
False Sense of Security: A Study on the Effectivity
of Jailbreak Detection in Banking Apps

Ansgar Kellner, Micha Horlboge, Konrad Rieck, and Christian Wressnegger
Institute of System Security, TU Braunschweig

Abstract—People increasingly rely on mobile devices for bank-
ing transactions or two-factor authentication (2FA) and thus trust
in the security provided by the underlying operating system.
Simultaneously, jailbreaks gain tremendous popularity among
regular users for customizing their devices. In this paper, we show
that both do not go well together: Jailbreaks remove vital security
mechanisms, which are necessary to ensure a trusted environment
that allows to protect sensitive data, such as login credentials and
transaction numbers (TANs). We find that all but one banking
app, available in the iOS App Store, can be fully compromised by
trivial means without reverse-engineering, manipulating the app,
or other sophisticated attacks. Even worse, 44% of the banking
apps do not even try to detect jailbreaks, revealing the prevalent,
errant trust in the operating system’s security. This study assesses
the current state of security of banking apps and pleads for more
advanced defensive measures for protecting user data.

I. INTRODUCTION

An increasing number of people use mobile phones for online

banking [1, 2] and as an additional factor of authentication [3].

It is thus of utmost importance that apps offering such

services operate in a trusted environment, which ensures the

confidentiality and integrity of sensitive data. To this end,

vendors heavily rely on security mechanisms provided by the

operating system. For instance, at boot time the integrity of all

system components is verified and only trusted apps can be

executed. Whether a third-party app is trusted or not, in turn,

is usually governed by a central authority: In case of iOS and

Android, the Apple’s App Store and the Google Play Store.

This and various other provisions inevitably constrain the

user’s ability to customize the device and limit the freedom

of choice when installing apps. In consequence, rooting or

jailbreaking has become a widely used practice to unshackle

a device from the imposed restrictions. According to the

developers of Cydia, an alternative to Apple’s App Store for

jailbroken devices, more than 30 million devices are using

their system [4]—hence, are jailbroken. Moreover, the past

has shown that shortly after the release of a new iOS version,

also a successful and easily accessible jailbreak is not long in

coming. For instance, for the most recent version of iOS (12.1),

which has been released on October 30, 2018, a jailbreak has

been announced [5] and publicly demonstrated on the latest

iPhone [6] only a week after.

However, rooting or jailbreaking a device is a privilege

escalation attack that also involves the removal of essential

security measures of the underlying operating system, and

thus, opens the gates for adversaries [7]. While attacks

against non-jailbroken devices have been very well feasible in

the past [8–10], devices with their primary security mechanisms

in place are less likely to be infected by malware or spyware.

Such attacks require a high-profile exploit to jailbreak the

device in the process, in order to escalate privileges to a

comparable level. Fully automated jailbreaks are rare, though.

Hence, vendors of third-party apps are particularly interested

in detecting jailbreaks to ensure operating in an environment

with clearly defined security conditions that allows to keep

sensitive data private. This is particularly crucial for banking

apps and two-factor authentication.

In this paper, we systematically investigate the effectivity of

currently used jailbreak detection mechanisms in banking apps.

To this end, we first discuss the different security measures

employed by the iOS operating system, types of jailbreaks and

jailbreak detection mechanisms in detail. Based on this, we

then take a look on means of how to evade jailbreak detection

mechanisms and explore how difficult it is to put such attacks

into practice. After all, the reliable detection of jailbreaks

constitutes the last line of defense of banking apps, ensuring

the security of customers by verifying that the key security

measures are in place.

Unfortunately, we find that (a) not even all banking apps

make use of jailbreak detection, and (b) the large majority of

those that do, can be easily evaded. In particular, 15 out of

34 banking applications do not use this vital security measure

at all. Apps that attempt to detect a jailbroken device fail

in doing so in all but one of the cases and can be evaded

by rather simplistic means: We dynamically hook function

calls responsible for common detection mechanisms using a

widely spread toolkit, Cydia Substrate, and alter the outcome

to lead the app to believe in running on a vanilla (no jailbreak

applied) iOS. Note, that this functionality comes packaged

with Cydia and does neither require any reverse-engineering or

manipulations of the app [11], nor sophisticated attacks against

TLS pinning [12] or similar. This enables us to record user input

from keyboards, such as user credentials (name and password),

but also to intercept photos from the built-in camera as used,

for instance, for PhotoTANs to verify banking transactions,

often used as second factor of authentication.

Additionally, we investigate whether this distressing lack

of security (44% of the banking apps do not even try) is

an isolated phenomenon or whether it is representative for

the majority of apps in the App Store. We gather a total of

3,482 apps from the official app store across all app genres

and widen the testing methodology: First, we look for static

strings, such as jailbreak or jailbroken in the binaries

1

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Ansgar Kellner. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00011



and identify 2,357 apps (68%) that supposedly make use of

some sort of jailbreak detection. We further narrow down

our findings by applying the same dynamic analysis as used

for the banking apps and identify that 59% of all apps in

our dataset make use of various forms of jailbreak detection

mechanisms. The difference between static and dynamic

analysis suggests that either large amounts of apps are shipped

with inactive jailbreak detection mechanisms or that these

apps use more sophisticated detection mechanism than those

observed and evaded in the banking apps—particularly the

latter is troublesome.

In summary, we make the following contributions:

• Overview of Jailbreak Detection and Evasion. We

provide a systematic overview of the different security

concepts used in iOS and detail how these relate to

the use of jailbreaks in practice. Moreover, we inspect

different jailbreak detection mechanisms and how these

may be evaded.

• Security Evaluation of Banking Apps on iOS. We in-

vestigate the effectivity of jailbreak detection as employed

by major banking apps and reveal a disastrous current

state: Either no detection method is implemented at all

or implementations are inadequate, allowing to intercept

and record sensitive information.

• Prevalence Analysis of Jailbreak Detection. We crawl

the Apple App Store and collect the 3,482 most popular

apps across genres to analyze whether the lack of security

mechanisms observed in banking apps is reflected in other

domains as well. Surprisingly, the number of banking

apps using jailbreak detection matches the overall average.

The remainder of the paper is structured as follows: Section II

reviews basic security concepts of iOS, before Sections III and

IV detail the different types of jailbreaks as well as methods

to detect them. Section V then deals with ways to evade

jailbreak detection mechanisms in practice. Our evaluation,

based on banking apps collected from the Apple App Store, is

presented in Section VII. Finally, we look upon related work

in Section VIII. Section IX concludes the paper.

II. IOS SECURITY

To protect iOS against attackers, Apple provides several

security mechanisms that aim at preventing unwanted modi-

fications of the operating system or installed apps. Many of

these are rooted at the lowest level and are directly enabled

when booting the device. In the following, we briefly discuss

the most prominent mechanisms that affect jailbreaks [13]:

Secure Boot Chain. iOS establishes a chain-of-trust in order to

verify the integrity of the individual components, from booting

the device up to the execution of third-party apps. Figure 1

shows the individual components: The Boot ROM represents

the chain’s root and is implemented immutable as part of the

processor and thus, cannot be updated or modified. Due to

the use of read-only memory, implicit trust can be presumed.

Moreover, it contains the Apple Root Certificate including the

public key that is used to verify the signature of the iBoot
boot loader. On devices using an A9 or earlier processors, the

Low Level Bootloader (LLB) is firstly executed which, in turn,

checks the signature of iBoot, which then verifies the integrity

of the iOS Kernel. For later models, the LLB is not used so

that the Boot ROM will directly check the signature of iBoot

within the boot chain. If at any point in the boot process a

signature is missing or fails to be verified, the boot process

stops and any further execution of program code is prohibited.

The device then switches into recovery mode, demanding to

reinstall its firmware. If however the integrity is constituted

and the kernel has been successfully booted, apps with a valid

signature may start.

After completing the boot process there is no further

verification of the chain-of-trust. During runtime modifications

to the kernel are possible, for instance, in order to deploy

a jailbreak (cf. Section III).

Signed Apps. Before any third-party app is published in

the official App Store, it is examined by Apple [14] and is

required to be signed with the developer’s signature to enable

the execution under a functional iOS secure boot chain. This

one-time examination checks for obvious flaws or bugs as

well as compliance to the App Store review guidelines [15].

Any app that does not comply the latter is rejected, and hence

will not be listed on the official App Store. In comparison to

Android, it is not possible to “sideload apps”, that is, installing

apps bypassing the official App Store.

Sandbox. Each third-party app is executed in a unique sandbox

that is strictly separated from the sandboxes of other apps as

well as the operating system itself. For each app, a randomly

named directory is created during installation, for which

it owns all rights, including modifying and removing files.

Access to everything outside an app’s sandbox directory is

however forbidden.

Special directories (e.g., the photo directory) can solely

be accessed via dedicated services. Access is granted by the

operating system and thus, can be revoked at any time. The

permissions to access iOS services must be requested via so

called “entitlements” during the creation of an app [16]. All

requested permissions are bound to the app’s signature; thus,

cannot be changed without invalidating the signature. Moreover,

the sandbox prevents the execution of system calls such as

fork and kill.

Restricted Apps. In order to additionally guard apps from ma-

nipulations at runtime, iOS allows to mark apps as “restricted”

i.e., forbidding the linker to dynamically load libraries at

runtime by specifying the DYLD_INSERT_LIBRARIES environ-

ment variables [17]. To this end, the linker adds a new segment,

called __RESTRICT, to the binary that, in turn, contains a

section named __restrict. Moreover, apps that make use

of the setuid or setgid functions are implicitly tagged as

“restricted”. This restriction of dynamic linking is orthogonal to

the secure boot chain and provides a further layer of protection.

2



Boot ROM LLB iBoot iOS Kernel iOS Apps

signature
check

signature
check

signature
check

signature
check

Fig. 1: Schematic depiction of iOS’ chain-of-trust.

Further Security Mechanisms. Next to these central security

concepts iOS employs mechanisms to impede attacks on

the system itself: First, all third-party apps are executed

by the non-privileged user mobile that has only limited

permissions. It is impossible to increase a user’s privilege

using any of the iOS APIs. Second, the partition that contains

the operating system is mounted read-only that means any

write access is blocked. Third, Address Space Layout Ran-
domization (ASLR) [18] is activated to thwart attacks such

as Return Oriented Programming (ROP) [19–21]. Besides,

Pointer Authentication Codes (PAC) are activated as additional

protection against the modification of function pointers and

return addresses. Fourth, the Execute Never (XN) functionality

of ARM processors [22], that implements Data Execution

Prevention (DEP), is enabled to avoid the execution of

infiltrated code from data memory pages. Fifth, after the

initialization of the iOS kernel, the Kernel Integrity Protection
(KIP) is activated that prevents modifications to the kernel and

loaded drivers.

III. JAILBREAKS

A jailbreak is a privilege escalation attack that removes

the software restrictions of iOS as imposed by Apple. On

Android, for instance, similar techniques are known as

“rooting the device” [23]. The main goal of a jailbreak is to

gain unrestricted access to a device, and thus enable its full

customization. This includes the installation of apps from

alternative stores, modifications to the user interface and access

to the underlying file system. Often jailbreaks are erroneously

equated with unlocking the device. While unlocking aims at

removing a device’s restriction to a particular cellular carrier,

jailbreaks lever out the operating system’s restrictions with

respect to arbitrary software modifications. Both mechanisms,

however, are often applied together.

TABLE I: Types of jailbreaks.

Jailbreak Dual-boot Permanent

Tethered External – �
Semi-tethered External � –
Untethered App – �
Semi-untethered App � –

Due to the chain-of-trust that is enforced by iOS, a jailbreak

needs to be applied during the boot process, which in turn

requires patching the kernel. In practice, there are four types

of jailbreaks that differ in whether an external device/computer

is needed to boot up and whether the jailbreak persists

reboots [24]. Table I provides an overview of the these types.

1) Tethered Jailbreaks modify the boot process, but require

a computer to enable the jailbreak for each single boot-

up. If the device is started without this external factor,

the kernel is not patched and the device likely ends up in

a partially booted state, such as the iOS recovery-mode.

2) Semi-tethered Jailbreaks, in contrast, can be started

without applied jailbreak and boot up into stock iOS,

without ending up in recovery-mode. However, modified

program code and third-party apps cannot be used

anymore until the device is restarted again with an

external jailbreak tool.

3) Untethered Jailbreaks allow to boot a jailbroken device

without the help of a computer. During boot up the

kernel is automatically exploited such that the device

is permanently jailbroken. This type of jailbreak is

especially difficult to implement and requires a particular

powerful exploit.

4) Semi-untethered Jailbreaks are not persistent across

reboots, but similar to semi-tethered jailbreaks, the stock

iOS functionality remains intact. However, unlike for

tethered jailbreaks usually a jailbreak app is installed

on the iOS device, which can be launched by the user

to patch the kernel again. For iOS 12 beta and iOS 11.4

even a Browser-based exploit is available, allowing the

jailbreak to be applied by simply visiting a specially

crafted website [25].

Irrespectively of the specific type, most jailbreaks install

Cydia, a package manager for alternative apps and extensions

that are not available in the official App Store [26]. Cydia

essentially is a port of the “Advanced Package Tool” (APT) [27]

for iOS devices, bundled with a graphical user interface to assist

the installation of apps, and a few tools for manipulating apps.

Cydia Substrate [28], for instance, enables third-party

developers to patch existing apps at runtime. It consists of

three main components: the MobileHooker, the MobileLoader

and the safe mode. The MobileHooker enables the hooking

of arbitrary system functions that is replacing a function’s

original implementation with custom program code that may

include user-controlled functionality as well as the execution

of the original program code. This allows to log API calls,

alter return values or any other sort of modification. The

3



MobileLoader, on the other hand, loads and applies third-party

patches for apps at runtime. To this end, it injects itself using

the DYLD_INSERT_LIBRARIES environment variable, and

subsequently loads all other extensions from the dynamic

library path. Furthermore, the MobileLoader installs a safety

net to pass control over to safe mode, whenever an extension

crashes the iOS home screen. In safe mode all third-party

extensions are disabled and the home screen is restarted.

IV. JAILBREAK DETECTION

Banking apps and other mobile applications that process

sensitive user data are well-advised to apply jailbreak detection

to ensure they operate in a secure and trusted execution

environment. While users benefit from jailbreaks to a certain

extend, Apple—with good reason—strongly discourages its

use due to security concerns and the fact that the integrity

of sensitive data cannot be guaranteed anymore. With jailbreak

detection in place, an app may refuse to work and quit if basic

security guarantees of the operating systems are not met. In

the following, we discuss a few simplistic mechanisms that

are frequently used for the detection of jailbreaks in recent

iOS apps.

Foreign Files/Apps Checks. One of the simplest ways to

detect a jailbreak is to check for apps, tools or files that are

commonly installed on jailbroken devices, but that are not

present on the default iOS installation. Pre-installed iOS apps

are located in the /Applications directory, while apps from

the App Store are installed to individual, sandboxed directories.

Consequently, whenever additional apps are found in the

/Applications directory this is a strong indicator for a

jailbroken device. However, since the set of pre-installed apps

differs from version to version, detecting deviations requires

separate content lists for each iOS version. Therefore, detection

mechanisms usually simply check for the existence of certain

apps, for instance /Applications/Cydia.app, known to

be part of most jailbreak installations. Apart from additional

apps, Cydia stores several files on the device that are not

present on a vanilla iOS installation. This includes binaries

of console tools as well as their corresponding configuration

and log files. For example, Cydia Substrate makes use of the

dynamic library MobileSubstrate.dylib which is located

in /Library/MobileSubstrate/ and that is available on

all Cydia installations. From the existence of this library

one can thus conclude that (a) Cydia has been installed,

and (b) write permissions have been granted outside the

sandbox, both only possible on jailbroken devices. Moreover,

_dyld_get_image_name can be used to list all dynamically

linked libraries including those from MobileSubstrate. The

situation is similar for certain system services, for instance,

the ssh daemon sshd which is not installed on vanilla iOS.

File System Checks. iOS maintains two disk partitions: one sys-

tem partition for the operating system and its components, and a

second partition for user-installed apps and data (see Figure 2).

While the former is mounted read-only and comparatively

File System

iOS Partition

App Sandbox

User Partition

(encrypted)

Fig. 2: Schematic depiction of the iOS file system.

small, the latter uses the remaining space of the device and

allows arbitrary file access within the limits of each sandbox.

To circumvent the restriction of the system partition, directories

containing data of interest (wallpapers, apps, etc.) are often

moved to the data partition and referenced via symbolic links.

The use of symbolic links for system directories are thus a

hint for a jailbroken device.

As described in Section II, the sandbox of each app forbids

write access to any files outside the sandbox—in particular,

only the document directory of the app is writable. As result, if

an app is able to write outside its sandboxed environment,

a jailbreak must have been applied. A common detection

mechanism hence involves an attempt to write to the /private

directory using miscellaneous filenames.

Platform Functionality Checks. For the communication be-

tween apps iOS registers individual URL schemes. By invoking

the openURL function with an app-specific URL, a callback

function within the target app is triggered to handle the request.

Cydia also registers such a scheme (cydia://) to provide a list

of installed packages and applied tweaks. The availability of this

scheme can simply be checked using the canOpenURL, in case

of success the device is jailbroken. Besides, the use of system

functions is strictly limited on iOS, with some being forbidden

at all. For example, an unpatched iOS always returns −1 on

invoking fork, indicating a failed attempt to create a child

process. Some jailbreaks bypass this restriction, such that fork

successfully spawns a new child process and returns a non-

negative process ID. Another system function that can be used

as jailbreak indicator is the system function: Providing NULL
as argument can be used to check for the existence of /bin/sh.

However, an unmodified iOS always returns 0 as the access to

the system function is restricted, while on a jailbroken device

the call correctly resolves to /bin/sh and hence returns 1.

V. EVADING JAILBREAK DETECTION

In the following, we investigate means of evading jailbreak

detection mechanisms that may be used to make iOS apps

believe they run in an unmodified, secure environment though

they are not. The evasion strategies discussed herein serve

as basis for our analysis of the security of banking apps in

Section VI.

4



For evading jailbreak detection there essentially exist three

strategies: (a) adapt the jailbreak so that the detection mecha-

nism is not applicable anymore, (b) alter the app that tries to

detect the jailbreak, for instance to remove runtime checks, or

(c) at runtime, trick the detection mechanism in believing it is

running on an unmodified iOS.

Adapting jailbreaks is possible, but likely only effective up to

the next app release—resulting in a game of cat-and-mouse

between both sides. Modifying program code is error-prone,

effortful and specific to individual apps. Thus, the alternative

with the widest outreach is the modification at runtime, using

tools such as the tweaks of Cydia Substrate [28]—the approach

that we will pursue later on to circumvent the jailbreak detection

mechanisms of banking apps.

The tweaks allow to hook the underlying system functions

and alter return values such that the device appears non-

jailbroken. While the basic functionality of hooks is processed

by the Objective-C Runtime, different frameworks offer a

simplified usage. Logos [29], for instance, abstracts the corre-

sponding calls with the commands %hook, %hookf and %orig.

In the following, we will discuss four different hook-based

attack examples, each targeting one of the different jailbreak

detection mechanism categories from Section IV:

For Apple’s Foundation framework [30] three classes are

of particular interest for evading jailbreak detection: the

NSFileManager, the NSString and the UIApplication

class. In the NSFileManager class the fileExistAtPath

function should return false for checks on files used in a

jailbreak, for all other files the result remains unchanged.

%hook NSFileManager
-(BOOL)fileExistsAtPath:(NSString*)path {

if ([path isEqualToString:@"/Applications/
Cydia.app"]){

return NO;
}
return %orig;

}
%end

Fig. 3: Hooking the NSFileManager class.

Figure 3 shows how this is done in practice: The definition of

the hook, that is, everything between the %hook and the %end

keywords, specifies the class to address (NSFileManager),

the function that should be hooked (fileExistsAtPath),

prefixed with ‘–’, and the Objective-C program code that

should be executed. If the Cydia app exists the function

always returns NO, and the original value denoted with %orig

otherwise. This equally works for class member fields, such

as attributesOfItemAtPath that is often used to check

for symbolic links and thus always needs to contain the

NSFileTypeRegular attribute for system folders. More-

over, the modification dates must be set back in time. The

writeToFile and writeToURL functions of NSString get

modified such that write attempts outside the sandbox are

blocked for apps known to make use of jailbreak detection.

In UIApplication the canOpenURL function in turn should

refuse requests from apps that are using the cydia:// scheme

by returning false. Apart from these functions, some of the

system functions need to be addressed as well to cover the

remaining detection schemes discussed in Section IV. This

includes the lstat function to check for symbolic links and

the fopen function to check for the existence of files.

Figure 4 shows a practical example of how to hook the

lstat function. In comparison to complete classes, individual

functions are handled by the %hookf macro function, where

the first argument denotes the original function’s return type

(int), the second the name of the function to hook (lstat),

followed by the types of the remaining function arguments. The

implementation identifies all paths that should not be symbolic

links on an unpatched iOS device and returns the original field

%orig with st_mode set to S_IFREG, denoting a regular file.

Otherwise, the original value is returned as it is. Here, the

dictionary shouldNotBeSymbolicLink, contains all files to

be checked.

%hookf(int, lstat, const char* path, struct
stat* buffer){

NSString* s = [NSString stringWithCString:
path

encoding:[NSString
defaultCStringEncoding]];

if ([shouldNotBeSymbolicLink containsObject:
s]) {
int newMode = (buffer->st_mode ^ S_IFLNK)

|S_IFDIR;
buffer->st_mode = newMode;
return 0;

}
return %orig;

}

Fig. 4: Hooking the lstat function.

The procedure for other system functions is equivalent. Any

call to the system function with NULL as parameter should

return −1, since /bin/sh is only available on jailbroken

devices (see Figure 5).

%hookf(int, system, const char* command) {
if (command == NULL) {

return 0;
}
// ...

return %orig;
}

Fig. 5: Hooking the system function.

Additionally, the fork system function must be hooked:

instead of returning the process ID of the new child process,

always −1 is returned, indicating that no child process has

been created, as depicted in Figure 6.

Furthermore, the system function that can be used to

check the availability of a valid shell by specifying NULL

as command argument must be hooked. The system function

returns a nonzero value if a shell is available, or 0 otherwise.

Consequently, we always return 0 in order to thwart detection.

5



%hookf(pid_t, fork) {
return -1;

}

Fig. 6: Hooking the fork function.

Finally, the results of _dyld_get_image_name needs to

be filtered such that no jailbreak-related dynamic libraries

are listed.

All these modifications, that are realized as hooks,

require to dynamically load libraries using the

DYLD_INSERT_LIBRARIES environment variable. If however

the binary is marked as “restricted” (cf. Section II) this is

not possible. Thus, to equally address all apps that employ

jailbreak detection, the signature of the apps must be stripped,

the string __restrict must be replaced, and the app must

be signed again. In contrast to patching specific functions of

individual apps, this can be done automatically and for all

apps likewise [31].

VI. THE SECURITY OF BANKING APPS

Banking apps provide a convenient way for users to access

and manage bank accounts online. The wide use of such

apps, however, also attracts miscreants that seek easy financial

profit, for instance, by redirecting money transfers. Vendors

of banking apps are well aware of the sensitivity of the data

they process and often attempt to counteract manipulations

by introducing jailbreak detection mechanisms. Once a device

is jailbroken anybody can rather easily access and modify

arbitrary data.

For our case study, we have gathered 34 banking apps from

the Apple App Store. To this end, we have crawled the top-

lists of the 200 most popular iOS finance apps in Germany

as published by Apple [32] and select all apps that enable

a customer to interact with a bank or a banking account. A

detailed overview of all analyzed banking apps, including the

authors and versions, is given in Table VIII. We start our

analysis of the banking apps by investigating how sensitive

user input can be intercepted and how detection mechanisms

can be evaded.

A. Interception of User Input

A banking app is considered insecure and customers should

refrain from using it, whenever an attacker succeeds in

intercepting user input, such as login credentials or transaction

authentication numbers (TANs), often used as second factor

of authentication [11, 33]. We begin by categorizing the

banking apps in our dataset based on the type of user input that

is used for interaction: (1) System keyboard events, used for

entering user credentials, (2) touch events, that are necessary to

implement custom keyboards and (3) camera events, as used to

scan a security QR-code or photoTAN. All these user inputs can

be intercepted by an attacker to obtain sensitive information.

We implement Cydia Substrate hooks for each of these

categories to record any sort of user input∗. Subsequently, we
manually examine each app by running them in the manipulated

environment to verify that the implemented hooks work as

expected and whether any additional countermeasures are in

place, such as jailbreak detection mechanisms, that prevent us

from intercepting the data. Table II summarizes our findings:

from 34 of the examined banking apps, 94% (32 instances)

require text input, such as entering user credentials or TANs,

via the system keyboard. The app com.db.pbc.mibanco

requires user input via a customized keyboard, while 4 of

the banking apps make use of the camera, for instance, to scan

PhotoTANs. For these apps the camera is always an additional

input method to the system keyboard and never used as sole

input method.

The de.ingdiba.ingdibaibanking app aside, which has

been discontinued and hence is not considered any further

in our analysis, we have been able to intercept the user

input of 15 banking apps from all input categories using

Cydia Substrate. These apps do not make use of any form

of jailbreak detection that would prevent these hooks, making

them trivially attackable. The remaining 18 banking apps show

signs of active jailbreak detection mechanisms, thwarting the

interception of user input.

B. Evasion of Jailbreak Detection

For the remaining 18 banking apps with jailbreak detection in

place, we implemented Cydia Substrate hooks that manipulate

the return values of the functions popularly used for detection

mechanisms, as discussed in Section V.

To examine the effectiveness of our evasion approach, we

manually inspected all evaded apps again to see if the jailbreak

detection methods were successfully disabled. Surprisingly,

the user input of all but one of the banking apps have been

successfully intercepted despite the deployed countermea-

sures. Solely the de.co.barclays.barclaycardgermany

app could not be fully evaded, although we have recorded the

activation of several of our hooks, including the interception

of keyboard events. The app implements one additional and

slightly more sophisticated check that detects the indirect jumps

(trampolines) that are inserted by Cydia Substrate at each

hooked function [34]. Additionally, the check takes precautions

to skip all NOPs, in case an attacker bluntly overwrites these

commands. With some little extra effort this check can however

be easily bypassed as well.

Our experiments show that with these simple evasion hooks

we are able to evade the jailbreak detection mechanisms of 17
out of 18 banking apps. In consequence, we are able to intercept

sensitive user information from 94% of the banking apps

(32 of 34 instances). This result shows that a surprisingly

high number of banking apps can be tricked into running on

jailbroken devices, despite the vendor’s countermeasures with

rather simplistic means. In this way, we have been able to

∗More details about the applied hooks and the corresponding source code
can be found on our webpage at: https://dev.sec.tu-bs.de/ios/

6



TABLE II: Overview of the evasion of jailbreak detection mechanisms in all banking apps.

Banking App JB Detection Evaded
Interception of

Keyboard Touch Events Camera

1822direkt � � � – –
AMEX BD – – � – –
Audi Banking � � � – –
BBBank-Banking � � � – –
Banking � � � – –

Barclaycard App � � � – –
Consorsbank – – � – –
DKB-Banking – – � – –
DKB-Card-Secure � � � – �
Degussa Bank Banking + Brokerage – – � – –

Deutsche Bank Mobile � � � – –
GLS mBank � � � – –
ING-DiBa Austria Banking App – – � – –
ING-DiBa Banking + Brokerage � ∗ – – – –
ING-DiBa Banking to go – – � – –

Mi Banco db � � – � –
MoneYou Spar-App HD � � � – –
MyBankingApp � � � – –
OLB photoTAN � � � – �
Online-Filiale+ – – � – –

Ophirum Gold – – � – –
Outbank: Intelligent Banking � � � – –
S-ID-Check � � � – �
Santander MobileBanking – – � – –
SpardaSecureApp – – � – –

TARGOBANK Mobile Banking � � � – –
Wavy App – – � – –
WorldRemit Money Transfer – – � – –
Wüstenrot Banking � � � – –
apoBank+ – – � – –

comdirect banking App – – � – –
flateXSecure � � � – �
norisbank mobile � � � – –
vaamo – Die digitale Vermögensverwaltung – – � – –

∗The development of the app has been discontinued.

intercept user data for the large majority of banking apps.

Given the sensitivity of banking and payment information this

is particularly troublesome.

VII. JAILBREAK DETECTION ACROSS APP GENRES

To get a better feeling for the numbers determined in the

previous section, we proceed to inspect the prevalence of

jailbreak detection mechanisms across application genres and

examine whether the use of jailbreaking detection in banking

apps is below or above average.

The dataset used for the evaluation is detailed in Sec-

tion VII-A, before we conduct a number of quantitative

measurements, based on static and dynamic analysis: First,

we identify all apps that contain suspicious strings that indicate

jailbreak detection mechanisms (Section VII-B). Second, we

complement our static analysis with dynamic function hooking

to provide a detailed view on used mechanisms and their

propagation (Section VII-C).

A. The Dataset

For our analysis we have gathered a total of 3,482 apps from

the Apple App Store. To this end, we have crawled the top-lists

of the most popular iOS apps in Germany, as published by

Apple [32]. Table III summarizes our dataset. In total we have

collected data from 23 different genres. Many apps are however

assigned to multiple genres, meaning that these rankings are

not disjoint. We thus attribute each app solely to its primary

genre. As consequence, the number of apps per genre is highly

unbalanced, which however has no impact on the validity of

our evaluation. Subsequently, we inspect all apps of our dataset

in detail, focusing on the used jailbreak detection mechanisms

in these apps.

7



TABLE III: Overview of all genres.

Genre # Apps Genre # Apps Genre # Apps

Book 177 Lifestyle 170 Reference 165
Business 148 Magazines & News 30 Shopping 147
Education 169 Medical 143 Social Networking 158
Entertainment 164 Music 133 Sports 172
Finance 133 Navigation 153 Travel 167
Food & Drink 162 News 187 Utilities 138
Games 175 Photo & Video 149 Weather 143
Health & Fitness 159 Productivity 140

TABLE IV: Overview of jailbreak detection checks across all genres.

Genre Foreign Files/Apps File System Platform Functionality Any

Book 60% 106 5% 9 3% 5 60% 106
Business 41% 60 5% 8 5% 7 41% 60
Education 53% 90 4% 6 0% 0 53% 90
Entertainment 64% 105 5% 8 2% 4 64% 105
Finance 50% 67 5% 6 5% 6 50% 67
Food & Drink 43% 69 2% 3 2% 4 43% 69
Games 86% 151 39% 69 10% 17 86% 151
Health & Fitness 56% 89 3% 5 1% 1 56% 89
Lifestyle 59% 100 8% 13 1% 2 59% 100
Magazines & News 10% 3 0% 0 0% 0 10% 3
Medical 33% 47 1% 1 0% 0 33% 47
Music 68% 90 10% 13 1% 1 68% 90
Navigation 50% 76 3% 5 3% 5 50% 76
News 53% 100 1% 1 2% 3 54% 101
Photo & Video 67% 100 8% 12 3% 5 67% 100
Productivity 56% 78 6% 8 1% 2 56% 78
Reference 63% 104 7% 12 1% 1 63% 104
Shopping 72% 106 5% 8 3% 4 72% 106
Social Networking 66% 104 6% 10 4% 6 66% 104
Sports 61% 105 3% 5 1% 2 61% 105
Travel 62% 103 3% 5 4% 6 62% 103
Utilities 63% 87 5% 7 2% 3 63% 87
Weather 67% 96 3% 5 0% 0 67% 96

Total 58% 2036 6% 219 2% 84 59% 2037

B. Static Analysis

To get a first idea of how many of the crawled apps include

indicators of jailbreak detection mechanisms, we statically

inspect the app binaries. The analysis can be conducted

externally outside the restricted iOS system environment.

However, before starting with the analysis, first, the app binaries

has to be decrypted [35], since each app is individually

encrypted by the App Store for the specific device it was

downloaded to. A small fraction of apps (0.5%) could not

successfully be decrypted and thus, these apps neglected from

further analysis.

A simple search on the decrypted app binaries for suspicious

strings is conducted that may contain clues about jailbreak

detection mechanisms. To this end, we extract all strings from

the apps’ binaries and then look for obvious substrings such as

jailbreak or jailbroken as well as previously identified

foreign apps or files that are usually used in jailbreak detection

mechanisms. Surprisingly, using this simple heuristic 68% of

the analyzed apps (2,357 instances) showed one or multiple

indicators of possible jailbreak detection mechanisms.

By ignoring any sort of dynamic composing of strings and

objects as well as ignoring the apps’ program flows, which are

a little bit tricky to extract from iOS binaries, it is clear that

not all possible jailbreak detection mechanisms can be detected

with this simple analysis. Particularly, concatenated strings,

relative paths or obfuscated strings cannot be reconstructed

with the applied static approach, and thus not be detected. As

a result, the found string matches can only be seen as first

indicators of possible jailbreak detection mechanisms.

C. Dynamic Analysis

Statically analyzing program code has a number of limi-

tations in practice [36, 37] that render the previous analysis

potentially incomplete. Hence, we employ a complementary

dynamic analysis in order to increase the coverage of jailbreak

detection mechanisms that can be identified. To this end,

8



we consider the mechanisms described in Section IV and

analyze these using dynamic function hooking. We start with an

overview of the prevalence of jailbreak detection in our dataset

and subsequently highlight details on individual mechanisms.

The Big Picture. For this experiment we consider the three

categories of jailbreak detection, as presented in Section IV,

and look for their use in our dataset: (1) The availability of

foreign files/apps checks, (2) the presence of file system checks,

and (3) the use of platform functionality checks. Table IV

summarizes the results. The first column states the genre of

the app, while the following three columns are associated with

the introduced categories of jailbreak detection mechanisms.

For each category its relative as well as absolute occurrence

is stated. The last column indicates if an app contains at least

one jailbreak detection mechanism.

Interestingly, more than half of the examined apps (2,037 in-

stances) make use of at least one jailbreak detection mechanism

of any kind. The most popular mechanism for jailbreak detec-

tion is the check for foreign apps/files (58%), actually used in

all investigated banking apps. Followed by checks regarding the

filesystem (6%) and checks for platform functionality (2%).

As shown in Table IV some of the apps make use of multiple

mechanisms to increase the chance of detecting a jailbreak.

Details on Used Mechanisms. Next, we look at the parametriza-

tion of the detection mechanisms to determine what aspects of

a jailbroken device apps attempt to detect most frequently.

TABLE V: Most common foreign files/apps checks.

Value % Total

/Applications/Cydia.app 15% 2224
/bin/bash 13% 1857
/Library/MobileSubstrate 8% 1151
/bin/sh 7% 1095
/Library/Frameworks/CydiaSubstrate.framework 7% 1028

Table V shows the most frequently checked foreign files/apps.

About 15% of the analyzed apps look for Cydia.app,

which is bundled with many jailbreak tools. Followed by the

two shells, the Bash shell (bash) with 13% and the unix

shell (sh) with 7%, and two files of Cydia components the

MobileSubstrate with 8% and CydiaSubstrate with 7%.

TABLE VI: Most common file system checks.

Value % Total

/private/jailbreak.txt 27% 91
/private/jailbreak.test 24% 81
/Applications 15% 49
/usr/libexec 6% 21
/usr/share 5% 18

The most used file system checks are summarized in

Table VI. More than half of the conducted file system

checks look for extended write permissions by testing

for one of the two files /private/jailbreak.txt and

/private/jailbreak.test. The choice of names is not

noteworthy per se, but the fact that these filename are suggested

in a number of StackOverflow postings [e.g., 38]: Many devel-

opers seem to verbatim ‘copy & paste’ solutions found online.

This also lines up with recent research on security-related code-

clones [39]. The other filenames only appear once and thus,

seem to be application specific or randomly generated. Also the

application directory /Applications is often checked (15%).

This make sense because in general this memory intense

directory does not fit on the iOS system partition and, thus,

must be moved to the data partition and made available via a

symbolic link on jailbroken devices. Less checks are performed

on /usr/libexec and /usr/share.

TABLE VII: Most common platform functionality checks.

Value % Total

system 63% 64
cydia:// 15% 15
fork 15% 15
cydia://package/com.example.package 7% 7
cydia://package 1% 1

In general, only 2% of the analyzed apps make use of iOS

functions to detect jailbreaks (see Table VII). However, when

this sort of detection mechanism is applied in more than half

of the cases the system function is used. The fork function

is only used in 15% of the checks. The other checks from

this category target the cydia:// URL scheme in different

variants. Due to their similar structure they are likely to be

originated from code examples. This internal URL scheme is

only available when Cydia is installed.

VIII. RELATED WORK

In recent years, the research community has looked upon

various security-related aspects of mobile operating systems. To

this end, many have focused on Android systems for analyzing

apps [40–43], detecting malware and attacks [44–47], or finding

and describing vulnerabilities [48–50]—among many other

topics. Moreover, jailbreaking or rooting Android devices is

discussed both from an offensive [23, 51, 52] as well as a

defensive point of view [11, 33, 53–56]. In this section, we

however focus on the iOS platform for which we first discuss

attacks on unmodified as well as jailbroken systems. Second,

we review defensive measures against adversaries beyond those

that are already implemented in the operating system.

Attacks. There exists a plethora of practical work leading to jail-

breaks [e.g., 57–59] and non-academic research that discusses

exploits and internals of the iOS operating systems [60–64].

Academically, Wang et al. [65] have, for instance, presented

an attack scheme (Jekyll) that is able to circumvent Apple’s

vetting system by triggering the malicious payload remotely,

once an app has been successfully added to the App Store. The

9



app then rearranges existing, signed program code to enable the

intended malicious control flow. Since the newly arranged code

has not existed during the review process, the vetting system

has no chance of detecting malicious payload of that kind.

Wang et al. [8], on the other hand, demonstrate the feasibility

of infecting a large number of iOS devices through botnets.

By exploiting fundamental design flaws in the iTunes syncing

system, the device provisioning process and the file storage, an

malicious app can be installed that in turn steels private data.

Xing et al. [66] introduce “cross-app resource

access” (XARA) attacks, that enable an adversary to

obtain access to resources of other apps. Normally, such

attempts are rendered impossible by the application sandbox;

however, due to the lack of app-to-app and app-to-system

authentication for resource interactions this becomes possible.

SandScout [67] is a framework to extract, analyze, and

formally model sandbox profiles as logic-based programs.

The authors introduce Prolog-based queries that are used to

evaluate file-based security properties and uncover seven new

classes of exploitable vulnerabilities that affect jailbroken and

unmodified iOS devices likewise. Apart from that there are a

couple of existing Cydia tweaks that try to bypass jailbreak

detection mechanisms, among them xCon [68], Liberty [69],

JailProtect [70], tsProtector [71] etc. The drawbacks of these

solutions are that most of them target specific jailbreak

detection mechanisms and iOS versions; additionally, most of

the approaches are not available as open source.

Defenses. Privacy is a key concern when it comes to defensive

measures of mobile devices. To this end, Egele et al. [31]

utilized a combination of control-flow and data-flow analysis

to identify privacy leaks in iOS apps. The concept is then

extended by Szydlowski et al. [72] to dynamic analysis, in

order to mitigate the use of obfuscation techniques in malicious

apps. Moreover, they present a tool for the automatic interaction

with apps to also analyze functionality that can be triggered

through the user interface only. With DiOS, Kurtz et al. [73]

present a framework to automatize iOS apps, which allows

to simulate user interactions in the context of the started app.

While the framework has originally been applied to identify

privacy leaks, for our work we make use of the system to

automate the collection of iOS apps at a large scale from the

official App Store.

To protect against runtime attacks, Pewny and Holz [74]

propose the use of control-flow integrity [75]. The system

is implemented as an extension to LLVM [76, 77] and thus

can be employed for compiling apps targeting various kinds

of iOS devices. iRiS [78] is a vetting system for iOS apps

implemented on top of Valgrind [79] that uses static analysis to

resolve security-critical API calls. In case this fails, the system

falls back to iterative dynamic analysis. Chen et al. [80], on

the other hand, detect legitimate libraries that were repackaged

for propagating malware. In this work, the authors observe

that frequently the same libraries are used for Android as

well as iOS. Hence, they first analyze the Android version

of the libraries to leverage existing tools and only if a

malicious library is identified, the corresponding iOS version

is investigated, based on invariant features that are shared

cross platforms. CRiOS [81] is a fully-automated system to

collect vast amounts of iOS applications. On a comprehensive

set of iOS apps the authors perform two large-scale analyses:

one dealing with the general ratio of third-party libraries in

the collected apps and another targeting at the correct use of

TLS/SSL certificates in those apps.

Though there has been considerable efforts towards different

attacks and defenses for iOS, there has been no academic study

on the use of jailbreak detection mechanisms and its evasion

yet. To illustrate the practical relevance of the topic, we focus

on the evasion of jailbreak detection mechanisms of banking

apps, which are a critical target for attackers.

IX. CONCLUSION

Jailbreaks go along with severe security implications for

the execution of third-party apps on iOS. After a jailbreak

the operating system cannot guarantee a trusted execution

environment anymore and thus, sensitive user data may be

at risk. The app vendor’s last line of defense hence is the

detection of jailbreaks to at least be able to refuse operation

under insecure conditions. Due to the predominant use of

simplistic detection strategies, this however is frequently not

crowned with success.

We show that only 18 out of 34 banking apps from the

Apple App Store make use of jailbreak detection mechanisms,

while the remaining apps are entirely unguarded against attacks.

All but one of those that attempt to detect jailbreaks can

be evaded by out of the box function hooking, rendering

these mechanisms inadequate for protecting sensitive data.

Surprisingly, banking apps do not exceed the average use

of jailbreak detection mechanisms across application genres.

Given the sensitivity of financial transactions one would expect

a significantly higher ratio of banking apps that apply jailbreak

detection mechanisms. Moreover, our analysis finds that many

application developers apparently copy&paste source code for

detecting jailbreaks from community-provided platforms such

as StackOverflow, making these detection schemes an easy

target. The results of our study urgently call for more advanced

jailbreak detection mechanisms to protect against eavesdropping

and data theft in two-factor authentication scenarios as used

in most banking applications.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding from the Ger-

man Federal Ministry of Education and Research (BMBF) un-

der the projects VAMOS (16KIS0534) and FIDI (16KIS0786K).

AVAILABILITY

To foster future research and improve existing

implementations of jailbreak detection mechanisms, we

make all developed tools and hooks available at:

https://dev.sec.tu-bs.de/ios/

10



REFERENCES

[1] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R.

Butler, “Mo(bile) money, mo(bile) problems: Analysis of

branchless banking applications in the developing world,”

in Proc. of the USENIX Security Symposium, 2015, pp.

17–32.

[2] B. of Governors of the Federal Reserve Division of Con-

sumer and C. Affairs, “Consumers and mobile financial

services 2016,” 2016.

[3] A. Dmitrienko, C. Liebchen, C. Rossow, and A.-R.

Sadeghi, “On the (in)security of mobile two-factor au-

thentication,” in Proc. of the International Conference on
Financial Cryptography and Data Security, 2014.

[4] J. Freeman, “Saurik,” http://www.saurik.com/, 2018, vis-

ited November, 2018.

[5] C. Liang, “iOS 12.1 + A12 == the end of iOS

war?” https://twitter.com/chenliang0817/status/

1059871797456396288, 2018.

[6] ——, “Era of iOS 12 with A12: End of iOS war?”

Presentation at Power of Community (POC), 2018.

[7] L. García and R. J. Rodríguez, “A peek under the hood of

iOS malware,” in Proc. of the International Conference on
Availability, Reliability and Security, 2016, pp. 590–598.

[8] T. Wang, Y. Jang, Y. Chen, S. Chung, B. Lau, and W. Lee,

“On the feasibility of large-scale infections of iOS devices,”

in Proc. of the USENIX Security Symposium, 2014, pp.

79–93.

[9] C. Xiao, “AceDeceiver: First iOS trojan exploiting

apple DRM design flaws to infect any iOS device,”

https://researchcenter.paloaltonetworks.com/2016/

03/acedeceiver-first-ios-trojan-exploiting-apple-drm-

design-flaws-to-infect-any-ios-device/, 2016, visited

November, 2018.

[10] Wikileaks, “Vault 7: Cia hacking tools revealed,” https:

//wikileaks.org/ciav7p1/cms/space_2359301.html, 2018,

visited November, 2018.

[11] V. Haupert, D. Maier, N. Schneider, J. Kirsch, and

T. Müller, “Honey, i shrunk your app security: The state

of android app hardening,” in Proc. of the Conference
on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2018, pp. 69–91.

[12] C. M. Stone, T. Chothia, and F. D. Garcia, “Spinner:

Semi-automatic detection of pinning without hostname

verification,” in Proc. of the Annual Computer Security
Applications Conference (ACSAC). ACM, 2017, pp.

176–188.

[13] Apple Inc., “iOS security – iOS 12,”

https://www.apple.com/business/site/docs/

iOS_Security_Guide.pdf, 2018.

[14] ——, “App review,” https://developer.apple.com/app-

store/review/, 2018, visited November, 2018.

[15] ——, “App store review guidelines,” https:

//developer.apple.com/app-store/review/guidelines/,

2018, visited November, 2018.

[16] ——, “About entitlements,” https://developer.apple.com/

library/archive/documentation/Miscellaneous/

Reference/EntitlementKeyReference/Chapters/

AboutEntitlements.html, 2018, visited November,

2018.

[17] ——, “dyld.cpp,” http://www.opensource.apple.com/

source/dyld/dyld-210.2.3/src/dyld.cpp, 2004–2010, vis-
ited November, 2018.

[18] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address

obfuscation: an efficient approach to combat a broad

range of memory error exploits,” in Proc. of the USENIX
Security Symposium, 2003.

[19] H. Shacham, “The geometry of innocent flesh on the

bone: Return-into-libc without function calls (on the

x86),” in Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[20] R. Hund, T. Holz, and F. Freiling, “Return-oriented

rootkits: Bypassing kernel code integrity protection mech-

anisms,” in Proc. of the USENIX Security Symposium,

2009.

[21] E. Buchanan, R. Roemer, H. Shacham, and S. Savage,

“When good instructions go bad: Generalizing return-

oriented programming to RISC,” in Proc. of the ACM
Conference on Computer and Communications Security
(CCS), 2008.

[22] ARM Limited, “Arm v6-m architecture reference

manual,” http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0419e/index.html, 2017.

[23] S. Sun, A. Cuadros, and K. Beznosov, “Android rooting:

Methods, detection, and evasion,” in Proc. of the ACM
Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), 2015, pp. 3–14.

[24] S. et al., “The iPhone wiki,” https://

www.theiphonewiki.com/wiki/, 2018, visited November,

2018.

[25] H. Linan, L. Liu, and Z. Qixun, “Remote code execution

in mobile browser – the mobile Pwn2Own case study,”

Presentation at Mobile Security Conference (MOSEC),

2018.

[26] J. Freeman, “Cydia,” https://cydia.saurik.com, 2018, vis-

ited November, 2018.

[27] Debian, “Advanced package tool (apt) - command-

line package manager,” https://tracker.debian.org/pkg/apt,
2018, visited November, 2018.

[28] SaurikIT, LLC, “Cydia substrate,” http:

//cydiasubstrate.com, 2018, visited November, 2018.

[29] theosdev, “Theos,” https://theos.github.io/, 2018, visited
November, 2018.

[30] Apple Inc., “Foundation – Apple developer docu-

mentation,” https://developer.apple.com/documentation/

foundation, 2018, visited November, 2018.

[31] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:

Detecting privacy leaks in iOS applications,” in Proc. of
the Network and Distributed System Security Symposium
(NDSS), 2011, pp. 177–183.

11



[32] Apple Inc., “iTunes RSS feed generator,” https://

rss.itunes.apple.com/en-us, 2018, visited November, 2018.

[33] V. Haupert and T. Müller, “On app-based matrix code

authentication in online banking,” in Proc. of International
Conference on Information Systems Security and Privacy
(ICISSP), 2018.

[34] N. Labs, “Who owns your runtime?” https:

//labs.nettitude.com/blog/ios-and-android-runtime-

and-anti-debugging-protections/, 2018, visited November,

2018.

[35] KJCracks, “Clutch: Fast iOS executable dumper,” https:

//github.com/KJCracks/Clutch, 2018, visited November,

2018.

[36] C. Linn and S. Debray, “Obfuscation of executable code

to improve resistance to static disassembly,” in Proc. of
the ACM Conference on Computer and Communications
Security (CCS), 2003, pp. 290–299.

[37] A. Moser, C. Kruegel, and E. Kirda, “Limits of static

analysis for malware detection,” in Proc. of the Annual
Computer Security Applications Conference (ACSAC),
2007, pp. 421–430.

[38] S. Overflow, “How do i detect that an iOS app is run-

ning on a jailbroken phone?” https://stackoverflow.com/

questions/413242, 2018, visited November, 2018.

[39] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar,

M. Backes, and S. Fahl, “Stack overflow considered

harmful? the impact of copy&paste on android application

security,” in Proc. of the IEEE Symposium on Security
and Privacy, 2017, pp. 121–136.

[40] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. Sheth, “TaintDroid: An information-

flow tracking system for realtime privacy monitoring on

smartphones,” in Proc. of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010, pp. 393–407.

[41] B. Bichsel, V. Raychev, P. Tsankov, and M. T. Vechev,

“Statistical deobfuscation of android applications,” in Proc.
of the ACM Conference on Computer and Communica-
tions Security (CCS), 2016, pp. 343–355.

[42] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground:

Automatic security analysis of smartphone applications,”

in Proc. of the ACM Conference on Data and Application
Security and Privacy (CODASPY), 2013.

[43] M. Spreitzenbarth, F. C. Freiling, F. Echtler, T. Schreck,

and J. Hoffmann, “Mobile-Sandbox: Having a deeper

look into android applications,” in Proc. of the ACM
Symposium on Applied Computing (SAC), 2013, pp. 1808–
1815.

[44] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and

K. Rieck, “Drebin: Efficient and explainable detection of

Android malware in your pocket,” in Proc. of the Network
and Distributed System Security Symposium (NDSS), Feb.
2014.

[45] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristo-
faro, G. Ross, and G. Stringhini, “MAMADROID: De-

tecting android malware by building markov chains

of behavioral models,” in Proc. of the Network and
Distributed System Security Symposium (NDSS), 2017.

[46] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp,

K. Rieck, I. Corona, G. Giacinto, and F. Roli, “Yes,

machine learning can be more secure! a case study

on android malware detection,” IEEE Transactions on
Dependable and Secure Computing (TDSC), May 2017.

[47] X. Wang, X. Wang, D. Zhou, and Y. Yang, “Droid-

AntiRM: Taming control flow anti-analysis to support

automated dynamic analysis of android malware,” in Proc.
of the Annual Computer Security Applications Conference
(ACSAC), 2017.

[48] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel,

“An empirical study of cryptographic misuse in android ap-

plications,” in Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2013, pp. 73–84.

[49] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak

and dagger: From two permissions to complete control of

the ui feedback loop,” in Proc. of the IEEE Symposium
on Security and Privacy, 2017, pp. 1041–1057.

[50] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party

library detection in android and its security applications,”

in Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2016, pp. 356–367.

[51] A. Nazar, M. M. Seeger, and H. Baier, “Rooting android -

extending the ADB by an auto-connecting wifi-accessible

service,” in Proc of. Information Security Technology for
Applications (NordSec), 2011, pp. 189–204.

[52] R. Hay, “fastboot oem vuln: Android bootloader vulnera-

bilities in vendor customizations,” in Proc. of the USENIX
Workshop on Offensive Technologies (WOOT), 2017.

[53] Y. Shen, N. S. Evans, and A. Benameur, “Insights

into rooted and non-rooted android mobile devices with

behavior analytics,” in Proc. of the ACM Symposium on
Applied Computing (SAC), 2016, pp. 580–587.

[54] I. Gasparis, Z. Qian, C. Song, and S. V. Krishnamurthy,

“Detecting android root exploits by learning from root

providers,” in Proc. of the USENIX Security Symposium,

2017, pp. 1129–1144.

[55] N. S. Evans, A. Benameur, and Y. Shen, “All your root

checks are belong to us: The sad state of root detection,”

in Proc. of ACM International Symposium on Mobility
Management and Wireless Access (MobiWac), 2015, pp.
81–88.

[56] J. Jin and W. Zhang, “System log-based android root state

detection,” in Proc. of Cloud Computing and Security
ICCCS, 2017, pp. 793–798.

[57] PanGu, “iOS jailbreak tool,” http://en.pangu.io/, 2018,
visited November, 2018.

[58] O. Community, “Apple tools. built from scratch. for

the community.” https://github.com/OpenJailbreak, 2018,

visited November, 2018.

[59] Dev-Team, “Dev-team blog,” http://blog.iphone-dev.org/,

12



2018, visited November, 2018.

[60] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo,

and R.-P. Weinmann, iOS Hacker’s Handbook. Wiley,

2012.

[61] S. Esser, “iOS 10 kernel heap revisited,” in Proc. of Hack
in the Box GSEC, 2016.

[62] N. Dhanjani, “New age application attacks against apple’s

iOS (and countermeasures),” in Proc. of Black Hat Europe,
2011.

[63] T. Mandt, “Revisiting iOS kernel (in)security: Attacking

the early random() PRNG,” Presentation at CanSecWest,

2014.

[64] geosn0w, “Jailbreaks demystified,” https:

//geosn0w.github.io/Jailbreaks-Demystified/, 2018,

visited November, 2018.

[65] T. Wang, K. Lu, L. Lu, S. P. Chung, and W. Lee, “Jekyll

on iOS: When benign apps become evil.” in Proc. of the
USENIX Security Symposium, 2013, pp. 559–572.

[66] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-

M. Hu, and X. Han, “Cracking app isolation on apple:

Unauthorized cross-app resource access on MAC OS X

and iOS,” in Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2015, pp. 31–43.

[67] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi,

W. Enck, and A.-R. Sadeghi, “SandScout: Automatic

detection of flaws in iOS sandbox profiles,” in Proc. of
the ACM Conference on Computer and Communications
Security (CCS), 2016, pp. 704–716.

[68] n00neimp0rtant, “xcon,” https://github.com/

n00neimp0rtant/xCon-Issues, 2018, visited November,

2018.

[69] Y. Jailbreak, “Liberty,” https://yalujailbreak.net/liberty/,
2018, visited November, 2018.

[70] J. Verne, “JailProtect,” https://julioverne.github.io/
description.html?id=com.julioverne.jailprotect, 2018,

visited November, 2018.

[71] typ0s2d10, “tsprotector 8+ (ios 8+),” http:

//moreinfo.thebigboss.org/moreinfo/depiction.php?file=
tsprotector8Dp, 2018, visited November, 2018.

[72] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna,

“Challenges for dynamic analysis of ios applications,” in

Proc. of Open Problems in Network Security – IFIP WG
11.4 International Workshop, 2011, pp. 65–77.

[73] A. Kurtz, A. Weinlein, C. Settgast, and F. Freiling, “DiOS:

Dynamic privacy analysis of iOS applications,” Friedrich-

Alexander-Universität Erlangen-Nürnberg, Germany, Tech.

Rep., 2014.

[74] J. Pewny and T. Holz, “Control-flow restrictor: Compiler-

based CFI for iOS,” in Proc. of the Annual Computer
Security Applications Conference (ACSAC), 2013, pp. 309–
318.

[75] M. Abadi, M. Budiu, and Úlfar Erlingsson, “Control-flow

integrity,” in Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2005, pp. 340–353.

[76] LLVM Developer Group, “The LLVM compiler infras-

tructure,” http://llvm.org/, 2018, visited November, 2018.

[77] C. Lattner and V. Adve, “LLVM: A compilation frame-

work for lifelong program analysis & transformation,” in

Proc. of the International Symposium on Code Generation
and Optimization (CGO), 2004, pp. 75–88.

[78] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iRiS:

Vetting private api abuse in iOS applications,” in Proc. of
the ACM Conference on Computer and Communications
Security (CCS), 2015, pp. 44–56.

[79] N. Nethercote and J. Seward, “Valgrind: A framework

for heavyweight dynamic binary instrumentation,” in

Proc. of the ACM SIGPLAN International Conference
on Programming Languages Design and Implementation
(PLDI), 2007, pp. 89–100.

[80] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang,

B. Ma, A. Wang, Y. Zhang, and W. Zou, “Following

devil’s footprints: Cross-platform analysis of potentially

harmful libraries on Android and iOS,” in Proc. of the
IEEE Symposium on Security and Privacy, 2016, pp. 357–
376.

[81] D. Orikogbo, M. Büchler, and M. Egele, “CRiOS: Toward

large-scale iOS application analysis,” in Proc. of the ACM
Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), 2016, pp. 33–42.

13



T
A
B
L
E
V
II
I:
O
v
er
v
ie
w

o
f
an
al
y
ze
d
iO

S
b
an
k
in
g
ap
p
s.

B
an
k
in
g
A
p
p

A
u
th
o
r

P
ac
k
ag
e
N
am

e
V
er
si
o
n

1
8
2
2
d
ir
ek
t

In
n
o
o
p
ra
ct

In
fo
rm

at
io
n
ss
y
st
em

e
G
m
b
H

d
e.
d
ir
ek
t1
8
2
2
.b
an
k
in
g

2
.0
.1

A
M
E
X

B
D

T
h
e
C
it
y
B
an
k
L
im

it
ed

co
m
.t
h
ec
it
y
b
an
k
.m

y
ca

1
.5

A
u
d
i
B
an
k
in
g

V
o
lk
sw

ag
en

F
in
an
ci
al

S
er
v
ic
es

A
G

co
m
.v
w
fs
.B
an
k
in
g
W
eb
A
p
p
.A
u
d
i

2
.3

B
B
B
an
k
-B
an
k
in
g

F
id
u
ci
a
&

G
A
D

IT
A
G

d
e.
fi
d
u
ci
a.
ip
h
o
n
e.
b
b
b.
b
an
k
in
g

1
7
.1
6
.0
2

B
an
k
in
g

V
o
lk
sw

ag
en

F
in
an
ci
al

S
er
v
ic
es

A
G

co
m
.v
w
fs
.B
an
k
in
g
W
eb
A
p
p

2
.3

B
ar
cl
ay
ca
rd

A
p
p

B
ar
cl
ay
s
B
an
k
P
lc

d
e.
co
.b
ar
cl
ay
s.
b
ar
cl
ay
ca
rd
g
er
m
an
y

1
.0
.1
2

C
o
n
so
rs
b
an
k

B
N
P
P
ar
ib
as

S
.A
.
N
ie
d
er
la
ss
u
n
g
D
eu
ts
ch
la
n
d

d
e.
co
n
so
rs
b
an
k
.u
n
iv
er
sa
la
p
p

1
.1
0
.0

D
K
B
-B
an
k
in
g

D
eu
ts
ch
e
K
re
d
it
b
an
k
A
G

d
e.
d
k
b.
p
o
rt
al
ap
p

2
.4
.1

D
K
B
-C
ar
d
-S
ec
u
re

D
eu
ts
ch
e
K
re
d
it
b
an
k
A
G

d
e.
d
k
b.
ca
rd
se
cu
re

1
.0
.0

D
eg
u
ss
a
B
an
k
B
an
k
in
g
+
B
ro
k
er
ag
e

D
eg
u
ss
a
B
an
k
A
G

d
e.
d
eg
u
ss
a-
b
an
k
.B
an
k
in
g
B
ro
k
er
ag
e

2
.0
.0

D
eu
ts
ch
e
B
an
k
M
o
b
il
e

D
eu
ts
ch
e
B
an
k
A
G

co
m
.d
b.
p
b
c.
n
g
.m

o
b
il
e

1
.1
0
.0

G
L
S
m
B
an
k

G
L
S
G
em

ei
n
sc
h
af
ts
b
an
k
eG

d
e.
g
ls
.m

b
an
k

1
.8
.7

IN
G
-D

iB
a
A
u
st
ri
a
B
an
k
in
g
A
p
p

IN
G
-D

iB
a
A
u
st
ri
a

at
.i
n
g
.d
ib
a.
cl
ie
n
t.
m
o
b
il
e.
io
s

3
.2
.4

IN
G
-D

iB
a
B
an
k
in
g
+
B
ro
k
er
ag
e

IN
G
-D

iB
a
A
G

d
e.
in
g
d
ib
a.
in
g
d
ib
ai
b
an
k
in
g

4
.2
.8

IN
G
-D

iB
a
B
an
k
in
g
to

g
o

IN
G
-D

iB
a
A
G

d
e.
in
g
d
ib
a.
b
an
k
in
g
ap
p

1
.1
3
.3

M
i
B
an
co

d
b

D
eu
ts
ch
e
B
an
k
A
G

co
m
.d
b.
p
b
c.
m
ib
an
co

2
.2
.1
6

M
o
n
eY

o
u
S
p
ar
-A

p
p
H
D

M
o
n
eY

o
u

n
l.
m
o
n
ey
o
u
.S
p
ar
-A

p
p
H
D

5
.3
.1

M
y
B
an
k
in
g
A
p
p

F
id
u
ci
a
&

G
A
D

IT
A
G

d
e.
fi
d
u
ci
ag
ad
.i
p
h
o
n
e.
w
l.
b
an
k
in
g

1
7
.1
6
.0
1

O
L
B

p
h
o
to
T
A
N

O
ld
en
b
u
rg
is
ch
e
L
an
d
es
b
an
k
A
G

d
e.
o
lb
.p
h
o
to
ta
n

4
.1
3
.5

O
n
li
n
e-
F
il
ia
le
+

F
id
u
ci
a
&

G
A
D

IT
A
G

d
e.
g
ad
.o
n
li
n
efi
li
al
ep
lu
s

3
.5
.1

O
p
h
ir
u
m

G
o
ld

O
p
h
ir
u
m

C
o
m
m
o
d
it
y
G
m
b
H

d
e.
o
p
h
ir
u
m
.a
p
p

1
.3
.0

O
u
tb
an
k
:
In
te
ll
ig
en
t
B
an
k
in
g

O
u
tb
an
k
-
T
h
e
in
te
ll
ig
en
t
o
n
li
n
e
b
an
k
in
g
ap
p
G
m
b
H

co
m
.s
to
eg
er
it
.o
u
tb
an
k
.i
o
s

1
.1
2
.2

S
-I
D
-C
h
ec
k

N
et
ce
te
ra

A
G

co
m
.n
et
ce
te
ra
.s
-i
d
-c
h
ec
k

1
.1
.2

S
an
ta
n
d
er

M
o
b
il
eB

an
k
in
g

S
an
ta
n
d
er

C
o
n
su
m
er

B
an
k
A
G

m
o
b
il
e.
sa
n
ta
n
d
er
.S
an
ta
n
d
er
D
E

3
.4

S
p
ar
d
aS
ec
u
re
A
p
p

S
p
ar
d
a-
D
at
en
v
er
ar
b
ei
tu
n
g
eG

d
e.
sd
v
rz
.s
p
ar
d
a.
se
cu
re
ap
p
.p
ro
d
u
k
ti
o
n

2
.0
.2

T
A
R
G
O
B
A
N
K

M
o
b
il
e
B
an
k
in
g

E
u
ro
-I
n
fo
rm

at
io
n

ei
.t
ar
g
o
.p
rd

3
.2
9
.1

W
av
y
A
p
p

K
la
rn
a
A
B

co
m
.k
la
rn
a.
w
av
y

1
.2
.0

W
o
rl
d
R
em

it
M
o
n
ey

T
ra
n
sf
er

W
o
rl
d
R
em

it
co
m
.w
o
rl
d
re
m
it
.i
o
s

3
.1
0
.0

W
ü
st
en
ro
t
B
an
k
in
g

W
ü
st
en
ro
t
&

W
ü
rt
te
m
b
er
g
is
ch
e
A
G

d
e.
w
w
ag
.w
u
es
te
n
ro
t.
b
an
k
in
g
.i
o
s

1
7
.1
6
.0
2

ap
o
B
an
k
+

D
eu
ts
ch
e
A
p
o
th
ek
er
-
u
n
d
Ä
rz
te
b
an
k

d
e.
ap
o
b
an
k
.a
p
o
b
an
k
p
lu
s

3
.1
.1

co
m
d
ir
ec
t
b
an
k
in
g
A
p
p

co
m
d
ir
ec
t
b
an
k
A
G

d
e.
co
m
d
ir
ec
t.
co
m
d
ir
ec
ti
b
an
k
in
g

3
.5
.6

fl
at
eX

S
ec
u
re

X
C
O
M

A
G

d
e.
x
co
m
.P
T
A
N
F
la
te
x

1
.1
.0

n
o
ri
sb
an
k
m
o
b
il
e

n
o
ri
sb
an
k
G
m
b
H

d
e.
n
o
ri
sb
an
k
.a
p
p
.i
o
s.
n
o
ri
sb
an
k

3
.0
.0

v
aa
m
o
–
D
ie

d
ig
it
al
e
V
er
m
ö
g
en
sv
er
w
al
tu
n
g

V
aa
m
o
F
in
an
z
A
G

d
e.
v
aa
m
o
.w
eb
ap
p

2
.0
.1

14


