptions encoded in ⇓-projections. We show that

this notion of transparency subsumes the traditional one and

propose it as a new, stronger, alternative to the old definition.

We formalise the pure part of FSME as a lambda calculus

and show that programs executed by it fulfill both non-

interference and focused transparency. The main difference

between the calculus presented here and FSME [12] is that

ours lacks side-effects, namely references and I/O. We argue

that our optimisations naturally extend to these features (see

Section IV).

To summarise, the contributions of this paper can be cate-

gorised as follows.

� Novel optimisations to make multi-execution based ap-

proaches, like [9, 12, 18, 19], more likely to be usable in

practise.

� Data-oriented optimisations:

� A set of rewrite rules capable of shrinking a faceted value

without changing its semantics.

� A novel notion of residuation for security lattices, which

also covers decentralised label models like DC-labels [20].

� An Agda mechanisation showing that our that our rewrite

rules do not affect the semantics of faceted values.

� Computation-oriented optimisations:

� Identification of the need for computation-oriented opti-

misations both from a theoretical and a practical perspective.

� Introduction of a language-level projection operator based

on a boolean algebra to express what views to compute for.

� Introduction of the notion of focused transparency, a

stronger notion than traditional transparency.

� Introduction of a pure core-calculus which models a

essential functionality FSME.

� An Agda mechanisation showing that programs running

in this calculus fulfill non-interference as well as focused

transparency.

� Case studies that show how our optimisations help reduce

the exponential resource consumption associated with multi-

2

execution to a reasonable level.

II. BACKGROUND

A. Security Lattices
A Security Lattice [21] encodes the allowed flows of in-

formation using a set L of security labels together with an

order � (often pronounced “can flow to”) and operations for

combining security concerns, 	 and
. Data labeled �L can

flow to a data sink labeled �H if and only if �L � �H . The join

() and meet (
) operations compute least upper bounds and

greatest lower bounds respectively. In this work, we consider

lattices with a greatest element (�) called “top”, and a least

(⊥) called “bottom.”
There are a number of examples in the literature of useful

security lattices. In this paper, we start by focusing on the

powerset of principals lattice. The points in this lattice are

drawn from the set of sets of principals, written P(A), where

A is some (possibly non-finite) set of actors or principals.

This lattice can express the concerns of multipl principals

simulatenously. For example, data labeled with {Alice,Bob}
indicates that both principal have confidentiality concerns

for the information. The order relation is given by subset,

�� �′ ⇐⇒ �⊆ �′, with ⊥= /0, �=A , 	=∪, and
=∩. For

ease of reading we write singleton labels like {Alice} without

the curly brackets, simply as Alice.
Another interesting security lattice is Disjunction Category

Labels or DC-labels for short [22]. A DC-label is a pair

of labels, expressing confidentiality and integrity concerns

respectively. More precisely, a label consists of a monotone

logical formula with principals for atoms. For instance, when

considering confidentiality, labels like Alice simply expresses

that data is confidential to the principal Alice and Alice � �
if and only if �⇒ Alice, i.e., the label � is strong enough to

preserve Alice’s concerns. In general, for any two confiden-

tiality labels � and �′ we have that �� �′ if and only if �′ ⇒ �.
Conjunction expresses joint security concerns, data which is

sensitive to both Alice and Bob is labeled Alice∧Bob. In this

case, the flow Alice∧Bob � Alice∧Bob∧Charlie is allowed,

but Alice ∧ Bob �� Alice. Similarly, the label Alice ∨ Bob

expresses that either Alice or Bob can observe this data

separately.
Integrity labels are dual to confidentiality labels. For any

two integrity labels � and �′ we have that �� �′ if and only if

�⇒ �′. Putting a confidentiality and an integrity label together

forms a DC-label, which we write as a pair (�c, �i), where �c
is a confidentiality label while �i an integrity one. Naturally,

we get that (�c, �i) � (�′c, �′i) if and only if �′c ⇒ �c ∧ �i ⇒ �′i.
DC-labels form a decentralised lattice that has been used in

various implementations of IFC systems [7, 12, 23, 24, 25].

DC-labels are also capable of modeling other decentralised

models, such as DLM [26].

B. Faceted Values
The set of faceted values over values v from V with labels

� from L is defined by the following grammar:

Faceted(V) � f ::= 〈� ? f : f 〉 | v

A faceted value captures different views on data based on the

potential observers. For simplicity, we focus on confidentiality

from now on. To illustrate how faceted values work, we

consider the P(A) lattice described in Section II-A. In

essence, the faceted value 〈Alice ? 5 : 7〉 should behave as

5 to anyone who is allowed to see Alice’s private data, and

7 to everyone else. Importantly, operations on faceted values

respect the different views of principals. For instance, adding

two faceted values like 〈Alice ? 5 : 7〉+〈Bob ? 1 : 3〉 results in:

〈Alice ? 〈Bob ? 6 : 8〉 : 〈Bob ? 8 : 10〉〉
Note that if the observer of the addition sees both Alice’s and

Bob’s data, then the result is 6, which comes from adding 5 in

〈Alice ? 5 : 7〉 and 1 in 〈Bob ? 1 : 3〉. However, if the observer

is precisely Bob, the result is 8, which comes from adding 7 in

〈Alice ? 5 : 7〉 and 1 in 〈Bob ? 1 : 3〉. In this work, we use both

the formal notation for faceted values as well as a graphical

representation in the form of trees. For instance, the addition

above can be described by the following trees:

Alice

5 7
+

Bob

1 3
=

Alice

Bob

6 8

Bob

8 10

The theory of faceted values comes equipped with a projec-
tion function responsible for extracting a value based on the

security level of the observer. This function simply navigates

through the tree structure until it finds the leaf that corresponds

to the “right” value. Formally, projection is defined as a binary

function ↓, such that if an observer at level �o observes t, she

sees t ↓ �o:

〈� ? f1 : f2〉 ↓ �o =

{
f1 ↓ �o, �� �o

f2 ↓ �o, otherwise

v ↓ �o = v

With the definition of projection in place, we can state prop-

erties about well-behaved faceted operations. For instance, the

addition of faceted values should respect the different views

found in faceted values:

∀�o. (t1 + t2) ↓ �o = (t1 ↓ �o)+(t2 ↓ �o)

Note that the addition on the left-hand side is on faceted

values, while the one on the right is for numbers. The equation

says that, for all observers, the resulting faceted values should

be consistent with the addition. This idea of preserving behav-

ior across all the observers motivates the following definition

of equivalence for faceted values.
Definition 1 (Equivalence): We say that t1 and t2 are equiv-

alent under projection, written t1 ∼ t2, if and only if t1 ↓ � =
t2 ↓ � for all � ∈ L .
The power of this equivalence relation is that programs which

treat faceted values securely are guaranteed to preserve it, and

therefore we are able to freely interchange equivalent values

in computation. In Section III we show how careful study of

this equivalence relation gives rise to a number of optimisation

rules for faceted values.

3

C. Residuated Lattices and Galois Connections

In its most general form, a residuated lattice [17] is a lattice

together with a monoid (it has an associative multiplication

with an identity) which has a kind of “inverse” called the

residuation. The relation between the multiplication and the

residuation is captured by a Galois connection (explained

below) [27]. For the purpose of this paper, we focus on two

special cases of residuated lattices, where the multiplication

operation is either the join (), with residual �, or meet (
),

with residual �, of the lattice.

Definition 2 (Join Residuated Lattice): We say that a lat-

tice L is join-residuated if and only if there exists a binary

operation � on L such that for all �, D�(�
′) = �′ � � and

M�(�
′) = �′ 	 � form a Galois connection (written D� � M�):

∀�1, �2.D�(�1)� �2 ⇐⇒ �1 � M�(�2)

Intuitively, the equivalence above says that if �1 flows to

the “multiplication” of �2 with � (�1 � M�(�2)), then we can

“divide” the inequality by �, thus resulting in just �2 on the

right-side, while the left-hand side is just �1 divided by �
(D�(�1)� �2).

Dually, we also consider residuation with respect to meets.

Definition 3 (Meet-residuated Lattice): We say that a lat-

tice L is meet-residuated if and only if there exists a binary

operation � on L such that for all �, M�(�
′) = �′
 � and

D�(�
′) = �′ � � form a Galois connection (written M� � D�):

∀�1, �2.M�(�1)� �2 ⇐⇒ �1 � D�(�2)

We remark that is not always possible to take an arbitrary

lattice and make it join- or meet-residuated. However, many

lattices commonly studied in IFC are join residuated. For

example, the powerset set of principals lattice has for its join

residuation the relative compliment, or “set minus” operation

defined as �� �′ = {p | p ∈ �, p �∈ �′}. It is not hard to see

that the standard two-point lattice is also join residuated (by

observing that it is isomorphic to P(�)). However, it is not

clear if residuation works with more complex lattices like DC-

labels. In Section III-B, we show that DC-labels are both join

and meet residuated. This contribution allows us to apply the

optimisation techniques presented in the following sections to

practical applications.

III. DATA-ORIENTED OPTIMISATIONS

In this section we present a number of useful and instruc-

tive semantics preserving equivalences for faceted values—as

defined in Definition 1. These equivalences are designed to

remove as much redundant information as possible from the

tree-structure found in faceted values. We begin by considering

optimisations which work for faceted values where the labels

are drawn from an arbitrary security lattice, and proceed to

consider the (ubiquitous) special case of residuated lattices.

We split the equivalences in two kinds: those that remove

substructures in faceted values, shown in Figure 1, and those

that simply rewrite them by exchanging leaves or nodes, shown

in Figures 2 and 4. These equivalences can be used as part

of a rewriting system that applies, for instance, the rules in

Figure 1 until no rules apply, and then switches to apply those

in Figures 2 and 4 to obtain a faceted value where it is again

possible to apply the rules in Figure 1, and so on.

The rules in Figure 1 are equivalences that reduce the

size of faceted values. Rule CHOICE IRRELEVANCE elimi-

nates redundancy in the form of duplicated values. Rule

BOTTOM IRRELEVANCE is equivalent to saying that ⊥ does not

protect any information and gets rid this unnecessary label.

Rules LEFT SQUASH and RIGHT SQUASH remove redundancy

by exploiting the lattice structure. Observe that the last two

rules require a relationship among the left- (right-) child and

the parent node.

The ∼ relation does not just allow us to remove unnecessary

labels from the faceted tree. We also present some equiva-

lences which deal with rotations of faceted tree—see Figure 2.

For example, JOIN uses least-upper-bounds to rotate a faceted

tree from left to right. Similarly, QUALIFIED ROTATION allows

rotation back and forth given that �2 � �1. Rotations are

crucial as they may expose further opportunities to remove

duplicates using the CHOICE IRRELEVANCE rule. For example,

consider 〈Alice ? 1 : 0〉 × 〈Bob ? 1 : 0〉, which is equal to

〈Alice ? 〈Bob ? 1 : 0〉 : 〈Bob ? 0 : 0〉〉, and can be shrunk

considerably:

Alice

Bob

1 0

Bob

0 0

∼
Alice

Bob

1 0

0 ∼

{Alice,Bob}
1 Alice

0 0

∼
{Alice,Bob}

1 0

The derivation uses CHOICE IRRELEVANCE, then JOIN, followed

by CHOICE IRRELEVANCE again. All in all, the algebraic struc-

ture of faceted values is rich and we encourage the interested

reader to explore the theory at their leisure, and refer them to

the Agda mechanisation for a number of other equivalences

for rotations and similar equivalences with their equivalence

proofs.

Alice

{Alice, Bob}
1 2

Bob

1 2

Fig. 3. A motivating example

Next we focus our at-

tention on other equiva-

lences dedicated to the la-

bels in the tree. By doing

so, it may become possible

to subsequently apply other

equivalences like those in

Figure 1. To illustrate this

point, consider the tree in

Figure 3 with labels drawn from the powerset lattice: We

argue that this faceted value is equivalent to the much simpler

〈Bob ? 1 : 2〉. However, this is not easily derived from the

equivalences presented above. We could consider replacing

{Alice,Bob} by just Bob since Alice is already present as

4

CHOICE IRRELEVANCE

�

x x
∼ x

BOTTOM IRRELEVANCE

⊥
x y

∼ x

LEFT SQUASH

�2 � �1

�1

�2

x y

z ∼
�1

x z

RIGHT SQUASH

�1 � �2

�1

x �2

y z

∼
�1

x z

Fig. 1. Semantics preserving optimisations

JOIN

�1

�2

x y

z ∼
�1 	 �2

x �1

y z

QUALIFIED ROTATION

�2 � �1

�1

x �2

y z

∼
�2

�1

x y

z

Fig. 2. Semantics preserving manipulations

root of the left-hand child and thus redundant. In other words,

we hope that the following equivalence holds:

Alice

{Alice, Bob}
x y

z ∼
Alice

Bob

x y

z

We need to make sure that replacing {Alice,Bob} by Bob

does not affect the observers of x and y. On the left-hand side

of the equivalence, we have that the observers of x are those

at level �o such that Alice � �o (root) and {Alice,Bob} � �o
(left children). With these two facts, we can deduce that it
must be the case that Bob � �o. Hence, observers of x on

the left-hand side tree are also observers of x in the right-

hand side tree. In a similar manner, we can prove that all the

observers of x in the right-hand side tree are also observers

in the left-hand one. This reasoning shows that the observers

of x are the same on both trees. Similar reasoning can be

applied to the observers of y to finally conclude that the two

trees are equivalent. Note that we can now simplify labels first,

and then use CHOICE IRRELEVANCE to remove some faceted

values, which gives us the following derivation:

Alice

{Alice, Bob}
1 2

Bob

1 2

∼
Alice

Bob

1 2

Bob

1 2

∼
Bob

1 2

We face two challenges when generalising this approach to

arbitrary faceted values: (a) how do we know if a label can

LEFT REPLACEMENT

�1 ∼�
� �2

�

�1

x y

z ∼
�

�2

x y

z

RIGHT REPLACEMENT

�1 ∼�
� �2

�

x �1

y z

∼
�

x �2

y z

Fig. 4. Semantics preserving label replacement

replace another one? and (b) how do we simplify an existing
label as much as possible? Motivated by challenge (a), we

characterise the general notion of a label �2 replacing a label

�1 to the left or the right of a parent label �.
Definition 4 (Replaces to the Left/Right): We say that a la-

bel �2 replaces �1 to the left (right) of �, written �2 ∼�
� �1 (resp.

�2 ∼�
� �1), when for all �o we have that:

�� �o ⇒ (�1 � �o ⇐⇒ �2 � �o)

(resp. � �� �o ⇒ (�1 � �o ⇐⇒ �2 � �o))

Note that ∼�
� and ∼�

� are equivalence relations. This

definition lets us derive the LEFT REPLACEMENT and

RIGHT REPLACEMENT equivalences in Fig. 4. While this

definition characterises when it is possible to replace a label

�1 by another, �2, how do we know what the simplest label to

use is? To address this challenge, (b), we turn to residuated

lattices.

Theorem 1: For a join residuated lattice L and any labels

�1, �2 ∈L , the residual �2��1 is the least label which replaces

�2 to the left of �1

When considering residuated lattices and the theorem above,

it turns out that we can derive LEFT SQUASH rule from above.

Assuming �2 � �1 we have:

�1

�2

x y

z ∼
�1

�2 � �1

x y

z ∼
�1

⊥
x y

z ∼
�1

x z

5

The second step, i.e., rewriting �2��1 to ⊥, is due to a theorem

of join residuated lattices that says that �2 � �1 ⇔ �2��1 =⊥.

A. Constructing Residuated Lattices

For distributive lattices, i.e., where 	 distributes over
,

residuation follows mechanically. The following known theo-

rem of residuated lattices make this point clear.

Theorem 2 (From [17]): If L is a lattice, then L is join-

residuated given the following:

∀�,L ⊆ L . �	
�

L =
�

{�	 �′ | �′ ∈ L}

Note that the condition says that least upper bounds distribute

over (perhaps non-finite) meets. An immediate consequence

of the definition of join-residuation tells us that �� �′ is the

least label such that �� (���′)	�′. By applying the theorem

above, and in order to obtain a join-residuated lattice, we

simply construct �� �′ as the meet over all labels �r such

that �� �r 	 �′. Note that one simple consequence of this line

of reasoning is that, for all finite lattices satisfying Theorem

2, we have a constructive (albeit potentially expensive) way

of computing the residual. However, in the infinite cases like

those of decentralised lattices, we do not get such an algorithm

for free.

B. Residuation of DC-labels

In this section, we give (to the best of our knowledge)

the first algorithm for computing the residuation for a decen-

tralised (and thus infinite) security lattice. To illustrate how

our construction works, we focus only on the confidentially

part of DC-labels since integrity follows by duality. The con-

fidentiality part of a DC-label is a monotone logical formula,

which we express here in conjunctive normal form as sets of

sets of principals. The set of CNFs over A , denoted CNF(A),
is defined as:

CNF(A) = P(P(A))

Intuitively, elements of P(A) represent disjunctions of

principals (called clauses) which are put together in a set

P(P(A)) representing their conjunction. We introduce some

terminology.

Definition 5 (Discharged clauses): Given c ∈ P(A), we

say that a clause c is discharged by a label �, written � ⊃ c,

if and only if ∃c′ ∈ �. c′ ⊆ c.

Using this definition, we define join residuation as follows.

Definition 6 (Join-residuation for CNF(A)): Given �,�′ ∈
CNF(A), we define join-residuation as

�� �′ = { c ∈ � | �′ �⊃ c }

Note the similarity to the definition of residuation for the

powerset lattice, instead of removing elements of �′ from �,
we remove clauses implied by �′ from �. We prove that this

definition is sound.

Theorem 3: CNF(A) is join-residuated.

With join residuation in place, we can see

LEFT REPLACEMENT in action on faceted values which

only consider confidentiality.

Alice∧Bob

(Alice∨Dave)∧Charlie

x y

z ∼
Alice∧Bob

Charlie

x y

z

In the example above, ((Alice∨Dave)∧Charlie)� (Alice∧
Bob) results in Charlie—intuitively, the residuation removes

the clause involving Alice since it appears in the root node.

Next we consider meet-residuation. Recall that the meet of

two formulae � and �′ is precisely their disjunction �∨ �′ (see

Section II-A). When we frame this in terms of the sets of sets

formulation we have been considering, we end up with the

following definition of meet:

�
 �′ = { c∪ c′ | c ∈ �,c′ ∈ �′ }
With this definition in mind, we define the meet-residuation

of Definition 3 as follows.

Definition 7 (Meet-residuation for CNF(A)): Given �,�′ ∈
CNF(A), we define meet-residuation as

�� �′ =
�

{{c− c′ | c ∈ �} | c′ ∈ �′}
Theorem 4: CNF(A) is meet-residuated.

By duality, the definitions in Theorems 4 and 3 respectively

provides us a join- and meet-residuation also when formulas

are seen as integrity requirements, which we write CNF(A)op.

In turn this gives us join- and meet-residuation for DC-

labels by simply considering the product lattice CNF(A)×
CNF(A)op.

Corollary 1: The lattice induced by DC-labels is join- and

meet-residuated.

C. Context-aware optimisations

A lot of the equivalences we have discussed are de-

signed to exploit the information provided by the par-

ent node (e.g., LEFT SQUASH, LEFT REPLACEMENT). For

a motivating example of why this may sometimes be

insufficient, consider the faceted value in Figure 5.

Alice

Bob

Alice

1 2

3

4

Fig. 5. A difficult to shrink tree

Optimising this tree

should be a simple case

of removing the redundant

〈Alice ? 1 : 2〉 subtree and

replacing it with the leaf

1, because Alice already

appears above this subtree.

However, none of the rules

presented so far allow us

to perform this simple optimisation, the LEFT SQUASHrule

for example only takes into consideration the immediate

parent-child relationship between nodes.

To remedy this shortcoming we introduce new optimisations

by generalising our equivalence relation to take into account

6

ANY

t ∼ t ′

t ∼γ t ′

EMPTY

t ∼{} t ′

t ∼ t ′

SUBTREES

t0 ∼{�+}∪γ t ′0 t1 ∼{�−}∪γ t ′1
�

t0 t1
∼γ

�

t ′0 t ′1

Fig. 6. Structural rules for context-aware optimisation.

all the nodes involved in the path leading to a subtree. We call

these paths contexts since they provide assumptions about the

labels that we can consider when optimising faceted values.

Definition 8 (Contexts): A context γ is a set of branches,

where a branch is either �+ or �− for � ∈ L . We define the

views of a context, written ν(γ):

ν(γ) = {�′ ∈ L | ∀�+ ∈ γ. �� �′,∀�− ∈ γ. � �� �′}
A context γ corresponds to a set of left (�+) or right (�−)

branches taken when moving down a faceted value. The views

of γ should be seen as the set of labels which can “reach” that

part of the tree during projection. For example, consider the

faceted value t = 〈Alice ? 〈Bob ? 1 : 2〉 : 3〉 The labels � such

that t ↓ � = 2 are precisely those � such that Alice � � and

Bob �� �. Equivalently, we have that � ∈ ν({Alice+,Bob−}),
where the context {Alice+,Bob−} encodes “taking a left” at

Alice and “taking a right” at Bob.

We define equivalence up to a context, denoted ∼γ , as

follows:

Definition 9 (Equivalence up to contexts):

t ∼γ t ′ ⇐⇒ ∀� ∈ ν(γ). t ↓ �= t ′ ↓ �
Figure 6 shows how this notion of equality relates to our

earlier one (∼). Rule ANY says that if faceted values are

equivalent for any observer then they are equivalent under any

context. Rule EMPTY shows that equivalence under an empty

context corresponds to our standard equivalence notion. Fur-

thermore, observe that equivalence under contexts subsumes

our standard notion (∼) since we have t0 ∼{} t1 ⇐⇒ t0 ∼ t1 by

rules ANY and EMPTY. Rule SUBTREES shows how to construct

an equivalence by assuming a positive and a negative label

for the left- and right-subtree, respectively. By considering

contexts, we can define a natural generalisation of our notions

of replacing labels.

Definition 10 (Replacement under contexts): We say that a

label �2 replaces �1 under context γ , written �2 ∼γ �1, if and

only if ∀�o ∈ ν(γ). �1 � �o ⇐⇒ �2 � �o
Note that this definition is more general than “replaces to the

left” (∼�
�1

) and “replaces to the right” (∼�
�1

):

• �2 ∼�
� �1 if and only if �2 ∼{�+} �1

• �2 ∼�
� �1 if and only if �2 ∼{�−} �1

Naturally, if �2 ∼γ �1, then 〈�2 ? x : y〉 ∼γ 〈�1 ? x : y〉. In

what follows, we use the context information obtained when

traversing the faceted tree simplify faceted values.

We start by introducing a notion of non-contradictory con-

texts.

Definition 11 (Coherent Context): A context γ is coherent
if and only if ν(γ) �= /0.

POSITIVE REDUNDANCY

� positively redundant in γ
�

x y
∼γ x

NEGATIVE REDUNDANCY

� negatively redundant in γ
�

x y
∼γ y

Fig. 7. Context-aware optimisation rules.

We also capture what it means for a label to be redundant in

an optimisation context.

Definition 12 (Redundant labels): Label � is said to be Pos-
itively (resp. Negatively) redundant in context γ if and only if

∀�′ ∈ ν(γ). �� �′ (resp. � �� �′).
In essence, these definitions capture when a given label already

has a single known relationship (� or ��) to all labels in the

view induced by the context. As a result, we can introduce

the rules in Figure 7. These rules gives us a way to traverse

a faceted value up to a given node and decide, based on the

path that took us there, if we could remove a branch. But, how

do we know if a label is positively (or negatively) redundant?

For that, we need to introduce the notion of candidate label
from Schmitz et al. [12].

Definition 13 (Candidate label (from [12])): The

candidate label of γ , written C (γ), is the join of all

positive labels in γ , C (γ) =
⊔{ � | �+ ∈ γ}.

By applying the decision procedure of Schmitz et al. [12],

we decide if a label is redundant with two simple checks.

Theorem 5 (from [12]): Given a coherent context γ , � is

positively redundant in γ if and only if �� C (γ).
Theorem 6 (from [12]): Given any coherent context γ , � is

negatively redundant in γ if and only if ∃�−1 ∈ γ. �1 �C (γ)	�.
Schmitz et al. [12] show that coherence is a decidable property

by showing that γ is coherent if and only if C (γ) ∈ ν(γ).
Finally, we get a version of Theorem 1 for context.

Theorem 7: Given � that is not negatively redundant in γ ,

��C (γ) is the least label which replaces � under γ .

Note that while the theorem above requires that � is not

negatively redundant in γ , it says nothing about positive

redundancy. However, recall Theorem 5, if � is positively

redundant in γ , then �� C (γ), and so ��C (γ) =⊥, which is

certainly the least label which replaces � under γ!

Finally, we note that the optimisation strategies presented in

this section admit a natural implementation strategy, exhaus-

tively traverse the faceted tree and “gather up” the context

using the rules in Figure 6. At each label �, check if it is

redundant and, if so, remove it and replace it with its left

or right subtree depending on if it is positively or negatively

redundant. If � is not redundant, replace it by ��C (γ).

IV. COMPUTATION-ORIENTED OPTIMISATION

In this section we tie together our data-oriented optimi-

sations from Section III with the FSME execution mode.

In order to do this we introduce a core calculus of faceted

execution designed to model the relevant parts of multi-

execution necessary to show that our optimisations are seman-

tics preserving. We also use our core language to accommodate

7

our novel “internalisation” of projection and the notion of

focused transparency.

A. Core Calculus

We define a core language of faceted evaluation which we

call λ Facet. The terms of λ Facet are generated by the following

grammar:

t ::= x | λx. t | t t | unit | μx. t | 〈� ? t : t〉 | ⊥
Where unit is the only value of the single-element type

unit and ⊥ is an element of every type. We extend the

definition of projection to cover terms, with the case for

facets being the same as above and all other constructs (like

application and λ) are homomorphic. The full definition of

projection and a number of other constructs from this section

can be found in Appendix A.

Using projection, we construct an equivalence relation like

the one considered in previous section, t0 ∼ t1 if and only if

t0 ↓ � = t1 ↓ � for all � ∈ L . Note that, while this notion of

equivalence is more involved than the one for pure faceted

values, the equivalences which apply to the former definitions

still apply here. We formalise λ Facet as a typed lambda

calculus, however, the type system is standard and orthogonal

to the rest of the development. We give λ Facet a small-step call

by name semantics. Figure 8 shows the non-standard rules, the

rest can be found in Appendix A.

The rules RLEFTFACET and RRIGHTFACET allow faceted

sub-computations to happen “in parallel”, this is similar

to the FSME execution mode of Multef [12]. The rule

RFACETAPP distributes function application over facets. It

is this rule which is responsible for the blowup associated

with faceted values, for example 〈� ? t0 : t1〉 〈�′ ? t ′0 : t ′1〉 −→
〈� ? t0 〈�′ ? t ′0 : t ′1〉 : t1 〈�′ ? t ′0 : t ′1〉〉. Finally, the first true addition

of λ Facet over previous work is the REQUIV rule, which ties

together the equivalences studied in Section III (through the

∼ equivalence) with FSME. The rule allows optimisation to

happen at any point during the evaluation of a program.

Transparency: We prove that λ Facet is transparent, i.e.

the semantics of secure programs are not influenced by the

special enforcement mechanism introduced by the faceted

values. To show this, following the literature [9, 11, 12] we

give a standard semantics −std → for λ Facet. The role of

the standard semantics is to represent “normal” evaluation

of λ Facet programs without enforcement in place. Using this

notion we will be able to prove that λ Facet programs which are

secure under standard semantics do not have their semantics

modified by the multi-execution enforcement mechanism. The

standard semantics of λ Facet are identical to the normal se-

mantics, except that we omit the rules which deal with facets,

in place of these rules we have only a single rule to remove

facets, 〈� ? t0 : t1〉−std→ t0. Next we overload the ∼ notation,

defining t0 ∼� t1 ⇐⇒ t0 ↓ �= t1 ↓ �. Using this definition we

are going to define what it means for a program to be secure

with respect to the standard semantics.

However, before we get there we need to introduce the

notion of a security policy. To keep the exposition simple we

only discuss the single-input programs and therefore a security

policy is simply a pair (�i, �) of an input label and an output

label. A term t is said to be compatible with an input label

�i if either t is on the form 〈�i ? t0 : t1〉 where t0 is unfaceted

or t itself is unfaceted. This definition of “secret input” is

in line with the standard encoding of secret inputs from the

multi-execution literature [9, 11, 12].

We use the notion of a secure program from [28], this

definition is different from that of previous work (e.g. Multef

[12]) and we refer the interested reader to Appendix A for

details on why and how. In the definition below we use the

standard definition of a “value”, a term is a value if and only

if it is either on the form λx. t or unit, values have the key

property that they do not evaluate further.

Definition 14 (TSNI Secure Program): A term Γ,x : τ0 � t :

τ1 is secure w.r.t. the security policy (�i, �) when, for any two

inputs Γ � t0, t1 : τ0 which are compatible with �i, such that

t0 ∼� t1, we have that if t[t0/x]−std→∗ v0 for some value

v0 then there exists a value v1 such that t[t1/x]−std→∗ v1

and v0 ∼� v1. As a consequence, if t[t0/x] does not evaluate to

a value, then neither does t[t1/x].
This definition is intended to mimic previous work on faceted

value semantics [9, 12, 13], where programs have input and

output channels where values received on a channel are

compatible with the label of the channel. In such a setting, the

definition of secure program says that and if in two different

runs the values on an input channel are �-equivalent, where �
is the label of some output channel, then both runs generate

equivalent outputs on the �-labeled channel. Our definition

mimics this by picking �i the label on the input channel and

� on the the output channel.

While the definition above is parameterised on a security

policy in the form of a label pair (�i, �) and a single variable

x : τ0, extending it to more complex policies and multiple

variables is straightforward. We direct the interested reader to

the literature on faceted value semantics [9, 12, 13] for a more

comprehensive treatment. Before we can address transparency

we need one key lemma:

Lemma 1 (Simulation): Given an �∈L and two terms Γ �
t, t ′ : τ such that t ↓ �−std→∗ t ′ there exists an t ′′ such that

t −→∗ t ′′ and t ′ ∼� t ′′.
Before we address transparency we need introduce the notion

of an unfaceted term, i.e. a term which does not use the

〈 ? : 〉 construct. More precisely, t is unfaceted if and only

if there is some � (or equivalently, for all �) such that t ↓ �= t.
Note that if t ↓ � is equal to t, t does not contain any 〈 ? : 〉
subterms, as these would be removed by projection in t ↓ �.

Theorem 8 (Transparency): For any policy (�i, �), given a

program Γ,x : τ0 � t : τ1 which is secure with respect to

(�i, �) such that t is unfaceted and a term Γ � t0 : τ0 which

is compatible with �i, we have that if t[t0/x]−std→∗ v for

some value v, then there exists a t ′ such that t[t0/x] −→∗ t ′
and v ∼� t ′.

We prove termination sensitive noninterference (TSNI) for

λ Facet by following the proof strategy of earlier work [9, 12],

details can be found in Appendix A.

8

RLEFTFACET

t0 −→ t ′0
〈� ? t0 : t1〉 −→ 〈� ? t ′0 : t1〉

RRIGHTFACET

t1 −→ t ′1
〈� ? t0 : t1〉 −→ 〈� ? t0 : t ′1〉

RFACETAPP

〈� ? t0 : t1〉 t2 −→ 〈� ? t0 t2 : t1 t2〉
REQUIV

t0 ∼ t1
t0 −→ t1

Fig. 8. Small step semantics

���(t0, t1) = 〈� ? t0 : t1〉
�e∨ e′�(t0, t1) = �e�(t0,�e′�(t0, t1))
�e∧ e′�(t0, t1) = �e�(�e′�(t0, t1), t1)
�¬e�(t0, t1) = �e�(t1, t0)

RPROJECT

t ⇓ e −→ �e�(t,⊥)
RPROJECTSTD

t ⇓ e−std→ t

(t ⇓ e) ↓ �o =

{
t ↓ �o, �o |= e
⊥, otherwise

Fig. 9. The semantics of ⇓

Theorem 9 (TSNI): Given any � ∈ L and any three well-

typed terms Γ � t0, t ′0, t1 : τ such that t0 ∼� t1 and t0 −→∗ t ′0,

there exists a Γ � t ′1 : τ such that t1 −→∗ t ′1 and t ′0 ∼� t ′1.

Note that this theorem does not mention the notion of a policy

from above, this is because the present formuation is stronger
than a formulation which references a security policy. The

theorem above works for any two �-equivalent t0 and t1, which

implies that it works for the t[t0/x] and t[t1/x] introduced by

the “policy-formulation.”

B. Removing unnecessary views

We now present the key computation-oriented optimisation

in this paper. We show how to use knowledge of the potential

observers of a faceted computation to reduce the amount

of computation. We can represent such knowledge using a

boolean algebra over labels:

e ::= � | e∨ e | e∧ e | ¬e

We say that a label � satisfies an expression e, written � |= e,

by which we mean that the expression e predicts that � is

an observer of our computation. The interesting case is when

e = �′, for which we have � |= �′ ⇐⇒ �′ � �. The rest of the

definition is standard, e.g. � |= e0∧e1 if and only if � |= e0 and

� |= e1, and can be found in Appendix A.

The idea behind label expressions is that if � |= e, then the

term t ⇓ e can be used in a computation which will be written

to an output channel with label �. In Section V we will see

how this can be used to keep the number of sub-computations

introduced by faceted value semantics tractable in a setting

with multiple input and output channels. For now, however,

we will focus on the single-input single-output case of λ Facet

in order to keep the formalism concise.

We give a semantics to label expressions in terms of faceted

values, written �e�(t0, t1), which can be found in Figure 9. The

definition has the property that �e�(t0, t1) ↓ �= t0 ↓ � when � |= e

� |= e �! t
�! t ⇓ e

�′ � � �! t0
�! 〈�′ ? t0 : t1〉

� |= �′ ⇐⇒ �′ � �

Fig. 10. Non-structural cases of �! t and � |= e

and t1 ↓ � otherwise. Next we extend our faceted language

with a primitive ⇓ which models injecting knowledge about

the future observers of the computation into our program.

t ::= . . . | t ⇓ e

For the semantics, we introduce the RPROJECT and

RPROJECTSTD rules in Figure 9.

There are two important things to note about the semantics

of ⇓. The first is that while we call the rule RPROJECT and

use a syntax similar to projection, what we are doing is not

strictly projection, we do not remove parts of the faceted value,

only encode additional assumptions. This choice is motivated

by the fact that internalising projection as something similar

to t ⇓ �= 〈� ? t ↓ � : ⊥〉 breaks noninterference, at least when

noninterference is formulated in the traditional way. To see

why, consider the H-equivalent terms (λx.x ⇓ L) 〈H ? 1 : 0〉
and (λx.x ⇓ L) 〈H ? 1 : 1〉, which would reduce to 0 and 1

respectively, which are not H-equivalent. The second thing to

note is that while we have chosen to present the meaning of ⇓
in terms of dynamic semantics, it could also be formulated as

a static “compilation step.” Our choice is motivated the fact

that the dynamic ⇓ more closely mimics our implementation

in Section V.

The ⇓ optimisation does not come for free. Recall that the

condition in the transparency theorem from above is that the

source program is both secure and unfaceted, that is t ↓ � =
t. This condition is not fulfilled for programs containing ⇓.

Consequently, while including ⇓ in the calculus does not break

noninterference or transparency, as soon as we use ⇓, we no

longer have transparency guarantees.

To address this issue, we introduce a notion of focused
transparency which subsumes the traditional notion from

above. The intuition behind focused transparency is that if

the ⇓ annotations are correct, then we do not modify the

semantics of secure programs when running under faceted as

opposed to standard semantics. To formalise the idea of correct

annotations we introduce the notion of “clearance.” Intuitively,

a label � clears t, written � ! t, if � satisfies all the label

expressions e in t, and it can see all the facets in t. In other

words, �! t if � is one of the intended observers of t, i.e. the

view of t associated to � is not culled by any ⇓ optimisation.

Figure 10 shows the interesting (non-structural) cases of �! t,

9

the rest can be found in Appendix A.

With clearance in place, we can move on to proving focused

transparency. The proof of focused transparency is similar to

the proof of normal transparency, but here we generalise the

definition to include faceted terms t where � ! t and show

that the theorem still holds. In this presentation we omit some

tedious lemmas to do with the interaction between projection

and clearing. We note only only that the proof of the next

theorem relies on a version of the Simulation lemma with

precondition � ! t, the interested reader will find details in

Appendix A.

Theorem 10 (Focused Transparency): For any policy

(�i, �), given a program Γ,x : τ0 � t : τ1 which is secure with

respect to (�i, �) such that � ! t (i.e. the annotations in t are

correct) and a term Γ � t0 : τ0 which is compatible with �i, we

have that if t[t0/x]−std→∗ v for some value v, then there

exists a t ′ such that t[t0/x]−→∗ t ′ and v ∼� t ′.
As �! t ↓ �′ holds for all � and �′, focused transparency implies

traditional transparency as presented in Theorem 8. In other

words, our notion of focused transparency is can safely replace

the traditional notion from above.

V. CASE STUDIES

In this section, we present two case studies to show how

the optimisation techniques in this paper can be applied to the

multi-execution framework Multef [12].

A. Data-Oriented Optimisation

{Alice,Bob,Charlie}

{Bob,Charlie}
v0 v1

⊥

Fig. 11. Example for optimising

Our data-oriented opti-

misations are suitable when

dealing with storage of

faceted values. For exam-

ple, Yang et al. [16] use

faceted values in a database

backed application to en-

code multiple views of the

same data. Intuitively, each

“leaf” of the faceted value gets stored as a record within

a table—the more leaves the faceted values has, the more

space it takes in the database. One of the case studies of

Yang et al. presents a small calendar application where faceted

values provide different views of calendar events. In their

model, group events can have sophisticated views associated

with them which allows encoding multiple groups of event

attendees with different privileges w.r.t. what they can observe.

For example, if Bob and Charlie are organising an event for

Alice, the calendar event may be encoded as the faceted value

in Figure 11. Where v0 may contain secret information like

what gifts Bob and Charlie are planning to give Alice, while

v1 encodes what Alice gets to see, i.e., that she has an event

next Wednesday. Plainly following Yang et al.’s approach for

storing events in the database will likely, considering that

faceted values might blow up in size when combined with

other faceted values, result in storing a prohibitively large

number of records in the database, especially after computing

aggregates of data.

Employing the data oriented-optimisations presented in

this paper, however, allows us to shrink these combined

faceted values to a manageable size. Our experiment con-

siders a simple implementation of our shrinking optimi-

sations. We apply the JOIN rule exhaustively, then we

apply the context optimisations from Figure 7 and Fig-

ure 6 alongside CHOICE IRRELEVANCE and residuation with

the candiate label, finally we rotate the tree back (to bal-

ance it) using QUALIFIED ROTATION and exhaustively apply

CHOICE IRRELEVANCE again. This approach is not optimal in

terms of speed, it runs in (at least) quadratic time. However,

for the purpose of this case study we focus on the storage

overhead of faceted values and therefore we are not concerned

with optimising or precisely measuring time overheads.

To show the effect of applying our shrinking techniques,

we randomly and uniformly generated two sets of 105 lists of

four faceted values, one with integer leaves and the other with

leaves of pairs of integers representing the start and end time of

a meeting. The events were between 1 and 4 hours long and all

scheduled during business hours on the same day. Each faceted

value has two or three different leaves with labels drawn from

the powerset lattice over 15 different principals – so, the lattice

contains 215 possible points. In a real application, these faceted

values could be derived from four calendar events.

We then compute the aggregation of the faceted values

by taking their sum (integer leaves) and computing if any

meetings overlap (meeting leaves) respectively. Finally, we

compare three different distributions of sizes.

We first consider the case for computing sums. The first

distribution (UNOPT) is the size of the faceted values in the

number of leaves without optimising. The second (OPT1) is

the result of optimising each value before computing the sum.

Finally, the third distribution (OPT2) is the result of optimising

both before and after computing the sum. Figure 12 shows

the cumulative distributions. The x axis shows the number

of leaves in the resulting trees and the y axis shows the

cumulative number of occurrences. The value of y at x shows

how many faceted values have fewer or equal to x number of

leaves.

The results in Figure 12 show that naively computing

aggregates quickly leads to blow up in faceted value sizes.

The largest trees in UNOPT have 81(!) leaves with an average

of 39.1 leaves per tree, the same goes for OPT1 but with

an average of 21 leaves, while OPT2 has a maximum of

48 and average 10.7 leaves! The OPT1 distribution shows

that optimising the faceted values reduces the amount of

blowup, the difference between OPT1 and OPT2 makes it

clear that optimisation needs to be performed continuously as

aggregation and computation themselves introduce redundant

views of faceted values.

Turning our attention to the distribution of sizes for the

meeting times in Figure 13 we see more extreme results than

in the other experiment. The largest trees in OPT2 have only

13 leaves and with an average of 1.1! This is because the

CHOICE IRRELEVANCE rule kicks in more often, as there are

only two possible values for the leaves after computing the

10

Fig. 12. Data-optimisations on faceted values (computing sums)

Fig. 13. Data-optimisations on faceted values (computing overlapping times)

overlap (True and False). Interestingly, the OPT1 and UNOPT
results look very similar to the case for sums. We attribute this

similarity to the fact that optimising only before computing the

sums means that the optimisation opportunities are mostly due

to the label structure, not the values at the leaves.

B. Computation-Oriented Optimisation

For this case study, we present a small chat server called

FChat, written in the multi-execution framework Multef [12].

The server allows clients to connect to channels where they

can send and receive messages. Figure 14 shows the relevant

Haskell [29] code of the server’s main loop.

The security policy of FChat is expressed with DC-labels.

Each chat channel is given a DC-label (cr
0 ∨ cr

1 ∨ . . .∨ cr
n,c

w
0 ∨

cw
1 ∨ . . .∨ cw

k), where cr
i are the clients allowed to read the

mainLoop :: Policy -> FIO ()
mainLoop pol = do

fevent <- readFIChan evCh
fstate <- readFIORef stRef
control $ do

st <- fstate
ev <- fevent
return $ case ev of

Connect client chan
| canConnect pol client chan -> do

write stRef ((client, chan) : st)

Write client chan msg
| canWrite pol client chan -> do

sequence_ [clientWrite client msg
| (client, ch) <- st
, chan == ch]

...
Fig. 14. The main loop of the unoptimised chat server

channel and cw
i the clients allowed to write to it. The actual

implementation also needs to consider declassification and

endorsement of messages to be able conform to this security

policy. However, this is mostly orthogonal to the rest of this

discussion and these details are omited here in the interest of

clarity.

Primitive readFIChan :: IChan a -> FIO (Faceted a)
reads a faceted event from a channel—variable fevent

in the code. In the interest of simplicity, the trusted

computing based (TCB) around FChat is responsible

for parsing client messages and generating faceted

events accordingly. For instance, if Alice connects to

the channel chan, the TCB places a faceted event

〈Alice ? Connect Alice chan : ⊥〉 in the event

channel.

The code in Figure 14 keeps the state of all connections

in a reference stRef. The value stored in that reference

(fstate) is also faceted, as the state of alive connections

depends on who the observer is—recall that only Alice will

see that she has an open connection. The control primitive

executes the code that follows for every leaf in the “cartesian

product” of fevent and fstate—this is the primitive that

introduces multi-executions in Multef. Inside the control

block, variables st and ev are leaves in fstate and fevent,

respectively.

When it comes to connecting users to channels,

the main loop simply checks that principals

appear in the DC-label of the channel (see check

canConnect pol client chan). In that case, that

faceted state of the server gets updated to reflect the new

connection (write stRef ((client, chan) : st)).

Observe that after n clients have connected, without even

sending any messages, the faceted state of the server stRef

becomes a reference containing a faceted value with 2n leaves!

The exponential size of fstate means that when a new

connection arrives or a message is sent to the server, the code

inside control is executed O(2n) times! This exponential

complexity is in contrast to the O(n) time complexity which

would be required if the server was running under a standard,

but insecure, semantics instead of a faceted one. The degrada-

tion is reflected in the exponential runtime of UNOPT in our

experiment, shown in Figure 15.

The key observation that enables performance optimizations

in this case study is that, while the control block runs an

exponential number of times, most of the instructions are

no-ops. To see why, recall that events arising from reading

channels are of the form 〈p ? event : ⊥〉 for some principal p
and event, e.g., writing to a channel. In this light, and since

Multef guarantees security and transparency, the main loop is

guaranteed to send messages to clients in the same way as

under an standard semantics. Hence, from all the O(2n) times

Multef executes the control block, only one will trigger

the side-effect of writing to a channel. More specifically,

when using the side-effectful primitive clientWrite, Multef

checks that the current view is the one in which the side-effect

can be triggered (i.e. the one compatible with the DC-label of

11

the channel)—otherwise it behaves as a no-op. The security

policy of our application considers each client c’s channel as

labeled (c,�), i.e., we are only able to write to it if we have not

branched on any information more secret than c. This means

that we only need to consider the parts of the faceted state

fstate which contain only c’s private branches!

With this in mind, we can employ the ⇓ optimisation

to reduce the exponential blowup to consider only these

leaves of the faceted trees! We implement ⇓ as a function

atMostOne :: [Client] -> Faceted a -> Faceted a.

The expression atMostOne ["Alice", "Bob"] f should

be read as f ⇓ (Alice ∧ ¬Bob ∨ ¬Alice ∧ Bob). We use

atMostOne to optimise away the unnecessary leaves of the

state:
mainLoop :: Policy -> FIO ()
mainLoop pol = do

st0 <- readFIORef stRef
let state = atMostOne (principals pol) st0
writeFIORef stRef state
...

The rest of the code (denoted by ...) is the same as

above. Over time, the content of the reference stRef in-

creases in size with extra faceted constructors due to the

command writeFIORef stRef state. Consequently, if we

do nothing, st0 will grow exponentially large. For this reason,

the function atMostOne also employs the ∼ optimisation

techniques from Section III to remove redundant labels in the

tree denoted by st0. With this optimisation in place, we see

an important difference in performance.

Figure 15 shows the time taken for N clients to connect

to the server and send 10 messages each to a single shared

channel. The unoptimised version of the code, shown in the

figure as UNOPT, is exponential in N, whereas the optimised

implementation runs in polynomial time. In our particular

example the memory behaviour of the optimised an unopti-

mised versions of the program are practically identical. We

attribute this phenomenon to the small number of connected

clients, limited to 10 due to the exponential blowup in the un-

optimised implementation, which means that the overhead in

memory is relatively small and difficult to measure.

VI. RELATED WORK

Much prior work has explored IFC techniques based on

multi-execution [9, 11, 12, 13], running multiple copies of a

program (or parts of it) simultaneously at different security

levels, while carefully adapting their semantics to avoid infor-

mation leakage. Capizzi et al. [30] propose running two copies

of the same program, one for public and other for private data.

Cristiá and Mata independently formalize a similar system

at the operating system level [31]. Devriese and Piessens

[32] coin the term Secure Multi-Execution (SME) and are

the first to formalise the soundness and precision guarantees

of the approach. This original formulation of SME is black-
box, i.e, language independent, which makes it possible to

deploy it for complex languages like JavaScript. Jaskelioff and

Russo [33] present an implementation of SME in Haskell.

Barthe et al. [34] propose a program that inlines SME into

2 4 6 8
N

0

50

100

150

200

250

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

OPT
UNOPT

0 5 10 15 20 25 30
N

0

5

10

15

20

25

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

OPT

Fig. 15. The Performance of the Optimised and Unoptimised implementa-
tions of the chat server.

JavaScript-like programs—so that it is not necessary to modify

the runtime system to obtain multi-executions. The web has

been the chosen domain to test many SME ideas [35] and

their implementations, e.g., FlowFox [36]. SME has also been

applied to the map-reduce programming model [37].

Secure programs interpreted under SME produce the same

outputs as if they were run under a standard semantics modulo
the relative ordering of observable events from different secu-
rity levels. The work in [38] explores how different scheduling

policies affect the security guarantees provided by SME, i.e.,

TINI or TSNI. In [39, 40], the authors combine scheduling

techniques with monitoring approaches to guarantee that in-

terleaving of events gets preserved for secure programs. The

authors of [40, 41, 42] provide means for declassification.

A limitation of SME is that it requires multiple execu-

tions, potentially one for each element in the security lattice,

which is particularly problematic for large powerset lattices

or unbounded decentralized lattices. To address this concern,

Austin and Flanagan introduce a Multiple Facets (MF) se-

mantics [43] as an optimization for SME. Schmitz et al. [19]

show an implementation of MF in Haskell. Schoepe et al.

[44] investigate how to apply MF semantics to encode taint

analysis. Bielova and Rezk [15] later show that SME and MF

provide different security guarantees, namely TINI for MF vs.

TSNI for SME. They propose an all-or-nothing combination

of MF and SME that runs programs under a MF semantics

but switches to SME when commands inside a branch do not

terminate within a timeout. In the same all-or-nothing spirit,

Ngo et al. [18] combine MF and SME for a simple while-

language, where timeouts determine when to switch to SME.

12

That work also presents some local “peephole” optimizations

for faceted values that are applied when values are constructed,

rather than at arbitrary times during execution as in our work.

Schmitz et al. [12] present a synthesis of MF and SME called

Faceted Secure Multi-Execution (FSME), and an underlying

multi-execution framework in Haskell called Multef that can

be parameterized to provide either MF, SME, or FSME.

Yang et al. [16] present an approach for persisting faceted

values into a database, and include an “early pruning” opti-

mization that shrinks faceted values according to the observer,

in a manner that is similar to our projection operator. A key

distinction is that our projection operation is a construct in the

language, thus enabling the programmer to control where this

simplification is applied.

Many other IFC security libraries exists for Haskell. They

can enforce non-interference statically [45, 46, 47, 48], dy-

namically [7], or as a combination of both [49, 50]. Many

of these libraries utilize the concept of monads to control the

side-effects that programs are allowed to perform.

VII. CONCLUSIONS

We have present both data- and computation-oriented opti-

misations for multi-execution based techniques like MF, “on-

demand” SME (as implemented by [12, 13]), and FSME.

The data-oriented optimisations are based on tree transforma-

tions which preserve the views of faceted values. Meanwhile,

the computation-oriented optimisations allow programmers

to reduce unnecessary computations by making assumptions

about who observes the produced results. We provided case

studies that support our claims. As future work, we plan to

explore different rewriting strategies and evaluate the trade-

offs between the time they take to execute and the introduced

space savings—an aspect that our case studies do not evaluate.

We believe that this work fortifies the foundations of more

practical multi-execution based techniques for realistic scenar-

ios, where we not only optimisations are needed but also our

novel notion of focused transparency.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

helpful and insightful comments. This work was partially sup-

ported by the Wallenberg Artificial Intelligence, Autonomous

Systems and Software Program (WASP) funded by Knut

and Alice Wallenberg Foundation, the Swedish Foundation

for Strategic Research (SSF) under the project Octopi (Ref.

RIT17-0023) and WebSec (Ref. RIT17-0011), and the Swedish

research agency Vetenskapsrådet.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-based

information-flow security,” IEEE J.Sel. A. Commun.,
vol. 21, no. 1, pp. 5–19, Sep. 2006. [Online]. Available:

https://doi.org/10.1109/JSAC.2002.806121

[2] J. Goguen and J. Meseguer, “Security policies and se-

curity models,” in Proc of IEEE Symposium on Security
and Privacy. IEEE Computer Society, 1982.

[3] D. Volpano, G. Smith, and C. Irvine, “A Sound Type

System for Secure Flow Analysis,” J. Computer Security,

vol. 4, no. 3, pp. 167–187, 1996.

[4] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong,

and N. Nystrom, “Jif: Java Information Flow,” 2001,

http://www.cs.cornell.edu/jif.

[5] M. Vassena, A. Russo, P. Buiras, and L. Waye, “Mac a

verified static information-flow control library,” Journal
of Logical and Algebraic Methods in Programming,

vol. 95, pp. 148 – 180, 2018.

[6] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld,

“Jsflow: Tracking information flow in javascript and its

apis,” in Proceedings of the 29th Annual ACM Sympo-
sium on Applied Computing. ACM, 2014, pp. 1663–

1671.

[7] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,

“Flexible dynamic information flow control in Haskell,”

in Proc. of the ACM SIGPLAN Haskell symposium
(HASKELL ’11), 2011.

[8] T. H. Austin and C. Flanagan, “Permissive dynamic

information flow analysis,” in Proceedings of the 5th
ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, ser. PLAS ’10. ACM, 2010.

[9] ——, “Multiple facets for dynamic information flow,” in

ACM Sigplan Notices, vol. 47, no. 1. ACM, 2012, pp.

165–178.

[10] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit

flows: Cant live with em, cant live without em,” in In-
ternational Conference on Information Systems Security.

Springer, 2008, pp. 56–70.

[11] D. Devriese and F. Piessens, “Noninterference through

secure multi-execution,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 109–124.

[12] T. Schmitz, M. Algehed, C. Flanagan, and A. Russo,

“Faceted secure multi execution,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY,

USA: ACM, 2018, pp. 1617–1634. [Online]. Available:

http://doi.acm.org/10.1145/3243734.3243806

[13] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo,

and T. Schmitz, “A better facet of dynamic information

flow control,” in WWW’18 Companion: The 2018 Web
Conference Companion, 2018, pp. 1–9.

[14] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell,

“Disjunction category labels,” in Nordic conference on
secure IT systems. Springer, 2011, pp. 223–239.

[15] N. Bielova and T. Rezk, “Spot the difference: Secure

multi-execution and multiple facets,” in European Sym-
posium on Research in Computer Security, 2016, pp.

501–519.

[16] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama,

C. Flanagan, and S. Chong, “Precise, dynamic infor-

mation flow for database-backed applications,” in ACM
SIGPLAN Notices, vol. 51, no. 6. ACM, 2016, pp. 631–

647.

[17] M. Ward and R. P. Dilworth, “Residuated lattices,” Trans-

13

actions of the American Mathematical Society, vol. 45,

no. 3, pp. 335–354, 1939.

[18] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo,

and T. Schmitz, “A better facet of dynamic information

flow control,” in The Web Conference. Research track:
Security and privacy of the Web. (WWW’18), 2018.

[19] T. Schmitz, D. Rhodes, T. H. Austin, K. Knowles, and

C. Flanagan, “Faceted dynamic information flow via

control and data monads,” in Principles of Security and
Trust - 5th International Conference, POST 2016, Held
as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings, 2016.

[20] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell,

“Disjunction category labels,” in Proc. of the Nordic
Conference on Information Security Technology for Ap-
plications (NORDSEC ’11). Springer-Verlag, 2011.

[21] D. E. Denning, “A lattice model of secure information

flow,” Communications of the ACM, vol. 19, no. 5, pp.

236–243, 1976.

[22] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell,

“Disjunction category labels,” in Nordic conference on
secure IT systems. Springer, 2011.

[23] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,

J. C. Mitchell, and A. Russo, “Hails: Protecting data

privacy in untrusted web applications.” in OSDI, 2012,

pp. 47–60.

[24] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Her-

man, B. Karp, and D. Mazières, “Protecting users by

confining JavaScript with COWL,” in 11th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 14). USENIX Association, Oct. 2014.

[25] J. Parker, N. Vazou, and M. Hicks, “Lweb: information

flow security for multi-tier web applications,” Proceed-
ings of the ACM on Programming Languages, vol. 3, no.

POPL, p. 75, 2019.

[26] B. Montagu, B. Pierce, and R. Pollack, “A theory of

information-flow labels,” in Computer Security Founda-
tions Symposium (CSF), 2013 IEEE 26th, June 2013.

[27] M. Erné, J. Koslowski, A. Melton, and G. E. Strecker, “A

primer on galois connections,” Annals of the New York
Academy of Sciences, vol. 704, no. 1, pp. 103–125, 1993.

[28] D. Hedin and A. Sabelfeld, “A Perspective on

Information-Flow Control,” in Proc. of the 2011 Mark-
toberdorf Summer School. IOS Press, 2011.

[29] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel,

J. Fairbairn, J. Fasel, M. M. Guzmán, K. Hammond,

J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil,

W. Partain, and J. Peterson, “Report on the programming

language haskell: A non-strict, purely functional

language version 1.2,” SIGPLAN Not., vol. 27,

no. 5, pp. 1–164, May 1992. [Online]. Available:

http://doi.acm.org/10.1145/130697.130699

[30] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P.

Sistla, “Preventing Information Leaks through Shadow

Executions,” in Proc. of the Annual Computer Security

Applications Conference, ser. ACSAC ’08. IEEE Com-

puter Society, 2008.

[31] M. Cristiá and P. Mata, “Runtime Enforcement of Nonin-

terference by Duplicating Processes and their Memories,”

in Workshop de Seguridad Informática WSEGI 2009,
Argentina, ser. 38 JAIIO, 2009.

[32] D. Devriese and F. Piessens, “Noninterference through

Secure Multi-execution,” in Proc. of the 2010 IEEE
Symposium on Security and Privacy, ser. SP ’10. IEEE

Computer Society, 2010.

[33] M. Jaskelioff and A. Russo, “Secure multi-execution in

Haskell,” in Proc. Andrei Ershov International Confer-
ence on Perspectives of System Informatics, ser. LNCS.

Springer-Verlag, Jun. 2011.

[34] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and

E. Rivas, “Secure multi-execution through static program

transformation,” in Formal Techniques for Distributed
Systems (FMOODS/FORTE 2012), June 2012.

[35] N. Bielova, D. Devriese, F. Massacci, and F. Piessens,

“Reactive non-interference for a browser model,” in Pro-
ceedings of the 5th International Conference on Network
and System Security (NSS 2011),, Sep. 2011.

[36] W. De Groef, D. Devriese, N. Nikiforakis, and

F. Piessens, “Flowfox: a web browser with flexible and

precise information flow control,” in Proceedings of the
2012 ACM conference on Computer and communications
security, ser. CCS ’12. New York, NY, USA: ACM,

2012.

[37] M. Ngo, F. Massacci, and O. Gadyatskaya,

“MAP-REDUCE runtime enforcement of information

flow policies,” CoRR, 2013. [Online]. Available:

http://arxiv.org/abs/1305.2136

[38] V. Kashyap, B. Wiedermann, and B. Hardekopf,

“Timing- and Termination-Sensitive Secure Information

Flow: Exploring a New Approach,” in Proc. of IEEE
Symposium on Sec. and Privacy. IEEE, 2011.

[39] D. Zanarini, M. Jaskelioff, and A. Russo, “Precise en-

forcement of confidentiality for reactive systems.” in

Proc. IEEE Computer Sec. Foundations Symposium.

IEEE, 2013, pp. 18–32.

[40] W. Rafnsson and A. Sabelfeld, “Secure multi-execution:

Fine-grained, declassification-aware, and transparent,” in

2013 IEEE 26th Computer Security Foundations Sympo-
sium, June 2013, pp. 33–48.

[41] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens,

and T. Rezk, “Stateful declassification policies for event-

driven programs,” in Proc. IEEE Computer Sec. Founda-
tions Symposium. IEEE, Jul. 2014.

[42] I. Boloşteanu and D. Garg, “Asymmetric secure multi-

execution with declassification,” in Principles of Security
and Trust, F. Piessens and L. Viganò, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2016, pp. 24–

45.

[43] T. H. Austin and C. Flanagan, “Multiple facets for

dynamic information flow,” in Proceedings of the 39th
annual ACM SIGPLAN-SIGACT symposium on Princi-

14

� |= �′ ⇐⇒ �′ � �

� |= e∨ e′ ⇐⇒ � |= e or � |= e′

� |= e∧ e′ ⇐⇒ � |= e and � |= e′

� |= ¬e ⇐⇒ � �|= e

Fig. 16. The full definition of � |= e

ples of programming languages, ser. POPL ’12. ACM,

2012.

[44] D. Schoepe, M. Balliu, F. Piessens, and A. Sabelfeld,

“Let’s face it: Faceted values for taint tracking,” in

Computer Security - ESORICS 2016 - 21st European
Symposium on Research in Computer Security, Herak-
lion, Greece, September 26-30, 2016, Proceedings, Part
I, 2016.

[45] P. Li and S. Zdancewic, “Arrows for secure information

flow,” Theoretical Computer Science, vol. 411, no. 19,

pp. 1974–1994, 2010.

[46] A. Russo, K. Claessen, and J. Hughes, “A library for

light-weight information-flow security in Haskell,” in

Proc. ACM SIGPLAN symposium on Haskell (HASKELL
’08). ACM, Sep. 2008.

[47] M. Vassena, A. Russo, P. Buiras, and L. Waye, “Mac a

verified static information-flow control library,” Journal
of Logical and Algebraic Methods in Programming,

2017.

[48] M. Algehed and A. Russo, “Encoding DCC in Haskell,”

in Proc. of the 2017 Workshop on Programming Lan-
guages and Analysis for Security, ser. PLAS ’17. ACM,

2017.

[49] D. Devriese and F. Piessens, “Information flow en-

forcement in monadic libraries,” in Proc. of the ACM
SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI ’11). ACM, 2011.

[50] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing

static and dynamic typing for information-flow control in

Haskell,” in Proc. of the ACM SIGPLAN International
Conference on Functional Programming (ICFP ’15).
ACM, 2015.

APPENDIX A

COMPUTATION ORIENTED OPTIMISATIONS

In this appendix we provide full definitions of semantics and

operations as well as proof sketches for the main theorems of

Section IV. Full proofs can be found in the Agda mechanisa-

tion. Figure 17 shows the full semantics of λ Facet. Figure 16

contains the full definition of � |= e.

Our definition of a secure program differs from that of both

Schmitz et al. [12] and Devriese and Piessens [11] because

their notions are too restrictive to accurately capture what it

means to be a secure program. We will demonstrate this by

considering the program λx.if x then 1 else 1 with the

security policy (H,L), secret input and public output. In [12],

t is secure if when t0 and t1 are low equivalent and t t0 −

RAPPCONG

t0 −→ t ′0
t0 t1 −→ t ′0 t1

RBETA

(λx. t0) t1 −→ t0[t1/x]

RFIX

μx. t −→ t[μx. t/x]

RLEFTFACET

t0 −→ t ′0
〈� ? t0 : t1〉 −→ 〈� ? t ′0 : t1〉

RRIGHTFACET

t1 −→ t ′1
〈� ? t0 : t1〉 −→ 〈� ? t0 : t ′1〉

RFACETAPP

〈� ? t0 : t1〉 t2 −→ 〈� ? t0 t2 : t1 t2〉
REQUIV

t0 ∼ t1
t0 −→ t1

RPROJECT

t ⇓ e −→ �e�(t,⊥)
BOTTOM

⊥ t −→⊥

Fig. 17. The full operational semantics of λ Facet

x ↓ �o = x

λx. t ↓ �o = λx. (t ↓ �o)

t0 t1 ↓ �o = (t0 ↓ �o) (t1 ↓ �o)

unit ↓ �o = unit

μx. t ↓ �o = μx.(t ↓ �o)

〈� ? t0 : t1〉 ↓ �o =

{
t0 ↓ �o, �� �o

t1 ↓ �o, otherwise

(t ⇓ e) ↓ �o =

{
t ↓ �o, �o |= e
⊥, otherwise

⊥ ↓ �o =⊥

Fig. 18. The full definition of projection extended to λ Facet

std →∗ t ′, there exists a term t ′′ such that t t1 − std →∗
t ′′ and t ′ is low equivalent to t ′′. The definition requires that

all of the reduction steps for t t0 can be mimicked by t t1.

This is best illustrated by comparing the evaluation of t =
λx.if x then 1 else 1 with inputs t0 = 〈H ? 0 : 0〉 and

t1 = 〈H ? 1 : 0〉. Both t t0 and t t1 terminate with the value 1

and t is clearly a secure program. The problem is that t t0 −
std →∗ if 1 then 1 else 1 before terminating, and in

order for t to be secure in the sense of [12], they also require

that t t1 −std→∗ if 1 then 1 else 1. Because the latter

�! x
�! t

�! λx. t
�! t0 �! t1
�! t0 t1

�! unit

�! t
�! μx. t

�!⊥ � |= e �! t
�! t ⇓ e

�′ � � �! t0
�! 〈�′ ? t0 : t1〉

Fig. 19. Full definition of �! t

15

is not the case, t is not secure by the definition in [12]. In

order to avoid this issue, we instead use the notion of a secure

program from [28]:

Definition 15 (TSNI Secure Program): A term Γ,x : τ0 � t :

τ1 is secure w.r.t. the security policy (�i, �) when, for any two

inputs Γ � t0, t1 : τ0 which are compatible with �i, such that

t0 ∼� t1, we have that if t[t0/x]−std→∗ v0 for some value

v0 then there exists a value v1 such that t[t1/x]−std→∗ v1

and v0 ∼� v1. As a consequence, if t[t0/x] does not evaluate to

a value, then neither does t[t1/x]. We also state the definition

diagrammatically in Figure 20.

t[t0/x] v0

t[t1/x] v1

std
∗

∼� ∼�

std
∗

Fig. 20. TSNI Secure Program

Full lines in the diagram

in Figure 20, and the dia-

grams to come, denote pre-

conditions and dashed lines

denote the “result”, what is

in the existential quantifi-

cation. For example, in the

definition above t[t0/x] −
std→∗ v0 is given, while

v1 and t[t1/x]−std→∗ v1 are obtained from the existential.

Lemma 2 (Simulation): Given an �∈L and two terms Γ �
t, t ′ : τ such that t ↓ �−std→∗ t ′ there exists an t ′′ such that

t −→∗ t ′′ and t ′ ∼� t ′′.

t ↓ � t ′

t t ′′

std
∗

∼�↓�

∗

Theorem 11 (Transparency): For any policy (�i, �), given a

program Γ,x : τ0 � t : τ1 which is secure with respect to (�i, �)
such that t ↓ � = t, that is to say that t is unfaceted, and a

term Γ � t0 : τ0 which is compatible with �i. We have that if

t[t0/x]−std→∗ v for some value v, then there exists a t ′ such

that t[t0/x]−→∗ t ′ and v ∼� t ′. Stated as a diagram:

t[t0/x] v

t ′

std
∗

∗
∼�

Proof: We give a diagrammatic proof sketch:

t[t0/x] v

t[t0 ↓ �/x] t ′′

t[t0/x] t ′′′

std
∗

∼�

=

∼�

∼�std
∗

↓�

∗

∼�

The top square, relating the standard evaluation of t[t0/x] with

that of t[t0 ↓ �/x] is obtained from the definition of a secure

program. The bottom square is obtained from the Simulation

lemma. Note that this lemma requires t[t0/x] ↓ �−std →∗
t ′′, but we have t[t0 ↓ �/x]− std →∗ t ′′. This is where our

condition that t ↓ � = t comes in, as for any t0, t1, � we have

t0[t1/x] ↓ �= t0 ↓ �[t1 ↓ �/x]. The bottom reduction, t[t0/x]−→∗
t ′′′ is the required diagonal in the statement of the theorem.

Lemma 3 (Projection): Given any � ∈L and any two well

typed terms Γ � t, t ′ : τ such that t −→ t ′ we have that

t ↓ �− std →∗ t ′ ↓ � in zero or one steps. When rendered

diagrammatically we have:

t t ′

t ↓ � t ′ ↓ �

↓� ↓�

std
∗

Lemma 4 (Single Step TSNI): Given any � ∈ L and any

three well-typed terms Γ � t0, t ′0, t1 : τ such that t0 ∼� t1 and

t0 −→ t ′0, there exists a Γ � t ′1 : τ such that t1 −→∗ t ′1 and

t ′0 ∼� t ′1. Rendered in diagram form, we have:

t0 t ′0

t1 t ′1

∼� ∼�

∗

Proof: We chase diagrams:

t0 t ′0

t0 ↓ � t ′0 ↓ �

t1 t ′1

↓�

∼�

↓�

∼�std
∗

∼�↓�

∗

The top square is obtained from the Projection lemma and the

bottom from Simulation.

Theorem 12 (TSNI): Given any � ∈ L and any three well-

typed terms Γ � t0, t ′0, t1 : τ such that t0 ∼� t1 and t0 −→∗ t ′0,

there exists a Γ � t ′1 : τ such that t1 −→∗ t ′1 and t ′0 ∼� t ′1.

Proof: By induction on the derivation of t0 −→∗ t ′0,

making use of Single Step TSNI in the step case.

Theorem 13 (Focused Transparency): For any policy

(�i, �), given a program Γ,x : τ0 � t : τ1 which is secure with

respect to (�i, �) such that � ! t (i.e. the annotations in t are

correct) and a term Γ � t0 : τ0 which is compatible with �i, we

have that if t[t0/x]−std→∗ v for some value v, then there

exists a t ′ such that t[t0/x]−→∗ t ′ and v ∼� t ′.
The full proof, which can be found in the Agda mechanisation,

works by the same diagram chasing style argument as the

proof of transparency above.

16

