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ABSTRACT Crash prediction is one of the important elements of real time traffic management strategies.
Previous studies have demonstrated the use of infrastructure-based detector data and UAV video to predict
a crash in the near future. The main limitation of such data is limited coverage. In this work, we have
used connected vehicle trajectory data that can have wide coverage as well as provide insight into the
trajectory that might lead to a crash. The trajectory data was provided by Wejo which collects data from
the manufacturer and was spaced at 3 seconds. GPS locations and their associated time series features
such as speed, acceleration and yaw rate were used to feed into an ensembled Transformer and Conformer
model. A voting classifier was used to obtain the output of the final model which achieved a recall of
76% and the false alarm rate of 30%. This study showed how connected vehicle trajectory data can aid
in getting insight into crashes. While most previous studies focus on using aggregated data to estimate
crashes, the proposed work shows that trajectory data mining can also provide competitive results.

INDEX TERMS Transformer, conformer, connected vehicle, crash prediction, traffic safety.

l. INTRODUCTION

RAFFIC injuries and fatalities result in considerable

loss to the economy of an individual, their family and
to a country. NHTSA projects that the number of crashes in
2022 will increase by 10% to 42,915 compared to that in
2020 [1] although most countries are aiming at vision zero
action plan by 2030 to 2040. Thus, the need for mitigating
crashes is endless to achieve zero fatalities within a couple of
decades. A key component in this regard is the prediction of
potential crashes. Since crash like situations develop within
short-term turbulence of traffic flow [2] it is necessary to
have real-time crash likelihood monitoring systems. While
several researchers have actively worked on this arena, the
ever-changing field of sensing technology means there are
new ways of formulating the definition of real-time crash
likelihood prediction. Most of the previous studies rely on
infrastructure-based data such as loop and radar detectors,
Bluetooth, drone, etc. Nowadays, geolocation data from car
manufacturers are available in near real-time. Such data is
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able to provide granular information about each individual
vehicle and as such, it will eventually be possible to identify
or classify driving actions that can lead to a crash. Moreover,
extended trajectory provides better insights about individual
driver’s driving patterns whether near a crash location or
not. In this study, we have used individual vehicle data and
the trajectory associated with it, to correlate it to crashes.
Although some studies have been aimed at taxi and bus
trajectory data, previous studies have always used some
form of aggregation on it. For example, instead of using
time series trajectory data, hard brakes or long stop events
were used. Thus, trajectory data mining in crash likelihood
prediction is a relatively new area of research that has been
explored in this study. The paper is organized as follows:
literature review, data preparation, methodology, results, and
conclusion.

Il. LITERATURE REVIEW

A. MODELS IN CRASH LIKELIHOOD PREDICTION

Crash prediction has been studied by various researchers
using aggregated data. Speed, volume, and its statistical
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features such as average, coefficient of variation, logarithm,
etc. were used in all previous studies. The data is usually
collected from roadside stationary sensors such as radar
detections, microwave detectors, Bluetooth, etc. Therefore,
the analysis is related to the spot speed rather than the
actual speed at a crash location. It was reported that
upstream and downstream detectors from a crash location
can indicate speed and volume features that could lead
to a crash [3]. Initially, case control logistic regression
was studied [4] which was improved upon with log-
linear and Bayesian logistic models [5], [6], [7]. Bayesian
logistic regression model was used by Xu et al. [§]
using four different congestion levels as dependent vari-
able. Nevertheless, statistical approaches often come with
significant assumptions related to data distribution and
preparation [9], [10], [11], [12], [13], [14]. These prereq-
uisites can often impair the accuracy of crash likelihood
predictions. As such, machine learning and deep learning
models are becoming more popular these days in crash
prediction because of their better performance and absence
of assumptions compared to statistical models. Thus far,
support Vector Machine (SVM) [15], [16], Long Short-Term
Memory (LSTM) [17], [18], Random Forest [19] have been
used to predict crashes. Huang et al. [20] used Convolutional
Neural Network (CNN) to predict crashes in Interstates and
found better results than shallow models. Bao et al. [21] also
used CNN to model citywide short-term crash likelihood
prediction and reported that CNN was able to capture local
spatial correlation. XGBoost [22], AdaBoost [23], Multilayer
Perceptron (MLP) [24], [25], [26], Back Propagation Neural
Net (BPNN) [27] have also been studied with competitive
accuracy scores. Moreover, signal information was also used
to predict crashes at intersections [28]. To add a further
dimension to the crash prediction arena, Islam et al. [29]
used variational autoencoder to balance crash samples before
training since most previous studies have used matched case
control models where a lot of the non-crash events need
to be removed. Lately, transformer [30] and its variant, the
conformer [31], have received significant attention among
researchers because of their aptitude to capture context and
dependencies in sequential data. So far, Transformer and
Conformer have portrayed application prominence in several
research domains such as natural language processing [32],
computer vision, speech detection [31], time-series analy-
sis [33], etc. However, despite their enormous contributions,
to the best of the authors knowledge, no studies investigated
the application of Transformer and Conformer in real-time
crash.

B. DATA IN CRASH LIKELIHOOD PREDICTION

The data used in almost all studies is limited to roadside
stationary sensors like detectors, signal controller, etc. Some
research also takes into account the weather from nearby
weather stations. The main limitation of such sensing is that
it can only provide traffic features for a segment of the road.
Often road segments can be a mile long in length and the
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data reported by roadside sensors cannot consider the various
traffic parameter distribution within the segment length. The
segments on the road that do not have a detector can often
be a blind zone for the different machine learning models.
On the other hand, vehicle-based location data can provide
detailed data based on the frequency. This enables a system to
reduce the so-called blind zones created by roadside sensors.
Moreover, roadside sensing needs regular maintenance and
as such the data availability is also hampered. Geolocation
data from connected vehicles does not have a single point
of failure that can lead to missing data. A segment of road
will be traversed by multiple vehicles thereby sampled by
different sensors [34]. Such data has been used in some
previous studies to estimate queue length [35], lane changing
behavior [36], stop-or-go decision [37], etc. Most studies
are limited to using taxi data or large-scale bus data that
cannot form a representative sample. Furthermore, taxis
would exhibit certain pickup and drop-off patterns while
buses can only travel fixed routes. The data used in this
paper was provided by Wejo Data Services, Inc. which
collects data from automotive OEMs (Original Equipment
Manufacturers). Thus, it represents mostly non-commercial
vehicles. The dataset contains trajectory data with an update
interval of about 3 seconds. It covers four counties in
Orlando, Florida: Orange, Seminole, Volusia and Osceola.
The penetration rate was around 3%. Previous studies
reported that penetration rate of 0.8% could provide an
acceptable representation of traffic flow [38].

Vehicle based data have been used in the past studies to
identify critical driving events like speeding, hard brakes,
jerk, etc., which were found to be positively correlated to
accidents [39]. The driving patterns of several drivers were
found to be an indicator for potential crashes [40]. Only
167 drivers were used in a 14-month period making the
penetration rate very low. Taxi geolocation data was used
by Xie et al. [41] to study corridor intersection safety.
Smartphone data was also used by some researchers to
model crash frequency [42]. It was also noted in this
study that hard brakes, congestion level, and speed variance
were positively related to crash frequency. Hard braking
events were also found to be correlated to crashes at work
zone [43]. Bus GPS data was also used to identify real-
time crash potential on arterials [17]. It can be noted
in all these studies that researchers are more focused on
using events to model crashes. GPS data has been used to
calculate hazardous events like hard brake, jerk, etc. Thus,
the full potential of connected vehicle trajectory data is still
unexplored.

A summary of reviewed literatures on crash likelihood
prediction are listed in Table 1, with details on best per-
forming models and data sources.

C. CRASH LIKELIHOOD WITH UAV DATA

A comparable alternative to using connected vehicle trajec-
tory data to predict crash likelihood is video-based vehicle
trajectory data collected from unmanned aerial vehicle
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TABLE 1. Summary of literature review on crash likelihood prediction.

Reference Publication Year Model (Best) Data Sources
[4] 2004 Case Control Logistic Regression Detector
[7] 2015 Bayesian Logistic Regression Detector, Weather
[8] 2015 Bayesian Random Parameter Logistic Regression Detector, Geometry
[9] 2017 Support Vector Machine Automatic Vehicle Identification
[10] 2013 Support Vector Machine Detector
12 2020 LSTM-CNN Adaptive Signal Controller, Detector, Weather
p g
[13] 2015 Random Forest Archived Data Management System
[14] 2020 CNN Radar Sensors
[17] 2019 Support Vector Machine Detector
[18] 2020 Multilayer Perceptron Simulation
[19] 2020 Multilayer Perceptron Simulation
[21] 2019 Back Propagation Neural Net Simulation
[22] 2018 Bayesian Conditional Logistic Regression Adaptive Signal Controller, Detector, Weather
[23] 2020 Variational Autoencoder Detector
. . . TABLE 2. Features from connected vehicle data.
(UAV) video. UAVs typically record traffic video from
the “bird’s-eye” perspective with high-resolution cameras, Name Description Unit
ensuring high-quality vehicle trajectory data at the frame . oD
. . t t
level [44]. Several studies have attempted to extract vehicle i i catures Trom aw. 2
. . . . . . dataPointId Unique Id for each Data Point -
trajectories from UAV videos in order to identify crash Unique Id for each journey (ignition start
potential in moving traffic [45], [46], [47], [48]. The journeyld to ignition end) )
studies demonstrated that UAV recorded traffic videos have latitude North-South position of the vehicle -
enormous potential for reliable crash likelihood prediction. longitude g;z;x?:hzoj:l‘ﬁ;:Z:?E;ﬁ:ggt e -
Nonetheless, the same studies revealed several severe draw- speed datapoint was captured meter/s
backs to relying solely on UAV recordings for crash heading Direction of the vehicle at the instant the degrees
likelihood prediction. To begin, it is challenging to anticipate —osalCods dz?;agoé‘: V}Z‘tig%’;“;igcm.m
. . . . . . O ) 1 -
crash potential in real time using UAV video-based trajectory
. . Features Computed from Raw Data
data. For instance, UAVs require a constant supply of power - - -
R . ) 1 isStopped 1 if speed is less than Smph, else 0 -
to function properly. Hence, any disruption in the power scccloration | Positive rate of change of speed between R
supply can cause UAVs to malfunction, ultimately delaying two successive datapoints
the real-time crash likelihood prediction work. Moreover, | deceleration g:fiﬁz:%zisgﬁ;‘(ﬁigSpeed between | ek
extreme weather can impair UAV real-time operation [49]. Rate of change of heading between . )
. . . Rat : .
Secondly, UAVs can only capture short vehicle trajectories yawRate successive datapoints cerees’s
in space for a brief road stretch. So, if the goal is to estimate dayOfWeek Tem}forﬁl feature representing day of the .
. . . . wee
crash likelihood in real-time at the network level, UAVs o The hour at the instant GPS point was ]
have a significant disadvantage. While platooning many captured

UAVs side by side along the road network can solve this
problem, the installation and operation costs may skyrocket.
In response to the shortcomings of UAVs, connected vehicles
have reliable power supply systems and can operate in
inclement weather. Furthermore, connected vehicles can
generate extended trajectories suited for network-level crash
likelihood prediction at no additional cost. Overall, con-
nected vehicle trajectory data has enormous promise for
predicting crash likelihood.

In this study, we employ connected vehicle trajectory data
from Wejo to identify crash potential. As such, rather than
depending solely on event data and brief trajectory data, this
study is able to capture long-term vehicle dynamics (such
as speed distribution, acceleration variation, and so on) that
contribute to a crash. The contributions of this paper are
summarized below:

1. Concatenation of state-of-the-art Transformer and
Conformer algorithms to predict crash likelihood
in real-time.
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2. Exploration of the aptness of connected vehicle
trajectory data from Wejo in crash potential
identification.

lll. DATA PREPARATION

The dataset used in this paper was provided by Wejo. It
contains vehicle specific data from several manufacturers. It
mainly has non-commercial fleet data which better represents
the vehicles on the roadways. Instantaneous data is sent
from the vehicle to the cloud (V2C) in near real-time. The
dataset consists of GPS location, heading, speed, postal code,
journeyld and dataPointld. A brief description of the raw
data features is shown in Table 2. The sampling rate of
the dataset was limited to 3 seconds. Also, the dataset was
limited to four counties in Florida. Within this region there
are several expressways such as Interstate-4, Interstate-95,
SR 408, SR 417 and SR 528, along with several arterials.
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TABLE 3. Crash vs Wejo data statistics.

Time Period Total Crashes Crashes Covered by Max Number of Min Number of Total Total Unique
° s Wejo Data Journeys per Crash Journeys Per crash Datapoints Journeys
11/11/2019-17/11/2019 2061 1181
10/11/2020- 16/11/2020 1341 992 21 ! 1,967,050 6781

Crash Data Trajectory Data

v

Feature Estimation

v

Data Join
On Spatial and Temporal Buffer

!

Windowing

l

Trajectory GPS to 2D Matrix

!

Time Series Data
Trajectory Data + Crash Data

FIGURE 1. Data Processing Pipeline.

Considering availability, data during the following two time
periods were used in this study: 11.11.2019-17.11.2019 and
10.11.2020-16.11.2020.

The trajectory data was joined with crash data from Signal
Four Analytics (S4A). It provides the geolocation as well
as crash severity, crash time, etc. Crash data was merged
with connected vehicle data considering spatial and temporal
buffer. For a particular crash location, the prior 5-minute
interval was considered as the influence period and 300 feet
was set as the spatial buffer. To specify further, if any Wejo
vehicle traversed within a 300-foot radius of a location where
a crash would happen in the following 0-5 minutes, it was
regarded as a representative sample that contributed to the
crash. It should be noted that between the two datasets (crash
and trajectory), it was not possible to identify whether any
of the Wejo vehicles were involved in the crash. Rather,
our methodology aims to obtain the vehicle trajectories and
their speed, acceleration profile, etc., to be indicative of the
possible traffic features that led to a crash. We would also
like to note that as the market penetration increases, it will
ultimately be possible to do specific analysis of the vehicle
involved in a crash. The overall pipeline is shown in Fig. 1.

Table 3 shows the statistics after the crash data was joined
with Wejo data. Almost 2 million GPS datapoints were
available after screening by time and location of crashes. In
2019, about 50% of the crash locations had representative
Wejo vehicle data while around 80% for 2020. The max
number of vehicles that passed through a crash location
5 minutes prior to a crash was 21 and minimum was 1.

The joining on spatial and temporal buffer was followed
by windowing. In this step, the intent was to distinctively
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organize and associate traffic features with crash and non-
crash events. To do so, a 30-second window was selected.
Afterwards, we identified the time when a Wejo vehicle in its
journey traversed through the crash influence zone, outlined
by a 5-minute interval and a 300-foot radius. As the time
was identified, the trajectory datapoints from the 30 seconds
prior to that specific moment were attributed to the crash
event. For instance, if a crash occurred at 10:50:15, with
the crash influence time interval spanning from 10:45:15
to 10:50:15, and a Wejo vehicle drove past the crash spot
at 10:48:30, then the vehicle’s trajectory datapoints from
10:48:15 to 10:48:30 were associated with a crash, labeled
as “1.”” The remaining datapoints of the Wejo vehicle were
labeled as “0” (i.e., non-crash event). Fig. 2 illustrates the
trajectory of a Wejo vehicle, from the start of ignition to the
moment of the vehicle traverse through the crash influence
zone. The red star represents the crash location. The green
dots on the plot signify datapoints labeled non-crash, whereas
the blue dots highlight the labeled crash.

After windowing, the trajectory data was then converted
into a 2D matrix to extract the nature of the vehicle trajectory.
This matrix was generated to obtain the nature of vehicle
trajectory (whether straight linear motion or turning motion
or lane changing motion) in the time window.

The speed, acceleration, yaw rate and heading profile
during and before a crash is also shown in Fig. 3. The x-axis
contains the order of the datapoints that are separated by
3 seconds. The instances from 40 to 50 were labelled as
crash while any prior instance was non-crash. Each journey
is highlighted in a different color. It is noted that variation
in acceleration is more significant than in other cases of the
journey. Same can be concluded about the yaw rate. This
shows that the crash location is experiencing a high number
of braking events and unusual swerving movements. The
speed of most journeys also falls. The heading also shows
notable changes indicating a probable turbulent situation.

IV. METHODOLOGY

This study, with the attention-based Transformer [30]
and its Conformer [31] wvariant, presents ensemble
Transformer-Conformer algorithm for real-time crash like-
lihood prediction using connected vehicle trajectory data.
The detailed architecture of the Transformer-Conformer
is discussed in this section. Fig. 4 depicts the proposed
ensemble structure. Per the structure, both the Transformer
and Conformer models were trained separately using the
processed trajectory data. The modeling results of the
two trained models were then concatenated following the
technique of voting classifier [50] to finally use it for crash
likelihood prediction. Additionally, the proposed algorithm
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FIGURE 3. Speed, Acceleration, Yaw Rate, and Heading Profile Before and During Crash Location.

was tested with several deep learning algorithms includ-
ing Convolution Neural Network (CNN) [51], [52], Long
Short-Term Memory (LSTM) [53], [54], Particle Swarm weio -
Optimization (PSO) LSTM [55], Attention LSTM-CNN [56], ocory | oot || 0w |
and Deep Neural Network (DNN) [57], to conform its s
effectiveness of application. fmesee

Batch Size

FIGURE 4. Transformer-Conformer Model Workflow.
A. TRANSFORMER
Originally, the Transformer algorithm was designed to transformer is extended to predict crash likelihood in real-
perform NLP tasks leveraging attention-mechanism [30]. time. The model architecture of the Transformer is shown
In this study, the functional domain of the original in Fig. 5.
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FIGURE 5. Transformer Architecture.

Unlike traditional recurrent neural networks (RNNs)
and long-short term memory (LSTM) models, Transformer
structurally favors an attention-based system by averting
sequential processing. Hence, to capture the order of each
sequence/input in the trajectory data, a positional encoding
block was embedded in the transformer architecture. The
normalized trajectory data with information on the order of
the sequences were forwarded all at once to the encoder
block as shown in Fig. 5. The encoder is the core block of
the transformer architecture employed in this study. In total,
three encoder blocks were stacked with a linear layer to make
output predictions. Inside the encoder block, two key sub-
blocks, namely multi-head self-attention, and feed-forward
network, function. The multi-head self-attention executes the
attention mechanism of the Transformer by concatenating
the attention weights of n single-heads. Each single-head
takes 3 inputs, namely query Q, key K, and value V, in
total to calculate the attention weights that measure the
relationship between sequences in the embedded trajectory
data. The Q, K, and V vectors for each sequence are obtained
through transformation. Fig. 5 also depicts how the multi-
head attention sub-block functions. The attention mechanism
of multi-head attention sub-block can be mathematically
represented as follows:

Q T
Attention(Q, K, V) = softmax( €))]

L)V

NZ
where Q, K, and V are query, key, and value, vectors,
respectively. T represents transpose, and dy is the dimension
of the key vector. The feed-forward network in Fig. 5
enables the model with the capacity to model more complex
relationships by altering the representation obtained from
the multi-head attention sub-block. In this study, CNN
with convolution of kernel size 1 was incorporated as
the feed-forward network. Also, in the encoder, each of
the key components are followed by dropout, residual
connection, and layer normalization, to prevent the model
from overfitting, combat the problem of vanishing gradients,
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and keep the activations and gradients on a similar scale,
respectively.

B. CONFORMER
Conformer combines the strengths of convolutional neural
networks (CNNs) and transformers. This combination allows
the model to capture both local and global dependencies
in the input data. The model architecture of the Conformer
is shown in Fig. 6 (a). There were four conformer blocks
stacked with a linear layer to make output predictions. A
Conformer block is shown in Fig. 6 (b). The three main
sub-blocks are a feed-forward module, a multi-head self-
attention module and a convolution module. Due to these
three sub-blocks, a Conformer is able to extract global and
local features more effectively. A feed forward module, as
shown in Fig. 6 (c), is stacked on a multi-head attention
module followed by a convolution module. This is preceded
by another feed-forward module. The feed-forward module
consists of a layer normalization, linear layer and Swish
activation function [58]. Some dropout layers and a linear
layer follows. The first linear layer expands the input
dimension four-fold and the last one brings it back to
the original dimension. The multi-head attention module is
visualized in Fig. 6 (d). It features Layer Normalization,
multi-head attention with relation positioning embedding
and a Dropout layer. Lastly, the convolution module in
Fig. 6 (e) consists of Layer Normalization with pointwise
Convolution and gated linear unit (GLU) Activation; one of
the layers expands the dimension by 0.5 while the other
doubles it. It is followed by a 1D depth convolution, batch
normalization, Swish Activation and Pointwise convolution.
Therefore, the relationship between the input and output
can be modelled as:

X=X+ %FFN(X) 2
X = X + MHSA(X) (3)
X = X+ Conv(X) 4)
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TABLE 4. Hyperparameter tuning.
Hyperparameters Transformer Hyperparameters Conformer

Pool of Parameters (Best Parameter)

Pool of Parameters (Best Parameter)

Learning Rate 0.00001, 0.0001, 0.001 (0.0001)

Learning Rate

0.01, 0.001, 0.0001 (0.001)

Batch Size 500, 1000, 2500, 5000 (1000) Linear Layers 1,2,4 (1)
No. of Epoch 10, 25, 50, 100, 200 (25) No. of Epoch 10, 20, 30, 40, 100, 200 (20)
No. of Heads 3,4,5,6(5) No. of Heads 30, 70, 100, 160 (70)
No. of Encoders 1,3,5,703) No. of Conformer Blocks 2,4,6,8,16 (4
Optimization Function Adam, SGD (Adam) Class weights {0.5, 14}, {0.5, 10}, {0.5, 6}, {0.5, 4.3} ({0.5, 4.3})
AY = LayerNorm (X + 1 FFN(X)) (5) ensures that the model is evaluated on real data and not
2 synthetic data.

where FFN(), MHSA(), Conv(), and LayerNorm() denote
feed-forward module, multi-head self-attention, convolution
module and layer-normalization respectively.

V. RESULTS

The processed data set had 196,905 samples in total. Out of
these total samples 7180 were related to a crash and were
labeled as one while the others were related to non-crash.
Since this is an extremely imbalanced data set, Synthetic
Minority Oversampling Technique (SMOTE) was used to
upsample the minority class. This has been used widely and
has been accepted as an effective method for oversampling
crashes [18], [29], [59]. The data set was split into an
80:20 ratio for training and testing purposes. It should be
noted that only the train samples were oversampled and the
performance of the model on the test data is reported. This
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A critical aspect of ensuring dependable outcomes from
model training is the fine-tuning of hyperparameters and
the selection of suitable optimization functions. In this
research, before the actual training, both the Transformer
and Conformer models were fine-tuned using a variety of
hyperparameters and optimization functions. Table 4 depicts
the optimal parameter sets for the trained Transformer
and Conformer models. After identifying the parameters,
the models were trained accordingly and subsequently
ensembled to finally assess its effectiveness on the test data.

For evaluating the model performance on the test dataset,
several key metrics were used such as accuracy, recall, and
false positive rate. The performance metrics are reported for
the test data. While accuracy is usually studied for balanced
datasets, parameters such as recall, false alarm rate, etc., are
widely used to measure model performance for imbalanced
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TABLE 5. Confusion matrix.

Predicted
Non-Crash Crash
Actual Non-Crash 26395 11581
ctua Crash 323 1042
TABLE 6. Model comparison.
Model Recall False Alarm Rate
Transformer-Conformer (Proposed) 0.76 0.30
Transformer 0.74 0.36
Conformer 0.70 0.34
Attention LSTM-CNN 0.70 0.34
PSO-LSTM 0.66 0.47
LSTM 0.92 0.77
CNN 0.93 0.73
DNN 0.91 0.71

datasets. Recall indicates what percentage of correct positive
predictions are made [60], [61], while the false positive rate
indicates how often the model is likely miss-predict.

Sensitivity — TP ©)
ensitivity = TP+ FN
FP
False Alarm Rate = ——— @)
FP+ TN

As stated earlier the Transformer-Conformer model was
developed by concatenating the results of Transformer and
Conformer using voting classifier technique. The ensemble
model generated a recall of 76% and a false alarm rate of
30%. The confusion matrix is based on the test data shown
in Table 5. It can be seen that out of the 1365 crashes
in the test data, 1042 were correctly classified. Almost
11,600 samples were also classified as true which is the false
alarm of the model. While this performance is lower than
the traditional studies with detector data, it should be noted
that the penetration rate of the CV vehicles used in this
study was very low: about 3%. It is interesting to formulate
the notion that only a percentage of the vehicles in the road
can form a trajectory data pattern that can be indicative of
a crash even though it may or may not directly participate
in the crash.

A. MODEL COMPARISON

To perform a complete evaluation of the proposed model,
the Transformer-Conformer model was compared with six
different benchmark models. The results of the different
models and associated performance metrics on test dataset
are shown in Table 6. Compared to the benchmark models,
the Transformer-Conformer model gives the best accuracy.
While the recall is higher for most other models, it comes
at the expense of high false alarms. The CNN and LSTM
models individually perform much worse than the combined
model. The performance of the DNN model is slightly better
than the CNN or LSTM model with lower false alarm
rate. The closest competitors to the Transformer-Conformer
model are Transformer, Conformer, Attention LSTM-CNN,
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and PSO-LSTM. Nevertheless, they also performed poorly
compared to the performance of Transformer-Conformer.

VI. CONCLUSION

In this paper the authors proposed the use of novel connected
vehicle trajectory data in order to predict crash events in
real time. An ensemble crash likelihood prediction model
was built based on the trajectory data using Transformer
and Conformer algorithms. To do s