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ABSTRACT Autonomous vehicles face numerous challenges to ensure safe operation in unpredictable
and hazardous conditions. The autonomous driving environment is characterized by high uncertainty,
especially in occluded areas with limited information about the surrounding obstacles. This work aims to
provide a trajectory planner to solve these unsafe environments. The work proposes an approach combining
a visibility model, contextual environmental information, and behavioral planning algorithms to predict
the likelihood of occlusions and collision probabilities. Ultimately, this allows us to estimate the potential
harm from collisions with pedestrians in occluded situations. The primary goal of our proposed approach
is to minimize the risk of hitting pedestrians and to establish a predefined, adjustable maximum level
of harm. We show several practical applications for informing a sampling-based trajectory planner about
occluded areas to increase safety. In addition, to respond to possible high-risk situations, we introduce an
adjustable threshold that governs the vehicle’s speed when encountering uncertain situations and strategies
to maximize the vehicle’s visible area. In implementing our novel methodology, we analyzed several real-
world scenarios in a simulation environment. Our results indicate that combining occlusion-aware trajectory
planning algorithms and harm estimation significantly influences vehicle driving behavior, especially in
risky situations. The code used in this research is publicly available as open-source software and can be
accessed at the following link: https://github.com/TUM-AV S/Frenetix-Motion-Planner.

INDEX TERMS Autonomous vehicles, collision avoidance, trajectory planning, vehicle safety.

. INTRODUCTION most significant uncertainties in trajectory planning comes

UTONOMOUS driving has gained significant attention

in recent years due to its potential to revolution-
ize the transportation industry. However, achieving fully
autonomous driving in dynamic environments remains chal-
lenging, as autonomous vehicles must navigate safely and
efficiently with unpredictable and dynamic obstacles. Safety
depends strongly on the environment in which the vehicle is
operating. The vehicle’s environment is influenced by uncer-
tainties, which the vehicle must consider when calculating
the trajectory. Uncertainties can be very diverse. One of the
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from occluded areas.

These are areas where the vehicle has no complete
information about the scenario and dynamic obstacles at
the time of trajectory selection. These occlusions can
occur for various reasons, e.g., physical objects such as
buildings, walls, fences, or other vehicles can obstruct
the view of specific areas on the street. Figure 1 shows
an example of the hazardous and occluded spots behind
parked vehicles while selecting the autonomous vehicle’s
trajectory. Occluded areas can impact safety, visibility, and,
therefore, the overall functioning of autonomous vehicles,
especially for unprotected road users like pedestrians or
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FIGURE 1. Exemplary illustration of hazardous situations in autonomous vehicle
trajectory selection.

cyclists who deserve the utmost protection and attention. The
trajectory planning algorithm must deal with uncertainties
and unknowns that may arise due to perception, prediction, or
semantic weaknesses. Several factors influence the visibility
of obstacles during driving:

1) Static and dynamic obstacles: e.g., buildings, vegeta-
tion, other vehicles, pedestrians, animals, construction,
temporary signs.

2) Sensor limitations and weather conditions: e.g., rain,
fog, snow, shadows, night, field of view, resolution,
reflections, sensor malfunction.

3) Road features and time factors: e.g., curves, hills,
tunnels, traffic variations, and events such as
demonstrations.

These factors should influence the trajectory choice,
e.g., slow down, change lanes, or increase the distance to the
side of the road for better visibility. If these factors are not
considered, the autonomous vehicle will drive at the target
speed (maximum legal speed) on the direct path to the target
area without considering the hazards. The general traffic
statistics validate the occurrence of severe accidents resulting
in personal injuries, particularly in blind spots [1]. Inattentive
pedestrians pose a significant risk when crossing roads.
Autonomous vehicles must consider these potential hazards,
irrespective of culpability. Imagine the following situation
illustrated in Figure 1: A vehicle is driving through a narrow
road with parked vehicles at the roadside. Some cars are
parked in the second row and completely occlude the road’s
edge. Crossing pedestrians, bicyclists, or vehicles poses a
high risk to all road users. At the same time, autonomous
vehicles are expected not to impede moving traffic and to
reach their destination as quickly as possible. Human drivers
assess the risk through occluded areas with their driving
experience and by smart situational judgment. The following
questions arise: How fast can an autonomous vehicle drive
past these parked vehicles? What is the maximum possible
harm if the autonomous vehicle misjudges the hazard and
fails to brake? Humans accept a residual risk during the
decision process [2]. However, the autonomous vehicle needs
a model that processes the appropriate information to make
safe decisions in situations where occluded areas are present.
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This requires in-time decision-making, often with safety-
critical components. Such fast reactivity to events can only
be processed “at the edge” partly based on incomplete and
uncertain knowledge. This paper addresses the issues raised
and provides a solution on how autonomous vehicles should
behave in occluded and hazardous situations. The aim is not
merely to safeguard the vehicle but to put it into practice
without stopping it in every edge-case situation. In summary,
this work presents three main contributions:

1) We present a comprehensive demonstration of how to
effectively extract, model, and incorporate information
regarding occluded areas, thereby contributing to the
mitigation of potential risks.

2) We present a method for a sampling-based trajectory
planner that allows the vehicle to deal with occluded
areas based on phantom pedestrian estimates.

3) We introduce a metric for calculating the worst-
case harm in the event of a collision with crossing
pedestrians and show how to adjust driving behavior
to a specified harm limit.

Il. RELATED WORK

Occlusion-aware trajectory planning has emerged as a
prominent research field, attracting significant attention due
to its wide-ranging applications in robotics, autonomous
driving, and surveillance systems. This section will provide
an overview of recent advancements in this area.

Maximum risk calculation: One line of research focuses
on assessing the risk associated with crossing pedestrians
to minimize potential damage [3], [4], [5], [6], [7], [8].
Several publications have explored this topic, incorporating
contextual information as prior knowledge to evaluate the
risk of occluded areas. Additionally, considering factors such
as comfort, these studies address the vehicle’s limitations
from the controller’s perspective. Some occlusion-aware
motion planners have demonstrated collision-free behavior
in self-defined edge-case scenarios [9]. Another approach
involves the development of a probabilistic risk assess-
ment algorithm for autonomous driving in the presence of
occluded areas [10], [11]. The primary objective of this
algorithm is to reduce collision rates and enhance driving
comfort by assessing risks and improving safety in urban
environments.

Fartially  observable ~ Markov  decision  processes
(POMDPs): POMDPs have been used in various papers
to handle occluded areas [12], [13], [14], [15], [16], [17],
[18]. These papers leverage POMDP-based behavioral
planners to tackle complex scenarios involving occluded
areas. Additionally, contextual appearance probability is
used to support these algorithms. Some researchers have
introduced phantom vehicles and pedestrians to evaluate
hazards in challenging situations effectively [12], [13], [14].
Hierarchical decision-making methods have been proposed
to support decision-making in specific situations, particularly
at intersections [17], [19]. Their framework employs a
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higher-level candidate path selector and a lower-level
POMDP planner to aid vehicle navigation.

Formal methods and reachable sets: Integration of reach-
ability analysis is another strategy for addressing hazardous
situations. In set-based prediction, the reachability analysis
calculates all future behaviors of other road users according
to the assumptions made [20], [21]. Occluded areas can
also be integrated into the set-based prediction assump-
tions [22], [23]. The set-based prediction approach promises
to generalize arbitrary traffic situations and not just represent
individual scenarios [22], [24]. Some approaches can be
combined with phantom objects to enhance the safety of all
traffic participants [22]. Nager et al. [25] even use reachable
sets analysis to guarantee passive safety for autonomous
vehicles despite occlusions. Another paper proposes a
motion planning method for autonomous valet parking in
environments with limited visibility [26]. The method utilizes
reachable set estimation to account for obstacles and enable
safe vehicle movements. It addresses constraints on vehicle
motion and uses sensor data to estimate the reachable space
around the vehicle. The proposed approach aims to ensure
collision-free parking maneuvers.

New concepts and planning extensions: There is also
work developing a new planning concept for the problem
of occluded areas, for example, using game theory [27].
Zhang et al. formulate the problem as a dynamic zero-
sum game between the autonomous vehicle and an initially
occluded road user. It derives optimal strategies for both
players and sets of initial conditions to avoid collisions.
Based on these results, a trajectory planning framework
provides worst-case safety guarantees while minimizing
conservatism. Collision risk can also be reduced through
algorithmic improvements such as maximizing visibility
through dynamic lateral position adjustment [28], [29]. The
approach aims to optimize the lateral position of the
vehicle to improve its perception of the environment and
enhance safe and efficient motion planning. The method
incorporates a cost function that quantifies the visibility
of occluded areas, which is used in the motion planning
algorithm to generate optimal trajectories that prioritize
improved visibility. There are also extensions for com-
plex edge cases in occlusion-aware trajectory planning. A
left turn maneuver represents a unique challenge for the
vehicle and is therefore considered separately in another
publication [30]. Urban scenarios are especially in focus
due to the lack of visibility. The left turn maneuver and
successful merging into traffic using a tracked object-based
environment representation and object-free sensor fusion,
including calculating unobservable regions in a digital map,
have already been studied [31], [32]. Furthermore, point
clouds generated by a lidar can create a comprehensive
obstacle map [33], [34], [35]. By establishing boundaries
around these static obstacles, it is possible to accurately
predict the potential positions of pedestrians. Leveraging
this information, longitudinal motion planners effectively
determine target states, enabling proactive measures to avoid
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FIGURE 2. Trajectory planning procedure.

any unavoidable collisions with pedestrians who might be
obscured in certain areas.

. METHODOLOGY

In the following section, we briefly review the basic archi-
tecture of our trajectory planning algorithm and present the
novel extensions in order to enable occlusion-aware planning.
On the one hand, this entails the comprehensive assessment
of high-risk zones. On the other hand, it encompasses
a meticulous examination of the potential impact in the
unfortunate event of a collision with crossing pedestrians.

A. SAMPLE-BASED TRAJECTORY PLANNING
Our algorithm for considering the hazards of occluded
areas is limited to the planning and prediction domains
in autonomous driving. The trajectory planning algorithm
approach consists of six main steps, illustrated in Figure 2.
The vehicle uses the environmental information to orient
itself in the Frenet coordinate system. The trajectory planning
algorithm generates several samples in a pre-specified
discretization scheme that are checked for validity and
ranked according to defined criteria [36], [37]. The generated
trajectories are first examined according to kinematic and
dynamic single-track model criteria, ensuring the selected
trajectory is drivable and does not exceed the vehicle’s
dynamic driving limits. Afterward, the feasible trajectories
can be evaluated using defined cost functions. The prediction
information is used to consider dynamic objects’ occupancy,
which is done using a neural network [38]. Collision
probabilities can be added to the cost of the trajectory
planning algorithm via a weighting factor. The total cost
function is evaluated for all valid trajectories, considering
both collision costs and comfort and time consumption costs.
For computational time reasons, the lowest-cost trajectories
are examined for collisions afterward. Trajectories that result
in a safe collision with static objects or lane boundaries
are set to invalid. This is also true for quasi-static objects,
which hardly change their position to the ego movement.
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The new approach from this paper is that before the
optimal trajectory is selected, the information from the new
occlusion module is used to estimate the potential hazard
based on various calculations. In addition to the standard
trajectory assessment performed in the application scenario,
an additional assessment of potential harm and damage
related to crossing pedestrians is performed.

B. OCCLUDED AREAS AND PHANTOM PEDESTRIAN
PREDICTION
The following section outlines how pedestrians are handled
in our trajectory planning process. The occluded areas
contain more information not considered in the standard
trajectory planning algorithm. Therefore, our new occlusion
module is introduced to calculate this information and
provide it for the trajectory planner. The process for
considering occluded areas can be seen in Figure 3.
Occluded areas update: The calculation of occluded areas
involves an advanced sensor model that leverages geometric
and semantic data to determine occluded areas.' This process
utilizes environmental information to calculate the polygons
representing the occluded areas accurately. Furthermore, the
sensor model undergoes regular updates at each iteration step
to ensure its reliability and precision. The visible area A, in
Equation (1) is the set difference between the occluded area
behind boundaries and obstacles A,, and the intersection
between the area of the sensor radius Ay and the area
of the lanelet network Ay, unified with a defined buffer
zone Ap;.

Ayg = Ay N (AR U Abz)) \Aua (1)

An illustrative distinction between visible and occluded
areas can be found in Figure 4. The green area represents
the visible area, the red area represents the occluded area,
and the yellow area represents the previously unseen area.

1. https://pypi.org/project/commonroad-helper-functions/
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FIGURE 4. Occluded area calculation. Green is the visible area. Red is the occluded
area. Yellow is the unknown area.

Update occlusion history: The visible A,, and occluded
areas A,, are discretized for better differentiation. The
discretizations hold a history so that past time steps can be
considered for the uncertainty calculations. The uncertainty
map is created by analyzing the time history of visible and
occluded areas. This is done by tracking the discretized
points T, , and checking how long a point has not been
visible. The information about visible and occluded points
and their history can then be used for cost evaluation.
The increase occurs up to a threshold value that can be
defined. After this threshold, a discretization point is treated
as unknown if it had never been visible before, like in
Equation (2).

visible dax €A, : T=0
occluded o € Ay 1 0 < T < tyax 2)
unknown da € Apg : tpax < T

o =

Checking hazardous areas: The occluded areas are ana-
lyzed to identify possible hazardous areas and, thus, possible
spawn points for phantom pedestrians. These areas, such as
behind parked cars on the side of the road, are hazardous
for crossing pedestrians. This is achieved by analyzing the
objects in the environment in the context of the semantic
map information and the tracked area points in Equation (2).
To do this, occluded areas must reach a minimum size so
that there is a geometric possibility that a pedestrian can step
out of an occluded area in the ego vehicle driving direction.

Update/spawn phantom objects: The process of generating
phantom objects involves well-defined steps to enhance
realism. Initially, spawn points are determined by identifying
parked vehicles or other static obstacles that obstruct the view
of the ego vehicle. To accomplish this, relevant static objects
are carefully selected, focusing on those in the direction
of travel and sorted based on their distance from the ego
vehicle. A search is then conducted to identify potential
object candidates for a spawning area behind them. It is
essential to consider a buffer zone around these objects,
as pedestrians tend to maintain a certain distance from
them. This offset is crucial because pedestrians are not mere
dimensionless points but possess a definite width. Once the
corner points of the buffer zone of the obstacles are detected,
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FIGURE 5. Spawn point detection illustration. Visible corner points VCPs are
illustrated in orange and non-visible corner points in green.

they undergo evaluation, and suitable spawn areas are chosen.
For each potential spawn point, the method determines one
point towards the reference path (TRP) and another point
in the opposite direction (OPP). These auxiliary points are
used to evaluate the actual spawn points. Figure 5 shows the
parking obstacles and their visible corner points (VCP) as
well as the non-visible corner point (nVCP). The obstacles
are simulated as oriented bounding box (OBB) [39].

Furthermore, specific selection criteria are applied to
determine whether an area behind an object qualifies as a
candidate spawning area:

1) OPP is not in the visible area.

2) OPP is not in the obstacle.

3) OPP is within the scenario.

4) TRP is not in the obstacle.

5) Phantom pedestrian shape does not intersect another
obstacle.

A selection method ensures the accuracy of identifying
spawn points for phantom objects. This method considers
the spawn point’s proximity to the ego vehicle and its
distance from the reference path. It guarantees that only
a single spawn point is assigned to each static obstacle,
optimizing the entire process. The initialized phantom objects
are oriented to move orthogonally to the ego vehicle’s
reference path direction to create a worst-case situation.

Update phantom predictions: The phantom objects are
assigned generated predictions updated at each time step.
The prediction is straight across the roadway, orthogonal
to the vehicle direction. The Frenet planning algorithm can
use the artificially generated trajectory to adapt the driving
behavior to the risk of the situation. The worst-case situation
is assumed in each time step.

Reduce occluded hazardous areas: The vehicle’s field of
view can be actively expanded, offering increased safety by
reducing hazardous areas. Adjusting the lateral distance of
the vehicle to the reference path directly impacts the visible
area. To perform a preliminary simulation, the endpoints of
the sampled trajectories can be used. The visibility of the
trajectory pattern endpoints is assessed, taking into account
only objects that are currently visible and predictable. The
evaluation method distinguishes between various types of
areas, allowing for the assignment of different weights
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to visible and occluded areas. Additionally, it enables
the differentiation of sidewalks, regular road sections, and
prioritized road sections along the reference path.

C. COLLISION PROBABILITY AND PEDESTRIAN HARM
ESTIMATION

When considering autonomous driving, we can define max-
imum risk as the combination of two essential factors: the
likelihood of a collision (p) and the potential harm resulting
from such a collision (H) through a selected trajectory

T [40], [41].
R(T) = max(p(T)H(T)) 3

Various uncertainties, perceptions, or vehicle control influ-
ence the collision probability in autonomous driving. We
focus on the collision probabilities of predicting other road
users’ movements.

Below, we will define the term harm and present a set
of metrics developed to measure it. The phantom pedestrian
prediction method will be utilized to estimate the potential
harm caused by the failure to observe occluded areas.
According to the definition provided in [42], harm can be
understood as a negative consequence that causes physical
or other injury or damage to individuals or entities. It’s
important to note that in this context, the primary focus
is on harm to human beings. Throughout the following
discussion, any damage or impairment to human health will
be considered harmful. This is consistent with legislative
priorities, which give precedence to the protection of human
life over property or animal welfare [43].

When assessing the severity of traffic-related injuries,
a widely used measure is the Abbreviated Injury Scale
(AIS). The AIS was first introduced in 1969 as part
of the General Motors Collision Performance and Injury
Report [44], featuring fewer than 75 injury codes. Over time,
it has been expanded to include roughly 2,000 injury codes
with corresponding AIS scores. In cases where a person
sustains multiple injuries, their overall AIS score - known
as the Maximum AIS (MAIS) - is determined by the highest
individual AIS score. Although in-depth crash databases can
provide detailed information on multiple injuries sustained
by an occupant, police-reported datasets usually only include
the Maximum AIS (MAIS) score for each person. The levels
of AIS scores and related injuries are displayed in Table 1.

In addition to the protection of the road user, other
factors describe the accident’s severity. The resulting
equations (4) and (5) help us to understand the harm that
occurs during a collision, taking into account factors such
as mass (m), speed (v), collision angle («), and empirically
determined coefficients (cg, c1, Carea) [40].

Avy = \/v/z,A + vlzg — 2vavgcosa 4)

my + mp
1

H = 1 + eCO_ClAV_Carea (5)

To assess the severity of the harm on a scale from 0

to 1, we utilize the probability of an accident with MAIS3+
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TABLE 1. AIS scores of injury types.

AIS score | Level of severity | Description
0 No injury Not injured
1 Minor Superficial
2 Moderate Reversible injuries
3 Serious Reversible injuries
4 Severe Life-threatening
5 Critical Non-reversible injury
6 Fatal Virtually not survivable
9 Unknown Unknown severity

severity based on the Abbreviated Injury Scale [45]. This
means that we calculate a probability that at least one
accident of severity class 3 or higher will occur.

The resulting harm from a potential collision is determined
using the National Highway Traffic Safety Administration’s
Crash Report [40], [41]. In the following, we introduce
logistic regression, a statistical technique, to analyze the
discrete dependent injury variable Y to distinguish between
different road users and determine the crash’s severity. This
variable can take on two or more values. The independent
variables x can be either discrete or continuous. The
logistic regression formula produces an S-shaped curve,
representing the probability that the event Y = 1 occurs [46].
The outcome P(Y|X) will vary between O and 1 for a
vector of independent variables x;. Equation (6) provides the
corresponding formula for the regression model:

1
1 + e (Bo+22i Bixij)

The model typically incorporates a constant Sy and
coefficients B; for n input variables, combined in the vector
B. The probability of Y being 1 is often denoted as 7 (X).
Similarly, the probability of Y being O can be expressed as
the complementary event:

PY=0X=x)=1-n(X) (7)

(6)

P(Y = 11X = x) =

The harm score is particularly interesting when consider-
ing vulnerable groups, as a collision with unprotected road
users significantly impacts harm more than protected road
users. The functionality of the harm function can be taken
from [40], [47].

D. HARM EVALUATION

The information from the occlusion module is subsequently
utilized to finely tune and enhance the driving behavior of the
trajectory planner, as depicted in the last step of Figure 2. In
addition to passive uncertainty assessment information, this
information can also be used to adjust trajectory selection.
Equation (8) shows how the harm risk costs can be added
to the standard cost function with the weighting factor w.

Jaum(EIfy) = N1(Qw1 + L (wy + -+ + Ty (8)

where Jg,, is the total cost of the trajectory ¢ € T
when the kinematic feasibility f; is satisfied. As with all
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analytical models, the weighting factor @ must be chosen
carefully. Previous work has investigated how to find weights
in specific domains [48] or how to derive weights with
supervised learning from, for example, human data [49]. The
weighting factor w linearly affects the trajectory selection
decision. However, the cost functions are non-linear, so they
have a more significant impact on the result depending on
the situation. Estimating the weighting factors is sufficient
to demonstrate the algorithm’s functionality. Due to the non-
linear relationship of the collision probability, the harm costs
increase sharply when a collision is imminent. However, the
harm value can also be used as a validity check. Trajectories
above the maximum allowed harm value H,,,, are declared
invalid. The procedure can be taken from Equation (9).

;= {valid ¢ €T : HZ) < Hpax ©)

invalid H(¢) > Hpax
Suppose no trajectories are available below the specified
harm value. In that case, the kinematically feasible trajectory
with the lowest future harm value (stopping trajectory) is
selected until the harm value falls below the threshold. This
is especially not the case if the planning horizon is set
long enough because the vehicle has more time to react in
advance.

IV. RESULTS AND ANALYSIS

The following analysis shows the simulation environment
and the scenarios illustrating how the method works.
Subsequently, the influence of the method is shown by the
cost function and the influence of a maximum harm value on
the driving behavior of the vehicle. We will also investigate
other aspects, such as computation time.

A. SIMULATION ENVIRONMENT AND SCENARIOS

Ensuring the effectiveness of developed modules in address-
ing occluded areas in autonomous driving heavily relies
on identifying pertinent test scenarios. Therefore, we will
comprehensively evaluate 2019 to 2022 data from the
reputable Federal Statistical Office [I1]. Our focus will
specifically revolve around accidents that have resulted in
personal injuries. On average, it can be inferred that 70 %
of accidents involving personal injury occur within the city.
Furthermore, despite passenger cars covering significantly
greater distances on average, it is crucial to acknowledge
that a substantial 45 % of all injuries involve vulnerable
road users such as cyclists, motorcyclists, and pedestri-
ans [50, p. 100]. Among vulnerable road users, pedestrians
constitute a significant portion affected by traffic accidents.
Approximately 25 % of such incidents resulting in personal
injuries are attributable to excessive speed or inadequate dis-
tance. Another 30 % can be traced back to errors made while
turning, entering, exiting, or disregarding the right of way.
In urban areas, it is reasonable to assume that these factors
and improper conduct towards pedestrians often contribute
to accidents occurring. Many accidents can be attributed to
pedestrians carelessly crossing the road. More than half of
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FIGURE 6. Scenario 1: Narrow street with parked vehicles on the ego-drive and the
opposite side of the drive.

the causes behind these accidents stem from crossing without
being mindful of vehicular traffic. Additionally, nearly 20 %
of accidents occur when pedestrians unexpectedly emerge
from obscured sightlines [51, p. 17]. The statistical evalua-
tion from Germany largely corresponds to the evaluation in
the United States in urban areas [52], [53]. Four different
scenarios are created based on accident statistics to illustrate
the functionality of the proposed algorithm. In addition
to overtaking parked vehicles, turning maneuvers are also
examined. Particular attention is paid to the narrowing of
the road, which restricts the vehicle’s field of vision. We
use a 2D simulation environment to evaluate our algorithm
approach in edge-case crossing pedestrian scenarios [54].
The Figures 6, 9, 12 and 13 showcase exemplary scenarios
including parked vehicles. The parked vehicles in the
scenarios are placed so that occluded areas arise. First,
the driving behavior is described qualitatively. In addition,
the influence on the harm level is analyzed, which should
provide information about the hazardous situation of a
crossing pedestrian.

B. HARM COST-TERM EVALUATION

In this subsection, the impact of phantom object prediction
on driving behavior is investigated via the cost function of
the sampling-based trajectory planning algorithm. Scenario 1
(Figure 6) is initialized with a target speed of 12ms™.

We investigate different weighting factors to examine
the influence on driving behavior. Figure 7 illustrates the
velocity profile over the s-coordinate in Scenario 1. The
dashed lines show the positions where the phantom objects
are created. Initially, a speed reduction can be observed in
all configurations due to the collision avoidance maneuver.
The ego vehicle has to drive to the left in the direction of the
center of the lane to pass the first obstacle. It can be observed
that the higher weighting of the collision probability with the
phantom objects leads to a reduced vehicle speed compared
to the standard trajectory planning algorithm.

Once the hazardous points have been passed, the vehicle
accelerates linearly to the target speed, regardless of the
weighting factor. The speed adaptation affects the potential
harm that can occur to crossing pedestrians. The effects
can be seen in Figure 8. The standard trajectory planning
algorithm poses a potential risk of serious harm, whereas
the occlusion module mitigates it to a more superficial
impact. The following will examine how the standard
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FIGURE 9. Scenario 2: Complex scenario with several occluded areas.

trajectory planner performs compared to the occlusion-
informed trajectory planner when a pedestrian crosses the
street. In this case, we simulate an actual pedestrian who
causes a collision when overlapping with the vehicle. The
vehicle can make an emergency stop from the moment of
visibility. Table 2 shows the example scenarios with different
scene setups. sped represents the occluded position where
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TABLE 2. Collision and harm table for specified scenarios.

’ No. ‘ Sped ‘ Sego ‘ weights | collision speed | Pya1s3+ ‘

w=0 2.24ms™ ! 7.5%
1 22m 9m

w =15 no coll. no coll.

w=0 5.38ms! 15.7%
1 35m 25 m

w =15 no coll. no coll.

w=0 7.71ms~! 25.8%
2 91m 68 m

w =15 no coll. no coll.

w=0 8.06ms™! 27.7%
2 91m 69 m

w=15 3.14ms™ ! 9.5%

w=0 8.88ms™! 32.2%
2 91m 7Tlm

w=15 2.88ms~! 8.9%
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FIGURE 10. Scenario 2: Speed profile of actual crossing pedestrians.

the pedestrian crosses the street. sego is the position of
the ego vehicle when the pedestrian crossing the street is
initialized.

Figure 10 illustrates a run with sego = 68 m in Scenario 2
in Table 2. It can be observed that the vehicle drives faster
without considering the occluded areas and causes strong
collisions with the crossing pedestrians in all situations.
Our proposed method effectively reduces the vehicle’s
speed promptly, aligning it with the risk of collision with
phantom objects. Subsequently, upon the emergence of a
real pedestrian, the vehicle further decreases its speed to
ensure safety. Once the blind situation is surpassed, the
vehicle resumes following the speed set by the occlusion-
aware module. The possible harm Pyars3+ resulting from
the driving behavior can be seen in Figure 11. Different
weights of harm prioritization are shown.
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It also illustrates how much the high prioritization (w =
15) deviates in percentage from the standard trajectory
planning algorithm (w = 0). A several times higher risk
is taken before hazardous situations without considering the
occluded areas. If crossing pedestrian objects are simulated,
a collision with serious harm occurs despite the braking
reaction. On the other hand, the proposed algorithm signifi-
cantly reduces the harm to a level with light and reversible
harm. The harm level can not only be reduced but also
adjusted. This means that even in the case of an unavoidable
collision, the extent of harm can be reduced to the point
where there is no serious danger to the lives of crossing
pedestrians. Figure 12 illustrates a scenario of turning right
with an extensive non-visible area.

The turning maneuver notably attenuates the vehicle’s
field of visibility. Accordingly, the vehicle slows significantly
when passing the stuck vehicle compared to the standard
trajectory planning algorithm. Table 2 gives comprehensive
information on potential harm values.

C. MAXIMUM HARM VALIDITY CHECK EVALUATION

In the upcoming studies, we will utilize the calculated harm
value to investigate driving behavior while incorporating
validity checks. A trajectory is valid when its calculated
harm value is below the limit. We have established five
distinct harm thresholds that trajectories must not surpass.
If no sampled trajectory in one timestep falls below the
specified threshold, the model selects the first feasible and
valid trajectory with the lowest theoretical harm value. For
a trajectory to be considered valid, it must be free from
collisions with stationary objects and route boundaries while
also being kinematically feasible. Figure 14 shows the harm
values of each run in Scenario 4.

It can be determined that the set harm thresholds are not
exceeded. However, the other cost functions are decisive
for the exhaustion of the threshold since the harm control
is in contrast to the time costs of the trajectory planning
algorithm. It can also be observed that the lateral distance to
the parked objects increases as the harm value is considered.
The lower the maximum threshold for harm, the sooner
potential harm from hazards is detected. This is because the
geometric planning horizon is longer at higher speeds, while
the temporal planning horizon remains identical. This also
results in a more significant velocity oscillation with a lower
allowable harm value. The vehicle may stop in some settings
if the maximum harm value is too low. In this case, the
sampling of trajectories must be adjusted so that the solution
space is large enough to select trajectories that satisfy the low
harm value. Achieving travel speed is in target conflict with
the harm threshold. Driving behavior is mainly influenced
by the vehicle’s lateral position in relation to the parked
vehicles and the speed of the vehicle in order to stay below
the maximum allowable harm value. The influence of the
model on driving behavior is examined in the following
section.
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FIGURE 12. Scenario 3: Turning to the right with a stopped vehicle in front.

Spea = 33m
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FIGURE 13. Scenario 4: Narrow street with parked vehicles on the ego-driving side.

D. DRIVING BEHAVIOR ADAPTION

The maximum harm limit also changes the driving behavior.
Reducing the speed and increasing the distance to the
hazardous areas increases travel time. The influence on the
travel time to drive from the initialization to the final s-
coordinate can be seen in Figure 15. The simulation is run
several times with different harm limits. The cost function
that increases the visible area (Figure 3) is weighted with
different factors wy to illustrate the functionality and the
influence on the algorithm. For clarity, only two runs are

VOLUME 4, 2023

shown here. The travel time of the first run with wy; =
0 and Pyjiig3, = 0 is 80.8% higher than without any
restrictions. The increase above the value of Pyiig;, =
0.4 hardly increases the travel speed. This saturation effect
depends on the target speed of the vehicle. The higher the
target speed, the later the travel speed saturates. The orange
line in Figure 15 represents a run with a weighting factor
wg = 6. This ensures that the future visibility of hazardous
areas is considered when selecting the optimal trajectory.
The influence on the lateral deviation to the reference path
can be seen in Figure 16. The additional distance from
parked vehicles means that occluded areas become visible
sooner. This allows the vehicle to achieve a higher overall
scenario speed. Speed saturation is reached sooner. The
additional lateral deviation leads to a higher travel time with
a maximum harm limit of Pyji7q;, = 1.0. The vehicle needs
more time to reach its destination due to the longer distance
traveled.

The lateral distance to the hazardous non-visible areas can
reduce the risk by making them visible earlier. Reducing
non-visible hazardous areas (Figure 3) is an essential
task of the algorithm to maintain traffic flow because
uncertainties can also be reduced. Essentially, the driving
behavior can be described by the lateral distance of the
vehicle to the reference path. In Scenario 4 (Figure 13),
different weightings are analyzed to evaluate trajectories
based on the future visibility of occluded areas. Figure 16
shows the different trajectories dependent on the weighting
factor wy. It should be noted that the lateral distance
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FIGURE 15. Scenario 4: Travel time in seconds s with different additional visible
area weight factors wy = 0 and wy = 6.

increases over time before reaching the hazardous areas.
This ensures that hazardous areas are visible earlier, allowing
for an earlier increase in speed. The blue line represents
the minimum distance the vehicle must maintain to avoid
collisions with static objects. The adjacent lane limits the
maximum allowable lateral distance to the reference path.
When a moving vehicle in the other lane approaches our
direction, the distance to the parked vehicles is reduced to
avoid a collision. As a result, the speed of the vehicle is
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FIGURE 16. Scenario 4: Lateral distance (d-distance) to reference path along
longitudinal s-position in m for several runs with different weighting factors wy.

reduced to keep the risk of possible crossing pedestrians
constant in the non-visible area.

E. REAL-TIME CAPABILITY

In the following studies, the real-time capability of the
algorithm and the runtime are investigated to demonstrate
its real-world applicability. The four scenarios presented
are used to investigate the runtime of all parts of the
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presented Occlusion Module in Figure 3. The Python code?
is executed on the CPU (Intel Core i7-10850H, 16 GB
RAM) in the following investigation. Figure 17 shows the
boxplot representation of the runtime for each scenario in
every iteration. The runtime is represented in milliseconds.
The entire module is executed without visualization of the
planning functionality. It can be observed that the average
execution time is 28.2 milliseconds, and the maximum
execution time is 64.58 milliseconds. We calculate 450
trajectories per planning iteration during the run; for larger
areas to be calculated, as in Scenario 2, the calculation
time may increase briefly. The computation time is generally
relatively low, although the code has not been optimized
for performance. The average trajectory generation and
evaluation runtime is 6.34 milliseconds for all four scenarios.
The maximum computation time is 8.79 milliseconds. High
performance is achieved through optimized and parallelized
C++ code.?

V. DISCUSSION

Our simulation results generally indicate the performance
and limitations of our proposed occlusion-aware trajec-
tory planning method. We obtain comparable results in
the behavior of the autonomous system as obtained in
other approaches with different planning systems [55]. The
selected edge-case scenarios support the effectiveness of the
occlusion-aware trajectory planner by demonstrating reduced
risky behavior in occluded areas and driving situations. The
results shed light on the potential of using harm metrics
related to occluded areas to measure the risk of crossing
pedestrians. The sampling-based trajectory planner can adapt
the driving behavior flexibly without using pre-determined
rule-based methods. The results show that adjusting driving
behavior can significantly reduce the potential for harm
to pedestrians. The reduction is achieved primarily by

2. https://github.com/TUM-AV S/Frenetix-Motion-Planner
3. https://github.com/TUM-AV S/Frenetix

VOLUME 4, 2023

strategically reducing speed, choosing a less harmful tra-
jectory, and adjusting overall driving behavior in hazardous
situations.

The harm reduction depends mainly on the target speed.
Clearly, reducing the target speed can decrease the theoretical
harm value; however, this doesn’t include the overall
hazard potential, and such a reduction could result in a
freezing robot problem [56]. The results demonstrate that our
approach allows a more dynamic consideration of the hazard
at the level of harm to achieve a better pedestrian impact
metric. In addition, worst-case information can be better
integrated into the trajectory planner’s decision-making
process, regardless of how the vehicle should ultimately
behave and how much risk we can accept [57].

The results indicate that our method frequently prevents
pedestrian collisions in occluded areas. When collisions
occur, the harm to pedestrians is greatly minimized without
stopping the vehicle entirely in a hazardous environment.
However, collisions may still occur in high-risk situations,
but with significantly less harm. The harm value then depends
on the parametrization of the method. In reality, however,
such situations are unlikely, so a specific risk is accepted,
depending on the setting, to maintain the traffic flow.
Importantly, this approach ensures smooth traffic flow without
relying on a zero-harm assumption. Instead, it demonstrates
the dynamic relationship between driving behavior and harm,
emphasizing the importance of context in achieving optimal
results. When encountering an actual pedestrian, for example,
it can be observed that the vehicle continues to reduce its
speed, as shown in Figure 10. This is because the actual
pedestrian continues to cross the road, while the phantom
object dissipates when a critical situation with sufficient
visibility is passed. Figure 15 and 16 illustrate the adjustment
of the driving behavior by the model. The lateral adjustment
of the position can increase the travel speed at the same
harm level, but this is not useful in every driving situation.
If other vehicles are parked opposite, as in Scenario 1, or
if there is an oncoming vehicle, the risk would increase
further. However, unfavorable behavior in such situations can
be excluded due to the prediction algorithm used [38].

In addition, by introducing validity checks for compliance
with a maximum harm value, we could provide an effective
method to set the harm limit independently of the maximum
speed limit. The technical implementation of the harm limit
could allow legislators to set a harm threshold in difficult
and poorly visible situations where a residual risk remains.
Which weightings and settings are the best still needs to
be evaluated. How to adjust cost parameters in general
has been explored in other work [48], [49]. The setting of
these parameters generally depends highly on the system
architecture of the analytical models. In addition, legislators,
ethicists, and ergonomists must specify the desired driving
behavior.

The results specifically focus on the uncertainties at
the prediction and planning stages. Given the study’s
methodology, we haven’t considered additional uncertainties
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such as sensor noise, road friction coefficients, or controller
inaccuracies. While we haven’t factored in uncertainties
like perception [27], it’s worth mentioning that our method
primarily deals with static obstacles that limit the field of
view, typically identified reliably by perception systems.
The method works for occluded areas behind clearly visible
static obstacles and given semantic information. The cur-
rent implementation can only partially cover noise, object
uncertainties, and other incomplete information in the map
area. Additionally, the planning concept and the set planning
horizon influence the assessed risks of the model. The
longer the planning horizon, the earlier risks are identified.
However, this corresponds to all the other problems that can
arise when using a planning horizon.

VI. CONCLUSION & OUTLOOK

In this paper, we presented a comprehensive multi-stage tra-
jectory planning approach that addresses the crucial aspects
of adapting vehicle driving behavior in occluded areas. This
research aims to respond to hazardous situations caused by
occluded areas according to the potential harm value. In
this context, we enhanced a given sample-based trajectory
planner with a newly developed occlusion model. We employ
a systematic evaluation process that leverages semantic
map information and object data over time to identify
potential hazardous zones within occluded areas. Using
phantom objects with prediction information can effectively
map worst-case scenarios, providing valuable insights into
collision probabilities involving crossing pedestrians. Our
trajectory planner can effectively adapt to this situation and
select a safer and slower trajectory. With this change in
the trajectory, the potential harm to crossing pedestrians can
be significantly reduced. Harm consideration is incorporated
by weighting the cost function based on the generated
trajectories. In addition to including the reduction of harm
in a potential collision, our method prioritizes maintaining
traffic flow and mitigating potential issues with stagnant or
freezing autonomous vehicles. Further studies are needed
to determine the appropriate level of harm in a given
situation or to more accurately evaluate the acceptability
of potential harm when navigating through occluded areas.
In addition, future studies need to investigate the potential
impact of incorporating sensor uncertainties, state estimation,
and road user prediction into our presented method. How the
model behaves in the presence of incomplete information,
such as missing semantic map information, could also be
investigated. Future research may examine the specifics
of occlusion-aware algorithms in diverse international and
cultural environments. Significant questions persist regarding
the algorithm’s adaptability and generalizability, particu-
larly in unique settings like densely populated megacities.
Furthermore, the creation of an extensive, standardized
dataset focused on occlusion-related scenarios would sig-
nificantly improve the quality and relevance of future
studies.
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