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ABSTRACT In recent years, automotive radar has attracted considerable attention due to the growing
interest in autonomous driving technologies. Acquiring situational awareness using multimodal data
collected at high sampling rates by various sensing devices including cameras, LiDAR, and radar requires
considerable power, memory and compute resources which are often limited at an edge device. In this
paper, we present a novel adaptive radar sub-sampling algorithm designed to identify regions that require
more detailed/accurate reconstruction based on the information about prior environmental conditions,
enabling near-optimal performance at considerably lower effective sampling rates. Designed to robustly
perform under variable weather conditions, the algorithm was shown on the Oxford radar dataset to achieve
accurate scene reconstruction utilizing only 10% of the collected samples in good weather. In the case of
the RADIATE dataset acquired during extreme weather conditions (snow, fog), only 20% of the samples
were sufficient to enable robust scene reconstruction. A further modification of the algorithm incorporates
object motion to enable reliable identification of regions that require attention. This includes monitoring
possible future occlusions caused by the objects detected in the present frame. Finally, we train a YOLO
network on the RADIATE dataset to perform object detection, obtaining 6.6% AP50 improvement over
the baseline Faster R-CNN network.

INDEX TERMS Compressive sensing, automotive radar, sub-sampling, Faster R-CNN, YOLO, object
detection, measurement matrix, signal acquisition.

I. INTRODUCTION

MANY sensing technologies commonly used by
autonomous vehicles, including cameras and LiDAR,

are generally capable of providing situational awareness but
struggle under extreme weather conditions (e.g., heavy rain,
fog and snow) [1]. Automotive radar is a robust all-weather
choice that can provide reliable information about the
locations of objects in the environment. For instance, broadly
used Frequency-Modulated Continuous Wave (FMCW) radar
operates in the wide 30-300 GHz band to provide highly
accurate range data [2]. Prior research includes using radar
data to extract point clouds which are subsequently used
for object detection [3], [4], [5], [6]. Applications of radar
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include the prediction of vehicle behavior and traffic flow
state detection [7], [8], among others; the methods relying
solely on radar data have been shown to enable robust object
detection, making radar an attractive choice for acquiring
situational awareness in extreme weather conditions [2], [9],
[10], [11], [12], [13], [14].
To achieve desired target accuracy, radars typically collect

data at very high rates. For instance, the aforementioned
FMCW radar [15] operating at 76-77 GHz generates data at
about 16 Gbps. The analog-to-digital converter (ADC) thus
needs to function at an extremely high rate to capture the
reflected signal and forward it to the DSP for processing [16].
The time-domain signal is then converted to the frequency
domain, resulting in a Range-Azimuth-Doppler tensor that
needs to be further processed to identify the location of
the objects. This information may need to be communicated
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(vehicle-to-vehicle and/or vehicle-to-everything) to help
multiple road actors acquire situational awareness. To relax
the computational and energy requirements on the data
processing pipeline, and to transmit data within latency
constraints, it would be beneficial to reduce the data rate
without compromising the quality of the acquired situational
awareness. To this end, previous studies have explored the
use of compressed sensing (CS) methods to enable trade-offs
between sampling rate and acquisition quality [17].

In this paper, we present a method for the adaptive
acquisition of range-azimuth radar data via compressed
sensing aided by the results of object detection from previous
frames. In particular, the proposed algorithm splits each
radar frame into uniform-sized blocks and relies on object
detection to determine the blocks that require more attention.
Given a total sampling budget, the algorithm solves an aptly
formulated linear program to adaptively allocate a higher
sampling rate to the blocks that require more attention, and
a lower sampling rate to the remaining ones.
The proposed framework assumes the general availability

of both camera and radar data and adapts the sampling
strategy to varied weather conditions. In good weather,
the sub-sampling algorithm uses the previous frame’s data
(images, radar) to decide the importance of regions in the
incoming radar data; the object detection algorithm runs
on the images and identifies bounding boxes and objects’
classes. These bounding boxes are used to determine the
initial set of important regions. If an object is either missed
by the image-based object detection network or is in the
blind spot of a camera, previous radar data are used to assist
in identifying regions of interest. After converting the results
of the object detection step from image to radar coordinates,
a linear program (LP) is formulated and solved to help
identify sampling rates for each radar block. In bad/extreme
weather conditions, the algorithm does not rely on image
sensors to determine regions of interest but rather uses as
prior information the positions of tracked objects predicted
via a Kalman filter [18]. While previous work [19] has
shown accurate performance in motion prediction tasks using
camera and Lidar, these sensors are prone to failure during
extreme weather conditions. This motivates the development
of a robust acquisition pipeline utilizing radar data and
its application to downstream tasks such as perception and
motion prediction.
The main contributions of the paper are as follows:

• A novel adaptive algorithm is designed to facilitate radar
data acquisition by relying on both images and radar
in good weather conditions, and radar only in adverse
weather conditions.

• The proposed radar-only data acquisition algorithm is
designed to select regions that are more likely to contain
objects, ultimately enabling accurate performance at
considerably lower sampling rates. The method relies
on object motion prediction to facilitate the selection
of regions that require more attention.

• The important region selection process is designed to
account for possible occlusions in future frames by the
objects detected in the current frame.

• Experimental verification via the You Only Look Once
(YOLO) [20] object detection network trained on
the RADIATE [15] dataset demonstrates a significant
improvement in terms of the AP50 metric over a
baseline Faster R-CNN network (63.8% vs. 57.2%
AP50).

• To the best of our knowledge, this is the first work to
investigate spatially adaptive radar sub-sampling on the
automotive FMCW real-world radar data.

The remainder of the paper is organized as follows.
Section II provides an overview of the existing efficient
acquisition methods followed by the description of object
detection networks trained on images and radar point cloud
and radar-based object detection. The proposed algorithms
are presented in Section III, along with the details of the com-
pressed sensing procedure. Section IV presents experimental
results on the Oxford robocar [21] and RADIATE [15]
datasets. The paper is concluded in Section V. The prelim-
inary results of this work were reported in [22], [23].

II. RELATED WORK
A. COMPRESSED SENSING FOR RADAR SYSTEMS
The compressed sensing (CS) techniques enable acquisition
of data at sub-Nyquist sampling rates by striking a trade-off
between sampling rate and reconstruction quality. Applying
CS ideas, the work in [24] presents reliable reconstruction
of Synthetic Aperture Radar (SAR) data using 70% of the
points in the full dataset. Similarly, in [25], CS is utilized
for noise radar data reconstruction using only 30% of the
reference signal. In [26], the authors present an efficient CS-
based reconstruction of a frequency-modulated continuous
wave (FMCW) radar using 40% of the original samples.
In [27], the authors analyzed various CS reconstruction
algorithms including Orthogonal Matching Pursuit (OMP)
and Basis Pursuit De-noising (BPDN), and have shown that,
in automotive settings, OMP exhibits superior performance.
Our proposed framework relies on the Basis Pursuit (BP)
algorithm for signal reconstruction since BP, though more
computationally expensive, generally requires fewer mea-
surements than OMP [28].
Adaptive CS is a broadly used technique for

increasing sampling rate in the regions deemed impor-
tant [29], [30], [31]. The scheme in [29] utilizes previously
received pulse interval and relies on the constant false
alarm rate (CFAR) to decide how to subsample pulsed
radar data. In [32], the authors introduced a compressed
sensing-based CFAR algorithm for improving the detec-
tion performance without reconstructing the radar data;
in contrast, the current paper aims at reconstructing the
radar data that can be utilized for further downstream
tasks including object detection and the segmentation of the
range-azimuth radar data using neural networks. In [30], an
adaptive CS algorithm was used to improve target tracking
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performance in static settings. The authors of [31] aim
at optimizing the measurement matrix in settings where
only targets are moving, improving performance at the
cost of increased computational complexity. In contrast, this
paper investigates the application of adaptive CS for radar
acquisition in settings where the tracked objects and the
vehicle deploying the sensors are both potentially moving. A
further distinctive feature of our work is that we allocate to
the important regions of the environment a larger sampling
budget while maintaining the overall sampling budget and
reconstruction complexity. In another related work [33], the
acquisition of LiDAR data is guided using the Region-of-
Interest information determined based on the results of image
segmentation; in contrast, our work helps guide radar data
acquisition utilizing the results of 2-D object detection.
The ADC’s sampling frequency and resolution play a

major role in the acquisition of the intermediate frequency
(IF) signal following the signal mixing stage. In order to
limit the rate of the received radar data, the authors of [34]
used a bit-limited MIMO radar with an additional analog
filter to form a global hybrid analog-digital system. In [35],
high-resolution ADCs were replaced by one-bit ADCs using
time-varying thresholds. In order to estimate the angle and
Doppler frequency from one-bit sampled data, [36] uses a
maximum-likelihood-based method. In contrast, our method
relies on DNN output to assist in efficient spatial sampling,
thereby focusing on the regions of interest while limiting the
overall bit budget during acquisition without needing analog
filters or threshold-modified ADC.
When compressively sampling a signal, the choice of

a measurement matrix is critical in ensuring the sig-
nal’s reconstruction. In addition to often used Gaussian
matrices, binary measurement matrices received consider-
able attention due to their hardware advantages. In [37],
the authors proposed a Binary Permuted Block Diagonal
(BPBD) measurement matrix with equally-sized diagonal
blocks randomly permuted along the columns. There, BPBD
was compared with the scrambled Fourier and Partial
Noiselet alternatives, among others, showing comparable
reconstruction performance on images. In related work, [38]
proposed a CS reconstruction approach that relies on an
extended smoothed-projected Landweber algorithm. In [39],
binary random measurement matrices were used for CS
of ECG signal, while in [40] a binary block diagonal
matrix without permutation was introduced as a deterministic
measurement matrix for the compression and recovery of
electrocardiogram (ECG) and Electromyography signals.
In [41], the authors applied a binary measurement matrix
to the problem of investigating soils or stone walls,
showing successful reconstruction with reduced sampling
rates, while [42] used a binary measurement matrix to
facilitate compressive measurements in DNA microarrays.
Evidently, the binary measurement matrix has been suc-
cessful in a variety of CS applications. In this paper,
we rely on binary permuted diagonal (BPD) matrices for
automotive radar data acquisition and report the resulting

object detection performance in terms of the AP and AP50
metrics.

B. OBJECT DETECTION USING RADAR AND IMAGES
Previous studies demonstrated that combining radar data
with images helps improve object detection performance.
In [6], the authors deployed a Faster R-CNN object detection
network, replacing the selective search-based region proposal
algorithm with the region proposals generated using radar
data points. That work experimented on the NuScenes [43]
dataset, performing selective search to show AP improve-
ment from 41.8% to 43.0%. The authors in [4] report that
using the combination of radar and images enables more
accurate 3-D object detection performance than a scheme
that relies on LiDAR and images. In [3], the authors used a
center point detection network and proposed a frustum-based
method to facilitate 3-D object detection, showing improved
occluded object detection. In [5], radar and image features
were combined via spatial attention to improve the object
detection performance while using the FCOS [44] object
detection network pipeline.

C. OBJECT DETECTION USING RADAR-ONLY
This line of research focuses on generating object detection
networks from radar data without relying on any other
sensors. To this end, several radar datasets with object
annotations have been collected and open-sourced [2], [15].
In [2], the authors proposed a ROD-Net network for radar
object detection that resulted in 86% average precision; they
also released CRUW, a dataset containing object annotations
on RF images. The method in [9] combined particle filter-
based tracking and object detection to enable radar-based
object identification, demonstrating accurate performance
while alternating between tracking and detection to reduce
the computational load induced by real-time processing.
In [12], a channel boosting feature ensemble method was
proposed and validated on the RADIATE dataset; the method
uses a transformer neural network for direct object detection
from radar frames. However, this approach requires bulky
backbone networks such as resnet-50 or resnet-101 to process
RGB, LUV and LAB radar frames individually, rendering
its practical applications challenging.

III. METHOD
The diverse environments in day-to-day settings, with
weather conditions ranging from sunny to extreme, present
distinct challenges and require robust algorithms for radar
signal acquisition. Fig. 1 shows a block diagram of the pos-
sible inputs and the subsequent signal processing pipeline.
Regardless of the inputs, in the considered setting an object
detection network is used and the radar data is acquired via
compressed sensing; depending on the input signal, the linear
programming problem that assists in identifying sampling
rates is formulated differently. The details of each pipeline
are elaborated upon in the following sections.
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FIGURE 1. An illustration of the radar sub-sampling scheme for processing radar data in either good or bad weather conditions. The CompRADIMG block is used in good
weather conditions to compressively sample radar signal using both prior image and radar data. The CompRPD block is used for compressive sampling utilizing only the
previous radar data. Following the sampling process, the desired signal is reconstructed using the Basis Pursuit (BP) algorithm.

A. THE COMPRESSED SENSING FRAMEWORK
The proposed method splits the measured frame into multiple
blocks and probes each block with a predetermined number
of measurements (e.g., m measurements of an n-dimensional
signal are collected from each block). This procedure is
predicated on two assumptions: the signal is sparse in some
domain and the measurement matrix satisfies the restricted
isometry property [38]. Specifically, we assume that the data
is sparse in the Discrete Cosine Transform (DCT) domain.
Given the original signal x ∈ Rn, each block is probed with
a random BPD measurement matrix φ ∈ Rm×n resulting in
measurements y ∈ Rm. Formally, the measurements y are of
the form

y = φx. (1)

Given the measurements, the desired signal x is recovered
by running the Basis Pursuit (BP) algorithm [45], [46].
In particular, we use the publicly available L1-MAGIC
toolbox [47] to solve the constrained optimization problem

min
x
‖θx‖1

s.t. φx = y, (2)

where θ denotes the DCT transformation matrix [48].
The Gaussian measurement matrix, typically used to

acquire a linear combination of the signals, requires
floating-point multiplications. The authors in [37] suc-
cessfully replaced the Gaussian measurement matrix with
a Binary Permuted Block Diagonal (BPBD) measure-
ment matrix without major performance deterioration.
In [23], the same idea was followed to introduce Binary
Permuted Block (BPD) measurement matrices that help
avoid power-consuming complex multipliers and instead
rely on hardware-efficient elements including switches and
selectors as in [38]. The performance induced by different
measurement matrices is characterized in terms of AP and

AP50, the task-relevant metrics, as opposed to the PSNR
typically shown in prior work.
The baselines used in the benchmarking experiments

include: (1) the sampling framework where the samples/bits
are uniformly distributed across the frame being sampled,
and no prior frame information is used [25]; and (2) the
CFAR algorithm which determines important regions and
utilizes this information to dynamically allocate sampling
budget across the frame [29].

B. COMPRADIMG: SUB-SAMPLING USING PREVIOUS
IMAGES AND RADAR DATA
In [23], the images from the camera are first processed by the
Faster R-CNN network to identify the bounding boxes and
classes of the objects. The network’s output is then converted
from the camera coordinates to the radar azimuth blocks.
The sampling rate used during the subsequent acquisition
of radar data is dynamically determined by running a linear
program specified later in this section. This entire procedure,
lasting in total ∼ 0.25s, is repeated for the upcoming frames.
However, a radar compressive sampling strategy that relies
only on prior image data, such as the one in [23], may
miss an object if the object appears in the blind spot of the
camera or, more generally, if the object detection network
fails to detect it. This could lead to serious consequences
in downstream applications that heavily rely on radar data
for depth estimation, path planning and other objectives.
Aiming to address such scenarios and generally improve
the performance of a compressive sensing scheme, we
introduce the CompRADIMG (Compression using RADar
and IMaGes) algorithm which identifies regions with the
objects of interest by combining information present in the
previous image and radar data. To this end, CompRADIMG
converts the bounding boxes of the objects in the image
coordinates to the azimuth in the radar frames. The azimuth
regions containing objects, identified by CFAR, are also
provided to the linear program that determines acquisition
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rates for the blocks in the present radar frame. Specifically,
a radar frame covering the range and azimuth of the scene is
uniformly partitioned into blocks where each block covers
a certain range and azimuth; we would like to determine
the acquisition rate for each of these blocks. Note that an
area covered by an object such as a pedestrian or bicycle
is typically smaller than that covered by a car or a bus
(due to the smaller area of reflection). To enable accurate
reconstruction of the areas with such small objects, the
algorithm assigns higher importance (effectively, the largest
sampling rate) to those areas, followed by the motorized
vehicles and, lastly, other objects (roads, walkways) in the
scene. To this end, the blocks are organized in regions; the
entire radar frame is divided into four regions, as explained
next.
We divide the range of the radar frame (typically exceed-

ing 100m) in two parts: (1) the first part (“first range”),
which extends from the ego vehicle to the half-range, and
(2) the second part (“second range”), accounting for the rest.
Now, the azimuth in the first range of the radar is split into
three regions. Let a11 denote the total number of blocks
with a small object such as pedestrian or bicycle within
the first range (as defined before). Similarly, let a12 and
a13 denote the total number of blocks with cars or other
objects within the first range, respectively. The total number
of blocks in the second range across the entire azimuth is
denoted by a2. Then the first region is defined as the union
of (generally non-adjacent) blocks counted towards a11; the
remaining regions are defined likewise only in regards to the
blocks associated with a12, a13, and a2.1 Let us define

f (x) = a11x1 + a12x2 + a13x3 + a2x4, (3)

where x1, x2, x3, x4 denote the relative acquisition rates (i.e.,
fractions of the full acquisition rate) for the four regions
we defined, respectively. Then the acquisition rate for these
regions is determined by solving

max
x1,x2,x3,x4≥0

f (x)

s.t. x1 = αx3, x2 = βx3

f (x) ≤ S, xil ≤ xi ≤ xiu for i = 1, 2, 3, 4.

The constraint f (x) ≤ S limits the total number of samples.
Since x1 is the acquisition rate for the blocks containing
small (important) objects, it is allowed to have the highest
sampling rate (as facilitated by x1 = αx3, α > 1). Similarly,
the constraint x2 = βx3 (β > 1) ensures that the region with
a large object (e.g., a motorized vehicle) is allocated a higher
sampling rate than the road/walkway. The lower constraints
on the sampling rates enforce that a sufficient number of
samples is collected to enable reconstruction.
The pseudo-code for the described procedure is given

as Algorithm 1. The function fNN is the pre-trained object

1. Note: to allow for additional flexibility when forming the regions,
if the CFAR algorithm declares that an object originally categorized as
contributing to a12 or a13 is exceptionally important, the corresponding
block is reclassified so that it instead contributes to a11.

Algorithm 1 CompRADIMG Algorithm

Input: radar frame X ∈ R
m×n and image frame I

Output: Reconstructed radar frame X̂
At t = 1, Initialize first radar frame X̂t
for t = 2, . . . ,T do

1) Determine object bounding boxes B← fNN(It−1)

2) Determine important image blocks b← fCFAR(X̂t−1)

3) Determine important azimuth A← fA(B)

4) Determine sampling rate for t-th frame Xt using
x1, x2, x3, x4 ← fLP(A, b)

5) Output compressed and reconstructed X̂t ←
fCS(x1, x2, x3, x4,Xt)

end for

detection network that predicts bounding boxes in the images.
The function fCFAR [49] determines the important blocks across
every row in the radar frame X̂t. The azimuth of an object’s
bounding box is obtained from its image coordinates according
to fA(B) = (centrex/Xwidth)(θmax − θmin), where centrex
denotes the x-coordinate of the detected object bounding box’s
center, θmin and θmax are the minimum and maximum field of
view of the camera relative to the position of the camera in
the bird’s eye view frame, respectively, and Xwidth is the total
width of the image.After determining the sampling/acquisition
rates, the frame is compressively sampled and reconstructed
using the compressed sensing algorithm fCS.

C. COMPRPD: RADAR SUB-SAMPLING USING
PREVIOUS RADAR
In adverse weather conditions, a sub-sampling algorithm may
only rely on previous radar data to identify important regions
in the present frame. Extending the work in [22], we present
CompRPD (Compression of Radar using Predictions and
Detections), an algorithm for identifying important regions
in such settings. In [22], the radar data was split into equal-
sized blocks and, based on the detection result, locations
of the objects of interest were identified. The algorithm
presented in the current paper, however, additionally relies
on the locations of the objects predicted based on their
prior location – the information available due to running the
algorithm over multiple frames.
In particular, we use a Kalman filter to predict the location

of an object in the present frame based on the analysis of
the previous frame. The Kalman filter is initialized using
the information about bounding boxes of the object detected
in the first (anchor) frame, sampled at a higher sampling
rate and processed by the object detection network. In
the next frame, bounding boxes identified by the object
detection network are compared in terms of the Intersection
over Union (IOU) with the corresponding bounding boxes
predicted by the Kalman filter; the result of this comparison
is then utilized to perform the measurement update step in
the Kalman filter recursion. The predicted bounding box
location is used to guide the sampling rate decision unless
the confidence of the prediction, quantified by means of
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the aforementioned IOUs or the lack of identified matches,
exceeds a predetermined hyperparameter referred to as the
maximum age; in the latter case, the sampling rate decision
is made based directly on the object’s bounding box detected
in the current frame. Overall, the signal acquisition rate
is determined based on either the object’s current position
or its predicted future position. In either case, the object’s
coordinates are first converted into radar polar coordinates,
followed by specifying the blocks of interest. For this, the
algorithm relies on an inverted T-shaped sampling pattern
which takes into account the specifics of the Cartesian to
polar block conversion to ensure that the space partition into
blocks is such that an adequate amount of information is
acquired from the surroundings of the autonomous vehicle.
Let us define

f (x) = I · x1 + O · x2, (4)

where I is the total number of important blocks, O is the total
number of other blocks, and x1 and x2 denote the relative
acquisition rates (i.e., fractions of the full acquisition rate)
for important and other blocks, respectively. Then, the linear
program is used to dynamically determine the sampling rate
for each block in the current radar frame can be stated as

max
x1,x2≥0

f (x)

s.t. x1 ≥ αx2

f (x) ≤ S, xil ≤ xi ≤ xiu for i = 1, 2.

The constraint f (x) ≤ S limits the number of samples, e.g., to
10−30% of the full acquisition rate. For the constraint x1 ≥
αx2, we typically set α = 1.1; this promotes the sampling
rate in the important regions to exceed the sampling rate
in the other regions. The upper bound on x1 corresponds
to the sampling rates achieving performance in terms of
AP/AP50 metrics matching that of the full acquisition; the
lower bounds are reflective of the total sampling budget
given to the entire frame so that the reconstruction quality
of the important blocks at least matches that achieved when
the entire area is sampled uniformly. As for x2, the upper
bounds are indicative of the total sampling budget while the
lower bounds help ensure that a sufficient number of samples
is collected to support reconstruction. Once the sampling
rates are determined by solving the LP, they are utilized in
the acquisition of the subsequent radar frames. When after
processing a prespecified number of frames another anchor
frame is encountered, the entire area is sampled at a full
acquisition rate and the procedure starts anew.
CompRPD is formalized as Algorithm 2. The function

fNN is the pre-trained object detection network that predicts
object bounding boxes based on the input radar Cartesian
images. The fullRate indicates radar frames acquired by
sampling uniformly at the maximum acquisition/sampling
rate. The function fCtoP converts the bounding boxes from
Cartesian to polar coordinates and specifies the central
block. Depending on the size and the location of the object,
the surrounding blocks are marked as important using the

Algorithm 2 CompRPD Algorithm

Input: Radar frame X ∈ R
m×n

Output: Reconstructed radar frame X̂t
For t = 1, initialize first radar frame X̂t
for t = 2, . . . ,T do

1) Determine object bounding boxes B← fNN(Xt−1)

2) if t − 1 in fullRate then
3) Initialize filter K1,...,len(B) with NNPredBB
4) FinalBB← B
5) else
6) Determine Kalman predictions KPredBB ←

Pred(Kt−1)

7) IOU = fIOU(KPredBB,NNPredBB)
8) if IOU > 0 then
9) Refine K using NNPredBB
10) Update filter K using NNPredBB
11) Update Kage by 1
12) if Kage > MinAge
13) FinalBB = KPredBB
14) else
15) FinalBB = NNPredBB
16) end if
17) end if
18) end if
19) Determine polar coordinates G← fCtoP(FinalBB)
20) Determine sampling blocks I← fBlocks(G)

21) Set all other blocks to O
22) Determine sampling rate for t-th frame Xt using

x1, x2 ← fLP(I,O)

23) Output compressed and reconstructed X̂t ←
fCS(x1, x2,Xt)

end for

function fBlocks. The function fLP denotes the aforementioned
linear program and is used to decide sampling rates. Finally,
fCS is the function performing compressive sampling and
reconstruction of the current frame.

IV. EXPERIMENTAL RESULTS
A. DATA AND BASELINES
The data used in the experiments include the Oxford radar
robocar dataset [21] and the RADIATE dataset [15]. The
Oxford dataset consists of Navtech CTS350-X Millimeter-
Wave FMCW radar data along with the camera data
from Point Grey Bumblebee XB3 rear camera, Point Grey
Grasshopper2 stereo front camera and other sensor data.
The data is collected on 280km of roads in Oxford, UK,
with the front camera capturing at 16Hz frames per second
(FPS), the rear camera capturing at 17Hz, and the radar
capturing at 4Hz. To our knowledge, this is the only publicly
available range-azimuth radar dataset accompanied by both
front and rear camera data. Since the object annotations are
not provided, we manually annotated a subset of it and tested
the proposed algorithm on three random scenes with about
11 frames each.
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FIGURE 2. The original radar and the corresponding image sequence along with the results of reconstruction by the CompRADIMG algorithm (scene 2, frame 9, Oxford
dataset). The green box indicates a car to the rear right missed by the baseline A-2 but detected/reconstructed by CompRADIMG. The orange box indicates the bike detected by
CompRADIMG but missed by the baseline A-1. Best viewed as a digital copy by zooming in.

The RADIATE dataset [15] was collected in extreme
weather conditions including snow, fog, and rain. The
dataset contains radar, LiDAR, camera and GPS data. The
radar data was collected using Navtech CTS350-X with
a 360◦ Horizontal Field of View (HFoV) and 100-meter
range at 4Hz. This resulted in range-azimuth images of
size 400x576 where the rows represent the angle and the
column represents the range. The authors of [15] released
300 hours of annotated radar data, for both good and bad
weather conditions, with annotation on the Cartesian radar
images. Similar to [15], in our experiments we classify
objects as vehicles or background; the vehicle classes include
car, bus, bicycle, truck, van and motorbike. To test the
proposed algorithm, we selected from the RADIATE dataset
40 frames for each snow, fog, motorway, city and night
condition.
For the first benchmarking experiment, the radar frame

is uniformly sampled at a rate determined without relying
on any prior knowledge about the scene via compressed
sensing (CS) [25] and the signal is recovered using BP.
In the second experiment, the results of Cell Averaging-
CFAR (CA-CFAR) [29] were used to identify radar
blocks with objects of interest, and the sampling rate
for those blocks was adaptively increased while main-
taining the overall 10% sampling budget. This method is
extended to Greatest Of-CFAR (GO-CFAR) [50] in place
of CA-CFAR.

TABLE 1. The AP, AP50 and PSNR results on the Oxford radar dataset [21]
reconstructed using a standard CS algorithm. The objects were detected using both
Faster R-CNN and YOLOv5 models.

B. THE MEASUREMENT MATRIX FOR CS
To set up the stage for compressive radar acquisition, one
needs to identify a suitable measurement matrix for rotating
FMCW radar data. In [23], the BPD matrix for automotive
radar data acquisition was proposed and the reconstruction
quality was measured in terms of PSNR; BPD was found
to achieve PSNR similar to that provided by the Gaussian
and BPBD matrices. However, since radar object annotations
are provided for the RADIATE dataset, we are able to
test the performance induced by a specific measurement
matrix in terms of the AP and AP50 metrics that are
more relevant to the object detection task than PSNR. We
reconstructed 5 scenes from the data with 40 frames each
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TABLE 2. A comparison between CompRADIMG and the competing methods including A-1 [25], CA-CFAR [29], GO-CFAR [29], [50], and A-2 [23]. The presence of an object is
indicated as ‘yes’; if the object is faint or absent, the indicator is ‘no’. Short notation: F-Front, Re-Rear, FL-Front Left.

utilizing a standard CS algorithm, uniformly sampling across
the frame at 10%, 20% and 30% relative sampling rates
using three measurement matrices and Faster R-CNN and
YOLOv5l networks. The results are shown in Table 1. The
BPD measurement matrix outperforms the Gaussian and
BPBD matrices in terms of the AP and AP50 metrics;
the performance improvement is more significant at lower
sampling rates than at higher sampling rates. Furthermore,
YOLOv5 network outperformed Faster R-CNN at 30%
acquisition rate while in the other cases, Faster R-CNN
performs better. In general, evaluating performance in terms
of task-relevant metrics such as AP or AP50 in addition to
PSNR is beneficial to identifying the best suited measure-
ment matrix for compressive automotive radar sampling.

C. COMPRADIMG: SUBSAMPLING USING IMAGE AND
RADAR
The results of testing CompRADIMG on the Oxford [21]
dataset are reported in Table 2. We randomly selected three
scenes, each with 11 frames. The frames were compressively
sampled using only 10% of the original samples. The
data, captured at 4Hz frame rate, has a range resolution
4.38cm and azimuth resolution 0.9◦, with the total range
of 163m. The rear camera has 180◦ horizontal field-of-
view (HFoV) while the front camera’s HFoV is 66◦, with
a blind spot of 57◦ on either side of the vehicle. The
baseline algorithms include the algorithm in [25] (Labeled as
A-1), CA-CFAR [29], GO-CFAR[29], [50] and the algorithm
in [23] (Labeled A-2). The CFAR algorithms are applied on
each row (range) to identify additional important bins with
300 training cells, 50 guard cells and a 0.001 false alarm
rate.
In the first scene, the ego vehicle was driven on a

straight road with pedestrians on either side of the walkway.
Additionally, a van was following the ego vehicle, a bus
was coming towards it, and a pedestrian was crossing the

TABLE 3. The AP/AP50, the number of parameters and the inference time (NVIDIA
2070 super GPU) for the three models on the RADIATE dataset.

road in front of the ego vehicle. In frame 2, the person to
the right was missed by the A-2 algorithm [23]. However,
the person was detected by the CompRADIMG algorithm
because the location of the person was deemed to be
important by the CFAR algorithm and hence was sampled at
a higher rate. However, in frame 6, the person was missed
by CompRADIMG, possibly due to the sampling budget
constraints.
In the second scene, the car was passing through an

intersection with a parked car to the front left and a truck
passing by to the right. At the rear of the vehicle, there
were multiple bikes at a distance and a pedestrian crossing
on the rear left. In a few frames, the cars parked to the
right of the vehicle appear in the camera’s blind spot. In
Figure 2, we show frame 9’s radar and camera images. In this
scene, the car parked to the right side of the vehicle was not
reconstructed by the A-2 algorithm since it was located in the
camera’s blind spot. In contrast, the CompRADIMG algo-
rithm successfully detected/reconstructed the car. The same
car is also successfully reconstructed by the CompRADIMG
algorithm in frames 6 and 8-9 of scene 2.
In the third scene, the vehicle was passing a crowded

intersection with a bus to the front and multiple buses to
the rear left. There were several pedestrians on either side
of the road as well as a few bicycles. The CompRADIMG
algorithm reconstructed the bike to the right in frames 7
and 10, which was missed by the A-2 algorithm. However,
in frame 11 the person to the front left was missed by
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FIGURE 3. The radar reconstruction and object detection results on two frames from city and fog scenes via the radar-detect (RD) [22] and CompRPD algorithms. The object
annotation GT is in green and the network predictions are in red.

the CompRADIMG algorithm possibly due to an overly
restrictive sampling budget.

D. COMPRPD: RADAR SUB-SAMPLING USING
PREVIOUS RADAR
We tested the CompRPD algorithm on the city, motorway,
snow, fog and night scenes of the radiate dataset [15]. The
1st and the 21st frames were set as anchor frames. We report
results for three relative sub-sampling rates, 10%, 20% and
30%, where the lower bound on x1 was set to 0.1, 0.2, and
0.3, respectively, while the upper bound was set to 0.55.
These lower bounds ensure that the reconstruction quality of
the important blocks is no worse than in the case the frame
was uniformly sampled at the same overall sampling budget.
The upper bounds on x2 were set to 0.1, 0.2 and 0.3 for 10%,
20% and 30% relative sampling rates, respectively; the lower
bound on x2 was set to 0.07 to ensure there is sufficient
number of samples for accurate frame reconstruction.
To help facilitate training an object detection network for

the bounding box detection and object classification, the
authors of [15] released a dataset with 300 hours of radar
data with object annotations. The authors of [15] proposed
using Faster R-CNN network for predicting bounding boxes
of vehicles directly on the radar frame. In Faster R-CNN, the
features from the images are first processed through a region
proposal network; the generated proposals are then used for
the bounding box and class prediction. As an alternative,
we also considered a YOLO-like model [20] trained on
radar data without a region proposal step, enabling direct
prediction from images split into S × S cells; such a model
has the advantage of fewer parameters and thus require less
computational resources while leading to faster inference.
Table 3 reports the latency and model information, providing

guidance on the trade-off between performance and latency.
Furthermore, although various object detection networks have
been studied in the context of image classification, our work
is the first to conduct such a study in the context of radar
object detection using the YOLO object detection model.
Therefore, we trained two variants of YOLO, the medium
and the large model to show the performance of radar object
detection models trained on the RADIATE dataset.
For our experiments, we trained a Faster R-CNN using the

parameters recommended by [15] and two YOLO models of
different complexity, aiming to identify the best network in
terms of performance and the total number of parameters.
The Faster R-CNN network has the ResNet-50 backbone and
is trained for 90,000 iterations with 128 images per batch
and 0.00025 learning rate. The network was trained for a
single class classification of vehicles, i.e., a collection of
all released annotations except for pedestrians and groups
of pedestrians. The YOLO networks [20] were also trained
for vehicle prediction using radar frames of size 1280x1280.
The YOLO5l network was trained for 10 epochs with batch
size 2; YOLO5l has 46M parameters, performing inference
on NVIDIA 2070 Super GPU took 70ms/img. The YOLO5m
network was also trained for 10 epochs with batch size 2;
that network had 20M parameters, the inference speed was
41ms/img. The performance of the networks on the test set
is shown in Table 3.

Among the three models trained on the RADIATE dataset,
YOLO5l achieved the best AP50 and AP but has the highest
number of parameters and longest inference time. At half the
number of parameters, YOLO5m required a little more than
half the inference time of YOLO5l to achieve 61.9 AP50
on the entire dataset. To our knowledge, these are the first
application of YOLO networks on the RADIATE data.
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FIGURE 4. Consecutive frames are shown from the city and the fog dataset. The green box illustrates Kalman’s predictions based on the previous frame and the red box
illustrated the current frame’s bounding boxes predictions. After every Kalman update across frames, indicated by the frame numbers the Kalman predictions are closer to the
location of the object shown by the bounding boxes.

The performance comparison between our proposed
CompRPD and baselines is reported in Table 4. Here Radar-
Detect (RD) denotes the method in [22] utilizing an inverted
T-shaped sampling pattern. All the methods were tested
using both Faster R-CNN and YOLO networks. CompRPD
(YOLOv5l) and CompRPD (Faster R-CNN) denotes the
CompRPD algorithm that deployed the YOLOv5l and Faster
R-CNN networks for object detection, respectively. The
Faster R-CNN achieved AP50 and AP of 58.4 and 23.8,
respectively, while YOLOv5l achieved AP50 and AP of 62.4
and 25.3, respectively on the original tested radar data (40
frames from each of the 5 scenes). At 20% and 30% sampling
rates, the algorithms that deployed YOLO for object detec-
tion performed better than their counterparts deploying Faster
R-CNN; however, at 10% sampling rate, RD and CompRPD
deploying the Faster R-CNN network outperformed RD and
CompRPD deploying YOLOv5. Overall, the accuracy at a
10% sampling rate deteriorated significantly from the full
rate performance and thus such ultra-low sampling rates are
not recommended in practice. At 20% relative sampling rate,
CompRPD (YOLOv5) performed the best, achieving 55.6%
AP50 and 24.1% AP. Across all sampling rates and networks,
the RD and CompRPD methods surpassed the standard CS
and CFAR algorithms in end-to-end object detection tasks.
The results of applying different schemes to the radar

frame reconstruction are shown in Figure 3. The first row
shows the reconstruction of a frame from the city scene.
Among the considered schemes, CompRPD had the most
predictions aligning with the ground truth. Overall, schemes

deploying YOLO networks outperformed those deploying
Faster R-CNN. The second row shows the reconstruction
of a frame from the fog scene. Yet again, the CompRDP
(YOLO) algorithm achieves better-bounding box alignment
with the ground truth and, in certain cases, fewer false
positive predictions.
Figure 4 shows the results of running the Kalman filter’s

prediction based on the previous frame information and
the detection network’s output on the sub-sampled and
reconstructed frame using the RD (YOLOv5) algorithm. This
is illustrated across 5 frames of the city and fog scenes. The
Kalman filter may in certain frames assign to an object a
smaller bounding box than appropriate (e.g., frame 3 of the
city scene) but in the subsequent frames it recovers from this
error; one can make a similar observation in the case of the
object in the front (top) of the ego-vehicle (frames 4 and 5).
As for the fog scene, the Kalman filter consistently accurately
predicts the bounding box of the objects. In general, the use
of the Kalman filter’s predictions instead of the network’s
bounding box from the previous sub-sampled frame helps
localize areas where a higher sampling rate needs to be
allocated.
We further tested the improvement that the prediction of

future occlusions by the objects detected in the current frame
provides over dropping the occluded blocks; CompRPD
(Yolov5) achieves AP50 and AP of 55.6 and 24.1, respec-
tively, while simply dropping the occluded blocks results in
AP50 and AP of 43.8 and 18.9, respectively (20% sampling
rate).
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TABLE 4. The AP/AP50 object detection metrics are presented for the A-1 [25], CFAR
[29], Radar-Detect (RD) [22] and CompRPD algorithms using both the Faster R-CNN
and YOLO networks. CompRPD outperforms baseline techniques across all the
sampling rates; the optimal trade-off between performance and the sampling rate is
noted at 20% sampling rate.

V. CONCLUSION
We presented a radar sub-sampling pipeline that relies
on prior images and/or radar data (CompRADIMG) to
accomplish effective reconstruction using as few as 10%
of the samples. In the case of the sub-sampling algorithm
that uses only the prior radar data (CompRPD), we showed
effective reconstruction using as few as 20% of the sub-
sampled radar data. The CompRADIMG algorithm was
tested on the open-sourced Oxford Range-Azimuth radar data
taken during good weather conditions, while the CompRPD
algorithm was tested on the radiate radar data acquired
in fog, snow, motorway, night and city conditions. We
further reported results on using hardware-efficient BPD
measurement matrices for compressed sensing, showing that
on the considered automotive data they outperform BPBD
and Gaussian measurement matrices. Finally, we presented
a YOLO-based radar-object detection network and showed a
significant performance improvement over its Faster R-CNN
based counterpart.
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