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Abstract—The cheapest attacks are often time-consuming, and
those requiring high level of technical skills might occur rarely
but result in disastrous consequences. Therefore, analysis focusing
on a single parameter at a time, e.g., only cost or time, is insuf-
ficient for the successful selection of the appropriate measures
increasing system’s security. In practice, security engineers are
thus confronted with the problem of multi-parameter analysis.

The objective of this work is to address this problem and
propose a sound, general framework for multi-parameter analysis
of security. In order to ensure the usability of our solution
for real-life applications, our proposal relies on the attack–
defense tree model that security experts from industry are already
familiar with. We present mathematical foundations of our
framework and characterize the class of parameters it is suitable
for. We identify conditions under which the proposed method
applies to attack–defense trees where several nodes represent the
same action. We discuss the complexity of our approach and
implement the underlying algorithms in a proof of concept tool.
We analyze its performance on a number of trees of varying
complexity, and validate our proposal on a case study borrowed
from industry.

Index Terms—Attack tree, attack–defense tree, multi-objective
optimization, Pareto frontier

I. INTRODUCTION

Performing quantitative analysis of security is one of the

primary tasks of security or risk analysis experts. Depending

on the analyzed system, its purpose as well as the underlying

security requirements and the attacker’s profile, different pa-

rameters (also called metrics or attributes) may be considered.

Cost, time or probability of attacking, expected damage or im-
pact that an attack would cause to the system, or the investment
necessary to protect the system are examples of such security-

relevant parameters. Estimating the value of these parameters

helps the expert to evaluate the degree of security of the

system, identify its most vulnerable components, and decide

which attacks should be prevented with the highest priority.
Computing the value of the individual parameters is not

difficult, but is often not sufficient. How to assess an attack

having a very low probability of success but whose impact
might be disastrous for the system? Which amongst the

parameters cost, time, or difficulty level should the expert

consider first to identify the most probable strategy that an

attacker having limited resources (in terms of money and time)

and technical skills would follow?
The above issues motivate the need for a multi-parameter

analysis, i.e., an analysis where several parameters are taken

into account at the same time. There are two main approaches

for addressing such analysis. The first one consists in combin-

ing all relevant parameters into a new metrics. A good example

here is the risk metrics, relying on the cost, probability, and

impact parameters. One may also think about translating all

parameters of interest into the same scale (e.g., monetary

cost) and then performing a single-parameter analysis. This

solution is however cumbersome, since numerous classical

parameters (e.g., difficulty, technical skill’s level) work with

ordinal scales, such as low–medium–high, and might not be

easily translatable into the numerical ones.

The second approach for multi-parameter analysis is based

on the notion of Pareto optimality. Here all relevant parameters

are considered in isolation, their values for possible solutions

are estimated, and the solutions that behave the best w.r.t.

all the parameters at the same time are identified. In other

words, solutions that are dominated by some other solution

w.r.t. to all of the considered parameters are discarded, and

the remaining ones are relevant for the further analysis. This

paper is concerned with this second, Pareto-based approach

for the multi-parameter analysis.

In order to be able to quantitatively evaluate the security

of a system, the expert first needs to formally describe the

attack–defense scenarios that the system can be subject to. To

perform this task, we employ an extension of attack trees,

called attack–defense trees (ADTrees). The choice of this

model has been motivated by its industrial popularity. Attack

tree-based analysis is nowadays commonly used by security

engineers, thus a solution relying on this formalism will likely

be appealing and easy to adopt by security professionals.

An ADTree is a labeled tree representing how an attacker

can attack the analyzed system and how a defender can protect

the latter against the potential attacks. The scenarios modeled

with ADTrees are composed of actions (to be executed by

the attacker or a defender) depicted by the labels of the tree

nodes. The hierarchical, tree-like structure of an ADTree can

be exploited to perform an efficient, quantitative analysis of

security scenarios: the actions composing the attacker’s and

the defender’s strategies are decorated with the parameter’s

values, and the value for the entire scenario is then obtained

by propagating these values up to the root node. Unfortunately,

the classical bottom-up evaluation assumes that all the nodes

in an ADTree represent independent, so in particular different,
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actions. In practice, however, the execution of an action may

contribute to several attacks. Different nodes of an ADTree

may thus hold the same label, and the bottom-up evaluation

on such a tree may yield incorrect results. Some alternative

methods have been introduced to correctly handle quantitative

evaluation on ADTrees with repeated labels, by first translating

the tree into another formal object (e.g., a Boolean function or

an automaton) and performing the computations on this object.

The main drawback of these approaches is that handling these

objects can be costly compared to the bottom-up evaluation

that is simply achieved with a single-pass traversal of the tree.

Contributions: The aim of this work is to formalize a

general framework for efficient, multi-parameter quantitative

analysis of security scenarios modeled with ADTrees. Our

framework is based on Pareto optimality, and our contributions

are the following:

1) We provide a general method for constructing Pareto
attribute domain – an algebraic structure suitable for

multi-parameter optimization of a number of parameters.

2) We prove that Pareto domains enjoy the desirable proper-

ties necessary for exploiting two established methods for

quantitative evaluation of ADTrees with repeated labels.

3) Our framework allows for simultaneous optimization of

a wide class of parameters, including cost, time, difficulty
and probability, at the same time.

4) We discuss the underlying complexity issues and pa-

rameters to be considered when choosing the optimal

evaluation method for a given tree.

5) We validate our proposal on a real-world case study

borrowed from industry.

6) Finally, we evaluate our framework on numerous trees of

various complexity using a proof of concept implemen-

tation that we have developed.

Structure: We start by presenting the background knowl-

edge on ADTrees and their quantitative analysis using at-

tributes, in Section II. Section III discusses the problem of

attributes’ evaluation on ADTrees with repeated labels. Our

Pareto-based framework is presented in Section IV, and its

empirical validation is performed in Section V. We purposely

postpone the description of related work to Section VI, which

allows us to compare our proposal with other existing ap-

proaches for quantitative, multi-parameter analysis of ADTrees

and related models. We conclude our paper in Section VII,

where we also identify interesting directions for future work.

II. BACKGROUND ON ADTREES

The objective of this section is to establish notation and

introduce the main objects used in this paper, namely ADTrees

and attribute domains. In Section II-A, we briefly present

ADTrees, set up a term notation for their succinct representa-

tion, and define a formal semantics used in this work. We recall

the notion of an attribute domain for ADTrees in Section II-B,

and illustrate its usage for the classical bottom-up quantitative

evaluation of attributes.

A. ADTrees

An ADTree [1] is an AND-OR, labeled tree representing a

security scenario involving two competing actors – an attacker

and a defender. The objective of the attacker is to attack the

analyzed system and the objective of the defender is to make

the system resistant against the attack. The main goal of one

of the actors – called the proponent – is stated in the label of

the tree’s root. This, often high-level and abstract, goal is then

recursively refined into subgoals represented by the labels of

the remaining nodes. ADTrees considered in this work admit

two types of nodes: OR and AND nodes. The children of an

OR node represent alternative ways of achieving the node’s

goal, whereas the children of an AND node correspond to the

subgoals that all need to be achieved so that the node’s goal is

achieved. The objective of the other actor – called the opponent
– is to prevent the proponent from reaching their goal. In order

to counter a (sub)goal of the proponent, a node of the opponent

is attached to the proponent’s node labeled by this (sub)goal.

As in the case of the proponent, the goals of the opponent

can be refined using the OR and AND refinements. In addition,

the nodes of the opponent can also be countered by the nodes

of the proponent. The labels of the nodes that are non-refined

represent basic actions, i.e., actions that need to be executed

by actors to reach their goals.

We use standard graphical notation while drawing ADTrees.

The nodes of the attacker are depicted with red ellipses and

those of the defender with green rectangles. An arc is used to

mark the AND nodes. The countermeasures are attached to the

nodes they are countering via a dotted line.

In Example 1, we present an ADTree, borrowed from [2],

that is used as a running example in this paper. Its graphical

representation is given in Figure 1.

Example 1. In the scenario represented by the ADTree from
Figure 1, the proponent is the attacker and the opponent is the
defender. The attacker wants to steal money from a victim’s
account. To achieve this goal, the attacker can use physical
means, i.e., learn the victim’s PIN, steal their card, and then
withdraw cash from an ATM. To learn the PIN, the attacker
could force the victim to reveal it or eavesdrop on the victim
when they enter the PIN. The victim could prevent the latter by
covering the keypad with hand. However, covering the keypad
fails if the attacker monitors the keypad with a hidden micro–
camera installed at an appropriate spot.

Instead of attacking from a physical angle, the attacker can
steal money by exploiting online banking services. In order to
do so, they need to learn the victim’s user name and password.
Both of these goals can be achieved by creating a fake bank
website and using phishing techniques for tricking the account
holder into entering their credentials. The attacker could also
try to guess what the password and the user name are. Using
very strong password would allow the account holder to
counter such a guessing attack. Once the attacker obtains
the credentials, they use them for logging into the online
banking services and execute a transfer. To prevent this type of
attack, transfer dispositions might be additionally secured with
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two-factor authentication using mobile phone text messages.
However, this security measure could be counterattacked by
stealing the victim’s phone.

ADTrees extend the well-known model of attack trees [3],

[4] with the countermeasure nodes. The only actor present in

attack trees is the attacker who is always the proponent. In

attack trees, basic actions correspond to the leaf nodes, which

is not necessarily the case in ADTrees. A simple analysis of

the tree in Figure 1 shows that eavesdrop is a basic action

in the scenario from Example 1 but it is not a leaf. In ADTrees,

nodes holding basic actions do not have any children belonging

to the same actor, i.e., they are non-refined. However, they can

still be countered by a child node of the other actor.

As the examples documented in industrial reports [5], [6]

show, real-life attack tree-based models often contain several

nodes with the same label. When proposing new analysis

methods, it is thus important to guarantee that they handle such

trees correctly. Following the approach of [2], we assume that

the nodes labeled with the same basic action represent exactly

the same occurrence of the action. This is for instance the

case of the two nodes labeled phishing. The idea is that a

single phishing attack suffices to get both, the password and

the user name of the victim. In the framework developed in

this work, two nodes that represent distinct occurrences of an

action need to be labeled with (slightly) different labels.

To ease the formal treatment of ADTrees, we employ a term-

based notation. The components belonging to the proponent

are indexed with p and those belonging to the opponent with

o. For s ∈ {p, o}, let us denote by Bs the set of basic actions

of the corresponding actor. We assume that the sets Bp and Bo

are disjoint, and we set B := Bp ∪Bo. Formally, ADTrees are

terms generated by the grammar (1), where s ∈ {p, o}, p̄ := o,

ō := p and bs ∈ Bs. The set of all ADTrees is denoted by T.

T s : bs | ORs(T s, . . . , T s) | ANDs(T s, . . . , T s) | Cs(T s, T s̄) (1)

To formally enumerate the situations allowing the proponent

to achieve the root goal of an ADTree, formal semantics are

used. The semantics employed in this paper represents such

situations using pairs (P,O) ∈ 2B
p × 2B

o

, where execution by

the proponent of all of the actions from P achieves the root

goal, provided that none of the actions from O is executed

by the opponent. In particular, if O = ∅, then the proponent

executing all of the actions from P achieves the root goal,

regardless of the behavior of the opponent. The set semantics

was first introduced in [7] and was then used in [2], where

quantitative analysis of ADTrees with repeated labels has been

studied. We recall the construction of the set semantics in

Definition 1. For the sets of pairs of sets of basic actions

X1, . . . , X� ⊆ 2B
p × 2B

o

, we set

�⊙
i=1

Xi := {(
�⋃

i=1

Pi,
�⋃

i=1

Oi) | (Pi, Oi) ∈ Xi}. (2)

Definition 1. The set semantics for ADTrees is a function

S : T → 22
B
p×2B

o

that assigns to each ADTree a set of pairs

of sets of labels, as follows

S (
bp

)
=

{({bp}, ∅)}, S (
bo

)
=

{(∅, {bo})},
S (

ORp(T p
1 , . . . , T

p
� )

)
=

�⋃
i=1

S(T p
i ),

S (
ANDp(T p

1 , . . . , T
p
� )

)
=

�⊙
i=1

S(T p
i ),

S (
Cp(T p

1 , T
o
2 )

)
= S(T p

1 )� S(T o
2 ).

S (
ORo(T o

1 , . . . , T
o
� )

)
=

�⊙
i=1

S(T o
i ),

S (
ANDo(T o

1 , . . . , T
o
� )

)
=

�⋃
i=1

S(T o
i ),

S (
Co(T o

1 , T
p
2 )

)
= S(T o

1 ) ∪ S(T p
2 ).

Given an ADTree T , each element of its set semantics, i.e.,

a pair (P,O) ∈ S(T ), is called a strategy.

Example 2. The set semantics of the tree T in Figure 1 is

S(T ) = {
({force, card, cash}, ∅),
({cam, eav, card, cash}, ∅),
({eav, card, cash}, {cover}),
({phish, log&trans}, {sms}),
({phish, uname, log&trans}, {sms}),
({phish, pwd, log&trans}, {spwd, sms}),
({uname, pwd, log&trans}, {spwd, sms}),
({phish, phone, log&trans}, ∅),
({phish, uname, phone, log&trans}, ∅),
({phish, pwd, phone, log&trans}, {spwd}),
({uname, pwd, phone, log&trans}, {spwd})}.

The strategy ({force, card, cash}, ∅) corresponds to the
situation where the attacker forces the victim to reveal their
PIN, steals their card, and withdraws the cash from an ATM.
The second component of this strategy, i.e., the empty set,
models that none of the defender’s actions is forbidden in
order for this scenario to succeed. Indeed, even if the defender
executes some (or all) of their three actions, the attacker
will still achieve the root goal. In contrast, the strategy
({uname, pwd, log&trans}, {spwd, sms}) depicts a situation
where some of the actions cannot be executed by the defender
so that the attack succeeds. Here, the attack is composed
of guessing the two credentials, logging in, and performing
the transfer. This attack can only be successful if the user
has not employed a strong password (which would make the
guessing impossible) and the SMS-based authentication is not
in place. However, if it is not certain whether the SMS-based
authentication is implemented or not, the attacker will need to
additionally steal the victims phone to be sure that the attack
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Figure 1: ADTree for stealing money from a bank account.

succeeds. This is for instance the case for the last strategy
({uname, pwd, phone, log&trans}, {spwd}).
B. Attribute domains for ADTrees

To fully benefit from the process of security modeling using

ADTrees, semantic analysis, that, e.g., exhibits possible attacks

against a system and highlights its vulnerabilities, should

be accompanied by a quantitative analysis of the modeled

scenario. A vast number of methods for quantitative analysis

of ADTrees exists [2], [8], [9], [10], [11], [12], [13]. Among

them, there is a technique based on so called attributes [1],

[13]. An attribute reflects some quantitative aspect of the

modeled scenario, e.g., the minimal cost of a successful attack.

Classically, to compute the value of an attribute on a given

tree, one assigns values to the nodes holding basic actions

of the actors (e.g., the minimal cost of their execution),

and then propagates these values up to the root of the tree,

using appropriate operations at the intermediate nodes. The

attributes and the bottom-up procedure described above can

be formalized with the help of attribute domains.

Definition 2 (Attribute domain [1]). An attribute domain for

an attribute α on ADTrees is a tuple

Aα = (Dα, OR
p
α, AND

p
α, OR

o
α, AND

o
α, C

p
α, C

o
α),

where Dα is a set, and for s ∈ {p, o} and OP ∈ {OR, AND},
1) OPsα is an unranked function on Dα,

2) Csα is a binary function on Dα.

Examples of some attribute domains for ADTrees are pre-

sented in Table I. Their detailed description can be found

in [13]. As discussed in [13], attributes are usually defined

w.r.t. (at least) one of the actors. For the sake of brevity, while

referring to an attribute from Table I, we will omit the actor

associated with the attribute. For instance, we will say minimal
cost instead of minimal cost for the proponent.

To formalize the bottom-up evaluation of an attribute α on

ADTrees, we use the notion of basic assignment for α, being a

function βα : B→ Dα assigning values of α to basic actions.

Definition 3 (Bottom–up attribute evaluation [1]). Let

(Dα, OR
p
α, AND

p
α, OR

o
α, AND

o
α, C

p
α, C

o
α) be an attribute domain, T

be an ADTree, and βα be a basic assignment for α. The value

of α for T under βα obtained via the bottom-up propagation

procedure, denoted αB(T, βα), is defined recursively as

αB(T, βα) :=⎧⎪⎨⎪⎩
βα(b), if T = b, b ∈ B,

OPsα(αB(T
s
1 , βα), . . . , αB(T

s
� , βα)), if T = OPs(T s

1 , . . . , T
s
� ),

Csα(αB(T
s
1 , βα), αB(T

s̄
2 , βα)), if T = Cs(T s

1 , T
s̄
2),

where s ∈ {p, o}, and OP ∈ {OR, AND}. The index B in the

notation αB(T, βα) refers to the “bottom-up” computation.

We illustrate the bottom-up procedure in Example 3. For

a detailed explanation of how to perform the bottom-up

evaluation of attributes on ADTrees in practice, we refer the

reader to the case studies described in [14], [15].

Example 3. Consider the tree T from Figure 1 and the at-
tribute domain Atime = (N∪{+∞},min,+,+,min,+,min)
for the minimal time attribute. Let βtime be the basic assign-
ment that assigns +∞ to the basic actions of the opponent
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Table I: Selected attribute domains for ADTrees.

Attribute Dα OR
p
α AND

p
α ORoα ANDoα C

p
α Coα

Min. cost for the proponent R�0 ∪ {+∞} min + + min + min
Max. probability for the proponent [0, 1] max · · max · max

Min. time for the proponent N ∪ {+∞} min + + min + min
Max. damage done by the proponent R�0 ∪ {−∞} max + + max + max

Min. skill level of the proponent N ∪ {+∞} min max max min max min
Proponent’s need for special equipment {0, 1} min max max min max min

Satisfiability for the proponent {false, true} ∨ ∧ ∧ ∨ ∧ ∨

and the values given in Table II to those of the proponent. By
propagating the values of the basic assignment up to the root,
using the operations specified by Atime, one obtains

timeB(T, βtime) =

min
(
min

(
360 + min(60,+∞), 10

)
+ 120 + 5,

min(100, 300 +∞) + min(100, 20) +
(
5 + min(+∞, 20)

))
= min(135, 145) = 135,

which is the minimal time necessary to achieve the root of T
when executing the strategy ({force, card, cash}, ∅).

Table II: Assignment of time and probability of success values.

Basic action b βtime(b) βprob(b)
cam 60 0.8
eav 360 0.5

force 10 0.3
card 120 0.2
cash 5 0.95
phish 100 0.6
pwd 300 2−48

uname 20 2−20

log&trans 5 0.95
phone 20 0.2

As the bottom-up computation simply propagates the values

assigned to the basic actions up to the root of the tree, it

involves a number of evaluations of the attribute domain’s op-

erations that is linear in the size of the tree. On the downside,

it was conceived under the assumption that the basic actions

are independent, and therefore might return distorted results

if there are repeated basic actions in a tree. This issue was

tackled in [2], where alternative methods for the computation

of attributes on ADTrees with possibly repeated basic actions

were proposed. These methods form the foundation of the

framework developed in this work. We summarize them in

the next section.

III. EVALUATION OF ATTRIBUTES IN THE PRESENCE OF

REPEATED BASIC ACTIONS

In Section III-A we recall a method of evaluation of

attributes that relies on the set semantics and present sufficient

conditions for the bottom-up evaluation to return correct

results in the presence of repeated basic actions. A method

bridging the bottom-up procedure and the evaluation on the

set semantics, as well as an important class of attribute

domains this method can be applied to, are briefly recalled

in Section III-B.

A. Attribute evaluation on the set semantics

Definition 4 (Attribute evaluation on the set seman-

tics [2]). Let α be an attribute with the attribute domain

(Dα, OR
p
α, AND

p
α, OR

o
α, AND

o
α, C

p
α, C

o
α), T be an ADTree, and βα

a basic assignment. The value of α for T under βα evaluated

on the set semantics, denoted αS(T, βα), is defined as

αS(T, βα) :=

(ORpα)(P,O)∈S(T )

(
Cpα

(
(ANDpα)b∈Pβα(b), (OR

o
α)b∈Oβα(b)

))
.

In the notation αS(T, βα), the index S refers to the computa-

tion on the “set semantics”.

Example 4. Let T and βtime be as in Example 3. The value
of the minimal time of attacking in T evaluated on the set
semantics of T (provided in Example 2) is

timeS(T, βtime) =min(135, 545,+∞,+∞,+∞,+∞,

+∞, 125, 145,+∞,+∞) = 125.

This value corresponds to the execution of the strategy
({phish, phone, log&trans}, ∅).

Observe that the value and the strategy obtained here are
different from the ones obtained when using the bottom-up
procedure, in Example 3. This is due to the presence of the
repeated basic action phishing — each of the two nodes
labeled phish are treated by the bottom-up procedure as
if they were representing two independent phishing attacks.
However, in reality, the attacker will get both — user name
and password — by launching the same phishing attack.

While the computation on the set semantics tackles the

repeated basic actions properly, its complexity is high, as it

requires creation of the set semantics, and the size of the latter

might be exponential in the number of nodes in the tree (due to

the � operation defined by formula (2)). Ideally, one would

like to use the fast bottom-up procedure, while being sure

that it will return the same result as the computation on the

set semantics. The equality of the results of the two methods

depends partially on the structure of the attribute domain under

consideration, and partially on the presence of repeated basic

actions in the tree, as stated in the following result.

Theorem 1 ([2], Theorem 1). Let T be an ADTree generated
by grammar (1) and let Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) be
an attribute domain, such that the operations ⊕ and ⊗
are associative and commutative, ⊕ is idempotent, and ⊗
distributes over ⊕. If
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• there are no repeated labels in T , or
• the operator ⊗ is idempotent,

thenαB(T, βα) = αS(T, βα) holds for any basic assignmentβα.

The attribute domains presented in Table I have the fol-

lowing feature in common. Each of them is of the form

(Dα,⊕,⊗,⊗,⊕,⊗,⊕), where (Dα,⊕,⊗) is a commutative

idempotent semiring. Recall that a commutative idempotent

semiring (R,⊕,⊗) is a set R equipped with two binary

operations that are associative and commutative, where ⊕ is

idempotent, ⊗ distributes over ⊕, and the absorbing element

of ⊗, denoted a⊗, is equal to the neutral element e⊕ of ⊕.

Remark 1. Whereas evaluation of attributes on attack trees is

fairly intuitive, the case of ADTrees requires some explanation

and care. In the case of attributes defined for the proponent,

in order to provide meaningful results, an interpretation of

actions of the opponent needs to be fixed, and reflected in

the values assigned to them by the basic assignment. In

particular, for a number of attribute domains of the form Aα =
(Dα,⊕,⊗,⊗,⊕,⊗,⊕), with (Dα,⊕,⊗) being a commutative

idempotent semiring, under the assumption that a given basic

action is executed by the opponent, the value assigned to it

is a⊗ (= e⊕), whereas the value assigned to the opponent’s

actions assumed not to be executed is e⊗. In consequence,

the actions not executed by the opponent do not influence

the computation of the attribute, while the executed actions

(unless countered by the proponent) absorb the results of the

computation corresponding to a given strategy (in the case of

the computation on the set semantics) or to a given subtree of

the tree (in the case of the bottom-up computation).

Example 5. An illustration for the above remark has already
been provided in Examples 3 and 4, where the value assigned
to the basic actions of the opponent was +∞. Observe that
+∞ is the absorbing element for the addition and the neutral
element for the minimum. Therefore, the result obtained in
Example 4 states that if the opponent executes all of their
actions, then the minimal time needed for achieving the root
goal of T is 125. This is the minimal time needed for the
execution of the strategy ({phish, phone, log&trans}, ∅).

B. Evaluation of non–increasing attributes

Among the attribute domains gathered in Table I, the

last three are of the form (Dα,⊕,⊗,⊗,⊕,⊗,⊕) satisfying

the assumptions of Theorem 1, with the operation ⊗ being

idempotent. Therefore, the bottom-up procedure can be used

to evaluate these attributes on ADTrees containing repeated

basic actions. While the remaining attribute domains do not

satisfy all of the assumptions of Theorem 1, some of them

enjoy a useful property that can be exploited for the purpose

of the attribute evaluation on ADTrees with repeated basic

actions. This property is captured by the following notion.

Definition 5 (Non-increasing attribute domain [2]). An at-

tribute domain Aα is non-increasing if Aα is of the form

(Dα,⊕,⊗,⊗,⊕,⊗,⊕), where (Dα,⊕,⊗) is a commutative

idempotent semiring, such that for every c, d ∈ Dα the

equality c⊕ (c⊗ d) = c holds1.

We note that from the attribute domains displayed in Table I,

only the maximal damage domain is not non-increasing. This

is because the equality max(c, c + d) = c does not hold for

every c, d ∈ R�0. Note that the minimal cost, minimal time and

the maximal probability2 attribute domains are non-increasing,

while they do not satisfy the assumptions of Theorem 1.

An alternative method for computing the value of an at-

tribute, a method that does not require creation of the set

semantics of the tree and yet is suitable for non-increasing

attribute domains and trees containing repeated basic actions,

has been proposed in [2]. The idea behind this method is to

temporarily modify the values assigned to the repeated basic

actions and perform the bottom-up procedure multiple times.

The results obtained in this way are eventually combined

in an appropriate manner, yielding the same result as the

computation on the set semantics. We refer the reader for

details to [2]. The following is implicit in the complexity

analysis of this method, as described in [2].

Theorem 2. Let T be an ADTree generated by grammar (1),
with n nodes and k repeated basic actions of the propo-
nent. Let Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) be a non–increasing
attribute domain such that a single bottom-up computation
αB(T, βα) is performed in time O(f(n)), for some function
f : N → R. Finally, let βα : B → Dα be a basic assignment
satisfying βα|Bo ≡ a⊗. Then, the value of αS(T, βα) can be
computed in time O (

max(n2 + f(n), 2kf(n))
)
.

We stress the fact that the complexity of the method from [2]

is exponential in the number of repeated basic actions of the
proponent. Contrarily, the worst-case size of the set semantics

is exponential in the total number of nodes.

IV. PARETO OPTIMIZATION

We now build upon the methods for the evaluation of

attributes on ADTrees with repeated labels recalled in the

previous section, and show how they can be exploited in

the case of the multi-parameter evaluation. We develop a

construction that, given a number of attribute domains, e.g.,

the domains for the minimal cost, the minimal time, and the

maximal probability attributes, results in an attribute domain

that can be used for determining strategies that optimize

all of these parameters at once. We specify what we mean

by “optimal” strategies in Section IV-A. Our construction is

presented in Section IV-B and its properties are examined

in Section IV-C. Section IV-D tackles the complexity issues

related to the application of our framework.

1This condition is equivalent to the inequality d⊗ c � c, where � stands
for the canonical partial order on the semiring Dα, i.e., the order defined by
d � c if and only if d⊕c = c. This is the reason for the name non-increasing.

2The domain ([0, 1],max, ·, ·,max, ·,max) is suitable for modeling the
probability of occurrence as well as the probability of success attributes.
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A. Pareto points

To compare different strategies while taking multiple at-

tributes related to their execution into account, we assign

vectors of values to the strategies. Our main focus is on the

attribute domains based on commutative idempotent semirings.

Therefore, every set Di considered in the remainder of this

paper is equipped with two binary operations ⊕i and ⊗i,

such that (Di,⊕i,⊗i) is a commutative idempotent semiring.

Vectors belonging to D1 × . . .×Dm will be marked in bold,

and if d is a vector, di will stand for its ith coordinate. We use

�i to denote the canonical partial order on Di, defined with

d �i d
′ iff d ⊕i d

′ = d′, for d, d′ ∈ Di. Intuitively, d �i d
′

iff d′ is preferred over d. To compare the elements of the set

D1×. . .×Dm, we use the following standard partial ordering3

induced by the orders �i.

Definition 6 (Dominance). For d,d′ ∈ D1 × . . . × Dm, we

say that d′ dominates d (equivalently, d is dominated by d′),
denoted d � d′, if the inequality di �i d′i holds for every

i ∈ {1, . . . ,m}.
Example 6. Consider the minimal time and the maximal
probability attribute domains (cf. Table I). Observe that the
former is based on the commutative idempotent semiring
(N∪{+∞},min,+), and the latter on the commutative idem-
potent semiring ([0, 1],max, ·). To choose strategies optimal
w.r.t. both attributes, we consider the set (N∪{+∞})× [0, 1].
Following Definition 6, a point (d1, d2) is dominated by a
point (d′1, d

′
2) if min(d1, d

′
1) = d′1 and max(d2, d

′
2) = d′2. In

other words, (d1, d2) � (d′1, d
′
2) if d1 ≥ d′1 and d2 ≤ d′2.

For example, let D = {(125, 0.114), (135, 0.057),
(145, 2−23)} be the set of points representing the minimal
time and the maximal success probability of the strategies
({phish, phone, log&trans}, ∅), ({force, card, cash}, ∅)
and ({phish, uname, phone, log&trans}, ∅), respectively,
under the assignment given by Table II. The points (145, 2−131)
and (135, 0.057) are both dominated by (125, 0.114).

If an element of D1 × . . . × Dm corresponding to the

value of a strategy (P,O) is dominated by the value of a

strategy (P ′, O′), e.g., the two strategies are equally likely to

succeed, but the cost of execution of (P ′, O′) is smaller, then

the proponent has no incentive to execute (P,O). Therefore,

the interesting elements of D1 × . . . ×Dm are the ones that

are not dominated by others.

Definition 7 (Pareto point). An element d ∈ D ⊆ D1 ×
. . .×Dm is called a Pareto point of D if it is not dominated

by any other element of D, i.e., if d � d′ holds for every

d′ ∈ D,d′ �= d.

It is known that if a partially ordered set is finite, then the

set of all of its Pareto points is unique (Corollary 1 in [16]).

3In the general case of partially ordered sets (not necessarily commutative
idempotent semirings) the definitions are analogous, cf. [16].

Definition 8 (Pareto frontier). The set of all Pareto points of

a finite set D ⊆ D1 × . . .×Dm, denoted max(D)4, is called

Pareto frontier of D.

Example 7. Consider again the two domains and the set D
from Example 6. As already observed, the point (125, 0.114)
dominates the remaining points of D. Thus, we have

max(D) = {(125, 0.114)}.
Our ultimate goal is to identify values of strategies that are

not dominated by values corresponding to the execution of

other strategies. In other words, the final result of our analysis

will be a set whose every element is a Pareto point.

Definition 9 (Pareto optimal set). A finite set D ⊆ D1× . . .×
Dm satisfying D = max(D) is called a Pareto optimal set.

We use P (D1 × . . . × Dm) to denote the set of all Pareto

optimal sets in D1 × . . .×Dm.

The considerations in Example 6 and 7 show that D defined

in Example 6 is not a Pareto optimal set.

B. Pareto attribute domains

We are now ready to develop a general method for com-

bining attribute domains into a single domain suitable for

determining Pareto optimal strategies in ADTrees.

For i ∈ {1, . . . ,m}, let Aαi
be the attribute domain

(Di,⊕i,⊗i,⊗i,⊕i,⊗i,⊕i). Given basic assignments βαi
for

the attributes αi, we create a new assignment, which assigns

the singleton {(βα1(b), . . . , βαm(b))} to each basic action

b ∈ B. Note that this singleton is a Pareto optimal set, and

it contains the optimal value corresponding to the execution

of b. Such singletons will be combined using appropriate

operations, eventually resulting in a Pareto optimal set of

values corresponding to strategies in an ADTree. We now

define these operations.

For d, d′ ∈ D1 × . . .×Dm, let

d⊗ d′ := (d1 ⊗1 d
′
1, . . . , dm ⊗m d′m), (3)

and, with a slight abuse of notation, let

D ⊗D′ := {d⊗ d′ : d ∈ D,d′ ∈ D′}, (4)

D ⊗̂D′ := max(D ⊗D′), (5)

D ⊕̂D′ := max(D ∪D′), (6)

for D,D′ ∈ P (D1 × . . .×Dm).

Example 8. Consider the minimal time and the maximal prob-
ability attribute domains, cf. Example 6. The operation defined
by formula (3) will in this case be d⊗d′ = (d1 + d′1, d2 · d′2) ,
for d,d′ ∈ (N ∪ {+∞})× [0, 1].

The intuition behind the above construction is the following.

Suppose that two sets D and D′ contain Pareto optimal values

corresponding to the achievement of two different subgoals by

the proponent in a tree with no repeated basic actions. If in

4The choice of the max(·) notation is dictated by the fact that Pareto points
are the maximal elements w.r.t. the dominance relation.
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order to achieve the root goal of T the proponent has to achieve

at least one of the two subgoals, then the set of Pareto optimal

values of achieving the root goal is computed as D ⊕̂D′:
this operation first gathers all the values corresponding to

the strategies achieving the root goal in a single set, and

then returns the Pareto frontier of this set. Similarly, if the

proponent had to achieve both of the aforementioned goals,

then the Pareto optimal values of strategies in T would be

obtained by computing D ⊗̂D′: here the result is the Pareto

frontier of the set of all possible values corresponding to

simultaneous achievement of the two subgoals.

Given the above construction, the values of Pareto opti-

mal strategies can be obtained using the attribute domain

(P (D1 × . . . × Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂). Throughout the rest

of the paper, we refer to the attribute domains resulting from

the above construction as Pareto attribute domains.

Definition 10 (Pareto attribute domain). A Pareto attribute
domain is an algebraic structure of the form (P (D1 ×
. . . × Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂), for some attribute domains

Aαi = (Di,⊕i,⊗i,⊗i,⊕i,⊗i,⊕i), for i ∈ {1, . . . ,m}, with

(Di,⊕i,⊗i) being commutative idempotent semirings, and

with ⊕̂ and ⊗̂ defined by formulas (3)–(6). We say that the

Pareto attribute domain (P (D1×. . .×Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂)
is induced by the attribute domains Aαi

, for i ∈ {1, . . . ,m}.
Theorem 3 presents our main results about the Pareto

attribute domains.

Theorem 3. A Pareto attribute domain (P (D1 × . . . ×
Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂) induced by the attribute domains Aαi ,
i ∈ {1, . . . ,m}, is an attribute domain (in the sense of
Definition 2), and (P (D1×. . .×Dm), ⊕̂, ⊗̂) is a commutative
idempotent semiring.

Furthermore, if the domains Aαi , i ∈ {1, . . . ,m}, are non-
increasing, then the induced Pareto attribute domain is also
non-increasing.

Before presenting its proof, we briefly discuss the immediate

consequences of Theorem 3. The first of them follows from

Theorem 1: if there are no repeated basic actions in an

ADTree, then the evaluation of a number of attributes having

domains based on commutative idempotent semirings can be

performed using a single bottom-up procedure. Second, if a

tree contains repeated basic actions and the Pareto attribute

domain is induced by non-increasing attribute domains, then,

by Theorem 2, the algorithm presented in [2] can be applied,

and the values of optimal strategies can still be obtained

without the need of constructing the set semantics of the entire

tree. Third, note that if a Pareto domain is induced by attribute

domains whose multiplicative operations are idempotent, the

operation ⊗̂ is itself idempotent. Therefore, again due to

Theorem 1, in such a case the evaluation of a Pareto attribute

can be performed using a single bottom-up procedure.

The above discussion is summarized in the following theo-

rem, which captures the main contributions of our work.

Theorem 4. Let T be an ADTree generated by grammar (1)

and let APar = (P (D1 × . . . × Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂) be a
Pareto attribute domain induced by the attribute domains Aαi

,
i ∈ {1, . . . ,m}. Then
• if there are no repeated labels in T , then the equality

ParB(T, βPar) = ParS(T, βPar) holds for any basic as-
signment βPar,

• if the operator ⊗i is idempotent, for every
i ∈ {1, . . . ,m}, then the equality ParB(T, βPar) =
ParS(T, βPar) holds for any basic assignment βPar,

• if Aαi
is a non-increasing attribute domain, for every

i ∈ {1, . . . ,m}, and βPar is a basic assignment satisfying
βPar|Bo ≡ a

̂⊗, then the value of ParS(T, βPar) can be
computed using the method of [2].

C. Proof of Theorem 3

Our proof of Theorem 3 exploits some basic properties

of the dominance relation and of the Pareto frontier, stated

in Lemma 1–4. Recall that, for every i ∈ {1, . . . ,m},
(Di,⊕i,⊗i) is an idempotent commutative semiring and that

the dominance relation � in D1 × . . .×Dm is defined w.r.t.

canonical partial orders �i.

Lemma 1. Let d,d′ and d′′ be elements of D1 × . . .×Dm.
Then,

1) if d′ � d′′, then d⊗ d′ � d⊗ d′′,
2) if the relation d⊗id

′ �i d
′ holds for every i ∈ {1, . . . ,m}

and for every d, d′ ∈ Di, then d⊗ d′ � d′.

Proof: Since for every i ∈ {1, . . . ,m}, (Di,⊕i,⊗i) is

an idempotent commutative semiring, therefore, for d, d′, d′′ ∈
Di we have that if d′ �i d

′′, then

d⊗i d
′′ = d⊗i (d

′ ⊕i d
′′) = (d⊗i d

′)⊕i (d⊗i d
′′),

meaning that d ⊗i d
′ �i d ⊗i d

′′. Together with definition of

the dominance relation, this implies the first statement.

The second statement follows immediately from de defini-

tion of d⊗d′, defined by (3) on page 7, and the definition of

the dominance relation.

Lemma 2. If A and B are finite subsets of D1 × . . .×Dm,
then

1) max(A ∪B) ⊆ max(A) ∪max(B),
2) max(A⊗B) ⊆ max(A)⊗max(B).

Proof: For a proof of the first of the two statements, let

d ∈ max(A ∪ B). Since d is not dominated by any other

element of A∪B, it follows that if d ∈ A, then d ∈ max(A),
and if d ∈ B, then d ∈ max(B). Hence, d ∈ max(A) ∪
max(B).

Now, let d = dA⊗dB ∈ max(A⊗B) for some dA ∈ A and

dB ∈ B. Towards a contradiction, suppose that d /∈ max(A)⊗
max(B). Then, there exist elements d′A ∈ max(A), d′B ∈
max(B), such that d′A dominates dA and d′B dominates dB ,

with d′A �= dA or d′B �= dB . Since d /∈ max(A) ⊗max(B),
it follows that d �= d′A ⊗ d′B . Furthermore, by Lemma 1, it

holds that d � d′A ⊗ d′B . This contradicts the choice of d as

a Pareto point in A⊗B.
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Lemma 3. If A and B are finite subsets of D1 × . . .×Dm,
then max(max(A) ∪B) = max(A ∪B).

Proof: Let d ∈ max(A∪B). Observe that d ∈ max(A)∪
B, by Lemma 2. Furthermore, since d is not dominated by any

of the points in A∪B, it is also not dominated by any of the

points in max(A)∪B. This proves that max(max(A)∪B) ⊇
max(A ∪B).

For a proof of the inclusion max(max(A)∪B) ⊆ max(A∪
B), let d be a Pareto point in max(A) ∪ B. Suppose that d
is not a Pareto point in A∪B. Then there exists d′ ∈ A∪B,

d′ �= d, such that d � d′. Since d is not dominated by any

element of B, it follows that d′ ∈ A. But then, since � is

a transitive relation, every d′′ ∈ max(A) that dominates d′

dominates also d. This contradicts the choice of d.

Lemma 4. If A and B are finite subsets of D1 × . . .×Dm,
then max(max(A)⊗B) = max(A⊗B).

Proof: For a proof of the inclusion max(max(A) ⊗
B) ⊆ max(A ⊗ B), let d ∈ max(max(A) ⊗ B). Towards

a contradiction, suppose that d is not a Pareto point in A⊗B.

This implies that there exist elements dA ∈ A and dB ∈ B
such that d � dA⊗dB and d �= dA⊗dB . Let d′A ∈ max(A)
be such that dA � d′A. Then

d � dA ⊗ dB � d′A ⊗ dB ,

by Lemma 1. Since d′A⊗dB ∈ max(A)⊗B, this contradicts

the choice of d.

Assume now that d is a Pareto point in A ⊗ B. Observe

that d ∈ max(A)⊗B, by Lemma 2. Since d is not dominated

by any element of A⊗B, it is in particular not dominated by

any element of max(A) ⊗ B. Therefore, d is a Pareto point

in max(A)⊗B.

We are now ready to prove Theorem 3.

Proof. We begin with proving that (P (D1× . . .×Dm), ⊕̂, ⊗̂)
is a commutative idempotent semiring. Since a binary

associative operation can be modeled with an unranked

operator, this immediately implies that (P (D1 × . . . ×
Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂) is an attribute domain.

For A ∈ P (D1 × . . .×Dm), we have

A ⊕̂A = max(A ∪A) = max(A) = A,

i.e., the operation ⊕̂ is idempotent. It is easy to verify that both

⊕̂ and ⊗̂ are commutative and that a
̂⊗ = {(a⊗1

, . . . , a⊗m
)}.

Since a⊗i
= e⊕i

for every i ∈ {1, . . . ,m}, together with the

definitions of canonical partial orders and Definition 6 this

implies that a
̂⊗ is dominated by every other element of D1×

. . .×Dm. Therefore, for any D ∈ P (D1×. . .×Dm), we have

that D ⊕̂ a
̂⊗ = max(D ∪ a

̂⊗) = max(D) = D. This proves

that e
̂⊕ = a

̂⊗.

The associativity of the two operations follows from

Lemma 3 and 4. Namely, we have

(A ⊕̂B) ⊕̂C = max(max(A ∪B) ∪ C) = max(A ∪B ∪ C)

= max(A ∪max(B ∪ C)) = A ⊕̂(B ⊕̂C)

and

(A ⊗̂B) ⊗̂C = max(max(A⊗B)⊗ C) = max(A⊗B ⊗ C)

= max(A⊗max(B ⊗ C)) = A ⊗̂(B ⊗̂C).

We prove that ⊗̂ distributes over ⊕̂ in a similar way

A ⊗̂(B ⊕̂C) = max(A⊗max(B ∪ C))
Lemma 4
=

max(A⊗ (B ∪ C)) = max(A⊗B ∪A⊗ C)
Lemma 3
=

max(max(A⊗B) ∪max(A⊗ C)) = (A ⊗̂B) ⊕̂(A ⊗̂C).

The above reasoning proves that (P (D1× . . .×Dm), ⊕̂, ⊗̂) is

a commutative idempotent semiring and that (P (D1 × . . . ×
Dm), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂) is an attribute domain.

Assume now that the domains (Di,⊕i,⊗i,⊗i,⊕i,⊗i,⊕i)
are non-increasing, for i ∈ {1, . . . ,m}. To prove the second

statement of the theorem, it remains to prove that for every

A,B ∈ P (D1 × . . . × Dm) the equality A ⊕̂(A ⊗̂B) = A
holds. Let A,B ∈ P (D1× . . .×Dm). Observe that, since the

domains (Di,⊕i,⊗i,⊗i,⊕i,⊗i,⊕i) are non-increasing, the

second item of Lemma 1 implies that max(A ∪ (A ⊗ B)) =
max(A). Furthermore, since A is a Pareto optimal set, the

equality max(A) = A holds. Therefore, we have

A ⊕̂(A ⊗̂B) =max(A ∪max(A⊗B))
Lemma 3
=

max(A ∪ (A⊗B)) = max(A) = A.

The proof of Theorem 3 is complete.

D. Complexity issues

Theorems 1–3, summarized in Theorem 4, provide a general

framework for a convenient multi-objective analysis of scenar-

ios modeled with ADTrees. Before illustrating its applicability,

we discuss its complexity.

We note that even in the simplest case of attack trees

with a single minimal cost attribute domain, the problem of

determining a cheapest strategy is known to be NP-hard [17].

Theorems 1 and 2 indicate that this difficulty originates from

the presence of repeated basic actions of the proponent. One

could therefore hope for the multi-objective optimization to

also be easier in trees with no repeated basic actions. Unfor-

tunately, this is not necessarily the case, due to the number of

possible Pareto optimal strategies having unique values. The

following construction illustrates this issue.

Example 9. Let m ≥ 2 be an even integer and let
T = ANDp(ORp(b1, b2), OR

p(b3, b4), . . . , OR
p(bm−1, bm)).

Consider a Pareto domain induced by m minimal cost attribute
domains and a basic assignment that assigns to the action bi
a vector admitting 1 on the ith coordinate and 0 on each of
the remaining m−1 coordinates. Then, every pair of the form
({bi1 , bi2 , . . . , bim/2

}, ∅), where ij ∈ {2j−1, 2j}, is a Pareto
optimal strategy in T , and the value corresponding to such a
strategy is unique. The number of such strategies is 2m/2.

If the number of domains inducing a Pareto domain is

small, then the time and space complexities of the methods

of attribute evaluation depend mostly on two factors: the size
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of the set semantics and the number k of repeated basic actions

of the proponent in the considered tree. In the case when k is

big and the number of strategies is small, it is better to use

the computation on the set semantics. This is obviously due

to the fact that the time complexity of the method of [2] is

exponential in k, cf. Theorem 2. If k is small and the number

of strategies in the tree is big, then the method of [2] will

perform better. This intuition is supported by the experimental

results presented in Section V-B. These results provide also

some indications towards making the meaning of the words

“big” and “small” more precise for particular use cases.

In order to choose the method of attribute evaluation that

would perform better for a given tree, one should therefore

count the repeated basic actions of the proponent, and estimate

the number of strategies, without creating the set semantics it-

self. The former is a straightforward task that can be performed

quickly. To achieve the latter, a single bottom-up computation

of a specific attribute suffices, as described in the following

lemma.

Lemma 5. Let SetSemBound be an attribute with the attribute
domain ASetSemBound = (N,+, ·, ·,+, ·,+), where · is the
multiplication operator. Let βSetSemBound ≡ 1 be a basic
assignment of SetSemBound. Then the inequality

| S(T )| ≤ SetSemBoundB(T, βSetSemBound) (7)

holds for every ADTree T generated by grammar (1).

Proof: The proof is based on the proof of Theorem 1

from [2]. It relies on the fact that the set semantics can be seen

as an attribute for ADTrees, having the attribute domain AS =

(DS ,∪,�,�,∪,�,∪), where DS = 22
B
p×2B

o

, and where �
is defined by formula (2). For the basic assignment

βS(b) =

{{({b}, ∅)} if b ∈ Bp,{(∅, {b})} otherwise,

it holds that S(T ) = SB(T, βS), by Definition 1. Note

that the algebraic structure (DS ,∪,�) constitutes a com-

mutative idempotent semiring. Therefore, the operation �
distributes over ∪, and so the result of the bottom-up procedure

SB(T, βS) can be represented as

SB(T, βS) = (βS(b11)� βS(b12)� . . .� βS(b1k1
))∪

. . .

∪ (βS(bi1)� βS(bi2)� . . .� βS(biki
))∪

. . .

∪ (βS(bl1)� βS(bl2)� . . .� βS(blkl
)).

(8)

Similarly, since (N,+, ·) is a commutative semiring, the result

of the bottom-up computation of the SetSemBound attribute

can be represented as

SetSemBoundB(T, βSetSemBound) = (1 · 1 · . . . · 1)+
. . .

+ (1 · 1 · . . . · 1)+
. . .

+ (1 · 1 · . . . · 1).

(9)

By applying the distributivity rule to the expression

SetSemBoundB(T, βSetSemBound) in the same order as it was

applied to SB(T, βS), one obtains representation (9) whose

ith term corresponds to the ith term of (8), i.e., the ith term

of (9) is a product of ki ones.

From definitions of the basic assignment βS and the op-

eration � it follows that, for every i ∈ {1, . . . , n}, the ith
term

βS(bi1)� βS(bi2)� · · · � βS(biki
)

of representation (8) is a set consisting of exactly one pair

of sets. Let us denote this term with {(Pi, Oi)}. Observe that

since S(T ) = SB(T, βS), we have (Pi, Oi) ∈ S(T ) for every

i, and, conversely, for every (P,O) ∈ S(T ) there exists at least

one i such that (P,O) = (Pi, Oi). Therefore, the number of

terms of (8) is at least | S(T )|. Since this number is equal to

SetSemBoundB(T, βSetSemBound), by (9), the claim follows.

Lemma 5 shows that an upper bound on the number of

strategies can be found in time linear in the size of the tree.

We note that the bound provided by the inequality (7) is tight,

as it can be observed in Table III. Nevertheless, the difference

between the bound and the actual size of the set semantics

can be arbitrarily large. For instance, there is one element in

the set semantics of the tree ANDp(ORp(b, b), . . . , ORp(b, b)),
while the bound is equal to 2 to the power equal to the number

of OR nodes.

From the practical point of view, having an easily com-

putable formula for a non-trivial lower bound on the size of

the set semantics would be more useful. We finish this section

by noting that such a lower bound cannot be computed using

a bottom-up procedure that would simply propagate natural

numbers throughout the tree. This is the case because such a

procedure would have to yield 1 for every attack tree in which

all the leaf nodes bear the same label, irrespective of the tree

structure. To obtain a non-trivial lower bound one would have

to propagate, along a number, some additional information

about the repeated basic actions seen so far in the tree.

V. EMPIRICAL VALIDATION

In order to validate our approach, we have created a Python

package [18] for manipulating ADTrees. Among other func-

tionalities, the package supports the usage of Pareto domains.

In Section V-A, we show the practicality of our approach

on a real-world case study. Experimental results illustrating

the approach’s scalability and the differences between the two

methods for attribute evaluation are presented in Section V-B.

209



reconfigure power meter
via optical port

have physical access
to the power meter

reconfigure power meter
using appropriate

software/tools

reconfigure power meter
using unauthorized

software/tools

social engineered technician
reconfigures power meter

using authorized
software/tools

get employed as
field technician and

reconfigure power meter

get employed as
field technician

enforce policy
of performing thorough

background checks
on employees

reconfigure power meter
using authorized

software/tools

Figure 2: The top part of ADTree for reconfiguring a power meter.

A. Case study

Electricity theft is a serious issue [19], [20] that generates

huge financial losses yearly across the world [21]. In this study,

we consider the problem, analyzed by the U.S. Department of

Energy in [5], where a customer (an attacker) reconfigures

their power meter in order to lower the recorded electricity

consumption of their household. A detailed description and

further analysis of the considered scenario can be found

in [15]. Here we focus on multi-parameter evaluation using

Pareto domains.

The starting point for our analysis was an attack tree

described in Section 2.3 of [5]. We complemented it with

additional attack vectors and possible countermeasures, based

on [22], [23], [24]. The resulting ADTree contains 68 nodes

and 5 repeated basic actions. Its main characteristics relevant

for this study are gathered in Table III, where n is the

total number of nodes and k is the number of repeated

basic actions of the proponent. The top part of the tree is

Table III: Parameters of ADTree considered in the case study.

n k | S(T )|
| S(T )|

bound of
Lemma 5

68 5 33 33

illustrated in Figure 2 and the entire model is accessible at

https://github.com/wwidel/pareto-case-study.

Our goal is to analyze the impact of the deployment of

different countermeasures mitigating the problem of electricity

theft. To perform such a “what-if” analysis, we consider

five scenarios (S1 − S5) listed in Table IV, where different

countermeasures have been implemented. Each of the five

scenarios is analyzed using the Pareto attribute domain induced

by the domains for minimal cost, minimal cybersecurity skill
level, minimal technical skill level, minimal social skill level,
and minimal time attributes. The values they can attain and the

meaning behind them are described in Table V. The induced

Pareto domain is
(
P (D), ⊕̂, ⊗̂, ⊗̂, ⊕̂, ⊗̂, ⊕̂ )

, where

D =
(
R�0 ∪ {+∞}

)× {0, 1, 2, 3,+∞}3
× {0, 10, 102, 103, 104,+∞},

and operations ⊗̂, ⊕̂ are given by equations (4)–(6), where ⊗
is defined for d,d′ ∈ D by

d⊗ d′ := (d1 + d′1,max(d2, d
′
2), . . . ,max(d5, d

′
5)).

Values for basic actions of the attacker, gathered in Table VI,

were assigned jointly by seven participants presenting basic

knowledge of the power meter technology and having access

to relevant sources [5], [22], [23], [24]. A detailed description
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Table IV: The Pareto optimal values in scenarios S1, S2, S3, S4, and S5 (see Table VII for the meaning of d4, d5, d7).

Scenario S1 S2 S3 S4 S5

Countermeasures implemented none d7 d4 d4, d7 d4, d5, d7

Pareto optimal values

(14, 1, 2, 0, 102)
(0, 0, 1, 3, 102)
(0, 0, 0, 3, 103)
(0, 0, 2, 1, 103)

(14, 1, 2, 0, 102)
(0, 0, 1, 3, 102)
(0, 0, 0, 3, 103)

(14, 1, 2, 0, 102)
(0, 0, 1, 3, 102)
(0, 0, 0, 3, 103)
(0, 0, 2, 1, 103)

(14, 1, 2, 0, 102)
(0, 0, 1, 3, 102)
(0, 0, 0, 3, 103)

(14, 1, 2, 0, 102)
(0, 0, 1, 3, 102)
(0, 0, 0, 3, 103)

Table V: Attributes for the case study of power meter tampering

Attribute Values Attribute domain
Minimal cost Non-negative real values (in euros) (R�0 ∪ {+∞},

min,+,+,min,+,min)
Minimal cybersecurity skill
level

None (0): no cybersecurity-related skills required
Basic (1): requires basic cybersecurity knowledge and skills
Advanced (2): requires employing advanced cybersecurity-related skills,
e.g., executing a MiTM attack on a protocol
Expert (3): requires employing cybersecurity-related skills available to
few experts, e.g., return-oriented programming or fault attack on AES
Impossible (+∞): beyond the known capability of today’s human beings

({0, 1, 2, 3,+∞},
min,max,max,min,max,min)

Minimal technical skill level None (0): no technical skills required
Basic (1): requires basic technical skills, e.g., finding information online
Advanced (2): requires advanced technical skills, available for graduates
of technical vocational schools
Expert (3): requires technical skills available to experienced engineers
Impossible (+∞): beyond the known capability of today’s human beings

({0, 1, 2, 3,+∞},
min,max,max,min,max,min)

Minimal social skill level None (0): does not involve social interactions
Basic (1): requires basic social interactions, e.g., obtaining information via
a conversation
Advanced (2): requires convincing or tricking someone into doing some-
thing they would not do otherwise
Expert (3): requires convincing or tricking someone into doing something
punishable by law
Impossible (+∞): beyond the known capability of today’s human beings

({0, 1, 2, 3,+∞},
min,max,max,min,max,min)

Minimal time Instantaneous (0): can be performed by the actor in less than a minute,
Quick (10): can be performed by the actor in less than an hour, but not
less than a minute
Slow (102): can be performed by the actor in less than a week, but not
less than an hour
Very slow (103): can be performed by the actor in less than six months,
but not less than a week
Extremely slow (104): can be performed by the actor within a human
lifetime, but not less than six months
Impossible (+∞): not doable within a human lifetime

({0, 10, 102, 103, 104,+∞},
min,max,max,min,max,min)

of the assignment process can be found in [15]. Since for

our tree the bound on the size of the set semantics provided

by Lemma 5 is small, we compute Pareto optimal values,

presented in Table IV, using evaluation on the set semantics.

One can draw several conclusions from Table IV. First,

since the optimal values obtained for scenarios S1 and S3

are the same, it follows that implementation of only the

countermeasure d4 does not help with countering the Pareto

optimal attacks. Second, the values obtained for scenarios S2

and S4 imply that implementing both d4 and d7 is as effective

as implementing d7 only. Third, even if the defender performs

actions d4, d5, and d7 (scenario S5), most of the Pareto optimal

strategies achieving the root goal in scenario S1 are still

available to the attacker. Knowing the values corresponding

to strategies that achieve the root goal in particular scenarios,

as well as the capabilities of the attacker and constraints on

available resources, might help a security expert in making

an informed decision on which security measures should be

implemented. Finally, Table IV illustrates also the importance

of the multi-parameter analysis: in all of the scenarios there is

an uncountered Pareto optimal strategy of non-zero cost. This

strategy could have been overlooked if the tree was analyzed

only with respect to the cost attribute.

Using our Python implementation, the computation of both

Pareto optimal values and the corresponding strategies took

no more than 0.05 seconds, for each of the five scenarios.

Together with the results presented in Section V-B, this

suggests that our approach is extremely efficient for analysis

of ADTrees corresponding to real-world scenarios.

B. Practical evaluation

To verify that the quantitative analysis of ADTrees using

Pareto attribute domains is applicable for trees describing even

more complex scenarios than the one from Section V-A, we

have tested our implementation on a number of automatically

generated trees. Full description of the experimental setup, as

well as all the sources necessary to reproduce the results are

available at https://github.com/wwidel/pareto-tests. The tests

have been performed on a Windows machine running Intel

Core i7–5600U CPU at 2.60 GHz dual core with 16 GB of
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Table VI: Basic assignment for the actions of the proponent in the case study of power meter tampering.

Basic action of the proponent Minimal
cost

Minimal
cyberse-
curity
skill
level

Minimal
techni-
cal skill

level

Minimal
social
skill
level

Minimal
time

acquire information from dumpster diving 0 0 0 0 1000

acquire information from public Internet source 0 0 1 0 100

bribe technician to reconfigure the power meter 500 0 0 3 10

bribe technician to reveal power meter credentials 300 0 0 2 10

buy optical probe 71.2 0 1 0 100

coerce technician into reconfiguring the power meter 0 0 0 3 100

coerce technician into revealing power meter credentials 0 0 0 3 10

collect information by exchanging gossips with employees 0 0 0 1 1000

enter power meter credentials 0 0 0 0 0

extract credentials 0 0 1 0 10

find and download software for hacking power meters 0 1 1 0 10

get employed as field technician 0 0 2 1 1000

get employed as intern by the energy provider 0 0 1 1 1000

have physical access to the power meter 0 0 0 0 0

intercept credentials 0 2 1 0 0

locate encrypted credentials in the dump 0 2 2 0 100

make the data dump from hardware component 0 1 3 0 100

make optical probe 14 0 2 0 100

monitor communications between hardware components 0 1 2 0 100

perform brute force attack 0 1 2 0 100

provide power meter credentials 0 0 0 0 0

reconfigure power meter using authorized software/tools 0 0 1 0 10

reconfigure power meter using unauthorized software 0 0 2 0 10

select technician for obtaining power meter credentials 0 0 0 0 100

select technician for reconfiguring power meter 0 0 0 0 100

technician reconfigures power meter using authorized software/tools 0 0 0 0 10

trick technician into revealing power meter credentials 0 0 0 2 100

use optical probe to establish connection to the meter via the optical port 0 0 1 0 10

Table VII: Basic assignment for the actions of the opponent in particular scenarios of the case study of power meter tampering,

with 0 = {(0, 0, 0, 0, 0)} and +∞ = {(+∞,+∞,+∞,+∞,+∞)} (see Remark 1).

Basic action of the opponent S1 S2 S3 S4 S5

d1 =enforce policy of using strong passwords 0 0 0 0 0
d2 = enforce policy to minimize Internet disclosure 0 0 0 0 0
d3 = enforce policy to minimize leakage of physical artefacts 0 0 0 0 0
d4 = limit the number of possible invalid authentication attempts 0 0 0 0 +∞
d5 = password authentication for establishing connection 0 0 +∞ +∞ +∞
d6 = require authentication for introducing changes in power consumption configuration 0 0 0 0 0
d7 = thorough background check before hiring new employees 0 +∞ 0 +∞ +∞
d8 =track popular social engineering attacks and warn personnel 0 0 0 0 0

RAM. The main goal of our experiment was to compare how

the two methods perform, depending on the characteristics of

the analyzed trees. An excerpt from the obtained results is

presented in Table VIII.

For a tree T with n nodes and k repeated basic actions of

the proponent, two Pareto domains were considered. Each of

them is induced by m domains for minimal cost, one domain

for minimal difficulty, and one domain for minimal time. Basic

assignments β were constructed under the assumption that the

opponent performs all of their actions. Values assigned to the

basic actions of the proponent were generated randomly. For

the computation of Pareto frontiers, the naive method, where

each element of a set is compared with the other elements,

coordinate by coordinate, was used. We have measured the

time of the computation of the Pareto optimal values using the

evaluation on the set semantics ParS(T, β) (which includes the

time needed for the construction of the set semantics itself)

and using the method of [2] applied to Pareto domains. Each

time value presented in Table VIII is an average over twenty

measurements.

Table VIII is partitioned into three parts. For the trees

from the first part, the performance of the two methods is

comparable. For the trees presented in the second part, the

computation on the set semantics outperforms the method

of [2], while the opposite is true for the third part of the table.

We would like to point out the following observations.

1) The attack trees from the second part of Table VIII have

small set semantics, while having a significant number of

repeated basic actions.

2) The trees tree10 and tree13 have large set semantics,

while having a very low number of repeated basic actions.

3) The running times for trees tree12 and tree30 differ
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significantly, while the two trees have the same number of

nodes and repeated basic actions, and small set semantics.

However, there are more Pareto optimal values under the

basic assignments generated for tree30. This illustrates

the impact of the actual values assigned to the basic
actions, which translates into different numbers of Pareto

optimal values, on the running time.

VI. RELATED WORK

We limit this section to the approaches concerned with

multi-parameter quantitative evaluation and ADTrees with

repeated labels. The goal is to compare our framework with

other existing techniques. For a more exhaustive description of

the state of the art on attack tree-based modeling and related

tools the reader is referred to [25], [26], and [27].

One way of addressing the problem of multi-parameter

quantitative analysis of security using attack tree-based models

is to construct an attribute being a combination of several rele-

vant elementary parameters. An example of such an attribute is

the expected outcome of the attacker, considered by Jürgenson

and Willemson in the context of attack trees in [28]. The

expected outcome represents monetary profit of the attacker,

expressed in terms of the gain of the attacker in case the

attack succeeds, the costs of the attack, its success probability,

as well as the probability of being caught, and the related

penalties. This work uses Boolean functions as the underlying

formal model of attack trees. The expected outcome’s value

is computed for all valuations satisfying the Boolean function

representing an attack tree, and the solution with the highest

value is retained as the outcome that the attacker can get

from performing an attack. Since the logical operators used by

Boolean functions are idempotent, the treatment of repeated

labels in [28] is similar to the one that we admit in the current

work. However, due to the necessity of checking all relevant

valuations, the complexity of the solution from [28] is higher

than the complexity of our framework.

In [29], Edge et al. discuss how to combine the probability,

expected cost, and impact parameters into a metrics called

risk. The individual parameters are propagated using the

standard bottom-up approach, and the risk at each node of

an attack tree is then computed according to the formula

(probability/cost) · impact. A simple analysis of the bottom-

up propagation rules for probability and cost used in [29]

implies that they are not suited for trees where a basic action

contributes to several attacks.

More recently, several approaches exploiting model check-

ing techniques have been proposed to address the problem of

multi-parameter quantitative evaluation on attack tree-based

models. The focus of Aslanyan and Nielson in [30] is on

attack trees with the exact cost and the probability parameters.

Attack trees are transformed into Markov decision processes

with reward structure, and erPCTL5 queries, such as “what is

the maximum probability of an attack with the cost at most c?”

are answered using probabilistic model checking. Compared

5erPCTL stands for probabilistic computation tree logic with exact rewards.

to our framework, the approach developed by Aslanyan and

Nielson deals with two-parameter evaluation (exact cost and

probability) only and similarly to [29], it does not seem to be

suited for attack trees containing repeated labels.

In [10], Kumar et al. consider attack trees with basic actions

decorated with cost structures modeling time, skills, damage,

and difficulty. Attack trees are translated into priced timed

automata which are then given to the Uppaal Cora model

checker where they are queried for quantitative properties of

interest expressed with weighted CTL queries. The objective

is to provide an effective way of computing the necessary

resources (e.g., time, skills) and the corresponding attack paths

leading to the achievement of the root goal. This solution

allows the authors to deal with two-parameter optimization

using an iterative procedure. The method is suitable for

attack trees with repeated basic actions, but does not tackle

evaluation on ADTrees nor the probability attribute. In his

Ph.D. thesis [31], Kumar automatizes this procedure with the

help of ATTop [32], but does not provide time measurements.

Interestingly, for the attack tree considered in [32], having

12 nodes, 2 elements in the set semantics, and no repeated

basic actions, the authors state that ATTop needed more than

6 seconds for computing an attack of minimal time, i.e., for

performing the first step of the iterative method for determin-

ing Pareto optimal attacks. In the light of the results presented

in Section V, it thus seems that our solution outperforms the

method of [10] (on inputs suitable for both methods).

Timed automata-based model checking has also been ap-

plied for multi-parameter analysis of ADTrees. In [8] and [9],

the authors encode the attacker’s and the defender’s behav-

ior as a network of timed automata in order to evaluate

quantitative queries dependent on time, e.g., determining the

probability of a successful attack or the expected cost of

succeeding within a given time. The evaluation is ensured by

the Uppaal model checker. Contrary to the approach presented

in [10], the attacker of [8] may try executing their actions

several times, with a certain probability. Whereas the Uppaal-

based approach of [8] is tailored to specific attributes, namely

cost, probability, and time, the solution we propose can be

applied to a wide class of attributes whose domains satisfy

the assumptions of Theorem 3.

Model checking of ADTrees decorated with the cost of

attempted execution and the success probability is also the

focus of Aslanyan et al. in [11]. ADTrees are translated

into stochastic two-player games and one- or multi-parameter

queries (expressed in probabilistic alternating-time temporal

logic with rewards), such as, “is there an attack with the

expected cost at most c and the success probability at least

p?” are answered using the PRISM-games tool. In addition,

the model checking algorithms implemented in PRISM-games

allow to obtain a Pareto curve illustrating the trade-off between

the attack success probability and its expected cost over

possible strategies of the attacker. To capture temporal or

causal dependencies between the goals of the actors, sequential

conjunctive and sequential disjunctive refinements have been

added to ADTrees to complement the two standard refinements

213



Table VIII: Running times of the methods for some trees with n nodes and k repeated basic actions of the proponent.

Parameters Time in sec

Name of
file storing

T
n k | S(T )|

| S(T )|
bound of
Lemma 5

m

Number of
Pareto

optimal
values

ParetoS(T, β) Method of [2]

tree04 31 7 352 1024
1 3 0.02 0.02
5 20 0.11 0.05

tree08 37 9 928 4096
1 2 0.07 0.09
5 30 0.69 0.23

tree12 43 11 2436 16384
1 1 0.27 0.4
5 72 4.97 3.2

tree20 36 4 832 1024
1 2 0.04 0.01
5 12 0.07 0.01

tree29 41 10 640 1280
1 2 0.03 0.25
5 304 13.32 65.05

tree30 43 11 704 1408
1 3 0.03 0.67
5 184 6.52 67.51

tree31 45 12 768 1536
1 2 0.04 1.12
5 128 2.92 53.58

tree32 47 13 832 1664
1 4 0.05 3.47
5 378 27.88 827.92

tree03 31 4 640 1024
1 2 0.04 < 0.01
5 131 2.77 0.14

tree10 43 2 14336 16384
1 3 9.68 < 0.01
5 658 2178.31 1.7

tree13 46 0 32768 32768
1 5 81.93 < 0.01
5 2151 > 3600 5.56

tree24 50 8 9536 16384
1 2 2.9 0.07
5 15 3.36 0.1

OR and AND. The expressive power of ADTrees from [11] is

thus richer than in the case of our work, however, from the

perspective of quantitative analysis, our framework is more

general, because [11] is limited to the evaluation of two spe-

cific attributes, namely expected cost and success probability.

Amongst all existing solutions for multi-parameter evalua-

tion on ADTrees, the approach introduced by Aslanyan and

Nielson in [33] is the closest to our framework. To the best

of our knowledge, this is the only work considering Pareto

optimization on ADTrees using the bottom-up approach. The

authors of [33] propose an ad hoc framework for determining

optimal ways of achieving the root goal, with the basic actions

being assigned a probability of successful execution and a vec-

tor of real-valued non-negative costs. Their procedures have

been developed for trees that do not contain repeated basic

actions. The advantages of our framework over the approach

of [33] are that, first, it allows for computing strategies that

optimize a number of different parameters, and second, that it

can be applied to ADTrees with repeated basic actions.

VII. CONCLUSION

The main objective of the presented work was to develop an

efficient method for multi-parameter optimization of security

based on ADTrees. The proposed Pareto attribute domains

are suitable for this purpose, and can be used with ADTrees

containing repeated basic actions. Our construction shows

that the multi-parameter evaluation can be addressed with

techniques existing for the single-parameter evaluation. Addi-

tionally, Theorem 3 constitutes a general algebraic result that

might be of independent interest on its own.

We focused on optimization from the point of view of

the attacker only. However, the optimization from the point

of view of the defender, or both actors at the same time is

also worth investigating. As stated in Remark 1, the basic

assignments that we consider for the defender are limited to

express whether actions are executed or not, without taking

their actual values, e.g., cost, probability, etc. into account.

Given the assignment of a number of attributes to the basic

actions of the attacker, as well as the cost of the basic actions

of the defender, which countermeasures should the defender

(having a fixed budget) implement to make the attack as

“difficult” as possible, in the sense of Pareto optimality? If the

actions of the defender are decorated with several attributes,

how to determine a Pareto optimal solution to the above

problem? How to adapt the efficient methods developed in [2]

for ADTrees with repeated actions to probabilistic compu-

tations when not only the execution of the countermeasures

is considered, but also their success probability? All these

problems are worthwhile from the practical perspective and

we will explore them in the future.
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