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Abstract—Bitcoin, introduced in 2008 and launched in 2009,
is the first digital currency to solve the double spending problem
without relying on a trusted third party. Bitcoin provides a way to
transact without any trusted intermediary, but its privacy guar-
antees are questionable. Despite the fact that Bitcoin addresses
are not linked to any identity, multiple deanonymization attacks
have been proposed. Alternative cryptocurrencies such as Dash,
Monero, and Zcash aim to provide stronger privacy by using
sophisticated cryptographic techniques to obfuscate transaction
data.

Previous work in cryptocurrency privacy mostly focused on ap-
plying data mining algorithms to the transaction graph extracted
from the blockchain. We focus on a less well researched vector
for privacy attacks: network analysis. We argue that timings of
transaction messages leak information about their origin, which
can be exploited by a well connected adversarial node. For
the first time, network level attacks on Bitcoin and the three
major privacy-focused cryptocurrencies have been examined.
We describe the message propagation mechanics and privacy
guarantees in Bitcoin, Dash, Monero, and Zcash. We propose a
novel technique for linking transactions based on transaction
propagation analysis. We also unpack address advertisement
messages (ADDR), which under certain assumptions may help
in linking transaction clusters to IP addresses of nodes. We
implement and evaluate our method, deanonymizing our own
transactions in Bitcoin and Zcash with a high level of accuracy.
We also show that our technique is applicable to Dash and
Monero. We estimate the cost of a full-scale attack on the Bitcoin
mainnet at hundreds of US dollars, feasible even for a low budget
adversary.

I. INTRODUCTION

Bitcoin was, and still to some extent is, misleadingly

referred to as an anonymous currency [42]. Indeed, unlike tra-

ditional financial systems, Bitcoin addresses are not tied to any

real-world identity at the protocol level, but this fact alone does

not guarantee strong privacy. Bitcoin transactions are broadcast

through a peer-to-peer network in cleartext; after being verified

by miners they are stored in a massively replicated shared

database (the blockchain). A common technique to improve

privacy in Bitcoin is to use a fresh address for every transaction

(generating addresses is only limited by the size of the 256-bit

key space). This piece of advice, often implemented in wallets,

is no panacea, as the relationships between transactions can

be inferred through blockchain analysis.

Multiple cryptographic techniques have been proposed to

address the Bitcoin privacy problem, from services on top

of the original protocols such as mixers to new alternative

cryptocurrencies such as Dash, Monero, and Zcash. Dash

relies on built-in background mixing powered by the so called

masternode network. Monero implements ring signatures and

confidential transactions. Zcash uses zero-knowledge proofs,

namely, zk-SNARKs (though the majority of transactions do

not take advantage of them due to heavy performance cost).

Zcash and Dash are based on a fork of the Bitcoin Core

codebase, while Monero is not.

Previous attacks on the privacy of cryptocurrency transac-

tions mostly employed some form of data analysis on the

transaction graph. We take another approach and analyze

propagation times of protocol messages to infer relationships

between transactions.

The ultimate goal of deanonymization is to reveal the re-

lationship between cryptocurrency transactions (or addresses)

and real-world identifiers, such as IP addresses. In our model,

the goal of the adversary in our model is to infer a connection

between a cryptocurrency transaction and the IP address of

a node which was the first to introduce it into the network.1

We rely on the core observation that a node can be uniquely

identified by its set of connected peers (entry nodes). Earlier

network-based deanonymization attacks [16] and [30] only

took into account the first node to propagate a given transaction

to the adversary. Our approach is more sophisticated. We

apply carefully chosen weight functions to message timing

information. This allows us to link transactions broadcast

from one node, even if all addresses involved are unrelated

(consequently, blockchain analysis would gain no insight).

Instead of associating transactions with IP addresses di-

rectly, we first cluster the transactions, and then try to assign

IP addresses to clusters. Even if the latter step gains no insight,

the clustering data used in combination with information

from other sources is useful for the attacker. Moreover, our

technique does not simply produce a binary decision (whether

two transactions are related), but also allows for manual visual

inspection of transaction clusters using heatmaps.

The rest of the paper is organized as follows. Section II pro-

vides an overview of the propagation mechanisms in various

cryptocurrencies. Section III describes our approach to trans-

action clustering based on propagation timing. We implement

and evaluate our technique on real-world cryptocurrencies.

We were able to cluster our own transactions in Bitcoin and

1Even though an IP address is not linked to a physical person, it can be
used to determine a relatively precise location of the device involved, and can
be linked to a real-world identity if the responsible ISP is compromised.
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Zcash with high levels of precision and recall. In particular,

in the case of Zcash, we can cluster transactions involving

both transparent and shielded addresses. We also show that

our technique is applicable to Dash and Monero. We provide

rough calculations of the necessary resources and the monetary

cost of an attack on the Bitcoin mainnet. We discuss attack

scenarios for different types of wallets, and give a number

of recommendations for users who want to preserve their

privacy, as well as for developers of cryptocurrency protocols

and wallets who want to give users an easier way to do

so. Section IV provides an overview of related work, and

Section V summarizes and suggests future work.

II. BACKGROUND

A. Propagation of messages in cryptocurrency networks

Cryptocurrencies use P2P networks to disseminate mes-

sages. We now describe the relevant details on the networking

behavior of Bitcoin (most alternative cryptocurrencies inherit

these properties).

1) Address propagation: A newly launched node first per-

forms a DNS lookup of a few records hard-coded into the

software to discover the IP addresses of bootstrap nodes. It

then asks the bootstrap nodes for (a subset of) the list of

IP addresses of nodes known to them. Upon receiving the

lists, the new node establishes a preconfigured number of

connections with a random set of nodes, which we will refer

to as entry nodes. If the TCP port 83332 is open, a node allows

up to 117 incoming connections to be established (this number

can be overridden in the configuration).

After joining the network and establishing connections, a

node advertises its IP address (as seen from the Internet) in

an ADDR message to its neighbors. Upon receiving an ADDR
message, each node decides individually for each address

whether to relay it to one or two of its neighbors, depending

on reachability. A node re-advertises its address with random

delays, every 24 hours on average. Nodes may also at any time

query their neighbors for a list of addresses known to them

(GETADDR); the response is an ADDR message containing up

to 1000 addresses of peers recently seen on the network.

2) Transaction propagation: Propagation of transactions is

a three step process. A node which has a new transaction

advertises this fact to its neighbors with an INV (inventory)

message containing the transaction hash only. Upon receiving

an INV, each node decides whether to request the transaction

content. If the node does not yet have the transaction, it

replies with a GETDATA message and receives the transaction

contents in a TX message. Blocks are propagated in a similar

manner.

3) Randomization: A straightforward way to broadcast

messages in a P2P network is to relay them as soon as possible

to all neighboring peers. Recognizing that this approach may

harm privacy, Bitcoin developers introduced randomness in

2The default port for the Bitcoin mainnet. Other networks use other ports
by default: 18333 for the Bitcoin testnet, 8233 for Zcash, 18080 for Monero,
9999 for Dash.

this process. Based on the related work and the source code of

the major cryptocurrencies, we distinguish three propagation

mechanisms:

• Naı̈ve gossip: broadcast to all neighbors as soon as

possible (used in Monero);

• Trickling: for a number of fixed-length time periods,

broadcast to a new random subset of neighbors (used in

Zcash and Bitcoin pre-2015);

• Diffusion: broadcast to each neighbor after a random

delay (used in Dash and Bitcoin post-2015).

B. Alternative cryptocurrencies

We now provide a brief description of the three privacy

focused cryptocurrencies we consider.

1) Zcash: Zcash [6] implements the Zerocash proto-

col [14] [27] – an improvement of an earlier Zerocoin pro-

tocol [34]. It uses zk-SNARKs [15] to hide the transaction

information, while still allowing anyone to verify its correct-

ness. Zcash does not provide privacy by default as of late 2018:

zk-SNARKs are used only in a small minority of transactions

involving shielded addresses [29]. The majority of transactions

happen between transparent addresses and have no additional

privacy-preserving mechanisms compared to Bitcoin.

Zcash codebase was forked off Bitcoin core in Novem-

ber 2015 at version 0.11.2 (commit 7e27892). In 2015, Bitcoin

changed the network propagation mechanism from trickling to

diffusion [53] (commit included in version 0.12). According

to [26], this provided only marginal privacy improvements.

Zcash did not port those modifications and still uses trickling.

In October 2018, Zcash underwent an update code-named

Sapling [54], which greatly increased performance of shielded

transactions. This allows for shielded transactions to be sup-

ported in light wallets, including mobile ones.

2) Dash: A distinguishing feature of Dash [4] is a two-

tier architecture. Along with regular nodes, users may set up

so-called masternodes, which require a 1000 DASH collat-

eral (approximately 160 000 USD, at the time of writing).

The Dash network contained around 5000 masternodes in

late 2018. Masternodes [10] receive 45% of the mining reward

for providing additional services:

• PrivateSend – a privacy-enhancing transaction type,

where a random masternode deterministically chosen

based on the latest block hash matches users who wish

to mix their coins;

• InstantSend – a technique to increase merchants’ confi-

dence in accepting transactions without waiting for them

to be included in a block, where a random subset of

ten masternodes agrees on the “locked” set of inputs.

The Dash networking protocol is based on Bitcoin’s but sub-

stantially more complex: in addition to Bitcoin message types,

it contains 22 new ones related to masternode functionality [5].

Dash uses the diffusion mechanism ported from Bitcoin.

3) Monero: Monero [9] implements the CryptoNote proto-

col [50]. Monero is not based on the Bitcoin Core codebase.
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The Monero community recognizes the threat of deanonymiza-

tion through network analysis [45][31][24][19]. The devel-

opers are integrating an I2P router into Monero (the Kovri

project [7]), but it is not yet deployed as of November 2018.

Monero does not have any broadcast randomization such

as trickling or diffusion.3Further inspection of the source

code and an answer on a Monero-related Q&A site reveals

that Monero nodes do not limit the number of incoming

connections by default [48]. Monero is the only one of the

three privacy-preserving currencies which is private by default:

users do not have to explicitly choose the “private” option

(such as a shielded address in Zcash and PrivateSend in

Dash). In October 2018, Monero version 0.13.0 introduced an

implementation of Bulletproofs – a cryptographic technique

which allowed greatly reduced transaction size (and hence

fees), which also, similar to Sapling in Zcash, is expected

to incentivize Monero adoption on devices with limited re-

sources [47].

III. OUR APPROACH

A. Our approach

1) Intuition: Our goal is to cluster transactions based on the

node which was the first to introduce them into the network.

Consider the first N nodes which relayed a transaction to our

listening node. We assign weights to IP addresses of nodes

depending on the propagation timestamps. Intuitively, a peer

that relays a new transaction to us quickly is likely to be

an entry node or closely connected to one. Our clustering

algorithm is based on the weight vectors of transactions.

We expect transactions originating from one node to yield

relatively well-correlated weight vectors.

Due to broadcast randomization, we do not expect all

transactions from one node to be well-correlated. But the

matrix of pairwise correlations exhibits special behavior which

would help us infer transactions clusters nevertheless. Consider

a node with eight entry nodes with IP addresses (p1 to p8)

making three transactions: tx1, tx2, tx3. If transactions were

broadcast in batch via the same subset of the entry nodes, their

weight vectors would be very similar. But due to diffusion or

trickling, the following scenario is more typical: tx1 quickly

relayed from p{1,2,3}, tx2 from p{3,4,5}, tx3 from p{5,6,7}. If

we considered only the first propagation, these transactions

would seem completely unrelated. But with weight vectors,

considering that those are sparse, the correlation between tx1

and tx2 and between tx2 and tx3 would be noticeable, which

would allow us to reveal not only the relationship between

these pairs but also among all three transactions. Note that this

technique is also applicable for transactions originating from a

light client (in this case, a cluster represents transactions from

multiple clients connected to the same full node).

2) Data collection and representation: We use a modified

Bitcoin network probing tool bcclient [40] to maintain

parallel connections to peers and log incoming messages:

3See relay_notify_to_all at https://github.com/monero-project/
monero/blob/master/src/p2p/net node.inl#L1515.

Fig. 1: Weight functions for three timestamp vectors

transaction hash, the IP which relayed it to us, and the

timestamp of this event.

We use Python scripts to extract the essential information

from the log, save it in a more compact JSON format, analyze

the data, and visualize the results. For each transaction, we

save a list of (t, IP) pairs, where t is a relative timestamp

(i.e., we subtract the timestamp of the first propagation of this

transaction from all its propagations).
3) Weight functions and clustering: Let tx be a transaction.

Let ptx = [ptx1 , ptx2 , ...ptxN ] be the vector of the first N IP

addresses which relayed tx to us. Let ttx = [ttx1 , ttx2 , ...ttxN ] be

the vector of the corresponding relative timestamps. For each

ptxi ∈ ptx, we assign a parameterized weight as follows:

wk(p
tx
i ) = e−(ttxi /k)2

The weight function is chosen to reflect the decreasing

importance of every next broadcast. p1 is assigned the maximal

weight of 1.0 (note that t1 = 0 by definition); other nodes

receive lower weights. Our experiments show that this function

family yields better clustering (compared to 1/(kt) and e−kt).

The intuition is that it gives higher weights to a certain window

depending on k while exponentially decreasing outside of it.

Moreover, window size is adjusted for each vector.

For each ptx, we want to use such wk that gives sufficient

variance among the weight values. Weights quickly fall to

nearly zero if k is too low and stay close to one if k is high.

Let ttxmed be the median value in ttx (average of the high and

low medians if the length of ttx is even). We choose ktxopt
s.t. the weight of ttxmed would be 0.5:

ktxopt =
ttxmed√− ln(0.5)

This choice of k distributes the weights for any ttx: they

neither stay close to one nor quickly fall to zero (see examples

in Figure 1). For each transaction, we evaluate the vector of

weights:

wtx = wktx
opt

(ttx)

Let X be the set of all transactions we consider. Let P be

the set of IP addresses of nodes which appeared in at least

one of p vectors in X:
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P =
⋃

tx∈X
ptx

We define an extended weight vector vtx for each tx by

setting the weight of nodes in P\ptx to zero and sort the

values in the weight vectors w. r. t. the alphabetical order of

P . We then calculate a matrix where an element in i-th row

and j-th column is the Pearson correlation of the extended

weight vectors vtxi
and vtxj

. This matrix can supposedly be

transformed into a block-diagonal matrix with blocks (clusters)

corresponding to transaction sources.

To reveal the clusters, we use spectral co-clustering [21] im-

plemented in the Python sklearn.cluster.bicluster
module [46]. Given an input matrix A, the algorithm prepro-

cesses it as follows:

An = R1/2AC−1/2

Where R is the diagonal matrix with entry i equal to∑
j Aij , and C is the diagonal matrix with entry j equal to∑
i Aij .

The singular value decomposition of A provides the parti-

tions of rows and columns: An = UΣV T . The l = �log2 k�
singular vectors provide the partitioning information. Let U
be a matrix with columns u2, . . . , ul+1, and similarly for V .

Then Z is defined as:

Z =

[
R−1/2 U
C−1/2 V

]

The rows of Z are clustered using the k-means algorithm.

B. Quality assessment

1) Measuring clustering quality: We use the Rand score as

an external metric of clustering quality, as described in [12]

(Section 4.2). The Rand score operates on pairs of elements

and reflects the proportion of “right decisions” regarding

whether to put a pair of transactions into one or different

clusters.

SS, SD, DS, and DD are numbers of transaction pairs

defined as follows:

• SS: same cluster, same category (two of our transactions

in the same cluster);4

• SD: same cluster, different category (our and foreign

transactions in the same cluster);

• DS: different cluster, same category (two of our transac-

tions in different clusters);

• DD: different cluster, different category (our and foreign

transactions in different clusters).

Note that this assessment only considers clusters with

“our” transactions, because we do not know whether any two

“foreign” transactions should have been assigned to the same

cluster:

R =
SS +DD

SS + SD +DS +DD

4In our case, there are only two categories: “our” and “foreign” transactions.

We further modify this metric by parameterizing it with

the minimal number of our transactions in a cluster required

to consider it in the calculation. In our experiments, we only

consider clusters with at least two of our transactions. With no

such threshold, large clusters with one of our transactions dis-

proportionately increase DD and bring the score close to 1.0,

which does not reflect the subjective amount of information

an adversary acquires.

2) Measuring the degree of deanonymization: To estimate

the success rate of the attack, we use a quality score based

on the anonymity degree proposed by Dı́az et al. [22]. The

anonymity degree is designed to measure the amount of

information an attacker gains compared to perfect anonymity

(where each user has an equal probability of being the orig-

inator of a given message). Let pi be the probability that a

transaction i originates from a given source Scontrol; N is the

total number of transactions. The entropy is calculated as:

H(X) = −
N∑
i=1

pilog2(pi)

The maximal entropy is:

HM = log2(N)

The anonymity degree is defined as:

d =
H(X)

HM

The anonymity degree does not reflect the fact that the

probability distribution obtained by the adversary may not

be well aligned with the true probability distribution. To

address this issue, we propose an adjusted anonymity degree.

First, we calculate the median square error e between our

probability distribution and the known true distribution (1 for

transactions from Scontrol and 0 for others), based on a subset

of transactions from the control set. The adjusted anonymity

degree is defined as follows:

dadj = 1− (1− e) ∗ (1− d)

To explain on two edge case examples: If e = 0 (the attacker

precisely predicted the distribution), dadj = d; if e = 1 (the

attacker’s distribution does not at all reflect the reality), dadj =
1 (the system retains full anonymity).

The assumptions of our model have their limitations. Our

clustering technique depends on a user issuing a series of

transactions in a relatively short time window of several

minutes (up to an hour), through the same set of entry nodes

(i.e. from the same session). If a user re-launches the client,

their transactions issued before and after this event would not

be linkable by our technique.

C. Experiment overview

Assume our goal is to cluster transactions originating from

one target source Scontrol. We capture N transactions and

know that n of them were issued from Scontrol; k of them

are known to us. For each transaction i, we assign an a priori
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probability of having originated from Scontrol: pi = n/N . The

outline of our experiment is as follows.

1) collect a fresh list of live network peers;

2) establish a number of parallel connections to them, log

the timestamps of receiving INV and ADDR messages;

3) launch two nodes Slearn and Scontrol, so that their initial

ADDR advertisements would be logged;

4) issue two series of transactions (the learning and the

control sets) from Slearn and Scontrol respectively;

5) for each considered number of first propagations, calcu-

late the transaction correlation matrix;

6) run the clustering algorithm with various assumed aver-

age number of transactions per cluster;

7) choose the best clustering by Rand score on the “learn-

ing” set;

8) in the best clustering, assign the cluster weights propor-

tionally to the distribution of k known transactions from

Scontrol;

9) assign zero probability of being in Scontrol to transac-

tions from Slearn;

10) re-distribute the probability weight among transactions

in each cluster;

11) calculate the final adjusted anonymity score;

12) re-arrange the clusters such that large correlations would

be close to the diagonal (closely correlated clusters

should be close in the picture);

13) visualize the results as a heatmap.

D. Visualization

We use heatmaps to visualize the results. A heatmap is

a matrix where each row and each column represents a

transaction that we captured during an experiment. The color

of the square at the intersection of the k-th row and n-th

column represent the correlation of weight vectors of k-th and

n-th transactions (darker is higher). Note the the heatmap is

diagonally symmetric by definition (black squares along the

main diagonal reflect the fact that a transaction has a 1.0
correlation with itself).

Our assumption is that there exist a permutation of rows

and columns such that the highly correlated elements would be

close to the main diagonal and would exhibit a block-diagonal

structure, revealing possible relations between transactions

issued from the same node. In the figures below, ticks along

the axes indicate our transaction from the control set.

E. Evaluation

We evaluate our method by clustering our own transactions

in Bitcoin (testnet and mainnet) and Zcash. For these exper-

iments, we log the traffic (both INV and ADDR messages)

for 15 minutes. The anonymity degree calculated on our

own transactions indicates a substantial loss of privacy. For

Dash and Monero, we ran the clustering algorithm without

calculating an external quality metric. We obtained clearly

visible clusters, which indicated that our approach is applicable

for these cryptocurrencies as well.

1) Bitcoin testnet: We performed four experiments on

the Bitcoin testnet. For all experiments, our listening node

attempted to occupy up to 117 slots for all servers. We

performed three independent experiments for three listener lo-

cations and a fourth experiment where we use all three servers

simultaneously: we divide the fresh list of live peers into three

equal parts, distribute them among the three servers, and then

merge the three log files. The goal of the fourth experiment

was to measure the advantage an adversary may gain from

using geographically distributed servers. As listening nodes,

we used Amazon EC2 servers in three geographical locations:

Frankfurt (Germany), Tokyo (Japan), and North California (the

US). In all experiments, test transactions were issued from

computers located in Europe.

We issued two sets of test transactions (the learning and

the control sets) containing 30 transactions each. We denote

10 transactions out of the control set as “known” to estimate

the anonymity degree.

Note that the number of live peers collected by each of

the listeners is very close, which indicates that we do obtain a

complete view of the network. Note also that the number of re-

ceived transactions varies little between experiments, whereas

the number of ADDR messages is significantly higher in the

experiment with three listeners. This confirms our hypothesis

that address advertisements propagate through the network

more slowly than transactions and blocks. The number of

average available slots is independent of the location of the

listener. The anonymity degree is lower (i.e., better for the

attacker) in the Frankfurt experiment, which may be explained

by the fact that the nodes issuing test transactions were closer

to the listening nodes than in the other experiments. The

joint experiments which combined information from three

geographically distributed listeners gained the best results with

an anonymity degree of 0.63.

a) Estimating the original IP: We use the ADDR mes-

sages to determine (with some level of precision) the IP of

the node which issued the transactions in the control group.

In our experiments, we first launch the listener, and only

then launch the issuing nodes. This means that the listener

captures the ADDR messages issued by the issuing nodes

during bootstrapping. Address messages propagate through the

network more slowly than transactions, which are relayed to all

nodes’ neighbors with relatively small random delays. A node

listening to network traffic can therefore distinguish between

messages containing addresses of recently joined nodes and

re-broadcasts of older addresses messages. If an IP is relayed

from 1 or 2 nodes, which is most often the case, we assume

these IP addresses are old re-broadcasts. If an IP is relayed

from a higher number of nodes, we assume the node at

the relayed IP either has just joined the network or is re-

advertising its IP after an approximately 24 hours delay.

Our idea is to leverage the ADDR messages as follows. For

each cluster, we determine the IPs of the most “important”

nodes, i.e., nodes we assume are entry nodes of the transaction

originator. For each transaction in the cluster, we sum up the

weights of all IPs which relayed it to us. The top 10% of most
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Fig. 2: Bitcoin testnet (California) Fig. 3: Bitcoin testnet (Tokyo)

Fig. 4: Bitcoin testnet (Frankfurt) Fig. 5: Bitcoin testnet (combined)
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TABLE I: Experiments on Bitcoin testnet and Zcash. The * sign indicates results obtained in experiments where we only

connected to a subset of network nodes.

Network Listener location Anonymity degree Servers Avg free slots Tx INVs ADDRs

Bitcoin testnet California 0.83 1141 64 139 402

Bitcoin testnet Tokyo 0.80 1128 64 193 414

Bitcoin testnet Frankfurt 0.72 1137 64 172 403

Bitcoin testnet combined 0.63 1154 63 250 1321

Bitcoin mainnet Frankfurt 0.88 1000* 25* 3238 11300

Zcash Frankfurt 0.86 206 36 62 1086

weighted IPs are assumed to be the entry nodes. Looking at

propagation of ADDR messages, the intuition is that an ADDR
message relayed by a set of IPs which substantially intersects

with assumed entry nodes of cluster X is the IP address of

the node which issued the transactions. We define an IP to

“likely” correspond to the transactions originator if it was

relayed to us in an ADDR message by a set of IPs which overlap

with assumed entry nodes determined on the previous step.

Applying this technique to the Bitcoin testnet experiments, in

3 experiments out of 4 the right IP appeared in the top 5

most likely originator IPs for clusters which consist mostly

of control transactions. This result indicates that in addition

to being able to estimate with high accuracy whether given

two transactions were issued by the same node, an adversary

can narrow down the search for the IP of the transaction

source to a handful of IPs. This may give the attacker valuable

information, including the approximate geographical location

of the victim.
2) Bitcoin mainnet: For Bitcoin mainnet, we performed one

experiment with a listener located in Frankfurt. An experiment

on Bitcoin mainnet showed that transactions also exhibit the

“clustering” behavior, though the results are weaker because of

a much larger transaction rate and due to the fact that we only

connected to 1000 servers (asking for up to 50 connections).

We used learning and control transaction sets of 20 transac-

tions each; 5 transactions from the control set were assumed

“known” for anonymity degree calculation.
3) Zcash: For the Zcash mainnet, we performed one exper-

iment with a listener located in Frankfurt. The learning and

control sets consist of 20 and 18 transactions respectively;

8 out of 18 control transactions are shielded (from a t-

address to a z-address). We use 6 control transactions as

“known” for anonymity degree estimation. The Zcash network

is much smaller than the Bitcoin testnet. Moreover, Zcash

servers have far fewer free slots on average (36 against 64

on Bitcoin testnet). We notice that relatively many servers

only provide our listener with 1 – 10 slots. This may indicate

a larger share of “protected” nodes, i.e., nodes which are

configured (using firewalls or other network-level means) to

only provide a limited number of connections to each IP. Note

than a resourceful adversary may overcome this limitation by

purchasing additional IP addresses from a cloud provider.
Note that our attack does does not take into account trans-

action content or type. Consequently, our method applied for

Zcash allows clustering transactions involving both transparent

Fig. 6: Bitcoin mainnet

and shielded addresses (transactions from the control set which

involve shielded addresses are marked with longer ticks in the

figure).

4) Dash: We ran an experiment on the Dash mainnet

(connecting to 500 random nodes from the total of 3065,

asking for 30 slots). In addition to announcing transactions

and blocks, Dash uses the inventory mechanism for managing

the masternode network [1], which includes periodic pings of

masternodes to check whether they are functioning, managing

mixing transactions, voting for governance proposals, etc. Our

tool is not yet adapted for handling Dash-specific messages.

The logs show many Dash-specific inventory messages, which

do not later appear on block explorers (i.e., are not usual

transactions). In a 15-minute experiment we received 12 trans-

action inventory messages and 396 Dash-specific messages.

We ran our clustering algorithm two times: taking Dash-

specific messages into account (Figure 10), and considering

only usual transaction inventory messages (Figure 11).

In both cases, we obtained clearly visible clusters. These

preliminary results demonstrate a clear privacy concern, espe-
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Fig. 7: Zcash

cially if network analysis is combined with deanonymization

attacks on Dash based on transaction graph analysis [28].

5) Monero: Contrary to Bitcoin, that allows spending a

transaction output before it is confirmed, Monero imposes

certain restrictions. A new output appears as “locked” until the

corresponding transaction gets 10 confirmations (20 minutes

at the target block time of 2 minutes) [23]. Though this is a

wallet-level restriction and not a protocol-level one, the major

implementations (the official desktop wallet and Monerujo

wallet for Android) support it. This means that the scenario

of our previous experiments is rather unrealistic: for example,

in order to issue 20 transactions within a 20 minute period, a

user must have 20 independent, “unlocked” transaction outputs

(each of which takes 20 minutes to create).

We check the suitability of our technique on Monero by

performing an experiment without our own transactions. The

goal of the experiment is to check whether we observe a

block-diagonal structure of the correlation matrix between

transaction propagation vectors.

We connected to 200 nodes (with a single connection per

node) and received 124 transactions in a 38 minute window

(see Figure 12).

The less clear picture compared to e.g. Bitcoin testnet may

be explained as follows:

• We establish connections with too few nodes (200, while

the total number of nodes is estimated at 1700-1800 [8]);

• The propagation mechanism is not optimized: there is no

INV – GETDATA – TX exchange, transactions are relayed

unconditionally to all neighbors, which blurs the picture.

On the other hand, an adversary connecting to nearly all

nodes is expected to gain a near-perfect insight into the

original broadcasters of transactions, as IP addresses of

transaction authors will most likely be among the first to

relay a transaction to the adversary.

Another peculiarity which makes our analysis more difficult is

that monerod connects to nodes relatively slowly (compared

to bcclient). In our experiment, while trying to connect to

200 nodes, we got 150 connections only after approximately

2 hours, 175 connections after 3 hours, 200 connections after

nearly 8 hours. We also notice that none of the hard-coded

DNS seeds resolves (as of mid-July 2018); the client falls

back to seed IP addresses (also hard-coded).

F. Estimation of costs for an attacker

We now estimate the resources required for a full-scale at-

tack on the Bitcoin mainnet. As of November 2018, the Bitcoin

mainnet consists of approximately 10 000 nodes. According

to our measurements, the average number of free slots is 43

(measured on 1000 random peers). According to the Bitcoin

protocol documentation [2], the size of an INV message is

“36x + const for message with x objects”. We assume an INV

for a single transaction requires 40 bytes. An average Bitcoin

transaction rate, as of November 2018, is around 250 000

transactions per day, or 2.89 tx/s. Assuming each connection

eventually relays each transaction, we arrive at the required

bandwidth for one connection slot as: 2.89 tx/s * 40 b/tx

= 115.6 b/s. A full-scale attack on Bitcoin mainnet would

require maintaining an average of 43 connections to 10 000

nodes, i.e., a total bandwidth of 115.6 b/s * 10000 nodes

* 43 slots/node = 49708000 b/s = 47.4 Mb/s = 379 Mbit/s.

An hour-long attack at this bandwidth will require receiving

approximately 167 GB of incoming traffic.

We may estimate the monetary cost of the attack based on

the costs of running a Bitcoin full node on a cloud server.

Various estimations put that cost at between $3 and $20 per

month [55][20] Bitcoin Core maintains 8 outgoing and accepts

up to 117 incoming connections by default. In our measure-

ments, an average Bitcoin server has 43 open slots. Assuming

it has a total of 125 slots, 125 - 43 = 82 slots eventually

get occupied. An adversary needs to maintain 10 000 * 43

= 430 000 connections, or 5244.0 times the bandwidth of a

regular node. A 30-days month is 720 hours. Considering all of

the above, we conclude that an estimated cost of an hour-long

attack is approximately 5244 / 720 = 7.3 times the monthly

cost of running a full node. That leads to an estimation of

bandwidth costs at $20 – 150. Even taking into account the

cost of computation and storage, the total cost of the attack is

on the order of hundreds of US dollars – well within reach of

even amateur adversaries, not to mention professional black-

hat hackers and nation states.

All our experiments on Bitcoin testnet and Zcash mainnet

cost $35 (this can probably be decreased by optimizing the

scripts, immediately copying the data to a local machine and

deleting it from the cloud, etc).
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Fig. 8: Free slots: Bitcoin testnet Fig. 9: Free slots: Zcash mainnet

Fig. 10: Dash (Dash-specific messages and usual transactions)

G. Ethical considerations

All linkage experiments were done on our own transactions

and when possible on the testnets. The experiments on the

Bitcoin mainnet deliberately did not attempt to occupy all

connection slots, and operated only on a subset of 1000 nodes

(out of approximately 10 000). Logs from mainnet experiments

will be deleted.

H. Discussion and mitigations

1) Attack scenarios and countermeasures: We now discuss

the possible attack scenarios and countermeasures.

Fig. 11: Dash (usual transactions)

Application-level cryptographic techniques, such as zero-

knowledge proofs in Zcash, can not defend against our attack,

as we only consider transaction hashes and their propagation

times, ignoring their content.

A popular mitigation for deanonymization attacks based on

network analysis is to use anonymity overlay networks such

as Tor [11], or mix networks such as Loopix [39]. In our

case, this countermeasure is inefficient: transactions issued

by the same cryptocurrency node can be linked by a global

passive adversary even if the data was transferred through Tor

or other anonymity network before being publicly broadcast.
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Fig. 12: Monero

Tor helps to hide the relationship between IP addresses of the

originating node and the first node to broadcast the transaction

to the peer-to-peer network, but we cluster transactions based

on the first broadcaster’s entry nodes (or nodes topologically

close to those in terms of network propagation times), not the

IP addresses of the originating node. Note that broadcasting

transactions via Tor may even introduce additional man-in-the-

middle vulnerabilities [17] (the situation is similar to the case

of a light wallet described below).

We distinguish three cases depending on the type of the

user’s wallet.

a) Full node with incoming connections (server): A

typical operator of a Bitcoin server is either a business (wallet

provider, exchange, etc), or an enthusiast willing to donate

their computing resources to help the network. In the first

case, the transaction relayed through the node may originate

from multiple users of this business, which also harms their

privacy. The full node operator may implement the following

countermeasures:

• Run the node with an increased number of outgoing

connections to dilute the quality of the topological fin-

gerprint;

• Use additional random delays on top of those imple-

mented in the node software;

• Drop connections to randomly chosen entry nodes and

establish new ones, constantly altering the set of entry

nodes;

• Give advice to users not to broadcast sensitive transac-

tions within a short period of time.

b) Full node without incoming connections: Transactions

originating from a full node without incoming connections (ex.

computer behind NAT) may be clustered based on the set of

entry nodes. In order to prevent that, the user can re-launch the

software after making a transaction, so that each transaction

would be broadcast through a new set of entry nodes.

c) Light wallets: The majority of Bitcoin users use light

wallets, i.e., they delegate validation to another full node

using simple payment verification (SPV). From the networking

perspective, most light wallets, especially mobile ones, do not

even connect to a P2P network. Instead, they send transactions

to the server of the wallet provider via TLS, which in turn

broadcasts them to the P2P network.5 Proposed countermea-

sures for light wallets would be:

• Use wallets that connect to the actual P2P network and

broadcast transactions without relying on a centralized

server (e.g., Bitcoin wallet for Android [3]);

• Use different light wallets for transactions not meant to

be linkable;

• If the above advice is inapplicable, at least choose a

popular light wallet to increase the anonymity set.

2) Recommendations for core developers: Cryptocurrency

developers should introduce privacy enhancing measures at the

network level, especially if the currency is meant to be privacy-

preserving. As our results show, trickling and diffusion, as they

are implemented in Bitcoin and its forks, are not sufficient. A

promising proposal for anonymous peer-to-peer broadcast is

Dandelion [51][25] (see Section IV for an overview).

IV. RELATED WORK

A. Privacy in cryptocurrencies

Most early research on security and privacy of cryptocur-

rencies only considered Bitcoin as the dominant cryptocur-

rency at that time and was primarily focused on blockchain

analysis [33][38][43]. Reid et al. [42] and Androulaki et

al. [13] provide an overview of privacy challenges in Bitcoin.

A popular mitigation, which does not require modifications to

the Bitcoin protocol, is mixing. A Bitcoin transaction spends

a number of unspent transaction outputs (UTXO) as inputs

and generates a number of new UTXOs. Mixing allows users

to create a joint transaction that combines all relevant inputs

and outputs, making it harder for an adversary to track the

flow of coins of a single user. The major drawback of this

scheme is that users must agree to co-sign the transaction using

additional means of communication. This process is unscalable

without coordination by a trusted third party. Bonneau et

al. [18] propose Mixcoin, a protocol to automate mixed

payments in Bitcoin and similar cryptocurrencies which in-

cludes an accountability mechanism to expose theft. Valenta et

al. [49] add a blind signature scheme to Mixcoin to prevent the

operator from spying on users. Alternative implementations of

mixing protocols include CoinJoin [32] and CoinShuffle [44].

5Apart from clustering, this poses an arguably more serious privacy threat,
which is outside the scope of this work: the wallet provider can log all users’
transactions and link them to their IP addresses. Using Tor is not applicable
in this case, as the wallet servers will still be able to associate a user’s
transactions by other means (e.g., by making the wallet send a cookie along
with transactions).
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Quesnelle [41] proposes a method to link Zcash transac-

tion based on a heuristic extracted from real-world usage of

transparent and shielded addresses.

B. Network analysis

Koshy et al. [30] analyze Bitcoin’s anonymity through the

lens of P2P network properties. They propose a technique

for a global passive adversary to deanonymize users based

on transaction propagation times. The adversary aggregates

network traffic into tuples containing the Bitcoin address, the

first IP address to relay this transaction, and the transaction

identifier. For each transaction, the tuples are constructed for

each input and output. Each tuple is counted as a “vote” in

favor of a hypothesis that a certain IP “owns” (i.e., possesses

the private key of) a certain Bitcoin address. While this paper

provided valuable insights, it seems not to account for trickling

/ diffusion, which must have decreased the quality of the

proposed deanonymization algorithm.

Biryukov et al. [16] describe the networking properties

of Bitcoin and propose a multi-step attack for correlating

Bitcoin clients’ transactions with their IP addresses. The attack

proceeds as follows. Firstly, the attacker prevents clients from

using Tor by abusing the Bitcoin’s anti-DoS mechanism: by

sending invalid blocks or transactions through Tor it is possible

to make Bitcoin servers temporarily ban all Tor exit nodes (see

also [17]). Next, the attacker establishes multiple connections

to each of the servers and tracks which of them advertise an IP

address of the victim client. The intuition is that the client’s

entry nodes will be the ones to advertise its IP address to

the attacker (this is not guaranteed; the paper suggests ways

to reduce noise in the resulting data). After constructing a

mapping of client IP addresses to sets of their entry nodes,

the attacker listens to new transactions and correlates them

with the victim client, if they are broadcast from that client’s

entry nodes.

Miller et al. [35] exploit some peculiarities in the update

mechanism for a known address database (addrMan) in

the Bitcoin reference implementation to infer the underlying

graph structure. Each Bitcoin node maintains a database of

IP addresses of peers it knows, along with corresponding

timestamps intended to reflect the peer’s “freshness”. Unintu-

itively, at the time of writing (2015), Bitcoin nodes only update

timestamps for nodes they maintain outgoing connections with

(at each message received). For incoming connections, the

peer preserves the first timestamp relayed along with the

address. The authors implement a tool that takes advantage

of such rules to make quite an accurate guess of the topology

of the Bitcoin network. After an update of Bitcoin Core in

March 2015, this technique is no longer feasible.

Neudecker et al. [36] propose a timing analysis attack to

infer the network topology. Their approach is different from

the previous work (and similar to ours) in that it does not

use any side-channels, but only the timing of transaction

propagation. The real-world validation in the Bitcoin network

inferred network links at a substantial recall and precision. The

authors showed that an inappropriately parameterized trickling

mechanism can actually reduce the resistance to traffic analysis

compared to naı̈ve gossip (for the goal of learning the network

topology).

Wang and Pustogarov [52] conduct a measurement study of

Bitcoin to analyze the unreachable nodes (i.e., those behind

NATs and firewalls) and report, among other findings, that a

large share of Bitcoin transactions originate from only two

mobile applications.

Fanti et al. [26] study the anonymity properties of trickling

and diffusion. Despite the motivation to change the Bitcoin’s

propagation mechanism from trickling to diffusion, as the

study shows, this provided only a marginal privacy improve-

ment. The authors conclude that the key feature that enables

deanonymization in both trickling and diffusion is an inherent

symmetry: as messages spread through the network in a

circular fashion, a global adversary can estimate where the

center (i.e., the message source) is.

Dandelion [51] and its improvement Dandelion++ [25] are

message propagation protocols for P2P networks designed to

prevent deanonymization attacks. Its key idea is introducing

asymmetry: a message is first sent along a random path,

and only then broadcast gossip-style. Message propagation in

Dandelion++6 proceeds in two stages: the “stem” phase and

the “fluff” stage. In the stem phase, a new message is broadcast

along a random path in the anonymity graph: an approximately

regular random graph based on the same set of nodes as

the regular P2P network. In the fluff phase, the latest node

to receive the message disperses it using the regular gossip-

style broadcast. The authors show that the protocol achieves

much stronger anonymity than Bitcoin’s current propagation

mechanism, though at the cost of a several second propagation

delay and additional sensitivity to DoS attacks at stem phase.

Though the authors mention (Section 4.2) that some config-

urations of the protocol may be prone to transaction correlation

attacks, our approach is not suitable against Dandelion++. The

key feature that allows our well-connected listening node to

gather useful information is that nodes choose neighbors to

propagate messages at random, without distinguishing incom-

ing and outgoing connections. This means that by saturating

50% of a node’s connection slots we have a 50% chance to be

the first to receive a new transaction from it. In Dandelion++,

nodes choose neighbors for the stem phase propagation only

from outgoing connections. There is no obvious way to force a

remote peer to initiate a connection to us, therefore a malicious

node with many outgoing connections will not have any

advantage in the stem phase (it can only aggregate incoming

information while acting as a regular relay, which may gain

some but not much insight into possible transaction clusters).

Neudecker and Hartenstein [37] combine blockchain and

network analysis to cluster Bitcoin addresses and associate

them with IP addresses. They determine the originator of

a transaction as the first originator, using two independent

listening nodes and some heuristics to make the estimation

more precise. The authors conclude that for the majority of

6We focus on the latest, improved version of the protocol.
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users network-based deanonymization is not a concern, though

a small percentage of users might be susceptible to attacks of

this type.

V. CONCLUSION AND FUTURE WORK

We study the state of anonymity of cryptocurrencies on the

network level. We describe and implement a novel kind of

transaction clustering based on the analysis of propagation

times. We implement and test our tool on four popular cryp-

tocurrencies: Bitcoin, Zcash, Dash, and Monero. Our results

indicate that many cryptocurrencies, including privacy-focused

ones, do not sufficiently defend against our attack: a low

budget adversary can link transactions initially broadcast from

the same node with a high degree of accuracy. We argue

that cryptocurrencies must defend against network analysis to

provide stronger privacy guarantees.

A. The applicability of the external quality metric

The adjusted anonymity degree, which we used as an

external quality metric, has limitations. In particular, we didn’t

account for transactions from clusters which did not also

contain at least one of our own transactions. The rationale

behind this is the lack of the ground truth for two “foreign”

transactions: we do not know whether they should be included

in the same cluster. Consequently, our quality metric may

poorly reflect the reality on large networks (such as the Bitcoin

mainnet), where our transactions make up only a small part of

the full network throughput. One direction of future research

may be deriving an anonymity metric which works better

under these circumstances.

B. Direct comparison of relay randomization techniques

As described in Section II, cryptocurrencies use different

relay randomization techniques aimed at improving privacy:

trickling, diffusion, or no randomization. A natural question

would be to measure the relative effectiveness of these meth-

ods. Unfortunately, we cannot use a direct comparison between

cryptocurrencies that use diffusion and trickling to make a

conclusion about relative effectiveness of these methods, as the

real-world networks also differ in many other parameters (such

as the number of nodes and transaction rate) that also influence

the attack results. A possible direction for future research may

be to quantify the effects of trickling and diffusion on privacy

properties of a Bitcoin-like cryptocurrency with respect to our

attack technique, holding all other parameters equal.
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