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ABSTRACT Towards customer-centric automotive systems engineering, it is essential to incorporate
physical models and vehicle usage behavior into decision support systems (DSSs). Such DSSs tend
to apply digital twin concepts, where simulations are parameterized with fine-grained time-series data
acquired from customer fleets. However, logging vast amounts of data from customer fleets is costly
and raises privacy concerns. Alternatively, these time-series data can be aggregated into vehicle usage
statistics. The feasibility of creating digital twins from these vehicle usage statistics and the corresponding
DSSs for systems engineering is yet to be established. This paper aims to demonstrate this feasibility
by proposing a DSS framework that integrates four key elements of digital twinning: aggregate usage
statistics from customer fleets, logging data from testing fleets, physical models for vehicle simulation, and
evaluation models to derive decision support metrics. The digital twinning involves a four-step process:
pre-processing, profiling, simulation, and post-processing. Based on a real-world fleet of 57110 vehicles
and four evaluation metrics, a proof of concept is conducted. Results show that the digital twin covers
the evaluation metrics of 99% of the vehicles and reaches an average fleet twinning accuracy of 91.09%,
which indicates the feasibility and plausibility of the proposed DSS framework.

INDEX TERMS Customer centricity, decision support system, digital twin, fleet data, systems engineering.

I. INTRODUCTION technical systems can be observed. In the automotive

NTERPRISES transform their product-oriented strate-
gies into customer-centric ones, oriented towards the
needs of existing or prospect customers [1]. Therefore, the
behavior of diverse customers must be synthesized — often
coined customer profiling [2]. In business analytics, decision
support systems (DSSs) are essential for processing huge
amounts of customer data, as those allow for the integration
of data capturing, data processing pipelines and analytical
techniques for customer profiling and other purposes [3].
While business analytical systems have been primarily
focused on business management tasks, a rising demand
for decision support for the development of complex
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industry, Holtmann et al. [4] point out that it is challenging
to determine the requirements and the validation targets
based on seamless models and customer usage behavior.
Regarding the development of automotive systems which
usually includes motors, transmissions, batteries etc., there is
increased complexity to be understood as of the penetration
with electromobility and diverse variants and combinations
that have been pushed out, resulting in a high degree of
flexibility or complexity of the whole system’s components
and their usage-dependent developments [5]. According to
Nies et al. [6], there is high research interest in determining
requirements of customers when using vehicles with complex
powertrain systems, e.g., plug-in hybrids which can be
individually powered by fuel or electricity. In addition, the
cruciality of a DSS for automotive systems engineering is
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highlighted in evaluating validation programs [7], optimizing
operating strategies [8], and connected automated driving [9].

Brusa [10] pointed out that for model-based systems
engineering, the digital twin is essential to integrate the
system design and assessment of reliability-related aspects.
To integrate the aspects of models and data in a DSS,
therefore, the concept of digital twins, i.e., simulated virtual
representations for real physical products with connectiv-
ity, has been pioneered in complex product and service
design [11]. According to Rasheed et al. [12], the main
challenge to build a digital twin is the integration of physical
models with data, expert knowledge, and mathematics.

Apart from system integration, it also remains challenging
to acquire and feed customer data into physical models with
minimum costs and preservation of customer privacy. Since
the last few decades, acquiring sensor data from customer
fleets has been extensively spread, providing long-term
measurement values for customer analytics [13]. With the
rapid development of mobile communications technology,
sensor data, such as on-board signals, are expected to
be logged. For example, Sass et al. [14] demonstrate the
potential for predicting component aging with logged signals.
However, Wilberg et al. [15] highlight that performing
massive data logging for customer fleets may result in
privacy violations.

Surprisingly, Esser et al. [16] find that aggregation of time-
series data can preserve customer privacy, as the sequential
information can remedy privacy concerns. Thereby, a sus-
tainable solution is to return to the accessible long-term
statistical data from various control units but with flexible
data aggregation using vehicular telemetries [17]. For huge
amount of customer fleets throughout their corresponding
product lifetime, the costs of extra data loggers and massive
storage of time-series data could also be saved [18]. So far,
it remains unclear if it is feasible to build digital twins based
on vehicle usage statistics aggregated from customer fleets
and to industrialize the approaches into a DSS for customer-
centric automotive systems engineering.

To address the research gap, this work will:

o develop a DSS framework for customer-centric auto-

motive systems engineering using digital twins.

o build and apply digital twins for multiple customer
markets via usage profiling and system simulation using
aggregate data from customer fleets and logging data
from in-house testing fleets.

o build a proof-of-concept (POC) DSS using the frame-
work for predicting the lifetime metrics of plug-in
hybrid engines in three market regions.

« evaluate the feasibility of the POC by comparing the
predicted metrics to the real-world metrics acquired
from vehicle diagnostics.

Targeting to the intersection of automotive DSSs, digital
twins, and customer centricity, this paper has been one
of the first attempts to establish a comprehensive decision
support framework which provides system simulation inputs
from customer fleet usage statistics and delivers quantitative
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metrics computed from the simulation results. Based on
this framework, the digital twinning method consolidates
customer centricity in automotive systems engineering
processes. For product development, system or component
requirements can be quantitatively derived, to name a few.
For aftersales maintenance, individual vehicle lifetime can
be predicted. With the help of the twinning performance
and scalability, more advanced use cases are presented in
this paper, including requirement localization and recall
prioritization.

The remainder of this paper is structured as follows. In
Section II, the related work in automotive digital twins
and DSSs is reviewed. The research gap and the position
of this work are identified. Then, the architecture of the
proposed DSS and detail on this digital twinning approach is
introduced, including pre-processing, profiling, simulation,
and post-processing. In Section IV, the system configuration
of a POC is presented, followed by a case study for
evaluating the plausibility and the practicality of the DSS.
Section V highlights the scientific contribution and discuss
the implication of this work. Finally, this paper concludes
and outlines promising research directions in Section VI.

Il. RELATED WORK

In the context of automotive systems engineering, a digital
twin is a digital replica which reflects the operational states
of customer fleets by acquiring sensor data from fleets and
provides the physical relationship by modeling the vehicle
systems [19]. The physical or data-driven models connected
to the sensor data could be used for decision support by
determining direct or indirect actions back to the products,
such as product lifecycle management or developing next
generation products.

Digital twins have been widely investigated and applied in
the field of systems engineering for the automotive or trans-
portation industry. Undoubtedly, digital twins can be used for
design optimization. Gu et al. [20] converted requirements
to customize engineering design of elevators. Li et al. [21]
applied digital twins to optimize the energy management
strategy for plug-in hybrid electric vehicles (PHEVs) while
fusing cyber-physical operational data. Also, digital twins
can profit operational excellence. Gonzélez et al. [22] eval-
uated the operational states of elevators using digital twins
with various scale of physical-based models. Sun et al. [23]
applied dynamic digital twins to allocate resources in the
aerial-assisted Internet of Vehicles. Thonhofer et al. [9]
proposed a system architecture of a digital twin to pro-
vide decision support for automated driving functions.
Furthermore, for product lifecycle management, digital twins
provide the connection and interaction between the behavior
of physical entities and know-hows using virtual simulation.
Ren et al. [24] predicted the abnormal temperature for diesel
locomotives using a digital twin driven by machine learning.
Qin et al. [25] combined neural networks and physics-based
thermal-mechanical fault dynamic model to predict the defect
evolution for rolling bearings. Rodriguez et al. [26] estimated
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the thermal behavior of inverters in electric vehicles by
feeding numerical models with sensor data during test and
operation.

Compared to model-based systems engineering processes,
Boschert and Rosen [27] summarized the key character-
istics of digital twin-based product engineering in two
aspects: (i) boundary conditions and simulation inputs come
from the real world (customers); (ii) simulation outcomes
contribute in operational seamless product lifecycle manage-
ment. Therefore, in addition to data, models, and twinning
approaches to build digital twins, a digital twin requires bi-
directional connectivity between real products and virtual
models.

Although Rodriguez et al. [26] proposed a co-simulation
framework which enables bi-directional connectivity
between the inverter and its digital twin, the majority
of related research works above focuses on build-
ing the digital replica by machine learning [20], [24],
optimization [21], [23], simulation [9], [22], [28], or com-
bination of the methods [25]. Considering the research
objective, this work focuses on building the digital twin using
optimization and simulation.

Typically, digital twins are real-time capable [11]. In the
context of this paper, utilizing aggregate fleet data means
the data acquisition does not keep the time-series signals
and accordingly loses the real-time capability. However,
according to VanDerHorn and Mahadevan [29], real-time
capability does not affect the qualification of digital twins.
Despite the definition of digital twinning, its use cases,
such as design optimization, operational excellence, and
product lifecycle management, usually require no real-time
actions and continuous feedback. Therefore, without real-
time capability, it is still possible to build digital twins based
on aggregate fleet data. Correspondingly, the bi-directional
connectivity could be enabled by vehicular telemetries and
over-the-air updates, which are the state-of-the-art in the
automotive industry [14], [17].

Depending on if the bi-directional connectivity would take
place automatically and vice versa, there are two similar
concepts: digital model and digital shadow. If both directions
of connections occur manually, it is a digital model. If the
data flow from real world to the digital replica automatically
but backwards manually, then it is a digital shadow [30].
Only with fully automatic capability between the two parts,
the replica can be classified as a digital twin. In the context
of this paper, digital shadows are to be built by reconstructing
the aggregate vehicle usage statistics into time-series profiles.
With simulation, evaluation and the DSS, it is feasible to
impact the physical fleets automatically and build holistic
digital twins.

To deploy digital twin technologies for large-scale industry
applications, solution processes require digitalization and
proper automation with the help of information systems
such as DSSs. Respective DSSs can be broadly clas-
sified in data- or model-based. Data-based DSSs have
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been applied successfully for manufacturing systems [31],
service development of business models [32] and product
development in wind energy [33]. As the complex phys-
ical relationships in automotive systems are hard to be
integrated into pure data analytical models, model-based
DSSs have been widely used in the automotive industry.
Mennenga et al. [34] applied DSSs for lifetime-based fleet
planing for electrified vehicles. Kloor et al. [35] repurposed
batteries for electric vehicles using a model-based DSS.
However, pure model-based DSSs have limitations as no
operational data is provided and cannot represent the usage
behavior of real fleets. To tackle the problem, Xie et al. [19]
developed a DSS using digital twins with real-time capability
and applied it to a vehicle body control system. It enables
the connection between models and live signal data from the
control units, whereas other entities around the vehicles, such
as the driver and the environment, remains to be considered.
Hereby, Wang et al. [36] developed a mobility digital twin
framework as a DSS which integrates humans, vehicles, and
traffic environments. Nevertheless, for complex modeling
assessments and decision supports that are infeasible to be
integrated inside the vehicle control units, novel DSSs have
to consider further aspects.

For customer fleets with private cars, car manufacturers
suffer from logging and monitoring large amounts of
customers throughout the lifetime of vehicles due to cost
issues and privacy preservation. To enhance the security
of timely DSS, machine learning-driven twinning meth-
ods could be distributed on-board. For the security of
data exchange, blockchain technologies are investigated
and incorporated [37], [38]. Considering the complexity
of physical simulation models, however, central twinning
solution is more suitable in the context of automotive systems
engineering.

Interestingly, Esser et al. [39] proposed a driving cycle
synthesis approach for building profiles of customers
based on aggregate fleet data such as histograms, whereas
(i) the representativeness of customer usage behavior for
electromobility remains to be investigated, and (ii) the
representativeness of driving cycles on lifetime requires
further investigation. Towards both aspects, Ling et al. [18]
developed a profiling approach to synthesize usage profiles
with respect to parking, charging, and long-term loads
on lifetime issues. However, it remains unclear if these
synthesized usage profiles could represent digital twins for
supporting automotive systems engineering processes. Based
on the related work, this paper will propose a DSS solution
targeting to digital twinning based on aggregate data and
evaluate the feasibility using real-world customer fleet data
from three different market regions.

lll. SYSTEM FRAMEWORK

This section introduces the components and their relation-
ships of the proposed decision support system (DSS) in the
context of automotive systems engineering.
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FIGURE 1. An overview of the DSS. Solid arrows indicate connections for direct
decision support pipelines for operations configured by users. Hollow arrows refer to
indirect maintenance pipelines that clean, verify, and update the data, the models, and
simulation outcomes.

A. OVERVIEW
Typically, a DSS consists of individual sub-systems to
coordinate data, models, knowledge, and users [40]. In the
proposed DSS, knowledge management is implemented by
digital twinning, reflecting estimates of long-term customer
vehicle metrics.

Fig. 1 shows an overview of the proposed DSS. In the
context of a digital twin, the DSS coordinates real-world
data and virtual-world models on the virtual side by a set
of pre-defined or configurable pipelines for data processing
and simulations. On the front-end side, the user interface
provides the capability of configuring data ingestion, models,
twinning algorithm, as well as the visualization of customer
profiles and decision support metrics. The data processing,
profiling, and simulation in digital twins are executed on the
back-end side.

The key components of the DSS framework are the
data and models. The data subsystem provides the interface
between the data aggregated from customer fleets (aggregate
data) and the data logged from in-house fleets (logging data).
The model subsystem organizes physical and evaluation
models for the use of system simulation and metrics
computation. With data and models at hand, digital twin-
based metrics can be derived for decision support. To
allow the simulation outcomes to reflect a digital twin for
customer fleets, data processing pipelines are necessary.
The pipelines can be executed on-demand or scheduled for
forecast purposes.

1) DATA

Aggregate data are long-term statistical measurement values
from the onboard control units, which describes the usage
behavior of customer fleets. They can be acquired via
diagnostic jobs at dealers, or via monthly or on-demand
campaign scripts over mobile telemetries [41]. These long-
term values are represented in the frequency domain, hence,
the size of data remains constant even over a couple of
years. Although the temporal sequential information is lost,
these data can be easily aggregated, as exemplary shown
in TABLE 1. Furthermore, this preserves customer privacy,
as what the customer did at what time remains unknown.
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TABLE 1. An example of aggregate data. X, denotes total mileage. “D, in (0,10]
km/h” refers to duration when velocity is between 0 and 10 km/h, aggregated in h. “T;
in (0,5] km” is the number of trips whose mileages are within 5 km.

Customer Xy, in D, in . Dy in Ts in . Ts in
vehicle km (0,10] (200,4+00) (0,5] (400,4-00)
km/h km/h km km
C000001 67345 320 ... 0 1450 ... 6
C000002 85034 431 ... 02 1267 ... 18

TABLE 2. An example of logging data. v refers to velocity, a is the acceleration, and
Tex represents the external temperature. 6, denotes the road slope, which is the
inclination angle upwards of the road direction.

Testing  Timestamp v in a in Oy in  Tex in
vehicle km/h  m/s?  ° °C
T000001 2021-03-05 13:58:00 33.2 0.720 2.25 26.2
T000001 2021-03-05 13:58:01 35.8 0.315 1.55 26.2

The data is prepared by extracting necessary attributes from
those source data for the digital twin.

Logging data are time-series signal traces from external
data loggers installed in in-house fleets. These fleets could
be all kinds of testing vehicles on the road. As the number
of testing vehicles is far less than the customer fleets, it
is insufficient to represent the usage behavior of a concrete
customer with a single testing vehicle. However, the logging
data are finely resolved over a long time (usually over one
year) and contain temporal information of sensors, which
could be regarded as the inputs for simulations. As the frame
rates for those signals are not identically flowing in the
control units, they should be down-sampled uniformly to,
e.g., 1 Hz before feeding into the simulation models, as
presented in TABLE 2. In the digital twin, logging data are
used as the “raw material” to synthesize usage profiles for
aggregate customer data.

2) MODELS

Provided by diverse departments which are in charge of
developing automotive components, physical models could
include all essential vehicle components such as engines,
transmissions, electric machines, batteries, vehicle chassis,
auxiliaries, etc. They should be parameterized to provide
sufficient inputs for evaluation models after simulation. For
instance, in order to count the number of cold starts, the
output signals of engine model should be parameterized
with speed, torque, and cooling temperature. Technically,
the component models could be zero- or one-dimension
models that resolve loads of components. This ensures
that the system model could exceed further from real-
time capabilities, allowing digital twin simulations for a
group of customer fleets within feasible time. Having the
component models available, pre-defined configurations of
the components, their parameters, the functional relationship
between the components, as well as operating strategies are
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FIGURE 2. The flow chart of digital twinning pipeline including pre-processing, profiling, simulation and post-processing. Boxes with double circular arrows are parallelizable

loops. Boxes with a single circular arrow represent non-parallelizable loops.

integrated. The operating strategies are especially important
for hybrid powertrains, where the combustion engine and
electric machines are working together. This is also an
important motivation why this work uses the simulation
for estimating the component states of customer fleets
instead of directly using in-house fleet signals. As a whole,
the inputs of system models are signals such as velocity,
external temperature, and road slope. Then the simulation
outputs various loads of components such as engine coolant
temperature and battery charging states. In this paper, we use
an in-house developed system model to simulate the dynamic
loads of vehicle components. The detail of this model can
be found in [42], [43].

Provided by various competence centers with focus on
features such as lifetime, evaluation models are usually
analytical models with the inputs from simulation outcome,
outputting decision support metrics. These metrics are, in
most cases, scalars. A simple example could be, according
to the engine loads, fuel consumption. With the development
of the physics of failure models like bearing wear, thermal
aging, etc., customer-centric reliability evaluation is possible
in the proposed DSS framework.
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B. DIGITAL TWINNING

As illustrated in Fig. 2, each digital twinning pipeline
consists of a core pipeline and its corresponding constraints,
explained in the following four steps in detail, i.e., pre-
processing, profiling, simulation, and post-processing.

1) PRE-PROCESSING

Suppose that the aggregate customer fleet data is summarized
in a tabular dataset D with pg tuples (rows) and ng attributes
(columns). In D, each tuple represents a customer vehicle
with the latest ingestion of their measurement statistics
and other meta information such as region, dealer, vehicle,
and powertrain configurations. Referring from those meta-
information, the pipeline firstly drills the target customers
down, yielding p customer vehicles. Considering the discrete
nature of aggregate usage attributes, all attributes are selected
that describe the usage behavior and thus getting n features.
The extracted dataset is concatenated into a matrix X € RP*",
namely the usage space matrix.

For analyzing huge amounts of customer vehicles, the
computational costs in simulations later on could be over
budget if the twinning is performed one by one. To reduce
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the costs, the number of digital twins could be reduced
by selecting reference customer vehicles using sampling.
Given the sample set cardinality p, a speed-up of profiling
and simulation reaches a factor of p/p as they are with
an algorithmic complexity of O(n) for various customer
vehicles, i.e., those samples are computational independent.
Typically, random sampling should reach acceptable repre-
sentativeness for distributions. Concerning product lifetime,
however, the coverage of fringe customers whose usage
pattern could potentially lead to extreme product loads that
may cause reliability issues, which are usually strongly non-
linear correlated to the usage behavior. From the geometric
perspective, Ling et al. [44] developed a usage space
sampling method which is particularly suitable for sampling
tasks focusing on such latent fringe coverage. Hence, the
method is utilized to pre-process D, detailed in the following
steps.

First, n-dimensional matrix X is compressed into X e
RPX7 with 7 principal components by performing z-score
normalization and truncated singular value decomposition,
namely Principal Component Analysis (PCA). This is
because (i) it is one of the most widely used dimensionality
reduction technique, (ii) the resulted principal components
are linear combinations from the original axes and thus
deliver reproducible geometrical properties to the next
sampling steps. In [7] and [44], this step is referred to as
usage space analysis. Starting from the geometry of reduced
vector space f a convex hull [45] is then constructed and
find pp geometric samples on the boundary, i.e., fringe
sampling. A complement to the fringe samples to the
cardinality target p is to select p — pgp samples from the
rest via Halton sequence, a quasi-random point set [46], i.e
core sampling. For the selected p samples, their importance
ought to be estimated, as some of them may be so rare that
almost no customer in the population is similar to them. For
customer vehicle i = 1, ..., p, the weight w; is computed by
counting their neighbors segmented by Voronoi tessellation
based on Euclidean distances. The weights indicate their
market volumes from the population, hence the step is called
market volume weighting.

Overall, this sampling process is deterministic, repro-
ducible and proven to be robust for various datasets and
particularly suitable for sampling that focuses on capturing
latent fringe customers. For further information, please refer
to [44]. So far, the pre-processed dataset D has D rows and
n+-1 features. The additional feature is the market volume w.

2) PROFILING

To infer the usage behavior of a customer vehicle, time-series
driving profiles are synthesized by reconstructing logging
data towards the aggregate data, i.e., profiling. Assuming
that the aggregate data contain adequate information to
characterize the usage behavior, it is feasible to perform
individual profiling from the logging data towards the
aggregate statistical information considering comprehensive
usage [18]. The core profiling mechanism is to find a suitable
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combination of logging signal sections to represent the usage
statistics of customer fleets, so that customer behavior could
be modeled based on the trip sections.

To ensure the synthesis process, the logging data from
various testing fleets is firstly decomposed and reorganized
to establish a trip library L, as described in [18]. These
logging data includes k time-series variables such as velocity,
road slope, and external temperature, and can be directly
imported into physical models for system simulation.

Given the pre-processed dataset D, denote customer vehi-
cle (row) i as 50) e RIx0+D) Fori=1,... , P, the objective
of profiling is to synthesize a multivariate time-series profile
S The profile represents the long-term aggregate usage
information from 5(1), which spans roundabout a week. The
profiling procedure includes following steps.

First, allocate a timetable of o trips and (o — 1) pauses
using inverse transform sampling [47]. For ripj =1, ..., o,
denote AT(’ and AT(’ as the trip duration and the pause
duration exactly after tr1p Jj. Respectively, the timetable can
be expressed by [AT", ATS", ..., AT ™", AT(”]. Note
that there is no pause after the last trip written in profile
S®_ Second, search representative trips from trip library L
by comparing the aggregate features of combined trips and
that of target customer p" using meta-heuristics [48]. For
trip j, denote the indexes of the trip found in L as l(/) As
indexes are natural numbers and act as the interface to L,
the selected index subjects to 1(’) eNA lt(/ < |L|, where |L|
is the cardinality, namely the number of trips contained, in
the trip library. Thus, the time table is extended by assigning
trip indexes, yielding [il" AT(I) e AT;G_I) i”)]. Third,
build a realistic week proflle S(’) by rearranging the trips
from Sy and pauses alternatively and concatenating them.
The last step of profiling from [18], i.e., integration, is
extended and applied in Section III-B.3.

After conducting the profiling procedure for all p customer
vehicles, the usage profile set S with p signal profiles serve
as the inputs for system simulation.

3) SIMULATION

Depending on the requirements from utilized physical
models, profile S includes k time-series signals and o ®
trips selected from L. If signals related to pause or charging
are not available in L, or no dynamic simulation during
pauses is considered, the pauses can be clipped out of
the signals to save the storage capacity and computational
expense. The pause information is not completely lost, but
implicitly kept inside the timestamps S 7

For the start of trip j = 2, ., 09 the corresponding
timestamp is denoted as 7;. Between trip j and trip (j — 1),
the pause duration is then

ATY =8¢ (T)) —

which supports the initialization of boundary conditions
(such as the battery state of charge or engine temperatures
which are relevant to pause durations) before simulating

SED(T; - 1), (1)
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trip j. As initial conditions of trip j = 2,...,0® are
derived after simulating their previous trips, the simulation
for customer i itself could not be paralleled. If there are
any opening boundary conditions, e.g., charging habit, they
could be configured as scenarios for what-if analysis.

After system simulation, profile s® with 7 signals is
extended with simulation outputs, yielding $Y with 7 signals,
where 7 > r. Profile S includes various vehicle loads such
as the rotational speed, moment, and coolant temperature of
engines, providing necessary inputs as estimating indicators
for decision support.

4) POST-PROCESSING

Given the p simulated profiles as set S and their meta-
information with market volumes w as set ﬁ it is ready to
perform decision analytics by computing evaluation models
followed by computing decision support metrics.

Assume that there are m evaluation models, and each
of them generates a scalar output. For customer i =
1,...,p, its corresponding evaluation model k=1,....m
could be expressed as a function y,(;) = fk(’D\(l),fS‘\(l) ). The

m outputs ygi), Cees y%)

customer vehicles, yielding 5(1) with n + m + 1 features,
where the additional one feature indicates the market volume
w;. Bringing all the metadata of P customer vehicles together,
the prepared dataset D € RP*(+m+D g the last input of
computing metrics for decision support.

Relative metrics, such as percentages or time share, are
dimensionless quantities and are thus directly comparable
from the evaluation functions. However, absolute metrics,
such as counts, cumulative operating duration, cumulative
mileages, and other functional expressions, are to be scaled
towards defined targets, such as their lifetime.

In the automotive industry, lifetime targets are typically
defined by z, years, zm mileage (kilometers), and/or zn
operating hours of corresponding components. For customer
i, the synthesized profiles usually cannot reach those targets.
Corresponding to the lifetime targets, from their S@ profile
time span Eff) can be computed as years equivalent, mileage
7% as kilometers, and %\ as operating hours. Typically,
reaching one of the targets is sufficient for vehicle lifetime,
i.e., whatever first. The scaling factor for customer i
is then

extends the meta-information of

G) o Za Zm <Zh
>V =min] =, =, =1, 2
!2@” O

which is the minimum of the multiplier of all targets.
After computing all required evaluation models and
considering lifetime scaling factor as multipliers for all
customer vehicles, metrics are to be computed for decision
support. A typical type of metric is the critical scaled
evaluation output which covers the majority of the customer
vehicles. As only a small number of reference customer
vehicles are twinned, the coverage should consider other
customer vehicles that are not sampled, i.e., their market
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FIGURE 3. System configuration for the proof of concept (POC) of digital twinning.

volumes. Before deriving the metric, the weighted empirical
cumulative density function (ECDF) of the output of model
k ought to be computed over the market, i.e.,

P
Fi(®) = Z;w D Wil o0 3)

P =1
where 0 represents the functional output value of model &,
and indicator function 1 is activated only when the model
output for customer i is smaller than or equals (covers) 6.
The metric is then the inverse ECDF value with a given
coverage. For example, F;’ 1(0.99) indicates the 99% quantile
of critical indicator of model k, which covers over 99% of
the customers in the market.

To summarize, let us take the decision support pipeline as a
whole. The physical twin for customer vehicle i is aggregated
by n usage statistical indicators, i.e., DY, After digital
twinning, D is expanded with m post-processed evaluation
metrics and becomes 5('). In addition, profile §(l) includes
representative time-series signals and thus enables detailed
inspection and analysis of the usage behavior. Hence, a
digital twin for i can be represented by {5(1) ,§(1) }. From
the market perspective, reference vehicle i represents w;
customers in the market. To support decision-making in
automotive systems engineering processes, a market digital
twin is built by bringing the reference vehicles together,
represented by {D, S}.

IV. EVALUATION

To demonstrate the feasibility of the framework and evaluate
the prediction accuracy of twinning pipeline, a proof of
concept (POC) is conducted based on in-house real-world
customer fleet data. In this section, the configuration of this
DSS is introduced. According to various indicators related
to requirement engineering in automotive development,
the evaluation results of twinned customer profiles are
presented.

A. SYSTEM CONFIGURATION

The architecture of DSS (introduced in Section III) is carried
out as illustrated in Fig. 3. All data and models were
established and available. The aggregate data of customer
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fleets are stored in an Oracle database. The logging data
of testing fleets, which are originally mf4 (measurement
data format) files, are significantly larger and more versatile
as a lot of signal channel names are not unified or not
available for some vehicles. Hence, they are saved in
shared file storage via in-house intranet. The physical and
evaluation models based on Simulink models and MATLAB
m-functions are also placed in ordinary file systems without
using databases.

The software infrastructure of the other components is
established for this POC on premise, including a full-stack
Web application and a twinning server instance. Considering
current working load and needs of POC, a Linux virtual
machine is used from an in-house cloud cluster, equipped
with 8 CPUs and 16 GB RAM.

The Web application is developed using MERN, a popular
JavaScript-based technology stack. As the front-end, the user
interface is developed in React. The back-end Web server
used Node.js and interact with React by Express.js. As the
data to be presented on the front-end are highly unstructured,
MongoDB, a document-based database, is used to save
the metadata of data and models available for configuring
twinning, and to save the shortcuts or interface information
of customer profiles as digital twins.

The twinning server instance is a running program based
on MATLAB R2021b runtime. It monitors and synchronizes
the status and metadata of twinning cases from the front-
end to the MongoDB via a java database connectivity
(JDBC) driver. When a new twinning request is submitted, it
starts a batch instance which submits the data pipeline with
configured parameters, including which customer groups,
which physical model, which evaluation models, and the
variables to control the twinning pipeline. Depending on
the work load of running instances and the requirement
of parallel computing, the instance will run on the local
server or be submitted to a high-performance cluster. In each
instance, aggregate data are queried by MATLAB via JDBC.
The output profile signals are stored in gzip-compressed
JavaScript object data format (JSON) to save storage space
and operating costs of database, and to provide simple data
access to the Web server.

Furthermore, it is worthwhile to declare that this technical
configuration of the DSS framework is a possible example
based on the existing IT infrastructure and resources. There
is no strict restriction of selecting the hardware and software
infrastructure.

B. CASE DESCRIPTION

Based on the hardware and software infrastructure of the
POC, a case study is conducted using the following data
sources, models, and decision support metrics.

The aggregate data consists of three market regions with
34711, 9211, and 13188 customer vehicles, 57100 vehicles
in total. These customer fleets are mid-size sedans with
plug-in hybrid technologies. In the pre-processing of digital
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twinning, 100 samples are selected for each market region.
These samples build a reference customer fleet.

The logging data are acquired from 823 in-house vehicles
with various vehicle variants and powertrain configurations,
including test vehicles and volunteer customer vehicles for
logging. It is worthwhile to mention that the majority of
such testing fleets are from the market region 1. The time-
series signals from those testing fleets are decomposed into
657909 trips, which includes driving signals of 135600 h
and 6.009 million km in total.

The physical model is developed in-house and simulates
the total vehicle system dynamics with a focus on powertrain
systems [42], [43]. Its configuration and parameters are
identical to that of the customer fleets selected in pre-
processing, which has been used for optimizing energy
management strategy [43] and building an engine-in-the-loop
environment [49].

To enable the evaluation of twinning accuracy, only
the evaluation models and metrics are chosen which are
available from aggregate data on real-world customer fleets.
Hence, complex damage models, such as thermal aging, wear
intensity, or thermal-mechanical fatigue, are not evaluated
here. Instead, four evaluation metrics are chosen in this
study: (i) average velocity in km/h to compare the profiling
quality independent from physical simulation, (ii) number of
engine starts to evaluate the prediction quality of long-term
engine reliability, (iii) average fuel consumption rescaled by
the range from real-world customer fleets, and (iv) time
fraction of recuperation in which the electric motor utilizes
the breaking energy to charge the battery.

As most of the metrics are average values or fractions,
no lifetime scaling is necessary, except the number of
engine starts. The lifetime targets are typically defined by
regulations and manufacturers. This paper assumes a scaling
target of 30 years, or 450000 km, or 18000 operating hours,
whatever first. Approximately, this scaling target represents
an annual mileage of 15000 km. For each customer, the
scaling factor is calculated according to (2).

In profiling, each reference customer vehicle is twinned by
an one-week profile. As no charging behavior is aggregated
in the customer fleets, the uncertainty is quantified by
simulating two extreme scenarios, i.e., always charge (S1)
or never charge (S2) the battery between the trips. Here, no
repetition is needed for quantifying the uncertainty of the
whole twinning process, as the sampling, simulation for S1
and S2, as well as evaluation are deterministic. In addition,
the random seeds for meta-heuristics in profiling are also
initialized using identical set of pseudo-random numbers.
Hence, it appears to be random but is deterministic. At the
very beginning of each customer profile, following initial
conditions are specified: battery state of charge as 50%,
coolant and oil temperatures of engine and electric motor
equal the corresponding ambient temperature.

The twinning accuracy could be quantified by relative
error e, which is the relative fraction of real-world reference
metric yrer uncovered by the interval between scenarios S1
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Ysi1 and S2 ys2, i.e.,

max{0, min{ys1, ys2} — Yref}
+ max{0, yref — max{ys1, ys2}}

Yref

For metric u from the four indicators presented above and
quantile g € [0, 1], according to equation (3), its real-world
metric and predicted metric from scenarios S1 and S2 by
twinning are denoted as F;’lref(q), 51(‘1) and F sz(q)
The quantile relative error (QRE) is then the relative fractlon
of real-world quantile metric uncovered by the interval
between S1 and S2, i.e.,

QRE(1. @) = e(F,1oi(@). F 5@, F ko @) 5

This work compares the QRE of median, 99% and max
quantiles, i.e., ¢ = 0.5,0.99, or 1.

Apart from quantile distributions, the twinning quality
of individual vehicle is also worthwhile to be evaluated.
For selected customer sample i=1,...,100, its real-world
metric is denoted as y re f, predrcted metrrc from scenarios

e(Vref, Ys1,Ys2) = )

S1 and S2 as y Sl and y . The individual relative error
(IRE) for customer iis, therefore represented by

IRE(u, i) = e(yi(tl)ref’ nyl)Sl )’2)52> ©)

One IRE value represents one customer sample but without
considering the market volume. To consider the impact of w;
for reference customer vehicle i, therefore, it is worthwhile
to count the fraction of customer fleets whose real-world
metrics are covered by S1 and S2 to all the customer fleets.
Given a tolerance of § for exceeding the S1 and S2 bands,
the fraction is defined as fleet twinning accuracy (FTA) for
metric u, i.e.,

100

1
me=§;Zme@. (7)
i =

In this case study, zero tolerance is allowed for all metrics
with scenario difference, but 10% of IRE for those without
a difference, i.e.,

e () 0]
0.1if yﬂ’ 51 = yul 2 @)

0 otherwise.

C. RESULTS

The twinning case, including 300 reference customer vehi-
cles from three market regions in total, takes less than
2.8 h using four cores, or roundly 5.2 h elapsed, including
database query of aggregate and logging data. The most
time consuming parts are profiling which takes 36.2 +33.7 s
per customer, and simulation which takes 4.2 + 2.9 s per
customer per scenario.

Qualitatively, Fig. 4 shows the ECDFs of real-world
reference case and both scenarios for four metrics and
three regions. The first column of sub-figures show the
distribution of average velocity among three market regions.
As the velocity profiles are simulation inputs, their predicted
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TABLE 3. Comparison of performance indicators of digital twinning grouped by
evaluation metrics and market regions. Respectively, QRE and FTA represent the
quantile relative error and fleet twinning accuracy. Generally, lower QREs or higher
FTAs indicate better performance.

. Market QRE
Metric . FTA
Region  median  99% ~ max
Average I 293%  953%  9.01% 97.08%
velocity 1I 031%  0.58% 23.27% 93.38%
in km/h 1II 532%  6.54% 17.75% 99.62%
Number of I 0 0 10.93% 84.61%
. I 0 0 0 76.09%
engine starts
1 0 0 241% 85.96%
Rescaled fuel 0 0 91.53% 99.31%
. 0 0 24.46% 92.01%
COl’lSlepthl’l
il 0 0 1582%  79.47%
. . 0 0 19.93% 95.55%
Time fraction
. 0 0 10.21% 95.26%
of recuperation
III 0 0 0.85% 94.76%
distributions under S1 and S2 are identical. Generally,

the twinned reference customer profiles are capable of
representing the average velocities of real-world customer
fleets. In region III, the reference profiles are generally
slightly faster than real-world values, but with an acceptable
range, as only a minority of trip recordings in the trip
library come from this region. Furthermore, the other metrics
are calculated based on the simulation outcomes. Generally,
all the real-world ECDF curves are between the predicted
distribution of S1 and that of S2.

Quantitatively, TABLE 3 summarizes the QREs and FTAs.
As the prediction uncertainty of charging behavior is
quantified by S1 and S2, the performance indicators QRE
and FTA already consider the uncertainty by computing the
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coverage error. As discussed above, the average velocity
is independent from the charging scenarios. On the one
hand, their QREs are generally within 10% for median and
99% quantile, which can be, to some extent, compensated
by considering a safety band on the prediction ECDFs,
such as +10%. On the other hand, their FTAs indicate
that the average velocity of over 93% of the individual
customer fleets are correctly covered by the prediction of two
scenarios. In terms of 99% quantile for the other evaluation
metrics, all 300 reference customer profiles have an QRE of
zero. This indicates that long-term behavior of engine starts,
fuel consumption and recuperation ratio are covered by the
reference customer fleet for all three markets. However, the
maximum QRE for rescaled fuel consumption in region I
is significantly larger then other regions. A possible cause
could be the calibration data of engine fuel consumption
used in the physical model mainly refers region II and
II, which are closer to each other. Regarding their FTA,
however, individual prediction coverage could be less than
80%, especially the engine starts in region II and fuel
consumption in region III. In reality, a transient deep press of
gas pedal could trigger an extra start, which is not considered
in the simulation. This effect could lead to larger prediction
errors for individual customer vehicles.

Regarding the digital twins as a whole, the derived
requirements from these digital twin reference profiles can
cover 99% of the real-world customer fleets. It is implied that
if relevant system requirements are derived from the 99%
quantile of metrics, the powertrain system can cover 99%
of the usage scenarios of target customers throughout the
product lifetime. When predicting the metrics for individual
customer vehicles based on their usage statistics, on average,
91.09% of individual customer vehicles are well covered by
S1 and S2. This implies that 91.09% of the vehicles could
be represented by the digital twins in terms of the evaluation
metrics.

Generally, the target is to cover the distribution of real-
world customer fleets by that of the predicted metrics under
S1 and S2. Hence, the twinned reference customer fleet is
feasible of representing all the four metrics for all three
market regions.

D. EXEMPLARY USE CASES

Using the twinned reference customer profiles, the DSS is
capable of predicting complex engineering objectives such
as lifetime indicators. With the focus on customers, the
digital twin-driven DSS proposed in this paper could support
versatile decision-making tasks towards customer-centric
automotive systems engineering. This section presents two
potential use cases, including requirement localization and
recall prioritization.

1) REQUIREMENT LOCALIZATION

To select component suppliers for various market regions,
known as localization, it is necessary to specify lifetime
requirements corresponding to the regions. The case study
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FIGURE 5. An example for localizing requirements of plug-in hybrid electric
vehicles. The engine refers to the combustion engine. The motor refers to the electric
motor. All metrics are rescaled according to the minimal and 99% quantile of customer
fleet metrics.

above has three market regions. Suppose that there are two
suppliers A and B. The relevant lifetime metrics are: thermal
aging for the combustion engine [50], bearing wear [51] and
high-cycle fatigue [52] for both of the combustion engine
and the electric motor. These metrics are computed based on
in-house evaluation models. An exemplary radar chart for
the decision support task is visualized in Fig. 5.

The worst case scenario from S1 and S2 are plotted for
99% of the customer fleets in Region I, II, and III, which
are significantly different in thermal aging and bearing wear.
Assuming that the maximum thresholds for such metrics of
the reliability tests from supplier A and B are reached, as
shown in Fig. 5, supplier A could well cover region II and
III, whereas the engine bearing wear from region I could not
be covered. However, supplier B could cover all metrics of
region I. In terms of reliability coverage, it is recommended
to select supplier A for markets II and III, but supplier B
for market I.

2) RECALL PRIORITIZATION

Suppose that a small number of customer vehicles have
engine failures. Their dealers report the issues to the car
manufacturer. After analyzing those issues, the aftersales
specialists observe that all those engines have severe thermal
aging. However, the usage patterns of those vehicles are
different. This could indicate that all vehicles with similar
severity of thermal aging could have engine failures. To
possibly eliminate the risk of vehicle failures, vehicles with
higher risks should be firstly identified and then suggested
to undergo maintenance.

The recall prioritization could be supported by digital
twinning with the relevant vehicle and powertrain variants
filtered. From the evaluation models, all relevant thermal
aging ones are chosen as the decision support metrics.
Taking all those metrics into account, it is possible to
find which customer vehicles are possible to have those
reported failures. Here, all customer vehicles with similar
thermal aging damages could be identified. Then, customer
services could send notifications to those vehicles for deeper

975



LING: DIGITAL TWINNING FROM VEHICLE USAGE STATISTICS

inspection as soon as possible. In this way, large amounts
of breakdown issues could be well prevented.

V. DISCUSSION

The core innovations of this work can be summarized from
multiple perspectives, with significant implications for the
digital twins, engineering practices, and customer centricity
in the automotive industry.

In the scope of digital twins, this framework allows
physics-based system simulation from customer vehicle
usage statistics, representing a notable advancement in
digital twins technology. The integration of physics-based
simulations with customer data not only provides a real-
istic representation of automotive systems but also enables
scalability from individual customer vehicles to the entire
market.

In the field of automotive DSSs, this twinning pipeline
delivers inputs for quantitative and fine-grained automotive
systems engineering purposes, thereby influencing engineer-
ing practices. Engineers can utilize digital twins not only for
individual vehicles but also for market-wide analysis, con-
tributing to the development and optimization of automotive
systems. The integration of data-driven customer profiling
and physics-based simulations into the process of business
analytics via digital twinning aligns with contemporary
trends. This suggests that the automotive industry can
leverage the framework not only for engineering purposes
but also for strategic decision-making, influencing business
analytics practices.

From the perspective of customer centricity, this solution
enables digital twinning from customer data with low cost
and privacy preservation. The customer-centric approach,
including the anonymization of aggregated vehicle sensor
statistics, addresses privacy concerns and enhances cus-
tomer satisfaction and trust. Addressing privacy and ethical
concerns, the framework incorporates robust measures for
aggregate data and prioritizes privacy through on-board
aggregation. This ensures the provision of anonymous aggre-
gated vehicle sensor statistics without personal information
or location data, emphasizing ethical considerations in data-
driven technologies.

Although the evaluation results indicate the feasibility of
this DSS, it is worthwhile to discuss the limitations of the
digital twinning method and the case study. The QREs for
maximum values are not yet well-covered by digital twins,
sometimes leading to a larger error of over 20%. Hence,
for systems engineering processes where a 99% quantile
is insufficient for market requirements, it is inappropriate
to perform the twinning method for individual customer
vehicles. Furthermore, the twinning performance strongly
depends on the data quality for aggregate and logging data.

In fact, a small number of relatively large individual
IREs are observed. This could be caused by a lack of
representative trips in the testing fleets, as well as the
quality of aggregate data from customer vehicles. This
may lead to a propagation of uncertainties for profiling,
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resulting in unrepresentative profiles. Potentially, this issue
could be improved by increasing the number of samples
in pre-processing, increasing the profile length to a month,
enlarging the trip library considering diversity of usage
maneuvers, and tightening the convergence criteria of the
profiling algorithm.

In conclusion, the proposed framework has the potential to
reshape how the automotive industry approaches customer-
centric automotive systems engineering. By addressing
limitations and continually improving the framework, there
is an opportunity for positive impacts on the efficiency of
engineering practices, the satisfaction of end-users, and the
ethical implementation of data-driven technologies in the
automotive industry.

VI. CONCLUSION

Based on digital twinning, a DSS was introduced which
connects aggregate data from customer fleets, logging data
from in-house testing fleets, physical models, and evaluation
models for providing quantitative guidance in the process
of customer-centric automotive systems engineering. The
digital twins are built by a twinning pipeline, including
pre-processing, profiling, simulation, and post-processing.
To ensure privacy preservation for customers and reduce
costs, no signal logging is necessary from customer fleets.
In a case study, digital twins are built for a plug-in hybrid
customer fleet from three market regions and compared four
decision support metrics that are available from the real-
world customer fleets.

Results indicate that the proposed digital twinning method
is plausible and capable of providing accurate predictions
for engineering requirements. This DSS framework is also
feasible for solving such large-scale market prediction
without losing technical details in systems engineering.
Furthermore, two real-world decision support use cases are
discussed, including the localization of lifetime requirements,
as well as finding fleets with high risks of failures for
potential recalls. The case study indicates that this DSS
has potentials of improving the pace of customer-centric
automotive systems engineering.

Despite providing quantitative results for the use cases
presented, various aspects of the digital twinning could be
further investigated. For vehicle usage statistics, currently
one tuple represents one customer vehicle. It remains
promising to make use of every acquisition of data from
each customer, which are multivariate, high-dimensional,
histogram-valued, and with sequential patterns. Furthermore,
the model management requires effective management of
data related to boundary conditions, applicability, and simu-
lation results from simulation and evaluation models. These
data are sourced from multiple departments and suppliers.
The complexity and diversity of these data necessitate
significant optimization of the data logistics process and cor-
responding information systems. Another important aspect
is that, as mentioned in related work, the bi-directional
connectivity could be improved by enabling the twinning
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algorithm for cloud edge computing. The real-time capability
could also be realized by hybrid digital twin frameworks
which could incorporate cloud-based systems simulation for
basic twinning and sensor signal processing for updating
the twinning results on vehicle board computers. Moreover,
further use cases in automotive systems engineering could
be investigated and verified, e.g., the optimization of vehicle
testing programs, sustainability evaluation, and predictive
maintenance.
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