Abstract:
In recent years, action recognition is becoming more popular in many fields such as person surveillance, human-robot interaction due to the widespread usage of various se...Show MoreMetadata
Abstract:
In recent years, action recognition is becoming more popular in many fields such as person surveillance, human-robot interaction due to the widespread usage of various sensors. In this study, we aimed to develop an action recognition system that is intended to recognize human actions by using only accelerometer and gyroscope data. Various deep learning approaches like Convolutional Neural Network(CNN), Long-Short Term Memory (LSTM) with classical machine learning algorithms and their combinations were implemented and evaluated. A data augmentation method were applied while accuracy rates were increased noticeably.%98 accuracy rate obtained by using 3 layer LSTM network which means a solid contribution. Additionally, a realtime application was developed by using LSTM network.
Date of Conference: 24-26 April 2019
Date Added to IEEE Xplore: 22 August 2019
ISBN Information:
Print on Demand(PoD) ISSN: 2165-0608