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ABSTRACT Recently, research on autonomous driving has focused on the advent of various deep learning
algorithms. The main sensors for autonomous driving include cameras, LiDAR, and radar, but these
algorithms primarily focus on image and LiDAR data. This is because radar data is limited compared
to image and LiDAR data. To address the lack of data problem, GAN-based translation methods have
been proposed. However, these methods also focus only on image and LiDAR data, such as day-to-night
translation or sunny-to-adverse weather translation. Since radar data differs depending on radar sensors
and radar points are too sparse to learn patterns compared to LiDAR, translation with radar data is a
challenging task. Radar is usually utilized as a sensor that is nearly unaffected by the weather. However,
it has been confirmed through JARI data collected by us that rain has a negative effect. CycleGAN is
useful for data translation in traffic scenes where pair data is difficult to acquire, since CycleGAN is a
network specialized in style translation. KP-Convolution is a module specialized in feature extraction of
points while maintaining location information. Therefore, we propose a radar translation network between
sunny and rainy domains by combining KP-Convolution and CycleGAN. In this process, we address the
adverse effects of radar data by rain, establishing the training format of radar data, KP-Convolution which
can learn patterns despite a small number of points, and CycleGAN which is the basis of the translation
method.

INDEX TERMS Radar translation, autonomous driving, driving simulator, weather condition, deep
learning, data-driven approach.

I. INTRODUCTION

AUTONOMOUS driving research has been focused
on the advent of various technologies. Among these

technologies, deep learning is considered a representative one
as it can be used to implement various tasks such as object
detection [1], [2], [3], segmentation [4], [5], [6], and depth
estimation [7], [8], [9]. While these methods have been
developed to take images and LiDAR as input, deep learning-
based algorithms with radar data are relatively scarce. This
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scarcity is primarily due to the fact that radar data released
is less abundant compared to images and LiDAR.
To address the lack of data problem, several data aug-

mentation methods have been proposed, including cropping,
flipping, adding noise, MixUp, and GAN-based methods.
However, these methods are predominantly utilized with
image data. Point-based data such as LiDAR and radar have
limitations when applying such methods due to the absence
of a standardized format like RGB values in images. In
particular, radar data is challenging to augment because it
exhibits significant variation depending on the sensor type,
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FIGURE 1. Adverse effects of rain and foggy in the JARI data. The RCS value is
attenuated in proportion to the amount of precipitation. In particular, there is a big
difference between sunny and rainy 80mm/h. RCS difference values are between 15
and 20. With these results, we confirmed that the radar has a great influence of rain.

and the number of points representing a scene is typically
smaller than that of LiDAR.
In autonomous driving, LiDAR and radar sensors are

commonly used in applications such as Adaptive Cruise
Control (ACC) and Emergency Brake Assist (EBA) for
both automotive passenger vehicles and commercial vehicles.
LiDAR relies on light to measure distances. It leads
that it can provide high reliable and richer environmental
information, compared to other onboard sensors. This advan-
tage is leveraged for various tasks in autonomous driving,
such as integrated inertial LiDAR-based map matching
localization for varying environments [10], [11]. However,
one of the major disadvantages of LiDAR is that it can be
significantly affected by environmental factors. Radar sensor
which relies on radio wave to measure distances has the
advantage of being unaffected by climate changes. This is
widely recognized by the public. However, we have observed
the adverse effects of rain in the JARI data collected by
our team. These adverse effects indicate that the Radar
Cross Section (RCS) value is attenuated in proportion to
the amount of precipitation, as shown in Figure 1. The RCS
(i.e., reflection intensity) is the ratio of back-scatter power
to the power density received by the target.
In this paper, we propose a radar translation method

with handling the adverse effects of radar data by rain.
To implement this radar translation, we first formulate the
radar data format for training and apply KP-Convolution [12]
to CycleGAN [13], which serves as the foundation of
our translation method. The KP-Convolution is capable of
learning patterns in radar data, even with a small number
of points. In summary, the contribution of our proposed
method is the first radar translation based on deep learning
that specifically tackles the adverse effects of rain on radar
data. We also anticipate that the proposed method can not
only contribute to data augmentation but also aid in the
development of driving simulators for the verification of
various autonomous driving algorithms.
The remainder of this paper is organized into the following

sections: Section II introduces the related work, Section III
presents our proposed method, Section IV provides the

experimental results, Section V discusses more in detail, and
finally, in Section VI, we conclude and address directions
for future work.

II. RELATED WORK
In this section, we address related researches with the
proposed method. Firstly, we introduce common deep
learning-based translation methods that are widely applied
in various fields. After that, we discuss several research
studies related to radar data augmentation. Also, we explore
the phenomenon of radar data being affected by weather by
introducing relevant research. Finally, We describe general
radar researches for cooperative and autonomous driving.
The advantages of the proposed method are specified through
a comparison with related researches.

A. DEEP LEARNING BASED TRANSLATION METHOD
When the translation method was initially proposed, the
applied main data was images, primarily for data augmenta-
tion purposes. Translation research gained momentum with
the advent of GAN [14]. GAN-based methods have made
significant contributions to various tasks, including image
generation [15], [16] and image editing [17], [18]. Inspired
by a similar concept, there are other image applications such
as text-to-image [19] and image inpainting [20]. The core
factor of GAN is the adversarial loss, which enforces the
generated images to be indistinguishable from real images.
Following the success of GAN [14], many research

studies on paired image translation have been proposed, with
pix2pix [21] being a representative one. Pix2pix can generate
different output images based on an input image by training
pairs of input images and corresponding output images. This
idea has been adopted in various tasks, including image
generation from sketches [22]. While paired image transla-
tions have made significant contributions, it is challenging
to apply them in traffic scenes. This difficulty arises from
the inability to obtain fully paired images in a traffic scene,
such as paired images between day and night. To overcome
this issue, unpaired image translation methods have been
introduced with the emergence of CycleGAN [13]. In these
methods, paired images are not required as CycleGAN
learns the style of the source domain and transfers it to
the target domain using the concept of cycle-consistency.
This idea has been utilized in diverse fields, such as voice
conversion [23], MR-to-CT for medical purposes [24], and
video translation [25]. Given that the proposed method for
the traffic scene also utilizes unpaired data, we have designed
a network architecture based on CycleGAN [13].

The aforementioned research has primarily focused on
image data, but there are also several deep learning-based
translation methods for data augmentation with LiDAR.
One of the most representative methods is [26], which
considers various variations of LiDAR. However, it has a
significant limitation in that the height information is lost,
as the method utilizes 3D point cloud data represented as
a 2D Bird-Eye-View (BEV). Furthermore, it solely focuses
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on data translation between simulated and real LiDAR
data, without considering weather conditions. In addition
to this, several research works have explored denoising
and translating LiDAR point clouds using CNNs, GANs,
and statistical filters [27], [28]. Recent studies have started
considering weather changes and height information in
LiDAR translation, as demonstrated in [29], [30]. While
image and LiDAR data have been the subject of numerous
translation research, radar data has received less attention.

B. RADAR DATA AUGMENTATION
There are very few research studies focusing on radar data
augmentation. A representative research in radar data aug-
mentation is [31], which utilizes CNN with domain-specific
data augmentation operations. The augmentation operations
include target translation, randomization of speckle noise in
different observations, and the inclusion of pose images in
the training data. However, this method has limitations as
it is time-consuming and suitable for only limited targets.
Another method for radar data augmentation [32], introduced
by Sheeny, M. in 2020, is the parameterized radar data
augmentation (RADIO) technique, which generates realistic
radar samples from small datasets. It leverages the physical
properties of radar signals, such as attenuation, azimuthal
beam divergence, and speckle noise. While it is meaningful
for radar augmentation using deep learning methods, it only
tests simple target objects in small datasets and lacks stability
while not fully considering road environments. Despite other
methods related to radar data augmentation [33], [34], there
is still no radar data augmentation method that takes weather
conditions into consideration.

C. PHENOMENON OF RADAR DATA AFFECTED BY
WEATHER
In general, radar sensors have the advantage of being
unaffected by weather conditions in autonomous driving.
However, compared to other sensors, radar is still susceptible
to weather effects, especially in rainy conditions. The
research study [35] provides an in-depth analysis of the
changes in radar data due to weather effects. This work
offers insights into the different physical principles that
contribute to radar signal disturbance and presents theoretical
investigations for estimating weather influence. According
to this study, water vapor in the air interferes with the radar
signal during rain and fog, resulting in a weakening of
the reflection intensity (RCS value) or scattering of radar
points. Another research study [36] also analyzes the impact
of weather on radar data, specifically focusing on rain,
which has a direct influence on traffic accidents compared to
previous studies. Additionally, there is a research study [37]
that conducts a detailed analysis of the released radar dataset
(i.e., nuScenes) independent of weather conditions. This
research [37] quantitatively investigates radar properties,
such as detection thresholds and detection probabilities
depending on objects, environment, and radar parameters,
as well as object properties, such as reflection behavior

depending on object type. However, it is important to note
that the aforementioned studies are focused on analysis rather
than radar translation.
In the previously mentioned research studies, there is a

lack of translation methods based on deep learning (i.e., data-
driven approaches) that can accurately replicate weather
changes in radar data. Therefore, we propose a radar trans-
lation method that addresses the adverse effects of rain on
radar data. To achieve this, we employ KP-Convolution [12]
in conjunction with CycleGAN [13], which forms the
foundation of our translation approach. We anticipate that the
proposed method will make significant contributions to radar
data augmentation and driving simulators for autonomous
driving.

D. GENERAL RADAR RESEARCHES FOR COOPERATIVE
AND AUTONOMOUS DRIVING
Radar, due to its ability to provide relative positional
information between vehicles, has been a foundation for
various researches in cooperative and autonomous driving.
One notable research is [38]. This paper introduces a secure
cooperative localization system for connected automated
vehicles (CAVs). It describes the consensus estimation,
which integrates sensor data shared by multiple neigh-
boring vehicles. The results demonstrate that collaborative
information utilization from multiple vehicles leads to robust
vehicle position estimation against attacks with higher
accuracy and resilience. Another remarkable study is [39].
This study provides a comprehensive overview of the
current state of vehicle control technologies in connected
and automated vehicles, emphasizing key areas of interest
and future research directions. Indeed, there are various
researches [40], [41], [42], [43], [44] associated with coop-
erative and autonomous driving that are continually being
introduced. Through our proposed method, we anticipate that
providing diverse radar data will promote and invigorate
cooperative and autonomous driving researches, such as the
researches mentioned above.

III. PROPOSED METHOD
In this section, we provide a detailed explanation of the
proposed method. The objective of this research is to
generate and translate realistic radar data between sunny
and rainy conditions. To achieve this, the proposed method
incorporates KP-Convolution [12] and CycleGAN [13]. We
provide a brief overview of these components before delving
into the specifics of the proposed method.
Furthermore, we address the challenge of training radar

data, which has a distinct format compared to the original
image-based CycleGAN. While most image data consists of
RGB values, radar data encompasses various components. In
the proposed method, we utilize RCS (reflection intensity)
and relative velocity values for training. It’s worth noting
that unlike RGB values, RCS values can be negative, and
the scale of the introduced radar data format differs from
that of images.
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FIGURE 2. The overall flow of radar translation based on CycleGAN [13] involves the
utilization of KP-Convolution [12] for feature extraction from point data, unlike the
original CycleGAN [13] designed for image translation that uses ResNet-based feature
extraction modules.

To address these challenges, we have designed a
network by incorporating KP-Convolution [12] into the
CycleGAN [13]. Figure 2 illustrates the overall architecture
of the radar translation based on CycleGAN [13], while
Figure 3 demonstrates the feature extraction module, which
is based on KP-Convolution [12] and KP-FCNN, a segmen-
tation network that utilizes KP-Convolution.

A. TRANSLATION NETWORK BASED ON CYCLEGAN
Image-to-image translation is a field of generative models
that aims to map input images to output images within an
image dataset. It enables various transformations such as
colorizing black and white images [45], translating daytime
images to nighttime images [46], and converting images
with only borders into realistic objects [22]. Representative
models in image-to-image translation include pix2pix [21],
CycleGAN [13], and StyleGAN [47].

The initial model, pix2pix [21], was followed by
CycleGAN [13], which aimed to address the limitations of
pix2pix. The key objective of CycleGAN [13] is to perform
image-to-image translation using unpaired image data. One
of the common challenges in GAN models is the mode col-
lapse problem, where the generator fails to produce diverse
outputs and generates similar results repeatedly, resulting in a
collapsed state. To mitigate this issue, CycleGAN introduces
a cycle-consistency loss by incorporating a cycle structure
into the existing GAN architecture.
The distinguishing characteristic of the CycleGAN struc-

ture is that when an input image is transformed in the forward
direction, it should be able to revert back to the original
input through the reverse transformation. In Figure 2, we
present the overall architecture of the radar translation based
on CycleGAN [13].

The proposed radar translation utilized JARI data acquired
in the same environment with only different weather factors.
However, in order to perform data translation in various
environments for real road through the proposed method,
unpaired data must be handled. To deal with this issue, the
network architecture was designed based on CycleGAN [13].

Thanks to CycleGAN [13] based network, more natural
translation is possible than pix2pix [21].

B. FEATURE EXTRACTION MODULE BASED ON
KP-CONVOLUTION
Kernel Point Convolution (KP-Convolution) is a method
that applies convolution directly to a point cloud without
converting it to a graph or 3D voxel. It is among various
methods used for processing 3D point cloud data. Prior
to the introduction of KP-Convolution, PointNet, an MLP
(i.e., multi-layer perceptron) [48] based network was rep-
resentative. While KP-Convolution [12] applies convolution
to the point cloud as it is without conversion (e.g., voxel
or grid conversion), MLP does not. Thus, MLP based
method leads to that positional information is somewhat
lost.
Besides MLP [48], there is another layer that can be

applied to points for convolution-based feature extraction,
which is the 1x1 convolution [49]. Unlike MLP [48], which
requires a fixed input size, 1x1 convolution [49] layers
are more flexible as they can accommodate varying input
sizes. 1x1 convolution [49] layers have three key advantages.
Firstly, they allow reducing the number of channels while
keeping the size of the feature map unchanged, using
relatively few parameters. Secondly, they enable increasing
depth while significantly reducing the number of parameters,
preventing the model from becoming overly complex and
reducing the risk of overfitting. Finally, by using 1x1
convolution [49] layers, depth can be increased, allowing
for the use of activation functions at each layer, thereby
increasing non-linearity and enhancing the model’s ability to
handle more complex problems. Despite these advantages,
there is a concern that 1x1 convolution [49] layers might
lose spatial information, as well.
A convolution kernel of KP-Convolution [12] is composed

of several kernel points, and the convolution operation for
the surrounding points is performed by arranging kernel
weights with continuous values for each kernel point. The
network capacity can be adjusted by flexibly setting the
number and location of kernel points, and the shape of the
kernel can be optimized based on the geometry of the point
cloud. KP-Convolution makes significant contributions to
tasks such as 3D point cloud classification and segmentation,
with maintaining spatial information.
We show briefly the comparison results of coordinate

error with MLP [48], 1x1 convolution [49] layers and
KP-Convolution [12] for radar translation in Table 1. As
shown in Table 1, we confirmed that KP-Convolution can
learn more location information than MLP [48] and 1x1
convolution [49] layers (i.e., the same convolution mech-
anism with the propose method), through the fact of small
coordinate error value for KP-Convolution [12]. It results in
the generation of natural radar data. Therefore, we adopted
KP-Convolution [12] as feature extraction module for radar
points.
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TABLE 1. Comparison results of coordinate error with MLP, 1x1 convolution layers
and KP-Convolution for radar translation. The MLP consisted of two layers with 32
channels each. The 1x1 convolution layers are also composed of two layers, the first
with 16 channels and the second with 32 channels. For KP-Convolution, we used two
layers with the same size of 1x1 convolution layers. These configurations adopted the
Leaky ReLU activation function in our experiments.

Similar to U-Net [50], the KP-Convolution network
extracts multi-scale feature vectors using pooling and upsam-
pling layers. A sub-sampling process is required during
pooling, and a grid subsampling method, independent of the
density of the input point cloud, is utilized. This method
samples only the representative point from each grid after
placing the points on a voxel-shaped grid. During the pooling
process, the feature vectors for the points in each cell
are integrated through KP-Convolution after reducing the
number of output points by doubling the cell size of the
previously defined grid. This process is commonly referred
to as strided KP-Convolution.
The network with KP-Convolution is divided into two

parts: KP-CNN for classification and KP-FCNN for seg-
mentation. KP-FCNN shares the encoder part of KP-CNN.
Due to the segmentation task’s characteristics, point-wise
features need to be extracted, which involves adjusting the
number of points through the nearest upsampling process.
In contrast, KP-CNN directly extracts class information
from the encoder feature vector using a fully-connected
layer. Figure 3(a) illustrates the comparison between KP-
Convolution [12] for feature extraction from point clouds
and normal convolution for feature extraction from image.
Additionally, in Figure 3(b), we present KP-FCNN with
KP-Convolution, which includes a generator module and a
discriminator module for the proposed method.

C. RADAR TRANSLATION BASED ON COMBINATION OF
CYCLEGAN AND KP-CONVOLUTION
We propose the first deep learning-based radar translation
method by applying KP-Convolution [12] to CycleGAN [13].
However, the proposed radar translation is not simply
performed by combining these components. Several modifi-
cations and additions have been made through verification.
To address this in detail, we first explain how radar
data is collected, including an explanation of the radar
sensor, radar format, and the differences compared to
already released radar datasets. After that, we introduce the
architecture of the proposed method. Finally, we provide an
explanation of the learning process involved in the proposed
method.

1) JARI DATASET FOR RADAR TRANSLATION

The purpose of the proposed method is to generate realistic
radar data between sunny and rainy conditions. One rep-
resentative and released radar dataset [52] is the nuScenes

FIGURE 3. Outline of the proposed method.

dataset, which is the first dataset to include a full suite
of autonomous vehicle sensors: 6 cameras, 5 radars, and 1
LiDAR. All of these sensors have a full 360-degree field of
view. The nuScenes dataset [52] consists of 1000 scenes and
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FIGURE 4. Scene examples of the JARI dataset for radar translation. From left to
right, they depict sunny and rainy data for the JARI dataset. The JARI dataset is
collected with adjusted precipitation levels.

is fully annotated with 3D bounding boxes for 23 classes
and 8 attributes. However, this dataset presents a significant
challenge when utilized in the proposed method. In order
to achieve accurate weather translation, a well-balanced
amount of data is required in both the sunny and rainy
domains. Unfortunately, the nuScenes dataset contains very
limited rainy radar data. Apart from this dataset, the Oxford
Radar RobotCar [53] and Astyx HiRes2019 datasets [54]
also include radar data. However, these datasets have their
limitations. The Astyx HiRes2019 dataset contains sparse
radar points instead of raw radar spectra, and the Oxford
Radar RobotCar dataset supplies radar spectra without any
annotation. In summary, until now, there has not been a
high-quality public radar dataset available.
To develop the proposed method, radar data was collected

in both sunny and rainy domains using a 77 GHz radar sen-
sor equipped with a digital beamforming scanning antenna.
The radar offers two independent scans for far and near
ranges. The JARI dataset was collected by this radar sensor.
The JARI dataset was acquired in a laboratory provided
by the Japan Automobile Research Institute (JARI), where
the data collection process involved adjusting the amount of
rainfall. More detailed information about the JARI dataset
will be provided in Section IV. Figure 4 illustrates scene
examples from the JARI dataset.
There are various radar values used to represent radar

points. Among these values, the proposed method adopts
four elements: x coordinates, y coordinates, RCS values,
and relative velocity values. The input format of the radar
translation network is formulated as (N, 4), where N indicates
the number of radar points in each scene. The range for
each value is as follows: −200 ∼200 for x coordinates,
−200 ∼200 for y coordinates, −65 ∼65 for RCS values,
and −7 ∼2.5 for relative velocity values. The proposed
method is trained by separating the location information
(i.e., x and y coordinates) and the feature information
(i.e., RCS and relative velocity values). When the ranges
of the feature information values are significantly different,
such as −65 ∼65 for RCS values and −7 ∼2.5 for relative
velocity values, the learning loss does not converge and
diverges greatly. Therefore, we conducted a normalization
process during the creation of the dataset, making the relative
velocity values similar to the range of RCS values. It is
important to note that we restore the original range of
the relative velocity values for quantitative evaluation. This

process is not required for images since they maintain the
same range of RGB values. For LiDAR translation [29], [30],
the above process improves the learning results.

2) ARCHITECTURE OF THE PROPOSED NETWORK

The proposed method focuses on radar translation between
sunny and rainy domains. To achieve point-based translation,
we apply KP-Convolution [12] to the CycleGAN [13]. The
detailed architecture of the proposed network is described
in Figure 5. There are several differences compared to the
original CycleGAN [13] for image translation.
The first difference is the choice of activation function.

While the image-based CycleGAN adopted the Rectified
Linear Unit (ReLU) [55], the proposed network utilizes the
Leaky Rectified Linear Unit (Leaky ReLU) [56], which is a
variant of ReLU. This decision is made because radar data,
unlike RGB values in images, often includes many negative
values in RCS and relative velocity. Both Leaky ReLU [56]
and Parametric ReLU (PReLU) [57] can handle negative
values. The main difference between them is that the negative
slope of PReLU [57] is determined as a parameter value
during the learning process. However, PReLU [57] has a
drawback where the negative slope converges to the average
value of 0 as the learning epoch progresses, especially when
there are as many negative values as positive values, such
as in radar data. Since the fixed negative slope of Leaky
ReLU [56] is not affected by the learning process, the
proposed method is designed with Leaky ReLU [56].

The second difference is in terms of normalization. In
image-based networks with fixed input sizes and linear
values, various normalization methods such as min-max [58]
and batch normalization [59] are often utilized to enhance
performance. However, these normalization methods are not
effective for the proposed method. There are several reasons
for this. Firstly, radar data has an unstable input size and
a significantly smaller number of valid data compared to
images. The presence of a reflective object determines the
validity of a radar point, resulting in a dynamic change in the
input size. Secondly, when normalization is applied to radar
data, which consists of discrete values unlike the continuous
RGB values of images, a significant amount of noise data
is generated.
The final difference lies in the decoder part, which is

responsible for restoring the encoded features. In image-
based networks, the deconvolution method [60] is commonly
used to restore encoded features. Deconvolution fills in the
empty spaces as the size of the feature map increases,
typically in the case of an image. However, when restoring
encoded data for radar translation, it is necessary to sample
representative points instead of using filling methods. To
address this issue, we have adopted the three nearest
neighbors search method [61], also known as threeNN, as
the upsampling method. This method allows us to sample
representative points for the decoded features. Finally, the
output, which is of the same size as the input, is generated
through two multi-layer perceptron (MLP) [48] layers.
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FIGURE 5. To handle the negative values of radar RCS and relative velocity, the proposed network utilizes Leaky ReLU activation [56]. Normalization methods such as
min-max [58] and batch normalization [59] are effective when the input size is fixed and consists of linear values, such as images. However, the proposed radar translation
method does not employ normalization methods because the input size dynamically changes and the point values are discrete. Additionally, the three nearest neighbors search
method is utilized as the upsampling method.

3) TRAINING STRATEGY OF THE PROPOSED METHOD

The proposed radar translation method is based on
CycleGAN [13], and therefore, the loss calculation process
is similar to the existing CycleGAN. Two generators, GAB
and GBA, are utilized for translation from domain A to B and
from B to A, respectively. Two discriminators, DA and DB,
are defined to determine whether the output is real or fake in
each domain, A and B. During training, multiple losses are
calculated, including adversarial loss and cycle consistency
loss.
Adversarial loss is utilized in a binary classifier that

differentiates between ground truth data and generated data
predicted by the generative network. Note that it calculates
least square loss instead of cross-entropy loss, like a normal
GAN.

LGAN1 = Exb∼Xb
[
log(DB(xb))

]

+ Exa∼Xa
[
log(1 − DB(G(xa)))

]
, (1)

LGAN2 = Exa∼Xa
[
log(DA(xa))

]

+ Exb∼Xb
[
log(1 − DA(F(xb)))

]
. (2)

Cycle consistency loss is used in generative adversarial
networks for unpaired data translation. It addresses
the problem of mode collapse by enforcing diversity.
GBA(GAB(xa)) ≈ xa and GAB(GBA(xb)) ≈ xb are achieved
by calculating the L1 loss between the original and recon-
structed data:

Lcycle = Exa∼Xa [||GBA(GAB(xa)) − xa||1]

+ Exb∼Xb [||GAB(GBA(xb)) − xb||1]. (3)

Identity loss is a mechanism used to maintain common
attributes within data groups. In other words, it ensures that

the output remains consistent when data from the target
domain is input:

Lid = Exa∼Xa [||GBA(xa) − xa||1]

+ Exb∼Xb [||GAB(xb) − xb||1]. (4)

Therefore, we can obtain the final loss as:

Ltotal = λGANLGAN1 + λGANLGAN2 + λcycleLcycle + λidLid,

(5)

λGAN , λcycle and λid indicate hyper-parameters of each loss
calculation.
In normal image translation, the image sizes of the source

and target domains are the same. Even if they are not
identical, resizing them to make them identical is one-sided.
This process is very important because it is possible to
calculate losses when the sizes are the identical. However,
radar translation cannot conduct resizing like an image when
the number of radar points in the source and target domains
is different. Therefore, for calculating losses, we propose
the point padding to match the number of radar points in
both the source and target domains. This enables the loss
calculations described above. General image padding [62]
places the minimum RGB value of 0 at the edges. Inspired
by this idea, in the point padding, we also place the minimum
RCS and minimum relative velocity values (i.e., –65 for RCS
and –7 for relative velocity) at the maximum and minimum
x, y coordinates, which represent the edge coordinates of
the radar points. This ensures that the padded points have
the least possible impact on learning. The aforementioned
process makes it possible to calculate the losses, which
enables learning and even contributes to stable learning.
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TABLE 2. Quantitative evaluation to compare error of coordinates, RCS, relative velocity, and the number of points, between the ground truth and generated result. Except the
number of points error, the other error values were obtained by point-wise averaging the sum of errors. The number of points error is just a comparison of the number of points.

IV. EXPERIMENTAL RESULTS
As mentioned earlier, we conducted experiments using the
JARI dataset. The proposed method is evaluated in two
ways: qualitative and quantitative evaluations. Qualitative
evaluation involves comparing the generated radar data by
projecting it into a two-dimensional space and visualizing
it. Since objective evaluation alone is not possible through
qualitative evaluation, we also conducted quantitative evalu-
ation. Quantitative evaluation was performed by comparing
the difference between the x,y coordinates, RCS, relative
velocity, and the number of points between the ground
truth and generated data. We also compared the maximum
and minimum values of RCS for real data and generated
data. Finally, the RCS value distribution of radar data using
histograms was conducted for qualitative evaluation.
It is important to note that there is no comparable related

research among the state of the art researches, because
the proposed method is a newly pioneering research field.
However, there are LiDAR translation studies [29], [30] that
performed quantitative evaluation in a similar way. The
LiDAR translations [29], [30] focus on converting LiDAR
data from clear weather conditions into data simulating
rainy or foggy conditions. In these works, quantitative
evaluations were conducted by comparing differences in
x, y, z coordinates, distance, and intensity between the
ground truth LiDAR data and the generated LiDAR data. For
LiDAR data, distance and intensity values play crucial roles.
Similarly, our proposed method aims to convert radar data
from clear weather conditions into data representing rainy
weather. This translation process bears some similarities to
the LiDAR translations [29], [30], specifically in terms of
weather-induced data translation. In this study, we focus on
x, y coordinates, RCS (Radar Cross Section), and relative
velocity values for quantitative evaluation as these are the
key attributes in radar data.
The JARI data was collected in the JARI laboratory, where

the amount of rainfall can be controlled. This allowed us to
analyze how the radar was affected by rainfall. It is important
to note that the experiments were conducted using both sunny
data, where there were no weather effects, and rainy data
with a maximum controllable rainfall of 80 mm/h at the
JARI laboratory. Since radar data is obtained through the
reflection of objects, we compared the change in RCS values
between sunny and rainy conditions from a reflective object.
The radar sensor to collect data is a 77 GHz-based radar
which is mainly used for autonomous driving. Since the radar
of 60 GHz higher has strong straightness of radio waves,
when the humidity is high, noise data is generated. It is

because radio waves of a radar scatter and reflect by water
vapor in the air. Also, attenuation of RCS value occurs. For
real, the collected data demonstrated that the RCS values
for rainy conditions were consistently 15 to 20 units lower
than those for sunny conditions, representing the maximum
difference in RCS values from the reflective object, as shown
in Figure 1. Also, lots of noise data were observed for rainy
conditions. In the JARI dataset, the relative speed value is not
meaningful because the data was acquired while the vehicle
was moving at a constant velocity.
Figure 6 presents examples of qualitative evaluation using

the proposed method. The blue circle of each graph
represents the location of the radar sensor, with the forward
direction depicted towards the up of the graph. The redder,
the higher the RCS value. In order from left to right, input,
fake data (i.e., generated data), and reconstructed data are
shown. As shown in Figure 6, the radar data generated by
the proposed method accurately captures the characteristics
of each domain. The proposed method is also capable of
generating adequately reconstructed radar data, even when
compared to the ground truth data. Particularly, in the
generated rainy data from the proposed method, the RCS
values of points located farther from the radar sensor are
relatively lower compared to the sunny domain. It is because
radio waves scatter and reflect by rainy vapor. Of course,
the opposite phenomenon was reproduced in the sunny
data generated by the proposed method. This observation
aligns with the analysis results of the JARI data mentioned
earlier. Therefore, we can confirm that the proposed method
performs effectively.
We conducted three quantitative evaluation because the

two-dimensional visualization results alone lack objective
evaluation. Table 2 presents an error comparison of coor-
dinates, RCS, relative velocity, and the number of points,
between the ground truth and generated result. Except the
number of points error, the other error values were obtained
by point-wise averaging the sum of errors. The number of
points error is just a comparison of the number of points.
Those results are obtained between the ground truth and
generated data for both sunny and rainy domains. It is
possible due to that JARI data were obtained in the same
environment, with only the weather elements varied.
The proposed network learns by dividing the x and y

coordinate values and feature values, while also concatenat-
ing the x and y coordinate features of the encoder to the
decoder. Due to these reasons, there are small coordinate
errors as shown in Table 2. Considering that the measurable
range of the radar is 100 m, the coordinate error values
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FIGURE 6. Qualitative evaluation of the proposed method. Each example includes three panels arranged from left to right: ‘Real,’ ‘Fake,’ and ‘Rec.’ The ‘Real’ panel represents
the ground truth data in the corresponding domain. The ‘Fake’ panel displays the generated radar data from the generator of the proposed method in the corresponding domain.
The ‘Rec’ panel represents the reconstructed radar data derived from the generated data in the corresponding domain. The color of the points indicates the strength of the RCS,
with higher values shown in red. The blue circles indicate the location of the radar sensor.

are quite small. For translating to sunny, the RCS error is
larger than that for translating to rainy, it is because overall
RCS value for sunny is simply larger than that for rainy.

The relative velocity error is close to 0, because JARI data
is acquired with a constant speed. Note that the number
of points error for translating to sunny is lower than that
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FIGURE 7. RCS distribution of radar data as a histogram between ‘Real’, ‘Fake’, and ‘Rec’ in a whole testset. In this context, ‘Real’ represents the ground truth data in the
corresponding domain. ‘Fake’ indicates the generated radar data from the generator of the proposed method in the corresponding domain. ‘Rec’ refers to the reconstructed
radar data obtained from the generated data in the corresponding domain. The X and Y axes represent RCS values and the number of RCS values, respectively. The red circle
illustrates that RCS values decrease during translation from the sunny to rainy domain due to an increase in noisy data. In contrast, the green circle indicates that RCS values
increase during translation from the rainy to sunny domain due to a decrease in noisy data.

TABLE 3. Quantitative evaluation between ‘Real’, ‘Fake’, and ‘Rec’ to compare the
maximum and minimum RCS values in each domain. In this context, ‘Real’ refers to
the ground truth data in the corresponding domain. ‘Fake’ represents the generated
radar data from the generator of the proposed method in the corresponding domain.
‘Rec’ denotes the reconstructed radar data derived from the generated data in the
corresponding domain.

for translating to rainy, due to more noise points in rainy
domain.
As shown in Figure 1, the difference in RCS values

between sunny and rainy domain is at most 15 to 20.
In addition, since the RCS value includes many negative
values, it is necessary to similarly reproduce the range of
RCS values. To confirm the upper issues, we compared the
maximum and minimum RCS values in each domain, as
shown in Table 3. The results in Table 3 confirm that the
RCS values for the rainy domain are consistently 15 to 20
units lower than those for the sunny domain. We confirmed
that the ranges of maximum and minimum values of RCS
between the ground truth and generated output are similar.
The RCS distribution of radar data, presented as a

histogram, between the sunny and rainy domains is depicted
in Figure 7. As depicted by the red and green circles in
Figure 7, the RCS values decrease during translation from
the sunny to rainy domain, indicating an increase in noisy

data. Conversely, the RCS values increase during translation
from the rainy to sunny domain, indicating a reduction in
noisy data. These results provide evidence that the proposed
method accurately represents the change in RCS values
between the sunny and rainy domains.
It’s worth emphasizing that there is no comparable existing

research in the state-of-the-art literature, as the proposed
method represents a pioneering foray into a new research
field. Nevertheless, there have been studies on LiDAR
translation [29], [30] that conducted quantitative assessments
in a similar vein. These LiDAR translations [29], [30]
primarily revolved around converting LiDAR data from
clear weather conditions into data simulating rainy or foggy
conditions. Similarly, our proposed method aims to translate
radar data from clear weather conditions into data that
simulates rainy weather. This translation process shares
some commonalities with the LiDAR translations [29], [30],
particularly in terms of weather-induced data translation.
Therefore, similar to the quantitative evaluation conducted
in the LiDAR translations [29], [30], we employed a com-
parable method to assess the effectiveness of our proposed
approach. The above quantitative evaluation results validate
that our proposed method can effectively achieve radar data
translation.

V. DISCUSSION
The format of the generated radar data is different, but
there are several state-of-the-art researches on generating
radar data. Most of those researches [63], [64], [65] focus
on generating radar data in the form of radar spectrum
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image representations. Converting radar raw data into radar
spectrum images can lead to some data loss. However, the
proposed method utilizes point information that is closer to
raw radar data, which results in minimal data loss. This is one
of its advantages. Additionally, there are other state-of-the-art
researches [66], [67] in radar data generation that focus on
creating radar signals. While radar signals also resemble raw
radar data, there can be significant variations in the signals
produced by different radar sensors. However, our proposed
method offers the advantage of sensor independence, as it can
generate radar data in a consistent format based on coordinate
values and RCS, making it compatible with various sensors.
As mentioned in this study [68], a fundamental principle

of deep learning is that training on diverse datasets leads
to improved performance. In this sense, our proposed
method, which can translate and generate a wide variety
of radar data from relatively limited radar data compared
to other sensors, can significantly enhance the performance
of object detection or segmentation networks using radar
data. In this study, we aimed to demonstrate performance
improvements by referencing a specific radar recognition
network through the proposed method. However, annotating
the generated radar data requires a significant amount of
human resources. Therefore, this is planned as a part of
our future work. The generalizability and scalability of the
proposed component to other networks are valid and well-
established. Generalizability of its component has already
been demonstrated in various fields, not only for object
detection [69], [70] of 3D point cloud but also for point
segmentation [12], through KP-Convolution [12]. As for
scalability, it is flexible and can be adjusted according to
the number of points in a scene, which can vary depending
on the training dataset.

VI. CONCLUSION
We proposed the first radar translation network between the
sunny and rainy domains by combining KP-Convolution [12]
and CycleGAN [13]. Existing methods for radar translation
rely on physical models, which require prior configuration
information about radar sensors. In contrast, the proposed
method utilizes a data-driven approach based on deep
learning, eliminating the need for radar sensor configuration
information. Furthermore, the proposed method is highly
effective in terms of data augmentation. While traditional
methods primarily focus on image and LiDAR data, the
proposed method concentrates on radar data by directly
applying convolution to a point cloud without the need
for conversion into a graph or 3D voxel. Through diverse
experiments, we formulated an optimal translation network
architecture to effectively extract radar features.
In our experiments, we utilized the JARI dataset and

successfully generated realistic radar data using the proposed
method. Additionally, we anticipate that the proposed
model will significantly contribute to driving simulators,
enabling the examination of various autonomous driving
algorithms before real-world implementation. By leveraging

the proposed method, autonomous driving researchers can
save considerable effort and time. For future work, we aim
to enhance the proposed method to handle a broader range of
environments. Since our testing was conducted on a limited
dataset, we intend to gather diverse data from real roads
and further optimize the proposed method for real-world
conditions.
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