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ABSTRACT In this paper, we investigate the use of Vision Transformers for processing and understanding
visual data in an autonomous driving setting. Specifically, we explore the use of Vision Transformers for
semantic segmentation and monocular depth estimation using only a single image as input. We present
state-of-the-art Vision Transformers for these tasks and combine them into a multitask model. Through
multiple experiments on four different street image datasets, we demonstrate that the multitask approach
significantly reduces inference time while maintaining high accuracy for both tasks. Additionally, we show
that changing the size of the Transformer-based backbone can be used as a trade-off between inference
speed and accuracy. Furthermore, we investigate the use of synthetic data for pre-training and show that
it effectively increases the accuracy of the model when real-world data is limited.

INDEX TERMS Vision transformer, monocular depth prediction, autonomous vehicles, segmentation;
multi-task.

I. INTRODUCTION

THERESEARCH and development of autonomous vehi-
cles [1], [12] has gained significant attention in recent

years, with big companies such as Tesla, Waymo, and GM
investing in new technology. Autonomous vehicles offer
numerous benefits, such as reduced road accidents [36],
improved traffic efficiency [14], easier accessibility for
disabled and elderly people, and lower greenhouse gas
emissions [17]. However, reliability is crucial to ensure the
safety of human lives.
Autonomous vehicles sense their surroundings using a

variety of sensors such as cameras, radar, and LiDAR. While
cameras are more affordable and compact, LiDAR sensors
are larger and more expensive, thus making it desirable to
replace them with cameras.
The rapid advancement in the field of machine learning,

due to the availability of large data and powerful computing
resources, has made deep learning a practical solution
for real-world problems. The field of computer vision,
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which applies deep learning to visual data, is crucial for
autonomous driving as it enables the vehicle to gather
information about its surroundings using cameras. Object
detection, segmentation, and depth estimation are commonly
used techniques for autonomous driving.
In 2017, Vaswani et al. [35] introduced the Transformer,

a deep-learning architecture for natural language processing
tasks, which achieved remarkable results. Inspired by its
success, Dosovitskiy et al. [7] applied the architecture to vision
tasks in 2020, leading to the creation of theVisionTransformer,
which achieved new state-of-the-art results and caused a stir in
the deep learning community. Since then, several new Vision
Transformer architectures have been proposed.
This paper explores the use of Vision Transformers for

dense prediction tasks in autonomous driving. It focuses
on the tasks of monocular depth estimation and semantic
segmentation and designs a multitask model that can perform
both simultaneously. The effectiveness of the model will
be studied through training and evaluation of multiple
autonomous driving datasets. To achieve this goal the
following research question (RQ)s are studied:
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• RQ1. Does a multitask Vision Transformer perform
better than models trained for individual tasks?

• RQ2: Can synthetic data enhance model performance
when real-world data is scarce?

• RQ3: How accurate are the depth predictions from the
model?

The research approach adopted in this paper is experi-
mental, which involves exploring the relationship between
a cause and its effect. The experiments will focus on
examining the impact of factors such as training methods
and backbone choice on performance. The performance of
the models will be evaluated using both quantitative and
qualitative analysis. Quantitative analysis involves computing
accuracy metrics, while qualitative analysis involves visually
inspecting individual predictions for insights and anomalies.
The main contributions of the proposed method are as

follows:

• Most of the multitask learning methods [25], [30]
use convolutional neural networks (CNNs) for joint
segmentation and depth estimation. In addition, they
are multi-stage methods. Unlike them, our method is
a simple single-stage method that takes an image as
input and performs the joint segmentation and depth
estimation tasks in a single forward pass.

• For this purpose, we designed a hybrid encoding
and decoding framework based on Vision transformer
variants SegFormer [40] and GLPDepth [18].

• We chose the best model for each task (segmentation
and depth estimation) to design a multitask model
based on a thorough assessment of their advantages and
drawbacks. Our selection process involved a meticulous
analysis of the benefits, drawbacks, and feasibility of
implementing these models.

• The inference time of our multitask model is less than
that of the individual task models, even though it is
performing two tasks at a time.

• Our model performed well during evaluation on unseen
data (NAP Lab dataset), despite being trained on other
datasets. This highlights the generalization capability of
our model.

• The quantitative results of our multitask model are
comparable to those of individual task models, demon-
strating the capability of our model to replace the need
for two different models to perform two distinct tasks.

• We show that changing the size of the Transformer-
based backbone can be used as a trade-off between
inference speed and accuracy.

• We have also investigated the use of synthetic data for
pre-training and show that it effectively increases the
accuracy of the model when real-world data is limited.

The remainder of the paper has the following organization:
Section II, Background and Related Work explains the
Vision Transformers and gives an overview of state-of-the-
art models. Section III, Methodology, presents the selection
of the semantic segmentation and depth estimation models,

the functioning of chosen SegFormer and GLPDepth models,
and the proposed multitask model. Section IV, Experiments
and Results, details the data preparation process, metrics,
hardware, and training setup. In addition, it also presents
the qualitative and quantitative outcomes of the experiments
conducted. Section V, Discussion, examines the results and
answers the research questions. Section VI, Conclusion and
Future Directions, summarizes the paper, its key findings,
and suggests possible directions for future research.

II. BACKGROUND AND RELATED WORK
In this section, segmentation and depth estimation with their
evaluation metrics, transformers, vision transformers, and
the relevant state-of-the-art Vision Transformer models for
semantic segmentation and monocular depth estimation will
be presented.
Segmentation is the task of categorizing image pixels

into different labels. There are three types of segmentation:
semantic, instance, and panoptic. In semantic segmentation,
pixels are assigned labels based on what object/structure
they are part of (e.g., car, sky, building), without separating
instances of the same category. In instance segmentation,
each instance of a category is given a separate label, usually
only for categories of interest, not the entire image. Panoptic
segmentation combines semantic and instance segmentation.
This paper focuses on exploring the semantic segmentation
task.
Depth estimation is the task of predicting depth in a scene

using images. The aim is to determine the distance from the
camera to each pixel. There are two main methods for this
task: stereo depth estimation and monocular depth estima-
tion. The traditional method, stereo depth estimation, uses
two cameras with a known distance between them to find
the disparity between matching pixels and calculate depth.
Monocular depth estimation, using deep neural networks,
is a more recent approach that predicts the depth of each
pixel using a single image. Monocular depth estimation can
be done using either supervised learning with ground truth
depth maps or self-supervised learning without ground truth.
This study focuses on the supervised approach for monocular
depth estimation.
The Transformer [35] is a deep learning architecture that

was introduced in the 2017 paper “Attention is All You
Need.” It was specifically designed for processing sequential
data, such as natural language, and has since become a
cornerstone in the field of natural language processing
(NLP). Unlike traditional recurrent neural networks (RNNs),
the Transformer uses self-attention mechanisms to capture
dependencies between elements in a sequence. The architec-
ture of the Transformer consists of multiple identical layers,
each composed of two sub-layers: multi-head self-attention
and a feed-forward network. The multi-head self-attention
mechanism allows the network to weigh the importance of
different elements in the sequence. This is achieved by com-
puting attention scores for each element in the sequence with
respect to every other element. The feed-forward network
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processes the information from the attention mechanism and
is composed of two linear transformations followed by a non-
linear activation function. The Transformer’s self-attention
mechanism and feed-forward network work in tandem to
process the input sequence and produce an output sequence.
The output of the final layer is used to make predictions,
such as for language modeling or machine translation. The
Transformer’s use of self-attention mechanisms and parallel
processing of the input sequence has proven to be highly
effective, leading to its widespread use in various NLP tasks.
The Vision Transformer (ViT) [7] is a variant of the

Transformer architecture that was introduced to tackle com-
puter vision tasks. Unlike traditional convolutional neural
networks (CNNs) that use convolutional layers to process
image data, the ViT processes image data as sequences
of feature vectors extracted from patches of the image.
This allows the ViT to take advantage of the Transformer’s
ability to handle sequential data and process long-range
dependencies between patches in an image. The network
architecture of the ViT is similar to that of the Transformer,
consisting of multiple identical layers, each composed of
two sub-layers: multi-head self-attention and a feed-forward
network. The multi-head self-attention mechanism allows the
network to weigh the importance of different patches in the
image and capture the relationships between them. The feed-
forward network processes the information from the attention
mechanism and is composed of two linear transformations
followed by a non-linear activation function. The ViT
architecture has been successfully applied to a variety of
computer vision tasks, including image classification, object
detection, and segmentation. Its ability to process image data
as sequences of feature vectors allows it to effectively capture
long-range dependencies between patches in an image,
resulting in improved performance compared to traditional
CNNs.
The following subsections discuss previous studies that

employed Vision Transformers for semantic segmentation
and monocular depth estimation. In selecting relevant works,
three key criteria were taken into account: 1) high accuracy
on autonomous driving datasets, 2) efficient, near real-time
inference, and 3) significant contribution to the field.

A. RELEVANT STATE-OF-THE-ART VISION
TRANSFORMER MODELS FOR SEMANTIC
SEGMENTATION
The Segmentation Transformer (SETR) [44] was one of the
first attempts to apply Transformers to semantic segmen-
tation. Prior to SETR, the common approach was to use
a CNN backbone, which suffered from a limited receptive
field and was unable to capture long-range dependencies in
images. SETR solved this issue by introducing a Transformer
encoder with a global receptive field and combining it with
a lightweight convolutional decoder. The resulting model
achieved a mean Intersection over Union (mIoU) score of
82.15 on the Cityscapes dataset.

In May 2021, Xie et al. introduced SegFormer [40], a
simple and efficient encoder-decoder design for semantic
segmentation using Transformers. SegFormer’s Transformer
encoder is inspired by ViT [7] and has multiple modifications
to enhance performance for semantic segmentation. It has
a hierarchical structure, outputs multi-scale feature maps,
and utilizes the efficient self-attention calculation method
from PVT [37], which improves processing speed for high-
resolution images. The decoder is lightweight and consists of
only MLP layers. There are 6 different model sizes, with the
smallest suitable for real-time applications and the largest
achieving high accuracy on the Cityscapes and ADE20K
datasets with a mIoU of 84.0 on the Cityscapes dataset.
The model also performs well on corrupted cityscapes data,
indicating its robustness and potential suitability for safety-
critical tasks such as autonomous driving.
Traditionally, semantic and instance segmentation were

approached as two distinct tasks, where semantic segmen-
tation was viewed as a per-pixel classification task, and
instance segmentation as a mask classification task. However,
Cheng et al. proposed that the tasks could be combined
and solved by a single model - the MaskFormer [4]. The
architecture employs mask classification to produce seman-
tic segmentation predictions, incorporating a Transformer
decoder that predicts binary masks with respective class
labels. The MaskFormer was tested with various back-
bones, but Swin Transformer [27] provided the best results.
However, the results were limited to the Cityscapes dataset
using a ResNet backbone and achieved a mIoU of 81.4.
In December 2021, Cheng et al. [3] improved upon the

MaskFormer architecture with their new Mask2Former. They
made several improvements to increase performance and
simplify training, such as implementing masked attention in
the Transformer decoder to limit attention calculations to
local features, using multi-scale high-resolution features to
detect small objects, and making small changes to improve
performance and save training memory. Mask2Former
achieved a mIoU of 84.5 on the Cityscapes dataset.
In December 2021, Jain et al. introduced SeMask [16],

a solution to address the issue of the encoder struggling
to capture the semantic context of the image in Vision
Transformers for semantic segmentation. The architecture
implements a semantic layer that follows the Transformer
layer at every stage of the encoder, consisting of multiple
SeMask blocks that apply semantic attention operation
to feature maps. The SeMask block can be integrated
with any hierarchical Vision Transformer and when used
with the Swin Transformer [27] and SegFormer [40], the
best-performing model achieved a mIoU of 84.98 on the
Cityscapes dataset.
Yan et al. introduced the Lawin Transformer [42],

a Transformer-based architecture for semantic segmenta-
tion, in January 2022. They address the issue of current
Vision Transformers not producing contextual information
at multiple scales, which affects performance and efficiency.
The Lawin Transformer introduces a novel decoder, the large
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window attention spatial pyramid pooling (LawinASPP) [42],
which queries a larger area of the feature map to produce
multi-scale contextual information. The decoder can be com-
bined with any hierarchical Vision Transformer encoder and
when combined with the SegFormer or Swin Transformer
encoder, the Lawin Transformer shows improved accuracy
and lower computational cost compared to the original
SegFormer or achieves a mIoU of 84.4 on the Cityscapes
dataset.

B. RELEVANT STATE-OF-THE-ART VISION
TRANSFORMER MODELS FOR MONOCULAR DEPTH
ESTIMATION
AdaBins [10] is a monocular depth estimation architecture
introduced in November 2020 by Bhat et al. It uses a
CNN encoder-decoder design with a Transformer-based
building block named AdaBins to achieve good results.
Depth estimation is treated as a classification task where
the depth range is split into adaptive bins of varying
size, determined using a mini-ViT architecture. The final
prediction uses a linear combination of the bin centers to
avoid sharp depth discontinuities. The AdaBins architecture
achieved an absolute relative error of 0.058 on the KITTI
dataset.
In March 2021, Ranftl et al. proposed the Dense Prediction

Transformer (DPT) [31], a novel architecture for the tasks
of monocular depth estimation and semantic segmentation.
DPT adapts a traditional encoder-decoder design, replacing
the CNN backbone with the ViT architecture [7]. The ViT
backbone provides a global receptive field and preserves
the initial feature map resolution to capture finer details.
DPT is pre-trained on a massive monocular depth estimation
dataset and fine-tuned on the KITTI dataset to achieve an
absolute relative error of 0.062. When trained for semantic
segmentation, the model achieves a mIoU of 49.02.
Kim et al. introduced GLPDepth [18], a Transformer-

based architecture and training strategy for monocular
depth estimation that considers both the global and local
context of the image. It uses SegFormer encoder [40] to
capture global dependencies and a lightweight decoder with
skip connections to integrate local information. A new
depth-specific augmentation technique is also introduced to
improve performance, achieving an absolute relative error of
0.057 on the KITTI dataset.
The DepthFormer architecture [20] for monocular depth

estimation was proposed in March 2022 by Li et al. The
authors stressed the importance of capturing both global
and local information from an image and achieved this
by using two separate encoder branches - one using the
Swin Transformer [27] to model long-range correlations
and the other using convolutions for local information. The
information from both branches is combined using a novel
Hierarchical Aggregation and Heterogeneous Interaction
(HAHI) module. The model achieved an absolute relative
error of 0.052 on the KITTI dataset, which is a state-of-the-
art result.

In April 2022, Li et al. introduced BinsFormer [21],
a new architecture for monocular depth estimation. It is
based on AdaBins with multiple modifications, including
a Transformer decoder to enhance adaptive bin generation
and a multi-scale design. During training, an auxiliary scene
classification task is used to improve the model performance.
BinsFormer achieves state-of-the-art performance with an
absolute relative error of 0.052 on the KITTI dataset.

C. RELEVANT STATE-OF-THE-ART ON MULTI-TASK
LEARNING
Multi-task Learning involves training shared parameters for
multiple tasks to improve efficiency and accuracy by mining
latent information. Prominent models in this field include
Mask R-CNN [13], which combines Faster R-CNN [32]
for instance segmentation and object detection. Eigen and
Fergus [8] address depth prediction, surface normal estima-
tion, and semantic labeling, while MultiNet [34] handles
classification, detection, and semantic segmentation in a
single model. In their study [43], the authors introduced
a model that employs a multi-task learning approach to
concurrently predict both the steering angle and speed
command. YOLOP [39] uses CSPDarknet as its base and
specializes in object detection, drivable area segmentation,
and lane detection. Standley et al. [33] and Liu et al. [26]
have improved multi-task training by grouping related tasks
together rather than training all tasks simultaneously. In
the research conducted by Liang and their colleagues [23]
they devised a multitask model capable of handling object
detection, semantic segmentation, and drivable area seg-
mentation concurrently. In a separate investigation by the
same team [22], they introduced the VE-Prompt framework.
VE-Prompt utilizes visual exemplars to offer task-specific
visual cues, effectively guiding the model in learning various
tasks including object detection, semantic segmentation,
instance segmentation, and lane line prediction. Furthermore,
in a different study outlined in [41], Xu et al. presented
a multitask learning framework based on Transformers.
This framework enables the simultaneous execution of
segmentation, depth estimation, and saliency detection tasks
within a single model.
In their study [30], Mousavian et al. presented an approach

for tackling both semantic segmentation and depth estimation
tasks using deep convolutional neural networks (CNNs).
Their investigation centered on the feasibility of training
distinct components of the model for each task, followed
by fine-tuning the entire integrated model to simultaneously
enhance performance in both tasks through a single loss
function. Additionally, the researchers enhanced their deep
CNN by integrating a fully connected conditional random
field (CRF) to boost the overall model’s performance.
The model’s evaluation encompassed both the training and
evaluation phases, conducted on the NYUDepth V2 dataset.
In another paper called “Collaborative Deconvolutional

Neural Network (C-DCNN)” [25], the authors introduced
an approach that jointly addresses semantic segmentation
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and depth estimation as pixel-wise labeling problems. The
training process involves three stages: firstly, pretraining
two separate hierarchical supervised DCNNs for each task;
secondly, integrating these networks through a pointwise
bilinear operation to allow simultaneous learning of both
tasks and finetuning; and finally, applying a fully con-
nected Conditional Random Field (CRF) to further improve
semantic segmentation performance using predicted depth
and semantic labels. This model was also evaluated on the
NYUDepth V2 dataset.
In both of the methods referred to in citations [25], [30],

CNN-based architectures were employed. In contrast, our
approach introduces a hybrid encoding and decoding frame-
work based on Vision transformer variants SegFormer [40]
and GLPDepth [18]. Unlike the methods mentioned
in [25], [30], our proposed method does not require separate
pretraining, finetuning, and CRF steps. Our method is a
straightforward single-stage approach that takes an image as
input and simultaneously performs the joint segmentation
and depth estimation tasks in a single forward pass. While
these previous methods reported their performance solely on
the NYUDepth V2 dataset, our work presents results across
three publicly available datasets: Cityscapes [5], KITTI-360
[24], and Apollo Synthetic Datasets [15], as well as on
our custom NAPLab dataset. We validated the multi-task
learning capabilities of our vision transformer model on our
proprietary dataset, demonstrating strong performance during
evaluation on previously unseen NAP Lab data, despite being
trained on a different dataset. Additionally, we investigated
the utility of synthetic data for pre-training and observed its
effective impact on increasing model accuracy when real-
world data is limited.

III. METHODOLOGY
This section presents the selection of models for the
experiments in the paper and provides a detailed description
of the chosen models and the proposed Multitask Model.
This information is important for understanding the results
and validity of the conclusions.

A. SELECTION OF MODELS
The objective of this paper is to create a multitask Vision
Transformer for segmentation and depth estimation by
integrating two existing models. This section examines each
model and provides a justification for its selection or non-
selection. The accuracy and efficiency of the models were
taken into account during the decision-making process.

1) SELECTION OF SEMANTIC SEGMENTATION MODEL

The Segmentation Transformer (SETR) was an early success-
ful attempt to use Transformers for semantic segmentation
and influenced other Transformer-based models. However, it
is no longer considered the best option due to advancements
in computer vision and improved models with higher
accuracy and efficiency.

FIGURE 1. SegFormer Architecture (Image source: Xie et al. [40]).

MaskFormer and Mask2Former are intriguing models for
this study due to their ability to carry out multiple seg-
mentation tasks, and the innovative approach of using mask
classification to solve semantic segmentation. Mask2Former,
with its multiple improvements over MaskFormer, is consid-
ered the most promising option. However, its heavy decoder
hinders its ability to perform real-time segmentation, leading
to its non-selection for the experiments.
SeMask is a semantic segmentation model that improves

performance by incorporating a small, task-specific layer
into the Transformer encoder. Although efficient, the mod-
ifications are specific to semantic segmentation and may
not transfer to other dense prediction tasks like monocular
depth estimation. Therefore, SeMask will not be used in the
experiments aimed at designing a multitask model with a
shared encoder.
The Lawin Transformer was planned to be used in the

experiments for semantic segmentation as it promised to
increase accuracy and lower computational cost through
its efficient decoder design. However, the results from
integration with the official SegFormer code did not match
the results reported in the paper. Hence, it was decided not
to further explore the Lawin Transformer in this study.
The SegFormer architecture features an efficient self-

attention calculation and a lightweight all-MLP decoder,
making it suitable for real-time applications. Additionally,
it offers 6 different backbone sizes, allowing for a balanced
trade-off between speed and accuracy. Furthermore, its
robustness on corrupted data makes it a strong candidate for
safety-critical tasks like autonomous driving. These advan-
tages make SegFormer the chosen model for segmentation
in this study.

2) SEGFORMER

The SegFormer is a semantic segmentation model that uses
an encoder-decoder design. The encoder is a hierarchical
Vision Transformer inspired by ViT [7] with modifications
for improved performance, while the decoder consists of
MLP layers only. An overview of the architecture can be
found in Figure 1.

1) Transformer Encoder: The SegFormer encoder takes
an input image of size H × W × 3 and splits it
into patches of size 4 × 4. These patches are then
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processed through four Transformer blocks to create
hierarchical feature maps. The Transformer blocks are
improved versions of those used in ViT, with a reduced
complexity of the multi-head self-attention operation
using the sequence reduction process proposed by
Wang et al. [37] with a reduction ratio R. The
positional encoding used in ViT is replaced by a
3 × 3 convolution and an MLP, providing the model
with positional information and better performance for
images with varying resolutions during inference. At
the end of each Transformer block, an overlapped
patch merging process is applied to reduce the spatial
resolution and produce hierarchical feature maps. The
final feature maps have a resolution of H

2i+1 × W
2i+1 ×Ci,

where i refers to the current Transformer block. The
feature maps are then sent to the decoder to generate
the predicted segmentation mask. The SegFormer
architecture has a total of 6 Transformer encoders,
B0 to B5, with different sizes and the same design.
B0 is the smallest model and suited for real-time
applications, while B5 is the largest model with the
highest accuracy.

2) MLP Decoder: The Segformer decoder is a simple
and lightweight design, consisting only of MLP lay-
ers. Despite its simplicity, the decoder still yields
high-quality predictions, thanks to the large effec-
tive receptive field provided by the hierarchical
Transformer encoder which helps capture the global
context of the image. The decoder follows these 4 steps
to make a prediction:
a) Each feature map Fi is transformed using an

MLP layer, converting the individual chan-
nel dimension Ci to a common channel
dimension C.

b) The feature maps are upsampled to H
4 × W

4 and
concatenated, resulting in a feature set F with a
channel dimension of 4C.

c) F is then fused using another MLP layer, reduc-
ing the channel dimension from 4C to C.

d) The final segmentation mask M is generated by
passing the fused features through another MLP
layer, resulting in a resolution of H

4 × W
4 × Ncls,

where Ncls is the number of classes.

3) SELECTION OF DEPTH ESTIMATION MODEL

In this study, the focus is on investigating the application of
Vision Transformers for dense prediction tasks. The depth
estimation task is approached as a classification problem
with AdaBins, which divides the depth range into adaptive
bins. Although AdaBins achieved impressive results with a
CNN backbone and limited use of Transformer architecture,
it was not used in the experiments as the objective is to
examine models with greater utilization of Transformers.
The DepthFormer model was not used in the experiments

either, despite having two branches (Transformer-based and
CNN-based) for gathering both global and local information

FIGURE 2. The architecture of GLPDepth (Image source: Kim et al. [18].)

from the image and producing remarkable results on the
KITTI dataset. The lack of availability of official code at
the time of experimentation made incorporating the model
difficult and time-consuming.
BinsFormer, one of the best models for monocular depth

estimation on the KITTI dataset, could not be utilized in
the experiments due to the unavailability of the paper and
official code at the time of experimentation.
The GLPDepth was chosen as the monocular depth

estimation model for this study due to its lightweight decoder
that effectively merges global and local contexts to generate
accurate depth predictions. Its lightweight design also makes
it suitable for real-time use and its compatibility with
SegFormer, the selected segmentation method, allows for
easy integration into a multitask model. The compatibility
with SegFormer was the main reason for choosing GLPDepth
over other methods for monocular depth estimation.

4) GLPDEPTH

This section explains the functioning of GLPDepth, the
selected depth estimation model. It merges the hierarchical
Vision Transformer encoder used in SegFormer with a unique
lightweight decoder for monocular depth estimation. The
model’s performance is further improved by the introduction
of Vertical Cut-Depth, a depth-specific augmentation tech-
nique. A visual representation of the architecture is provided
in Figure 2.

1) Transformer Encoder: The GLPDepth architecture
incorporates the SegFormer encoder by Xie et al. [40]
to generate hierarchical feature maps from the input
image for the decoder. The original implementation
uses the SegFormer B4 backbone for depth prediction,
but the experiments will test smaller backbone sizes
to evaluate their impact on performance.

2) Lightweight Decoder: The GLPDepth decoder takes
the final feature map F4

E from the encoder and
processes it through a channel reduction and bilin-
ear upsampling step, resulting in a feature map
of size 1

16H × 1
16W × NC. The feature map then

passes through multiple consecutive layers that include
Selective Feature Fusion (SFF) modules and bilinear
upsampling. The SFF module combines global and
local features from the current decoder feature map
and the encoder feature map, creating rich feature
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FIGURE 3. The GLPDepth Selective Feature Fusion (SFF) module (Image source:
Kim et al. [18].)

maps. After multiple SFF layers and upsampling, the
decoder feature map is transformed to H×W×NC. To
produce the final depth prediction, the feature map is
sent through two convolutional layers and a sigmoid
function, producing a depth map that is multiplied
by the maximum depth value of the dataset to obtain
the predicted distance in meters. The SFF module is
depicted in Figure 3.

3) Vertical CutDepth: The GLPDepth model introduces a
new augmentation method named Vertical CutDepth,
which is specifically designed for depth estimation
and inspired by CutDepth. The method improves the
diversity of the dataset by placing a random crop
of the ground truth depth map into the RGB image.
Unlike CutDepth, Vertical CutDepth does not crop the
depth map vertically to better preserve the important
vertical information. This method is specific to depth
estimation and its effects on other dense prediction
tasks are unknown. However, it was not used in
the experiments for this study as the goal was to
design an architecture for both depth estimation and
segmentation.

In short, the proposed method uses SegFormer for
semantic segmentation and GLPDepth for monocular depth
estimation. Both models use the same Transformer backbone
and have lightweight decoders suited for real-time use.
The architecture of each model is explained already in
Sections III-A2 and III-A4, and their combination into a
multitask model is detailed in the next section.

5) PROPOSED MULTITASK MODEL

The multitask model performs monocular depth estimation
and semantic segmentation, using SegFormer and GLP-
Depth. The model can generate predictions for both tasks
with a single forward pass, resulting in improved accuracy
and efficiency.

1) Architecture: The multitask architecture leverages the
SegFormer encoder, to obtain hierarchical features
from the input image. These feature maps are then
directed to two individual decoders, one for semantic
segmentation and the other for monocular depth
estimation. These decoders generate the ultimate
predictions for each task. A visualization of the

proposed architecture can be seen in Figure 4, with
further elaboration on the segmentation and depth
decoders found in Section III-A2 and III-A4 sections,
respectively.

2) Loss Function: The model is trained to perform both
semantic segmentation and monocular depth estimation
simultaneously by employing two individual loss
functions, specific to each task. The cross-entropy
loss, a commonly used method, is utilized for the
segmentation task.

LCE = −
n∑

i

yi log
(
ŷi

)
(1)

For the segmentation task, the cross entropy loss uses
the ground truth label yi and the softmax probability
for the i-th class ŷi to calculate the loss. For the
depth estimation task, the scale-invariant log scale loss,
previously used in GLPDepth, is employed.

LSI = 1

n

n∑

i

d2
i − 1

2n2

(
n∑

i

d2
i

)
(2)

The scale-invariant log scale loss calculates the differ-
ence between the log of the ground truth depth value
yi and the log of the predicted depth value ŷi for each
pixel (di = log yi−log ŷi). During the training process,
the two task-specific loss functions are combined into
a single loss function to calculate the total loss.

L = LCE + LSI (3)

IV. EXPERIMENTS AND RESULTS
This section provides an overview of the software, hardware,
training configurations used for the proposed method, and
other methods used for comparison. It covers the various
experiments conducted and the datasets used in the study.
The section also presents an analysis of the experimental
results.

A. DATASETS
In our study, we conducted experiments using four datasets:
Cityscapes [5], KITTI-360 [24], Appolo Synthetic [15] and
NAPLab dataset (Our own data). The specifics of each
dataset, such as the selection of training and testing data,
the number of classes, and the class types for both RGB and
depth images of each dataset are discussed in the subsequent
subsections. It is to be noted that due to the limited annotated
frames in the NAPLab dataset, the models cannot be trained
or fine-tuned on it. However, we used this data to evaluate the
performance of the models trained on the above-mentioned
data sets.

1) CITYSCAPES

The Cityscapes dataset [5] includes 5,000 frames with
fine annotations. Out of these, one can use 2,975 frames
for training, 500 for validation, and 1,525 for testing.
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FIGURE 4. The proposed multitask architecture.

However, the annotations for the test set are not available
for use during experimentation, leaving 3,475 frames for
training and validation. Each frame comes with RGB
images captured by the left front-facing camera, anno-
tations for semantic segmentation, pre-computed disparity
maps, and camera parameters (both intrinsic and extrinsic).
Blurred RGB images are also included for visualization
purposes.
The Cityscapes dataset contains high-resolution images

(2048x1024), but it is not possible to perform real-time
inference with the selected models using these images. To
make real-time inference feasible, the images can be resized
to a smaller resolution (1024x512), which is half of the
original size.
To use disparity maps for training, they must be converted

to depth maps through some calculations. The first step is
to calculate the disparity values from the raw images using
an equation:

d = float(p) − 1.0

256.0
(4)

where the calculation of disparity values d from raw pixel
values p is done. The depth values are calculated with
some intrinsic and extrinsic camera parameters using another
equation as:

D = B× fx
d

(5)

where the disparity value (d), baseline (B), and focal length
(fx) are used to calculate the depth value (D) in meters
through the specified equation. The resulting depth maps
range from 0 to approximately 470 meters, however, it was
noticed that the high depth values were noisy and inaccurate,
as shown in Figure 5a. Despite testing the depth maps
for training, the evaluation metrics failed to converge as
expected. As a result, it was decided to clip the depth maps at
100 meters, meaning values greater than 100 meters would be
set to 100. This decision was made as most of the significant
objects in the image fall within this range, as seen in the
clipped depth map in Figure 5b. The Cityscapes dataset is
labeled with 30 semantic classes, but only 19 of them are
typically used for training and validation because the other
classes are rare. These 19 commonly used classes with their

TABLE 1. Cityscapes classes and color palette.

corresponding colors are listed in Table 1. To train using
the segmentation data, images with values corresponding to
the train IDs of the classes are generated using the official
Cityscapes scripts.
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FIGURE 5. Cityscapes depth map before and after clipping at 100m.

2) KITTI-360

The KITTI-360 dataset [24] includes raw perspective images,
2D semantic labels, raw LiDAR scans, vehicle poses,
and intrinsic and extrinsic camera parameters. The dataset
includes 61,280 annotated images that are divided into a train
set and a validation set. The train set has 49,004 frames,
while the validation set has 12,276 frames.
The KITTI-360 dataset has a resolution of 1408x376,

which is low enough to allow real-time inference but the
image height of 376 is not divisible by 32, a requirement
of the chosen models. To resolve this, 24 pixels are cropped
from the top of the image resulting in a resolution of
1408x352. During validation, a different crop will be used
as proposed by Garg et al. [11].
The raw LiDAR point clouds must be transformed into 2D

depth maps for training purposes. The transformation is done
using the official KITTI-360 scripts and involves applying a
transformation matrix to all the points to convert the LiDAR
coordinate frame to the camera coordinate frame, which is
calculated using an equation.

TL→k = T0→k × TL→0 (6)

here, TL→0 transformation matrix represents the process of
transforming 3D points from the LiDAR coordinate frame
to the left perspective camera. The T0→k matrix, which
transforms the left perspective camera to other cameras, is
set to the identity matrix as only the left perspective camera
will be used for the experiments. The projected points in
the camera coordinate frame are then transformed into 2D
depth maps through the use of intrinsic camera parameters.
These maps have a depth range of 0 to 80 meters.
The semantic classes for KITTI-360 align with those

utilized for Cityscapes, as listed in Table 1. As a result,
KITTI-360 will also use the same 19 classes for training and
evaluation. Images with train IDs for the semantic classes
must be generated to train the models.

3) APOLLO SYNTHETIC DATASET

The dataset [15] consists of 273,000 frames in total. To
improve the balance between classes and scenes, a subset of
the dataset was selected for use in the experiments.

The dataset, originally consisting of 273,000 frames, was
reduced to 45,235 frames after only half of the available
highway sequences from the dataset were used due to data
imbalance, and excluding 125 frames due to missing depth
annotations. To create a balanced dataset, the frames were
split into a training set and a validation set based on the
virtual scene level, with the Road_Loop_with_Intersections
scene used for validation and the remaining scenes for
training. The final training set has 40,195 frames and the
validation set has 5,040 frames.
The images in the Apollo Synthetic Dataset have a

resolution of 1920x1080, but to perform real-time inferences,
the resolution needs to be reduced. A common approach is to
decrease the resolution to 960x540, which is half the original
size. However, due to the design of the chosen models, the
image size must be divisible by 32, so the final resolution
selected is 960x544.
The depth values are decoded from the depth images using

the following equation:

D =
(
R+ G

255.0

)
× 655.36 (7)

where, the depth value in meters, D, is calculated by using
the normalized float values of the red and green channels,
R and G, of a pixel in the image. This calculation produces
depth values ranging from 0 to 655.35 meters with a
precision of 1 cm. Despite the high accuracy of the depth
maps, the depth range is clipped to 200 meters, as is done
with the Cityscapes and KITTI-360 datasets. This larger max
depth value is made possible due to the accuracy of the
depth maps in the Apollo Synthetic Dataset.
The Apollo Synthetic Dataset has 24 classes for semantic

segmentation that were modified to match the classes in
Cityscapes, resulting in 14 classes that will be used in the
experiments. These classes are shown in Table 2 and have
a color palette similar to Cityscapes.

4) NAPLAB

The NAPLab dataset comprises 10 frames that feature
semantic segmentation annotations exclusively. The resolu-
tion of the images is 1920 × 1080, however, to facilitate
real-time inference, they have been resized to 960 × 544.
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TABLE 2. Apollo synthetic dataset classes and color palette.

The semantic segmentation class definitions in the dataset
match those of Cityscapes (Table 1).

B. METRICS
Evaluation of segmentation methods can be performed using
various metrics. Pixel accuracy, which is calculated as the
percentage of image pixels labeled correctly, is a simple
method but can provide misleading results if the class
distribution in the image is unbalanced. A more reliable
evaluation metric is the Intersection over Union (IoU) or
Jaccard index.
The recent research in monocular depth estimation uses

metrics introduced by Eigen et al. [9]. This overview
covers the commonly used evaluation metrics for comparing
predicted and actual values. The absolute error shows the
difference between the two but does not take into account
the size of the actual value, leading to potential issues when
comparing values of varying magnitudes. To remedy this, the
absolute relative error divides the absolute error by the actual
value to incorporate the magnitude. The absolute relative
error, squared relative error, and root mean squared error
are often used to evaluate model performance. Threshold
accuracy measures the percentage of image pixels that have
a maximum ratio between predicted and actual values below
a specified threshold, with common threshold values being
1.25, 1.252, and 1.253.

C. HARDWARE
The experiments in this paper required significant compu-
tational resources and were carried out using two solutions:
the IDUN cluster and a virtual machine provided by NTNU.
The IDUN cluster at NTNU is a large computing cluster
for research purposes, equipped with A100, V100, and P100
GPUs, which were utilized for training the models. Training
multiple GPUs was necessary due to the high memory
consumption of the models. The virtual machine from
NAPLab with an A10 virtual GPU with 23 GB RAM and a
graphical user interface was used for ease of development,
benchmarking, inference, and visualization of results.

D. TRAINING SETUP
The multitask model is trained on three datasets selected
specifically for this purpose. The number of training epochs
varies depending on the size of each dataset: 300 epochs
for Cityscapes, 30 epochs for the Apollo Synthetic Dataset,
and 20 epochs for KITTI-360. During training, the Adam
optimizer [19] is utilized with a learning rate of 1.0 × 10−4

and a batch size of 12. Augmentations are performed using
the Albumentations library [2], including techniques such as
HorizontalFlip, RandomBrightnessContrast, RandomGamma
and HueSaturationValue. The model’s initial weights are
from ImageNet [6], pre-trained for optimal performance.

E. RESULTS
The results of the experiments conducted for this study are
presented in this section. The following experiments were
carried out to answer the RQs posed in Section I:
1) Multitask Training Comparison - The multitask train-

ing method was compared with individual task training
for segmentation and depth to examine its impact on
model performance.

2) Backbone Size Analysis - The multitask model was
trained with different backbone sizes to evaluate how
the choice of backbone affects performance.

3) Synthetic Data Pre-training - The multitask model
was pre-trained on a synthetic dataset to improve its
accuracy.

4) Depth Prediction Validation - The accuracy of the
predicted distances to objects in images was evaluated.

5) Evaluation on NAPLab Data - The multitask model
trained on Cityscapes was tested on NAPLab data.

1) MULTITASK TRAINING COMPARISON

The aim of the experiment was to determine the effect of
multitask training on performance. The approach involved
training the model for both semantic segmentation and
monocular depth estimation simultaneously. Three models
were trained: one for segmentation only, one for depth
estimation only, and one for both tasks. The models
were evaluated on the Cityscapes, KITTI-360, and Apollo
Synthetic datasets using the SegFormer B2 backbone for all
models.
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FIGURE 6. Comparison of Multitask Training on Cityscapes dataset. The graphs illustrate the validation loss and evaluation metrics during training, where orange represents
multitask, blue represents depth, and green represents segmentation.

FIGURE 7. Comparison of Multitask Training on KITTI-360 dataset. The graphs illustrate the validation loss and evaluation metrics during training, where orange represents
multitask, blue represents depth, and green represents segmentation.

1) Training: The models were trained based on the
instructions in Section IV The training process of
the models was monitored using graphs for three
datasets: Cityscapes, KITTI-360, and Apollo Synthetic
Dataset which can be found in Figures 6, 7, and 8
respectively. In all the datasets, the segmentation
loss began to increase after a few training epochs,
which is a commonly observed sign of overfitting.
Despite this, the mean Intersection over Union (mIoU)
continued to improve. On the other hand, the depth loss
showed a smoother convergence pattern compared to
the segmentation loss throughout the training process.

Comparing the convergence of the individual task
models and the multitask model, it can be seen
that both models generally converge similarly and no
significant differences are apparent from the training
graphs.

2) Qualitative Analysis: The qualitative results for the
models applied to Cityscapes, KITTI-360, and Apollo
Synthetic Dataset are presented in Figures 9, 10,
and 11, respectively. The multitask model produced
similar results to the individual task models, and only
the predictions of the multitask model are shown.
The model performed well in generating convincing
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FIGURE 8. Comparison of Multitask Training on Apollo Synthetic Dataset. The graphs illustrate the validation loss and evaluation metrics during training, where orange
represents multitask, blue represents depth, and green represents segmentation.

FIGURE 9. Qualitative analysis of Multitask Training on Cityscapes dataset. The results shown were generated using the B2 multitask model and are presented in three rows.
The first row displays the original image, the second row shows the predicted segmentation mask, and the third row displays the predicted depth map.

predictions across all datasets. However, the model
faced challenges in segmenting the sky region in the
Apollo Synthetic Dataset as it was not labeled in the
ground truth annotations. The model also struggled to
generate accurate depth predictions for the top part of
the KITTI-360 images as the ground truth depth maps
only covered the bottom part of the images.

3) Quantitative Analysis: The quantitative results are
displayed in Table 3. The individual task model per-
formed similarly or better than the multitask model in
terms of absolute relative error for depth, with only
small differences. For segmentation, the individual task
model showed the best performance on Cityscapes
while the multitask model performed better on the

other two datasets. The inference speed was compa-
rable across all datasets, as the images had a similar
number of pixels to process. Despite performing an
additional task, the multitask model had a similar
inference speed to the segmentation model.

2) BACKBONE SIZE ANALYSIS

The purpose of the experiment is to examine the impact
of the size of the Transformer backbone on the model
performance. Three sizes of the SegFormer backbone, B0,
B2, and B4, are used in combination with the multitask
model and trained and evaluated on Cityscapes, KITTI-360,
and Apollo Synthetic Dataset.
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FIGURE 10. Qualitative analysis of Multitask Training on KITTI-360 Dataset. The results shown were generated using the B2 multitask model and are presented in three rows.
The first row displays the original image, the second row shows the predicted segmentation mask, and the third row displays the predicted depth map.

FIGURE 11. Qualitative analysis of Multitask Training on Apollo Synthetic Dataset. The results shown were generated using the B2 multitask model and are presented in three
rows. The first row displays the original image, the second row shows the predicted segmentation mask, and the third row displays the predicted depth map.

TABLE 3. Quantitative comparison of multitask training.

1) Training: The experiment tested three different sizes
of the SegFormer backbone (B0, B2, and B4) with the
multitask model on Cityscapes, KITTI-360, and Apollo
Synthetic Dataset. The training graphs for each dataset
can be seen in Figure 12, 13, and 14. The segmentation

loss for all backbone sizes started increasing after a
few training epochs, which is a sign of overfitting.
However, the problem was less prominent for the
B0 backbone, which had a slower convergence rate.
The depth loss converged better and improved for a
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FIGURE 12. Comparison of different Backbone sizes on Cityscapes dataset. The graphs depict the validation loss and evaluation metrics while the models were being trained.
The orange color represents the B0 backbone, blue represents the B2 backbone, and green represents the B4 backbone.

FIGURE 13. Comparison of different Backbone sizes on KITTI-360 dataset. The graphs depict the validation loss and evaluation metrics while the models are being trained.
The orange color represents the B0 backbone, blue represents the B2 backbone, and green represents the B4 backbone.

longer period of time. In terms of accuracy, the B4
backbone performed the best, B2 the second best, and
B0 performed the worst.

2) Qualitative Analysis: The results of the segmentation
and depth tasks are shown in Figures 15 and 16
respectively. The two largest models in the experiment
perform better in semantic segmentation, showing
better distinction between the road and sidewalk and
accurately segmenting small objects and thin struc-
tures. In-depth estimation, the largest models produce
clearer depth maps and detect small objects and thin
structures more effectively. The results are shown
for the Cityscapes, KITTI-360, and Apollo Synthetic

Datasets and compare the original images with the
results from Model B0, B2, and B4.

3) Quantitative Analysis: As depicted in Table 4, the
model featuring the biggest backbone typically
achieves the best accuracy for both tasks, with
the exception being depth estimation on the Apollo
Synthetic Dataset, where Model B2 outperforms Model
B4. In terms of computational speed, Model B0 stands
out with its impressive 56-61 FPS performance, which
is well within the realm of real-time processing. Model
B2 also operates close to real-time with a frame rate of
18-19 FPS, while the more robust Model B4 operates
at 11-12 FPS.
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FIGURE 14. Comparison of different Backbone sizes on Apollo Synthetic Dataset. The graphs depict the validation loss and evaluation metrics while the models are being
trained. The orange color represents the B0 backbone, blue represents the B2 backbone, and green represents the B4 backbone.

FIGURE 15. The results of the comparison of different Backbone sizes for the segmentation task can be seen in the first, second and third columns of the images, which
represent Cityscapes, KITTI-360, and Apollo Synthetic Dataset, respectively. The first row shows the original image, while the second, third, and fourth rows show the results
obtained using the B0, B2, and B4 backbones, respectively. The images have been cropped for better visual clarity.

3) SYNTHETIC DATA PRE-TRAINING

This section explores the impact of pre-training on a large
synthetic dataset. Specifically, we pre-trained a multitask
model that uses a SegFormer B2 backbone on the Apollo
Synthetic Dataset and then fine-tuned it on Cityscapes. We

compared the model’s performance to that of one trained
exclusively on Cityscapes.

1) Training: In accordance with section IV, the models
were trained, and Figure 17 shows their training
graphs. Pre-training on the synthetic dataset improved
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FIGURE 16. This experiment evaluates the qualitative results of the depth estimation task, which are shown through images cropped for better visualization. The images are
from the Cityscapes, KITTI-360, and Apollo Synthetic Dataset, with the original image in the first row, and the results from B0, B2, and B4 models in the subsequent rows.

TABLE 4. Backbone size analysis: Quantitative results.

both the loss and absolute relative error for depth
estimation, but there was no observed improvement for
semantic segmentation. Unfortunately, the model pre-
trained on synthetic data had to be stopped after 150
epochs, but there is potential for better performance
with a longer training period. However, given that
the last phase of training typically sees only slight
improvements, the difference in performance would
likely be negligible.

2) Results: Table 5 presents the quantitative results,
showing that the model pre-trained on synthetic data

outperforms the original model in all-depth evaluation
metrics. However, there is no observed improvement
in semantic segmentation with pre-training on the syn-
thetic dataset. The models with and without synthetic
dataset pre-training had no significant differences in
their predictions, so there are no qualitative results
provided for this experiment.

4) DEPTH PREDICTION VALIDATION

This section presents the validation of depth prediction,
which assesses the model’s capability to estimate the distance
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FIGURE 17. The graphs depict the validation loss and evaluation metrics of training with and without pre-training on synthetic data. The orange line represents training
without pre-training, while the blue line represents training with pre-training.

TABLE 5. Quantitative results of pre-training on synthetic data.

between objects in an image. Six images, three from
Cityscapes and three from KITTI-360 are used, as shown in
Figure 18. The multitask model produces a depth prediction
for each image, and the predicted depth of an object,
marked with a red circle, is compared to the ground truth
depth using the average of multiple depth values in the
same region. Two different versions of the multitask model
are used, one trained on Cityscapes and one on KITTI-
360, enabling an assessment of how accurately the model
performs on the training dataset as well as on new and unseen
data.
Table 6 displays the results of the depth validation. The

results demonstrate that the model’s predicted depth is the
most precise for the dataset it was trained on, with a
prediction error of less than a meter. However, when the
model is tested on an unfamiliar dataset, the prediction
error is significant, and it seems that the Cityscapes model
overestimates the distance on the KITTI-360 dataset, while
the KITTI-360 model underestimates the distance on the
Cityscapes dataset.

5) EVALUATION ON NAPLAB DATA

In this section, the performance of the multitask model on the
NAPLab dataset is evaluated. Due to the limited annotated
frames in the dataset, the model cannot be trained or fine-
tuned on it. Instead, an evaluation is carried out using a
model trained on the Cityscapes dataset. Experimental setup
in Section IV-E2 is followed, where three different model
sizes (B0, B2, and B4) are tested.

TABLE 6. The results of the depth validation are presented, where the estimated
distance to individual objects in images from Cityscapes and KITTI-360 datasets are
evaluated, as depicted in Figure 18. Two models are used for evaluation, one trained
on Cityscapes and the other trained on KITTI-360. The distance values are expressed
in meters.

Table 7 displays the quantitative results, as no ground
truth depth data is available, only evaluation metrics for
semantic segmentation are presented. The highest mIoU
score is achieved by the largest model, while the smallest
model achieves the lowest score, similar to the results of
Section IV-E2. Figure 19 provides qualitative results where
the predicted segmentation masks look similar to the ground
truth masks.
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FIGURE 18. The validation of depth involves verifying the predicted distance to an object in each image (see Table 6 also for better understanding.). Objects selected for
validation are highlighted with a red circle, with the Cityscapes dataset presented in the first row and the KITTI-360 dataset in the second row.

TABLE 7. Quantitative results on NAPLab data.

V. DISCUSSION
The section examines the implications of the experimental
outcomes on the suitability of the model for use in
autonomous driving. Additionally, it considers the limitations
of this study and endeavors to address the research questions
in Section I.

6) THE POTENTIAL APPLICATIONS IN THE FIELD OF
AUTONOMOUS DRIVING

Real-time performance is an important requirement for
deep learning architectures in autonomous vehicles, with a
frame rate of approximately 30 FPS considered real-time.
In Section IV-E2, different backbone sizes were tested and
the B0 model achieved a frame rate of about 60 FPS,
while the B2 model achieved roughly 20 FPS. However,
experiments were conducted on powerful GPUs that may not
be available in an autonomous vehicle, and additional time
is required for data loading, post-processing, and decision-
making. TensorRT can optimize the model for fast inference
and may help increase inference speed. In addition to
inference speed, accuracy is also important in autonomous
driving, and the largest models (B2 and B4) outperformed
B0 in Section IV-E2. To increase performance, the resolution
of input images can be increased to capture finer details, but
this may decrease the frame rate. Therefore, different image
sizes should be tested to find a balance between accuracy
and inference speed.

A. THE LIMITATIONS OF THE STUDY
In this section, the limitations of the study are discussed, as
well as some possible solutions to address them.

1) EARLY OVERFITTING

Sections IV-E1 and IV-E2 showed that the segmentation
loss in the model increased early in the training process,
indicating overfitting, but the model’s accuracy continued
to improve. This unexpected outcome may be due to

the cross-entropy loss used for segmentation, which is
calculated differently from accuracy. The lack of augmen-
tation techniques used during training could be another
reason for overfitting, and alternative techniques that work
for both depth estimation and semantic segmentation could
be explored. The hyperparameters were not extensively tested
during training, and the learning rate was identified as a
crucial parameter that could be optimized through the use of
a learning rate scheduler or manual decrease of the learning
rate after the initial training epochs. The use of individual
learning rates for each task-specific decoder could also help
achieve better accuracy for both depth and segmentation.

2) FEW AVAILABLE DATASETS

The study focuses on using a multitask model for monoc-
ular depth estimation and semantic segmentation. Finding
datasets annotated for both tasks was challenging as most
publicly available datasets focus on one task. Three datasets
were chosen, all of which contain annotations for both tasks
but have their own issues. Cityscapes is small and its depth
maps are not as accurate as LiDAR depth maps, while
KITTI-360 has a much larger dataset but sparse depth maps.
The lack of annotated real-world data led to the use of
synthetic data for the evaluation of the multitask model.
The chosen dataset, Apollo Synthetic Dataset, has a large
number of annotated frames but cannot substitute real-world
data completely due to domain shift. Semi-supervised and
self-supervised methods were not explored in the study, but
they could be interesting to look into as they require less
annotated data. However, annotated data for both tasks would
still be necessary to evaluate the model’s performance.
For more theoretical background, additional experiments,

and in-depth explanation of the proposed study, please refer
to our work [28].

VI. CONCLUSION AND FUTURE DIRECTIONS
The study explored the use of Vision Transformers for dense
prediction tasks in autonomous driving. The goal was to
develop a multitask model that can perform monocular depth
estimation and semantic segmentation simultaneously while
being able to operate in real-time. A literature review was
conducted to identify state-of-the-art Vision Transformers,
and two models, SegFormer and GLP-Depth, were selected
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FIGURE 19. The qualitative results of NAPLab data, where pedestrians and license plates are blurred for anonymity purposes. The first row displays the original image,
followed by the ground truth segmentation mask in the second row, the predicted segmentation mask in the third row, and the predicted depth map in the fourth row.

for the proposed multitask architecture. The effectiveness
of the proposed model was evaluated with three different
datasets and compared to individual task models. The results
demonstrated that the multitask model achieves comparable
accuracy to the individual task models and significantly
lowers the total inference time for both tasks. The choice
of backbone was found to be able to control the ratio
between inference speed and accuracy. An experiment
was conducted to investigate the impact of pre-training
the model on a large synthetic dataset, which improved
depth estimation accuracy significantly while maintaining
segmentation accuracy. However, the model struggled on new
and unseen datasets when estimating depth accurately.
The potential research ideas in Vision Transformers

can be explored to further improve our work. One idea
is to explore semi-supervised or self-supervised learning
approaches, which require less annotated data during training
and can save time and money. Another idea is to investigate
the use of mixing multiple depth estimation datasets during
training to improve the model’s performance across multiple
datasets without additional fine-tuning. This approach could
force the model to rely on more general features and not
features specific to a single dataset.
Another interesting direction to explore is multi-sensor

fusion. As the technology continues to evolve, multi-
sensor fusion [29], [38] is likely to play a central role in
the advancement of automated driving systems. Extensive
hyperparameter analysis for the enhanced performance of the
proposed method can also be conducted. These ideas could
be interesting to investigate further in future research.
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