
Received 20 February 2023; revised 15 May 2023 and 1 August 2023; accepted 7 November 2023. Date of publication 9 November 2023;
date of current version 29 November 2023.

Digital Object Identifier 10.1109/OJITS.2023.3331449

A Survey on the Use of Container Technologies in
Autonomous Driving and the Case of BeIntelli

BENJAMIN ACAR , MARC GUERREIRO AUGUSTO, MARIUS STERLING,
FIKRET SIVRIKAYA , AND SAHIN ALBAYRAK

Chair of Agent Technology, Technische Universität Berlin, 10623 Berlin, Germany

CORRESPONDING AUTHOR: B. ACAR (e-mail: benjamin.acar@dai-labor.de)

This work was supported by the German Federal Ministry for Digital and Transport (BMDV) through BeIntelli Project under Grant 01MM20004.

ABSTRACT The application of containerization technology has seen a significant increase in popularity
in recent years, both in the business and scientific sectors. In particular, the ability to create portable
applications that can be deployed on different machines has become a valuable asset. Autonomous
driving has embraced this technology, as it offers a wide range of potential applications, including the
operation of autonomous vehicles and the digitization of infrastructure for the development of Cooperative,
Connected, and Automated Mobility (CCAM) services. This paper provides a comprehensive analysis of
containerization in autonomous driving, emphasizing its application, utility, benefits, and limitations.

INDEX TERMS Docker, containerization, automotive, CCAM, autonomous driving.

I. INTRODUCTION

INTELLIGENT systems have been disrupting many
domains such as disease detection in pathology [1],

speech recognition tools [2], and autonomous driving
(AD) [3]. In particular, the use of Artificial Intelligence
(AI) and Machine Learning (ML) techniques is taking center
stage in the development of Intelligent Transport Systems
(ITS) and autonomous mobility solutions. ITS enhances
the functionalities of self-driving vehicles by providing
additional value through the interaction with the edge
(referring to road-side units) and cloud computing resources
(i.e., GPU, CPU) [4], [5]. The digitized infrastructure can
assist intelligent vehicles with a range of capabilities,
including perception [6], routing [7], control [8], warning
systems [9], and communication modules [10]. The applica-
tion of these concepts is extensive, encompassing a range of
applications such as parking lot availability predictions [11],
object detection, Green Light Optimal System Advisory
(GLOSA) [12], just to name a few examples. The integration
of AI and ML techniques into ITS can enable autonomous
vehicles to conclude real-time decisions, which in turn
improves the safety and efficiency of the vehicle’s motion.

The review of this article was arranged by Associate Editor
Goncalo Correia.

As an overarching component, the use of cloud computing
resources can provide the means to support the execution and
training of complex ML algorithms, such as deep learning
models, which helps to improve the accuracy and robustness
of ITS.
The underlying technologies, such as the software tools

and programming languages used, are increasing in number
and variety, including Robot Operating System (ROS) [8],
Python, Kafka [13], C++, among others. With the ever-
growing complexity of autonomous driving systems, the
question arises of how a software stack can respond to
AD, that executes diverse solutions simultaneously and
without interference. Additionally, such systems are desired
to be moderately maintainable and highly automated with
little time from development to deployment. Against this
background, we identify the subsequent key challenges for
the development and deployment of autonomous driving
solutions:
1) managing a complex software stack with multiple

programming languages, libraries, and frameworks,
while supervising and monitoring compatibility
issues;

2) providing scalability and consistency across develop-
ment, test, and deployment environments, critical to
maintaining software quality and performance;

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

800 VOLUME 4, 2023

HTTPS://ORCID.ORG/0000-0001-6206-8869
HTTPS://ORCID.ORG/0000-0003-0067-4761
HTTPS://ORCID.ORG/0000-0001-5092-4584

3) enabling rapid deployment and efficient version control
to meet the fast-paced nature of the industry and the
need for continuous integration and delivery;

4) promoting seamless integration with other systems and
technologies, which is essential for the creation of an
interconnected ecosystem of hardware and software
components.

These challenges underscore the need for innovative
solutions that streamline autonomous systems devel-
opment, deployment, and maintenance while fostering
collaboration and interoperability across the industry and
research.
Lately, architectures consisting of microservices have

been proven to fulfill these required traits [14]. Instead of
developing a large integrated system - as common in the past
- the system is divided into core functionalities embodying
microservices that act as units in an overall system. So-called
containers that address the virtualization of all components in
an application have been shown to be the means of choice for
realizing microservices. The use of containerization increases
steadily, both in industry and science. It allows applications
to be designed in such a way that these can be transferred and
executed on various machines with different hardware and
software characteristics. The potential applications of such
a technology in the field of AD are wide-ranging, including
the basic functions perception, planning and control, and also
more complex concepts such as swarm optimization [15],
road-side perception [16], to name just a few examples. The
industry around AD already recognized the benefit of using
container technologies in their products, e.g., the NVIDIA
DRIVE platform [17].
In the following, we analyze the use of containerization

in autonomous driving, examine where and how it is being
applied, what advantages it has for the respective areas
of application, and analyze its limitations. Furthermore,
we review those advantages in terms of how microservice
architectures can overcome the key challenges introduced
above. Additionally, we compare the results for the case
of the applied AD research project BeIntelli [18]. In
this project, several vehicles and around 20 kilometers of
road infrastructure in the heart of Berlin, Germany, were
digitized with various sensors, computing resources, and
communication units, in order to research and showcase
connected, cooperative and autonomous mobility (CCAM)
solutions.
In the remainder of this paper, Section II describes the

basics of container technologies, followed by Section III,
which classifies containerization use cases for AD. To
emphasize container use cases, Section IV takes reference on
the BeIntelli research project on autonomous mobility, which
looks into the conception, implementation, test and valida-
tion of container-based connected and automated mobility
services. Section V discusses the results, draws a conclusion
and provides insights on future research directions and
opportunities.

FIGURE 1. Comparison of virtual machines and containers own depiction.

II. BASICS OF CONTAINERIZATION
Numerous container runtime technologies are impacting
application development activities, including Docker [19],
rocket (rkt) [20], Container Runtime Interface (CRI-O) [21],
container daemon (containerd) [22], and Microsoft
Containers [23]. Moreover, cluster management, administra-
tion and deployment tools such as Istio [24], Kubernetes [25],
Envoy [26], Apache Mesos [27] and Docker Swarm [19] help
to organize DevOps for containers. This section provides a
summary of the basic concepts of container technology.

A. VIRTUAL MACHINES VS. CONTAINERS
Both virtual machines (VM) and containers represent forms
of virtualization. The difference between the two is the level
at which the virtualization takes place. VMs realize virtu-
alization on the hardware level. A hypervisor is employed
emulateing virtual hardware such as memory, CPU, GPU, to
name a few examples. A VM exists independently among
other VMs and applies its own operating system (Linux,
Windows etc.), on which applications can be deployed [28].
In comparison, a container is a virtualization realized at
the operating system level. Every container isolates a group
of resources and inhabits own processes. As no dedicated
operating system is required, a container can provide more
lightweight virtualization [28]. A visual comparison of
virtual machines and containers can be found in Figure 1.

B. DEVOPS
One of the most important reasons for the use of container
technologies is the ease and pace at which any system can
be put into production. Past approaches to the deployment
of applications have shown high failure rates and extensive
debugging due to missing dependencies or host compatibility
issues. The use of container technologies minimizes these
issues as they embody self-contained units, making the
transition from development to production almost seamless.
These advances in the field of DevOps are one of the main
reasons why container technologies is now used more often
than traditional deployments [29]. Additional, the DevOps
process is simplified by the provision of management and

VOLUME 4, 2023 801

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

FIGURE 2. Deployment workflow in container-based architectures.

deployment tools such as Kubernetes, and orchestration tools
that monitor containers, for instance, used for re-upload in
the case of a failure [25]. The deployment workflow of
container-based architectures is visualized in Figure 2.

C. DOCKER CONTAINER
The most widely used technology in the context of containers
is Docker, launched in 2013 [19]. A Docker container can
be used to deploy applications in such a manner that they
operate isolated in the deployed system, with respect to
deployed containers, too. The layer-wise structure enables the
efficient handling of containers and tier-wise functionality
management. When possible, resources can be conserved
by using the layers on different images. Communication
between conventional virtual machines operates similar to
communication among containers. Every container has a
local IP addressacting as the unique identifier for machines
and containers. Although Docker containers operate indepen-
dently, host directories can be mapped to provide persistence
for the data they contain. The use of Docker containers is far-
reaching, programming language-independent and relatively
easy to set up and use, even with limited IT background.
Images tailored to a vast set of requirements can be found
on the official Docker Hub website [30].

III. CONTAINERIZATION IN AUTONOMOUS DRIVING
We analyze the use of containerization techniques in
terms of their rationale and use cases, by conducting a
literature review. First, as described in the introduction, we
identified the key challenges in developing and deploying
new solutions for autonomous driving. We then searched
popular scholarly databases including CORE and Google
Scholar for papers containing combinations of keywords such
as “autonomous driving”, “container”, “docker”, “intelligent
car”, as well as keywords related to the key challenges, such
as “deployment” and “maintenance”. A complete list of all
keywords used can be found in the Appendix. To ensure

the quality and relevance of the selected literature, we
established several inclusion and exclusion criteria. The
inclusion criteria covered papers that provided a description
of the use of container technologies, original research or case
studies, as well as publications presenting new insights on
whether and how containerization can address the identified
key challenges for the development and deployment of
autonomous driving solutions. We excluded non-English
papers, those with duplicate information already covered by
selected papers, and those lacking sufficient methodological
and technological detail. To minimize bias in the selection
and review process, at least two reviewers from the author
group were involved in the analysis of each paper.
As most of the reviewed papers treat containers as mere

technology enablers and focus on the general aspects of
autonomous driving, they exclude details on the specific
functionalities and benefits of containers in the given
scenario. Therefore, in our analysis below, we enrich the
literature review with additional information on the archi-
tectural features and specific functionalities that container
technologies can prove to be useful in the realization of
autonomous driving applications. In particular, we make
a connection to the key challenges introduced in Section I,
whenever applicable.

A. EXPLORING THE BENEFITS OF CONTAINERIZATION
IN AUTONOMOUS DRIVING USE CASES
The use of containerization technology in autonomous
driving applications is a topic of considerable interest, as it
offers a number of properties that can be exploited to realize
the use cases. In the following discussion, we systematically
examine the reasons for implementing containerization in
autonomous driving and highlight the specific properties that
make it advantageous for these scenarios.
Lightweight: One of the most common reasons for using

container technology is that containers are lightweight

802 VOLUME 4, 2023

virtualizations [31], [32] and are therefore resource-
saving [33], [34]. This means that containers use fewer
resources than traditional virtual machines, which can
help improve the overall performance and stability of the
host machine. This also makes containers more suitable
for resource-constrained environments such as embedded
systems, IoT devices, and edge computing. This property is
further enhanced by the layered structure of Docker images,
which allows specific layers to be used across multiple
images, saving resources [33], [35], [36]. This means that
the same layers, such as the operating system or shared
libraries, can be shared across multiple images, helping
to reduce the overall size and footprint of the images.
This can help in saving storage space and bandwidth and
improve the performance of the container registry. Container
architectures are therefore more scalable [31], [36], [37].
Typically, connected vehicles can communicate with each
other within a limited range, e.g., 250 meters [38]. This
provides little time window for message exchange and coor-
dination among vehicles moving at high speeds. Therefore,
the communication system needs a quick and efficient way
to process and transmit data in scenarios where connected
vehicles exchange information to improve traffic efficiency
and safety. The lightweight nature of containers minimizes
the resource overhead and increases the efficiency of data
processing and communication tasks by ensuring that only
essential components are packaged and executed.
Isolation: One reason why containers are popular in the

automotive domain is their intrinsic property of isolation
in terms of microservice properties [33], [34], [35], [36],
[39]. This means that containers provide a way to break
a monolithic application into smaller, more manageable
and independent services that can be developed, tested
and deployed separately. This can help in improving the
maintainability, scalability and overall performance of the
application. Understanding the effects of vibration on point
cloud data is important for autonomous vehicles, as described
in [40], because vibrations from the vehicle or road
conditions can affect the accuracy and reliability of the
data. Developers can create algorithms that account for or
compensate for the effects of vibration on LIDAR point
clouds by analyzing the data from these tests. Processing
LIDAR tends to be computationally intensive. By providing
an efficient and isolated environment to process LIDAR data
and run analytics to detect and correct for vibration-induced
errors, containers can be beneficial in this scenario. This
would ensure that other critical system components are not
affected and that these tasks run efficiently.
Restrictions: Containers also offer the ability to constrain

applications and their resource usage so that conflicts and
resource bottlenecks that cause crashes and unwanted throt-
tling on host machines can be avoided, even when multiple
services are running [33]. So containers may be configured
to limit their usage of resources like CPU, memory, and
storage. This can help improve the overall performance and
stability of the host machine by ensuring that containers

do not consume more resources than necessary. In addition,
this feature allows multiple services to coexist on the same
machine without causing conflicts or resource bottlenecks.
In developing a blockchain framework designed for smart
mobility data markets (BSMD), as highlighted in [41] it
is crucial to recognize the importance of efficient resource
handling. This is especially important considering the size
of the BSMD network, as the active nodes responsible for
maintaining the ledger may need more processing and stor-
age power. Considering that these nodes may be deployed on
micro-computers, it is imperative that an effective resource-
handling strategy is prioritized in order to minimize the
risk of any potential outages that may occur. Underscoring
the criticality of this aspect in the overall framework of
blockchain technology used in smart mobility data markets,
the success and functionality of the BSMD network are
highly dependent on the reliability and resilience of these
active nodes.
Portability: Containers are widely recognized as a tech-

nology that enables portability. The ability to package and
deploy applications and dependencies as a single unit,
creating a consistent and portable environment, is one of
the key benefits of containerization. This enables conve-
nient portability [31], [32], [39], as the same containerized
application can be deployed on different infrastructures
regardless of the underlying operating system or hardware.
In addition, the flexibility provided by easy portability
makes deployments more agile, allowing organizations to
effortlessly adapt to changing needs and scale their appli-
cations to meet the demands of their users [34], [39]. This
flexibility in turn leads to rapid development and deployment
of distributed applications [32]. By packaging machine
learning models and their dependencies, developers are able
to deploy and maintain consistent model execution across
multiple computing environments efficiently. This portability
can enable vehicles to adapt more effectively to different
traffic situations and environments by seamlessly integrating
pedestrian behavior analysis and trajectory prediction models
into autonomous driving systems [42]. In addition, it can
simplify the process of updating and maintaining the models
as new data and model improvements become available.
This ensures that autonomous driving systems are always
equipped with the latest pedestrian modeling and prediction
advances.
Reproducibility: The ability to create images with all

their application dependencies also makes development
easier [33]. Developers can ensure that the application runs
in a consistent environment, regardless of the underlying
infrastructure, by packaging the application and its dependen-
cies in a single image. This eliminates the need for manual
configuration and setup, which can save developers time
and effort and is particularly useful for reproducibility [43].
Using container images makes replicating the same environ-
ment across different machines effortless. This is particularly
useful for test, staging, and production environments. This
helps to minimize errors and improve the quality of the

VOLUME 4, 2023 803

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

final product. This feature is also beneficial for increasing
the veracity of research experiment results, as it allows
researchers to reproduce the same experiment in multiple
environments, ensuring that the results are consistent and
reliable. It is worth noting that containers have the ability to
guarantee the consistency and reliability of the deployment
of BSMD nodes, as shown in [41]. This can be applied to
a variety of devices and environments, including different
hardware platforms such as microcomputers, e.g., Raspberry
Pis, as well as cloud-based or dedicated servers. Therefore,
regardless of the specific device or environment, using
containers is a highly effective strategy to ensure that the
deployment process remains smooth and stable and that the
BSMD nodes can function optimally.
Orchestration: Another advantage of container technolo-

gies is the ability to use orchestration tools to manage
the containers in terms of monitoring and rescheduling
in case of failure [33]. Container orchestration platforms
such as Kubernetes, Docker Swarm, or Mesos provide a
consistent and unified way to deploy, scale, and manage
containerized applications across different infrastructures.
This allows organizations to easily manage and monitor
their containerized applications, ensuring they are running
smoothly and efficiently. One of the key features of container
orchestration platforms is automatic scaling, which allows
organizations to add or remove containers to meet application
demands conveniently. Running only the required containers
can help improve application performance, availability and
reduce cost. In addition, these platforms offer self-healing
capabilities that allow them to detect and recover from
failures, improving application reliability automatically. For
data management systems in service-oriented testbeds, as
developed in [44], the property of orchestration can be useful.
More specifically, in the Data Processing Layer (DPL),
which provides a way to transport data between entities in
the system, usually from different sources, the orchestration
feature of containers helps to ensure efficient resource
allocation, load balancing, and fault tolerance across data
processing tasks. Thus, such systems can dynamically adapt
to the changing workload and provide better performance,
reliability, and scalability in the processing of the live data
streams in the testbed ecosystem.
CI/CD: The ability to leverage Continuous Integration /

Continuous Delivery (CI/CD) pipelines is another reason
why container technologies are particularly attractive at the
production level [35], [45]. This means that containerization
can be used to automate and streamline the entire software
development life cycle, from writing code to testing and
deploying to production. This can improve the overall quality
and performance of the application by enabling faster and
more reliable deployment of new features and bug fixes.
Using containerization in CI/CD pipelines also enables
faster and more efficient testing, as the same containerized
environment can be used for development, testing, and
production, ensuring consistency and reducing the risk of
errors. Furthermore, the use of containerization facilitates

the realization of DevOps [35], [43], which is a methodol-
ogy that encourages development and operations teams to
collaborate to improve the speed and quality of delivering
software. In addition, containers can be easily deployed,
scaled, and managed across a variety of environments, which
can help to improve the agility of both development and
operations teams. Overall, the use of containerization in
production environments can lead to a more efficient and
maintainable container architecture [43], [46], providing a
number of benefits such as the use of CI/CD pipelines
and the ease of DevOps realization. This can improve the
speed, reliability, and overall quality of the application while
reducing the risk of failure. This is particularly important for
communication-intensive functions such as platooning [47].
CI/CD can ensure faster, more reliable updates with minimal
downtime in platoon dynamics and communication between
RSUs and connected and automated vehicles. Resulting in
a more robust and stable communication system, which is
essential for the efficient and safe operation of participating
vehicles in a platoon.
Quality Assurance: In the field of autonomous driving,

ensuring the quality of software solutions is paramount, as
they are responsible for making critical driving decisions
that can affect the safety of passengers and other road users.
Therefore, using containerization to help ensure quality has
become particularly valuable. The ability to effortlessly
transfer solutions to any machine is one of the key benefits
of containerization in autonomous driving. When testing
and evaluating the performance of autonomous systems, this
feature is especially important. With containers, solutions can
be packaged with all their dependencies and configurations
for convenient migration to different environments. Allowing
developers and testers to simulate real-world scenarios and
evaluate how the autonomous system performs under varying
conditions. They can identify and resolve potential problems
before they occur in the field by testing solutions in different
environments. This increases the reliability and safety of the
autonomous system by ensuring that it can function properly
in a variety of conditions and environments. Therefore, it
assures the quality of the solutions [34], [36].
Privacy Preservation: Containers are gaining popularity

as a secure and privacy-preserving technology [33]. By
separating the application and its dependencies from the
host system, their isolation capability provides an extra
layer of security. This prevents unauthorized access by
limiting access to sensitive data and system resources.
Encapsulating containers also makes it harder for an attacker
to compromise the system. In addition, the smaller attack
surface of containers compared to virtual machines makes it
harder for an attacker to exploit vulnerabilities in the system.
The risk of data breaches is reduced since the separation of
data in containers allows for fine-grained control over access
to sensitive data. All in all, containerization technology
provides a secure and privacy-preserving solution for the
running of applications and the protection of sensitive
data. The process of autonomous driving often involves the

804 VOLUME 4, 2023

collection of data from a variety of sensors, including but
not limited to the Global Positioning System (GPS) and
Electronic Stability Control, as described in [48]. Given the
sheer size and complexity of this data collection process, it
is of paramount importance to protect these sensors from
unauthorized access by other software programs operating
within the vehicle, or by external entities that may threaten
the security and integrity of the data. Underscoring the
criticality of this aspect in the overall autonomous driving
framework. Failure to prioritize the protection of these
sensors can lead to unwanted interference and potentially
disastrous results.
Time Conservation: Containers are widely recognized as

a technique that can increase productivity and save time.
Containerization’s ability to speed up the development and
deployment process is one of its key benefits. Through the
use of containers, developers can package and deploy their
programs and dependencies as a single unit, reducing the
need for manual configuration and setup, e.g., regarding
infrastructure or vehicle hardware and system software.
For developers, this can be a huge saving in terms of
time and effort [33]. It becomes extremely important to
prioritize time savings during the development phase of novel
solutions when it comes to intricate undertakings, such as
the sensor fusion process described in [49]. This is due
to the fact that the complexity of such tasks can lead to
prolonged development duration, resulting in delayed results
and increased resource utilization, both of which can have a
detrimental effect on the overall productivity and profitability
of the project. Therefore, in order to effectively streamline
the development process and optimize output, it is imperative
to place a high level of importance on saving time.
Interoperable Application Scheduling: Because of their

ability to package applications and dependencies together
and deploy them as a single unit, containers allow the
same application to be deployed on different infrastructures,
regardless of the underlying operating system or hardware.
This interoperability allows applications to be easily scaled
and managed across environments [33]. This is important for
software-in-the-loop approaches to automated driving, where
multiple simulation units and a variety of different modules,
e.g., for signal conversion [48], are used. Especially when
running on different platforms and environments, managing
these components and their interactions can be complex and
error-prone.
Finally, the accessibility of Docker container technology

to developers with no previous experience in container-
ization [43] has led to its widespread adoption in recent
years. This is largely due to the simple concepts used in
the technology, allowing for a relatively low barrier to get
started. Docker makes it easy for developers to create and
manage isolated environments for their applications by pro-
viding a user-friendly interface for managing and deploying
containers. The time conservation aspect of containers, as
covered earlier in this section, addresses the key challenge
3 for autonomous driving solutions, i.e., rapid deployment.

DevOps practices are also facilitated, as described in the
CI/CD section. Reproducibility features provide consistency
across different environments, ensured by the interoperable
application scheduling and portability features of con-
tainer technologies. In addition, their lightweight nature
enables scalability and supports higher software quality and
performance, addressing key challenge 2.
On the other hand, containerization has some drawbacks,

such as increased complexity, security concerns, delays in
the process of creating containers, and limitations in the
ability to run stateful applications. [50], [51], [52] highlight
the challenges developers may face when using containers in
production environments. In Section IV-B, we also present
the issues and pitfalls based on our own experience of
designing and deploying the container-based architecture in
the BeIntelli research project.

B. USE-CASES OF CONTAINERIZATION IN
AUTONOMOUS DRIVING
As the field of autonomous driving continues to evolve,
containerization has emerged as a viable solution for a
variety of use cases. Here, in contrast to the previous section,
we explore the specific applications of containerization in
autonomous driving. In the current literature on container-
ization, there is a notable tendency to use the terms ‘Docker’
and ‘containers’ interchangeably. This can be attributed to
the prominent position that Docker currently occupies in the
container technology landscape [53]. Notably, our analysis
of the entirety of the references in question did not reveal
any explicit mention of alternative container technologies
other than Docker. The exact methodology for deploying the
following applications in containers and the number of dif-
ferent containers used to create these deployments cannot be
definitively determined without access to the corresponding
container images. However, given the malleability inherent
in containerization, it is reasonable to postulate that the
entirety of the code is deployed within the container images.
In particular, in scenarios where a single entity serves as
the embodiment of the application, it is likely that all the
required components are contained within a single container
image.
Communication: Reference [35] uses container technolo-

gies to investigate the use of Data Distribution Services,
a data-centric publisher-subscriber middleware standard
enabling service-2-service and service-2-vehicle commu-
nication. By sharing middleware between services via
image layers, [35] presents an approach for developing and
operating future automotive software architectures. Real-
Time Publish-Subscribe-UDP is used to communicate and
OpenDDS to distribute data. The developed solution is tested
on a testbed, which consists of several Raspberry Pis.
Detection: Reference [34] uses Docker to implement

real-time 360◦ tracking and 3D multi-object detection. It
records the trajectories of objects and predicts their future
paths to avoid collisions and other dangerous incidents.
The communication interface is ROS [8]. The developed

VOLUME 4, 2023 805

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

pipeline uses fast encoders for object detection, 3D Kalman
filter, and Hungarian algorithm for state estimation and
data association. The pipelines are validated in simulation
environments using CARLA [54] and in the real world using
an autonomous electric car equipped with NVIDIA AGX
Xavier [55].
Data Generation: Reference [37] presents an automated

pipeline for the automatic generation of city maps for
use in simulations, where each step of the pipeline is
implemented in its own Docker container. With a realis-
tic benchmark, the new maps can then be used to test
autonomous driving features. The maps are generated based
on OpenStreetMap [56]. The geometry is created with
Blender [57], producing FBX files which can be used in the
city generation process. OpenDRIVE is used as the format
specification [58]. Netconvert [59], which is part of the
SUMO package [60], is used to extract the OpenDRIVE file.
The generated data is used for simulation environments, in
particular, CARLA [54].
DevOps: Reference [35] specifically focuses on imple-

menting a service-oriented architecture (SOA) for the
automotive industry to meet DevOps standards. The authors
argue that the fast-paced and highly dynamic environment
of the industry does not lend itself well to traditional
automotive software development processes. To address this,
they propose a SOA. The goal is to improve collaboration and
communication between different teams and departments, in
order to increase flexibility and scalability.
Autonomous Driving Stack (ADS): Reference [36] has

developed an ADS that is divided into layers. Each layer
implements different functionalities of the autonomous car,
such as perception and control. The technologies used are
Docker, ROS [8], and CARLA [54]. The applied concepts
include HD Maps [61], RANSAC-3D algorithm [62], KD
Tree [63], Fast Library for Approximate Nearest Neighbor
(FLANN) [64], Hierarchical Interpreted Binary Petri Nets
(HIBPNs) [65], and Linear-Quadratic Regulator (LQR) [66].
CARLA [54] is used to validate the results in simulation
environments. Reference [45] is developing a cloud comput-
ing platform based on container technologies for simulating
autonomous driving. CarMaker is the technology used. As a
format specification, OpenDrive is applied [58]. The results
are evolved in the simulation environments.
Edge Computing: Reference [33] focuses on a software

stack that runs on edge computing units. The authors aim
to develop an offloading decision engine, an offloading
scheduler, and edge offloading middleware to be deployed
with containers at the edge. The applied concepts include
Multidimensional Knapsack Problem (MMKP) [67], Greedy
Algorithm (GA) [68], Random Algorithms (RA) [69].
Results are validated on real-world edge computing systems.
Reference [31] uses Docker containers to deploy applications
in the context of connected and autonomous vehicles at
the edge of the network. This is done under the Multi-
access Edge Computing (MEC) paradigm. With such an
approach, basic functionalities such as object recognition

can be outsourced to an edge computer, instead of running
on the car’s computing unit. The technologies used include
5G, srsLTE [70], 5G-EmPOWER Software-Defined Radio
Access Network (SD-RAN) [71], Evolved Packet Core
(EPC) [72], nextEPC [73], Open vSwitch [74]. A toy car
is used to validate the experiments in a real-world scenario.
Reference [32] uses containerization to transfer services
between different edges. This way, the service can always be
delivered to the moving car with the lowest possible latency.
The technologies used include 5G Radio Access Network
(RAN) [75], Cellular Vehicle-to-Everything (C-V2X) [32],
PC5 Sidelink Interface [76], ETSI Mobile Edge Computing
(MEC) [77], ME Orchestrator [78]. The results are emulated
on two real MEC devices.
Testing: Reference [43] implements software-in-the-loop

testing using containers to ensure the reliability of systems
and the codebase to tackle the problems of competitor
programs is often difficult to install, intricate to update,
and not always suitable in terms of complexity. The used
technologies include ROS [8], MATLAB, Simulink and code
of the CIRCLES project [79]. The results are validated in
simulation environments. Reference [39] use containerization
to validate a fully-autonomous driving architecture. The
used technologies encompass CARLA [54], ROS [8] and
the RoboGraph tool [65]. The concepts applied include
Hierarchical Interpreted Binary Petri Nets (HIBPN) [65],
Pure Pursuit algorithm [80], A-Star algorithm [81], Beam
Curvature method (BCM) [82], Efficient Residual Factorized
ConvNet (ERFNet) [83], Precision Tracker approach [84],
BEV Kalman Filter [85], Nearest Neighbour algorithm [86].
The results are validated in simulation environments, using
CARLA [54].
Recent research shows that the use cases for containers are

far-reaching, ranging from simulation environments to real-
world applications, and can help develop and deploy new
autonomous driving solutions. The variety of technologies
(ROS, CARLA, Edge Computing, Simulink, etc.) used for
realizing the described use cases and the interplay of
those containerized components show that key challenge 4
can be overcome using container technologies. Therefore,
integration with other systems and technologies is given,
resulting in an interconnected ecosystem of hardware and
software components.

C. COMPARISON TO VIRTUAL MACHINES
As mentioned in Section II-A, virtual machines and contain-
ers differ in their degree of virtualization. Several studies
have compared these virtualization concepts and identified
their relative advantages and drawbacks, which we briefly
discuss in this section. Generally, containers scale better
compared to virtual machines [87]. In terms of storage and
memory, virtual machines utilize a considerable amount of
space and resources on the host machine, while containers
have a more dynamic nature in memory allocation and
require less memory [88]. Furthermore, virtual machines
have a (slightly) higher overhead compared to containers in

806 VOLUME 4, 2023

FIGURE 3. BeIntelli 3-layer architecture, consisting of vehicle, edge and cloud, communication, and respective data exchange.

terms of performance and efficiency [88]. Even with access
to physical memory, virtual machines do not perform as
consistently as containers [87]. The host swaps memory
between disk and physical memory when the number of
links exceeds the capacity of the server. However, there are
certain aspects in which virtual machines are advantageous.
As stated by [88], virtual machines offer a slight security
advantage over containers due to their isolation. This
property plays a crucial role if additional assistant services,
such as GLOSA on the vehicle’s on-board computer, are
executed. Deploying such optional, less important function-
alities alongside crucial driving functionalities, e.g., vehicle
control and perception, makes the driving system more
vulnerable and prone to interference by these functionalities.
Containers can not provide the necessary isolation, while
virtual machines provide additional security. In addition,
virtual machines outperform containers in cryptographic
testing [88]. Since much information in the context of
autonomous driving is sensitive, for example, the GPS signal,

cryptographic approaches are already integrated into the
field [89]. Therefore, saving time in applying these concepts
is beneficial in itself.

IV. BEINTELLI
In this section, we introduce our research project BeIntelli
- Showcase for AI in Mobility based on Platform
Economy [18]. Afterward, we analyze the project in terms
of containerization aspects. The layer-based structure of our
software stack is visualized in Figure 3.

A. APPROACH TO AUTONOMOUS DRIVING
Advances in the field of AI fostered applications such as
autonomous driving and complementing use cases such as
GLOSA [90], Smart Parking [91], Vehicle-on-Demand [92],
navigation or routing. The ratio of smart and digitized
vehicles steadily increases. While large automotive com-
panies such as Mercedes-Benz, Tesla, and BMW are
developing autonomous driving functions, particularly on

VOLUME 4, 2023 807

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

the vehicle level, the expected digitization of infrastructure
by components such as sensors (camera, LIDAR) and
edge computing units, would add to existing approaches of
autonomous driving. First attempts of such systems have
already been made in several projects across the globe [4].
The BeIntelli research project led by the DAI Laboratory
of the Technische Universität Berlin, Germany [18] follows
a threefold approach to autonomous mobility, consisting of
the layers:

• Vehicle: Consisting of a multi-sensor setup, communi-
cation, and computing units

• Edge: Areas defined by roadside units with dedicated
sensor setup, communication, and computing unit

• Cloud: System to provide aggregated data and
predictions, and computing unit

The instances Vehicle, Edge and Cloud communicate, inter-
act and assist each other and thus enable CCAM solutions.
This so-called distributed intelligence approach extends the
vehicle’s perception to areas that would otherwise remain
unreached, which we call collaborative perception. Road-side
perception is realized by edge computing to which mostly
cameras, road-condition sensors, and LIDARs are linked or
directly attached. This data is analyzed in real-time on the
edge, processed, and converted into assistance information
that provides added value for a vehicle’s decision-making.
Through this, vehicle movements can be optimized, safety
can be enhanced, and integrated services can be developed.
Likewise information for non-driving essential services

can be provided to the edge or cloud, collected, processed,
and provided as a service to vehicles or drivers’ smartphones,
e.g., the occupancy status of parking spots for a smart
parking service.

B. CONTAINERIZATION IN BEINTELLI
The BeIntelli project extensively utilizes containerization
through Docker containers, with the majority of services
deployed as microservices. This approach is particularly
common in edge computing and cloud environments, in
which a global Kubernetes cluster orchestrates all applica-
tions. In such a setup Docker containers are commonly used
as the virtualization for Kubernetes [25]. The vehicle itself
is included in the Kubernetes cluster, but due to security
reasons and to achieve unfettered access not all software
components are included. For security, an additional on-
board computer is used to separate services that are not
directly related to controlling, perception and routing the
vehicle from the rest of the system. This ensures that even
in the event of a total failure of the Kubernetes cluster, the
vehicle remains operational. Moreover, this approach allows
the exclusion of potential sources of interference with critical
functionalities like real-time control from additional services
like GLOSA [90]. Services at the cloud level, such as parking
prediction [93] or congestion assistant, are all deployed in
containers as microservices. Services running at the edge are
also packaged in containers and controlled by Kubernetes

orchestration, such as object detection for perception [94].
The same goes for the vehicles - the on-board computer for
running non-critical services is orchestrated by Kubernetes,
and the on-board computer for control, perception, etc. is
not while all services are containerized. To do this, the
underlying ROS used [8] is also containerized. Furthermore,
the communication realized by the Kafka publish and
subscribe technology [13] is deployed in containers. Thus,
instead of pushing information directly to a Kafka broker
to communicate, the information is pushed to a container
that contains a Kafka broker. The communication design
in this project uses Kafka brokers both at the edge and
cloud level. This allows for low-latency conversion of edge-
generated data into messages. It also provides a central
communication hub from which data can be retrieved. For
additional redundancy and data protection, data generated
at the edge is also forwarded to the cloud Kafka broker
using forwarding scripts. Thus, on all levels entities are
implemented in containers.
A platform to facilitate the development, deployment and

testing of CCAM solutions by various stakeholders, includ-
ing companies, start-ups and academia, will be developed
in the context of the BeIntelli project. This requires imple-
menting a pipeline for easy and seamless deployment of
solutions from local machine to the vehicle, infrastruc-
ture, and cloud without requiring extensive access to the
underlying infrastructure and knowledge about it. Docker
containers are particularly well suited for this purpose due
to their ease of portability and ease of use. In addition,
Docker containers’ widespread popularity among developers,
due to its steady growth over recent years, renders it a
familiar technology that is embraced by a wide range of
experts from different fields. This facilitates collaboration
and straightforward and low-threshold solution development
in the autonomous driving space. The experience gained in
the predecessor project of the BeIntelli project suggests that
while serverless approaches are intriguing, they have not
yet gained widespread acceptance among developers. As a
result, architectures based on them are difficult to maintain.
In the BeIntelli project, the use of orchestration tools

such as Kubernetes is essential. This is due to the large
infrastructure and the large number of applications running
on numerous edge computer and different sensor types.
Therefore, deployments in the traditional way are difficult
and require extensive hardware adaption. As indicated, the
hardware is heterogeneous: The first part of the testbed
was built during the predecessor project, Diginet-PS [95],
and the BeIntelli project extends it in a second phase.
The experience gained during the first digitization phase
and technological advances have influenced the choice of
hardware and components for the second digitization phase.
The different hardware must be considered while ensuring
software compatibility across all devices.
The exploitation of tools like Kubernetes has further

advantages besides the mentioned beneficial core feature. To
manage communication between various system components

808 VOLUME 4, 2023

and external services, e.g., cloud-based data storage or real-
time traffic updates, customizable networking is essential
in the context of autonomous driving. For example, by
optimizing data transfer and reducing latency for time-
critical operations, such as sensor fusion or (collaborative)
perception, the networking options provided by Kubernetes
allow developers to design a network architecture that meets
the unique requirements of their autonomous driving system.
This is done by leveraging the Kubernetes namespace
and networking policies. Autonomous driving systems have
complex configurations with many parameters including
sensor calibrations, control algorithms, and communication
protocols among others. Kubernetes ConfigMaps and Secrets
objects allow developers to manage these configurations
more efficiently by keeping them in a central location. This
makes it easier to track and versioning configurations, and
ensure consistency throughout the development lifecycle.
With this setup developers can easily switch between
different configurations of for example camera calibration
parameters by switching to different ConfigMaps in order to
test and compare performance in different scenarios.
Regarding portability, containerization is critical for seam-

lessly integrating autonomous driving solutions into different
vehicle models and hardware platforms. For example,
without having to customize the software stack, an
autonomous driving system developed for one of the cars can
be adapted and deployed in other vehicles by migrating the
Docker container. This is especially important for software
solutions that are supposed to be adapted for different
vehicles or vehicle types. In the case of the BeIntelli project,
there are a variety of vehicle types, such as a car, minibus,
SUV, and bus, all using the same software stack. As the
employed autonomous driving solutions evolve and become
more sophisticated, they may also require more processing
power and storage capacity, for example, due to more
complex sensor setup with more cameras and LIDARs in
the bus in contrast to cars. Containers’ scalability ensures
that our growing needs can be met without significant
reconfiguration of the underlying infrastructure. And because
the BeIntelli project is a research project, it requires testing
and evaluating, for which containers allow quickly deploying
updates, such as refined algorithms for object recognition or
path planning, to accelerate development and research.
Another advantage is the container ecosystem, more

precisely, of Docker. For example, many out-of-the-box
images are already available such as the map handling
library Lanelet2 [96], which reduces development time and
effort. As described above, all our applications and units
are deployed in containers. Therefore we explicitly use
the modularity principle of container technology to make
our system more robust against shutdowns, less complex,
and more maintainable. Incremental updates also save us
significant time and resources during the development pro-
cess. For example, developers can update only the affected
layer within the Docker container instead of rebuilding the
entire autonomous driving system when a change is made

to the vehicle’s control. This allows us to iterate faster
and deploy improvements and bug fixes more efficiently,
ultimately accelerating the development of safer and more
robust autonomous driving solutions. Since the complete on-
vehicle sensor recordings are huge (about 1.6 TB per 1h
drive), this is particularly important.
As shown, container technology has many advantages.

However, it also has some disadvantages. One such drawback
is the opaque versioning of code that can occur with
container technology. In practice, the code running in a
Docker container may not be able to be accurately correlated
to the appropriate code repository, leading to confusion
and difficulty when changes are needed. This is especially
problematic for organizations with large development teams
and complex codebases. It can be difficult to determine
which version of code is running in production and which
version of code is being worked on in development without
a clear correspondence between the code running in the
container and the specific code repository. Our solution to
this problem is the implementation of a system that uniquely
identifies the correspondence between code and specific
repositories, as well as the state of the repository. This is
very useful in large environments because it streamlines
development processes and reduces confusion. By adding
configuration files to all Docker containers that outline the
specific version of code running in each container, the system
provides automated tools for versioning and tagging code.
This allows developers to easily identify the appropriate code
repository and version when changes are needed, and it also
makes it easier to roll back to previous versions of code
when necessary. It also improves security and compliance in
large environments by providing a clear and accurate record
of the code running in each container. It helps ensure that
only approved versions of code are running in production.
It also makes it easier to identify and fix any vulnerabilities
that may exist in the code. Therefore, the key challenge 3, in
terms of version control, can not be met by default through
container technology. However, with small effort, this feature
can be implemented as well.
The expectation that only a single main process should

run inside each container is another limitation of Docker
containers. While the intent of this design principle is to
enforce application modularization, it can also be a constraint
limiting application flexibility in certain cases. For example,
if an application requires multiple main processes to run
concurrently, it must create multiple containers. This can
lead to increased resource consumption and management
complexity. To our knowledge, using a supervisor tool is the
only way to work around this limitation which requires the
creation of a complex configuration file. This would need
to be created and maintained manually and could be prone
to errors, causing the application to behave unexpectedly. In
addition, this approach may add an extra layer of complexity
to the application, making it more difficult to understand and
maintain. However, at this time, without using workarounds
such as the supervisor daemon to run multiple processes

VOLUME 4, 2023 809

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

FIGURE 4. Applications of container technology in the research project BeIntelli.

within a container, we are not aware of a straightforward
method for starting multiple main processes simultaneously
within a single container.
Efficiently managing and distributing Docker containers to

edge computers is another challenge. It is critical to optimize
the distribution of container layers to edge devices based
on predictive analytics, as the deployment of autonomous
vehicles relies on real-time processing and decision-making.
However, it proved to be a complex task to accurately predict
the requirements and efficiently transfer the necessary layers
in advance to save time when deploying those whenever
required. Since edge computers are limited in terms of
computational power, storing all container images on every
machine is not a valid approach. Therefore, extensive
planning and coordination is required to ensure that the
right layers are available in the right place at the right
time.
Orchestrating for infrastructure-enhanced autonomous

driving is also difficult. Kubernetes is a widely used
orchestration tool, though it was not designed specifically for
the unique requirements of autonomous driving use cases.
Our project includes digitized infrastructure components like
cameras that provide over-the-horizon perception capabili-
ties. The integration of these digital assets with traditional

orchestration frameworks is a challenge, for instance because
of the limited resources on each edge computer. Thus, an
orchestration tool was required that could efficiently leverage
the digitized infrastructure while taking into account the
specific needs of autonomous driving, such as real-time
sensor data processing and coordination with vehicle control
systems.
In summary, despite certain limitations, the use of con-

tainer technology has proven to be a viable solution for the
BeIntelli project. Container technology’s advantages, such as
improved scalability and reduced complexity, outweigh its
disadvantages, like opaque versioning and limited number
of main processes. A large number of applications have
been successfully deployed and orchestrated within the
project’s extensive infrastructure through the use of container
technology. These applications are developed in different
languages (Java, Python, HTML/CSS, JavaScript etc.), use
different libraries (React, TensorFlow etc.) and are deployed
on different virtual and physical machines. Therefore our
project confirms that container technology overcomes the key
challenge 1 in developing and managing a complex software
stack. Overall, the decision to adopt container technology
was sound. A visualization of our container architecture is
provided in Figure 4.

810 VOLUME 4, 2023

V. DISCUSSION & CONCLUSION
With the advent of autonomous driving several key chal-
lenges emerged that must be addressed to realize its full
potential. These challenges include a complex software
stack with multiple programming languages and libraries,
the need for scalability and consistency across different
units, the need for rapid deployment coupled with effi-
cient version control, and seamless integration with other
systems. Container technologies have emerged as powerful
tools that mitigate many of these challenges, improving
the overall development and management of autonomous
driving systems. Docker’s containerization approach greatly
simplifies the management of complex software stacks by
encapsulating dependencies and isolating execution envi-
ronments. This reduces the complexity associated with the
integration of different programming languages, libraries,
and other components, and also streamlines the development
process and ensures that developers can focus on their
core tasks without being bogged down by compatibility
issues. Additionally, containers’ lightweight nature enables
easy scalability and improved consistency across entities.
Regardless of the underlying infrastructure, this ensures that
the performance and behavior of autonomous systems remain
stable and predictable. Containers promote rapid deployment
of these systems while minimizing inconsistencies arising
from different execution contexts by providing a unified and
standardized environment. In spite of the many benefits that
container technologies offer, it is important to recognize
that they do not provide a robust version control system
by themselves. However, container technologies play an
important role in facilitating seamless integration with
other system, which is especially crucial in the context
of autonomous driving, where integrating various sensors,
communication systems, and other subsystems is essential to
achieve desired functionality and safety. Containers greatly
simplify the integration process and ensure that different
subsystems work together harmoniously by providing a
standardized environment that can accommodate diverse
components.
The BeIntelli project, which utilizes Docker contain-

ers extensively, is a prime example of containerization
technology’s advantages and effectiveness in infrastructure-
enhanced autonomous driving. Using Docker containers and
Kubernetes orchestration allows for friendly deployment,
testing, and compatibility across various hard- and software
stacks while ensuring the separation of crucial functionalities
and protecting against total system failure. Additionally,
the communication in the project is also implemented in
containers, using especially Kafka publish-and-subscriber
technology. The BeIntelli project also aims to develop a
platform that facilitates the development, deployment, and
testing of CCAM solutions by various stakeholders, using
Docker containers as the foundation for our pipeline. Overall,
the research suggests that containerization technology is
a crucial enabler for the successful implementation of
autonomous driving solutions, nowadays and in future.

VI. FUTURE WORK
In the following, we provide insights on possible future
research directions based on our work.

A. PREDICTIVE LAYER TRANSFER
As more applications require software to be deployed
across multiple nodes or machines, including infrastructure-
enhanced autonomous driving, the use of distributed systems
has become increasingly common in modern computing. To
achieve optimal performance and scalability in such systems,
the efficient transfer of software, data, and other resources is
essential. Service demand predictions in distributed systems
is one promising area [97]. Software can be transferred to the
required locations in a timely manner, reducing delays and
improving overall performance, by predicting the demand
for a specific service. However, the potential benefits of
predicting in distributed systems are not limited to moving
complete services through the network. There is also an
opportunity to predict demand for specific software layers
in the context of Docker-based systems. By analyzing usage
and demand patterns and identifying the most effective
predictive variables, this can be accomplished. These layers
can be moved to different registry locations for use as
needed by predicting the demand for specific layers. The
benefits of being able to predict the demand for specific
layers in Docker-based systems might be significant. The
prediction model can be refined and fine-tuned for optimal
results by optimizing the layer structure. A number of
factors must be considered, including the size and complexity
of the layers, the frequency of use, and the degree of
interdependency between layers. How the prediction should
be performed to achieve the best possible accuracy is also
an important consideration. This can include using various
machine learning techniques and algorithms to analyze
patterns in usage and demand. For example, one might
use clustering to identify groups of layers with common
usage, or regression to predict demand for specific layers
based on historical usage data. Another important question
is whether there are differences between the prediction of
demand for specific layers and the prediction of demand for
complete container images or software packages. This is an
area that needs further investigation. However, it is likely
that predictive models would need to be adjusted depending
on the level of granularity required. For example, prediction
of demand for specific layers may require a more granular
approach, while prediction of demand for full images may
be better suited to a broader, more holistic approach.

B. OPTIMIZED ORCHESTRATION FOR
INFRASTRUCTURE-ENHANCED AUTONOMOUS DRIVING
A variety of research questions and opportunities arise
from exploring the application of orchestration tools for
infrastructure-enhanced autonomous driving. How orches-
tration paradigms may need to be adapted or extended to
meet the unique requirements of this specific use case is
a fundamental aspect to be explored. We should examine

VOLUME 4, 2023 811

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

the different orchestration strategies required to manage
the complex interactions between autonomous vehicles and
digitized infrastructure components, and the tradeoffs arising
from such adjustments. Key research questions that need to
be addressed may include the following:
1) How can the orchestrator dynamically assign and

manage resources based on the changing needs of
autonomous vehicles and infrastructure components to
provide optimal performance?

2) To create a flexible and efficient hybrid infrastructure,
what strategies can be employed to facilitate seamless
orchestration across different cloud providers, edge
devices, and on-premises systems?

3) How can we develop intelligent policies for the orches-
tration system that can adapt to changing conditions
such as network congestion, hardware failures, or
changing computing needs?

Challenges related to scalability, real-time computing, secu-
rity, edge computing, fault tolerance, network optimization,
and resource management must be addressed to optimize
orchestration for a testbed with digitized road infrastructure
and autonomous vehicles. We should research on a more
efficient and robust orchestration system that can effectively
manage the complex interactions between different com-
ponents in this highly dynamic environment by exploring
research questions in areas such as dynamic resource alloca-
tion, cross-platform orchestration, intelligent policies, energy
efficiency, predictive resource management, interoperability,
and monitoring.

APPENDIX
The keywords used for the literature research in this article
are (in alphabetical order): Autonomous Driving, CARLA,
Communication, Container, Data, Data Acquisition,
Deployment, DevOps, Docker, Edge, Edge Computing, Fog,
Fog Computing, Intelligent Car, Maintenance, Software,
SUMO, Test Environment, Testing.

ACKNOWLEDGMENT
Furthermore, the authors acknowledge support by the
German Research Foundation and the Open Access
Publication Fund of TU Berlin.

REFERENCES
[1] M. Y. Lu et al., “AI-based pathology predicts origins for cancers of

unknown primary,” Nature, vol. 594, no. 7861, pp. 106–110, 2021.
[2] S. K. Gaikwad, B. W. Gawali, and P. Yannawar, “A review on speech

recognition technique,” Int. J. Comput. Appl., vol. 10, no. 3, pp. 16–24,
2010.

[3] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey
of autonomous driving: Common practices and emerging technolo-
gies,” IEEE Access, vol. 8, pp. 58443–58469, 2020.

[4] M. Augusto, A. Hessler, J. Keiser, N. Masuch, and
S. Albayrak, “Towards intelligent infrastructures and AI-driven
platform ecosystems for connected and automated mobility
solutions,” in Proc. ITS World Congr., vol. 27, 2021, pp. 2364–2373.

[5] Z. Bai, G. Wu, X. Qi, Y. Liu, K. Oguchi, and M. J. Barth,
“Infrastructure-based object detection and tracking for cooperative
driving automation: A survey,” in Proc. IEEE Intell. Veh. Symp., 2022,
pp. 1366–1373.

[6] D. Gruyer, V. Magnier, K. Hamdi, L. Claussmann, O. Orfila, and
A. Rakotonirainy, “Perception, information processing and modeling:
Critical stages for autonomous driving applications,” Annu. Rev.
Control, vol. 44, pp. 323–341, Oct. 2017.

[7] A. Bhat, S. Aoki, and R. Rajkumar, “Tools and methodologies
for autonomous driving systems,” Proc. IEEE, vol. 106, no. 9,
pp. 1700–1716, Sep. 2018.

[8] A. Koubâa et al., Robot Operating System (ROS), vol. 1. Cham,
Switzerland: Springer, 2017.

[9] J. D. Rupp and A. G. King, “Autonomous driving—A practical
roadmap,” SAE, Warrendale, PA, USA, Technical Paper, 2010.

[10] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1243–1274, 2nd Quart., 2018.

[11] Y. Zheng, S. Rajasegarar, and C. Leckie, “Parking availability
prediction for sensor-enabled car parks in smart cities,” in Proc. IEEE
Tenth Int. Conf. Intell. Sens., Sens. Netw. Inf. Process. (ISSNIP), 2015,
pp. 1–6.

[12] B. Bradaï, A Garnault, V. Picron, and P. Gougeon, “A green
light optimal speed advisor for reduced CO2 emissions,” in Energy
Consumption and Autonomous Driving. Cham, Switzerland: Springer,
2016, pp. 141–151.

[13] “Kafka,” Accessed: Oct. 14, 2022. [Online]. Available:
https://kafka.apache.org/

[14] E. Wolff, Microservices: Grundlagen Flexibler Softwarearchitekturen.
Heidelberg, Germany: Dpunkt.verlag, 2018.

[15] S. Kachroudi, M. Grossard, and N. Abroug, “Predictive driving guid-
ance of full electric vehicles using particle swarm optimization,” IEEE
Trans. Veh. Technol., vol. 61, no. 9, pp. 3909–3919, Nov. 2012.

[16] R. Yu, D. Yang, and H. Zhang, “Edge-assisted collaborative perception
in autonomous driving: A reflection on communication design,” in
Proc. IEEE/ACM Symp. Edge Comput. (SEC), 2021, pp. 371–375.

[17] “Nvidia drive platform,” Accessed: Apr. 26, 2023. [Online]. Available:
https://developer.nvidia.com/drive/docker-containers

[18] “Beintelli,” Accessed: Oct. 15, 2022. [Online]. Available: https://be-
intelli.com/

[19] “Docker,” Accessed: Oct. 14, 2022. [Online]. Available: https://
www.docker.com/

[20] “RKT,” Accessed: Nov. 20, 2022. [Online]. Available: https://
www.redhat.com/

[21] “CRI-O,” Accessed: Nov. 20, 2022. [Online]. Available: https://cri-
o.io/

[22] “Containerd,” Accessed: Nov. 20, 2022. [Online]. Available: https://
containerd.io/

[23] “Windows container,” Accessed: Nov. 20, 2022. [Online]. Available:
https://learn.microsoft.com/

[24] “Istio,” Accessed: Nov. 20, 2022. [Online]. Available: https://istio.io/
[25] “Kubernetes,” Accessed: Oct. 15, 2022. [Online]. Available: https://

kubernetes.io/de/
[26] “Envoy,” Accessed: Nov. 20, 2022. [Online]. Available: https://

www.envoyproxy.io/
[27] “Apache Mesos,” Accessed: Nov. 20, 2022. [Online]. Available: https://

mesos.apache.org/
[28] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers

and virtual machines at scale: A comparative study,” in Proc. 17th
Int. Middleware Conf., 2016, pp. 1–13.

[29] C. Anderson, “Docker [software engineering],” IEEE Softw., vol. 32,
no. 3, pp. 102–104, May/Jun. 2015.

[30] “Docker hub,” Accessed: Oct. 14, 2022. [Online]. Available:
https://hub.docker.com/

[31] E. Coronado, G. Cebrián-Márquez, and R. Riggio, “Enabling
autonomous and connected vehicles at the 5G network edge,” in Proc.
6th IEEE Conf. Netw. Softwarization (NetSoft), 2020, pp. 350–352.

[32] C. Campolo, A. Iera, A. Molinaro, and G. Ruggeri, “MEC support for
5G-V2X use cases through docker containers,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), 2019, pp. 1–6.

[33] J. Tang, R. Yu, S. Liu, and J.-L. Gaudiot, “A container based edge
offloading framework for autonomous driving,” IEEE Access, vol. 8,
pp. 33713–33726, 2020.

[34] C. Gómez-Huélamo et al., “360◦ real-time and power-efficient 3D
DAMOT for autonomous driving applications,” Multimedia Tools
Appl., vol. 81, pp. 26915–26940, Jan. 2022.

812 VOLUME 4, 2023

[35] S. Kugele, D. Hettler, and J. Peter, “Data-centric communication and
containerization for future automotive software architectures,” in Proc.
IEEE Int. Conf. Softw. Archit. (ICSA), 2018, p. 6509.

[36] C. Gómez-Huélamo et al., “How to build and validate a safe and
reliable autonomous driving stack? A ROS based software modular
architecture baseline,” in Proc. IEEE Intell. Veh. Symp. (IV), 2022,
pp. 1282–1289.

[37] A. Mondal, P. Tigas, and Y. Gal, “Real2sim: Automatic generation of
open street map towns for autonomous driving benchmarks,” in Proc.
NIPS, 2020, pp. 1–5.

[38] K. Higashiyama, K. Kimura, H. Babakarkhail, and K. Sato, “Safety
and efficiency of intersections with mix of connected and non-
connected vehicles,” IEEE Open J. Intell. Transp. Syst., vol. 1,
pp. 29–34, 2020.

[39] C. Gómez-Huélamo et al., “Train here, drive there: ROS based end-
to-end autonomous-driving pipeline validation in CARLA simulator
using the NHTSA typology,” Multimedia Tools Appl., vol. 81, no. 3,
pp. 4213–4240, 2022.

[40] B. Schlager, T. Goelles, M. Behmer, S. Muckenhuber, J. Payer, and
D. Watzenig, “Automotive lidar and vibration: Resonance, inertial
measurement unit, and effects on the point cloud,” IEEE Open J.
Intell. Transp. Syst., vol. 3, pp. 426–434, 2022.

[41] R. Al Mallah, D. López, and B. Farooq, “Cyber-security risk
assessment framework for blockchains in smart mobility,” IEEE Open
J. Intell. Transp. Syst., vol. 2, pp. 294–311, 2021.

[42] V. Papathanasopoulou, I. Spyropoulou, H. Perakis, V. Gikas, and
E. Andrikopoulou, “A data-driven model for pedestrian behavior
classification and trajectory prediction,” IEEE Open J. Intell. Transp.
Syst., vol. 3, pp. 328–339, 2022.

[43] S. Bhaskaran, “Software-in-the-loop testing for autonomous vehicles
with docker,” Dept. Electr. Eng. Comput. Sci., Univ. California,
Berkeley, CA, USA, Rep. UCB/EECS-2022-135, 2022.

[44] J. Möller, D. Jankowski, A. Lamm, and A. Hahn, “Data management
architecture for service-oriented maritime testbeds,” IEEE Open J.
Intell. Transp. Syst., vol. 3, pp. 631–649, 2022.

[45] N. Ren, R. Jiang, and D. Zhang, “Research on CarMaker and cloud
computing platform co-simulation based on APO,” In Proc. J. Phys.
Conf. Series, 2021, Art. no. 12020.

[46] D. R. Niranjan, B. C. VinayKarthik, and Mohana, “Deep learning
based object detection model for autonomous driving research using
CARLA simulator,” in Proc. 2nd Int. Conf. Smart Electron. Commun.
(ICOSEC), 2021, pp. 1251–1258.

[47] R. A. Shet and S. Yao, “Cooperative driving in mixed traffic: An
infrastructure-assisted approach,” IEEE Open J. Intell. Transp. Syst.,
vol. 2, pp. 429–447, 2021.

[48] C. Stadler, F. Montanari, W. Baron, C. Sippl, and A. Djanatliev,
“A credibility assessment approach for scenario-based virtual testing
of automated driving functions,” IEEE Open J. Intell. Transp. Syst.,
vol. 3, pp. 45–60, 2022.

[49] Y. H. Khalil and H. T. Mouftah, “LiCaNet: Further enhancement
of joint perception and motion prediction based on multi-modal
fusion,” IEEE Open J. Intell. Transp. Syst., vol. 3, pp. 222–235, 2022.

[50] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker
and analysis of its performance,” Int. J. Comput. Sci. Netw. Security,
vol. 17, no. 3, p. 228, 2017.

[51] P. Liu et al., “Understanding the security risks of docker hub,” in
Proc. Eur. Symp. Res. Comput. Security, 2020, pp. 257–276.

[52] R. Yasrab, “Mitigating docker security issues,” 2018,
arXiv:1804.05039.

[53] “Statista.” Accessed: Apr. 17, 2023. [Online]. Available: https://
www.statista.com/statistics/1256245/containerization-technologies-
software-market-share/

[54] “Carla.” Accessed: Jan. 12, 2023. [Online]. Available: https://carla.org/
[55] “Nvidia.” Accessed: Jan. 12, 2023. [Online]. Available: https://www.

nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-
agx-xavier/

[56] “Openstreetmap.” Accessed: Jan. 12, 2023. [Online]. Available: https://
www.openstreetmap.de/

[57] “Blender.” Accessed: Jan. 12, 2023. [Online]. Available:
https://www.blender.org/

[58] “Opendrive.” Accessed: Jan. 12, 2023. [Online]. Available: https://
www.asam.net/standards/detail/opendrive/

[59] “Netconvert.” Accessed: Jan. 12, 2023. [Online]. Available: https://
sumo.dlr.de/docs/netconvert.html

[60] “Sumo.” Accessed: Jan. 12, 2023. [Online]. Available:
https://www.eclipse.org/sumo/

[61] Q. Li, Y. Wang, Y. Wang, and H. Zhao, “HDMapNet: An online
HD map construction and evaluation framework,” in Proc. Int. Conf.
Robot. Autom. (ICRA), 2022, pp. 4628–4634.

[62] R. A. Kuçak, “The feature extraction from point clouds using
geometric features and RANSAC algorithm,” Adv. LiDAR, vol. 2,
no. 1, pp. 15–20, 2022.

[63] J. L. Bentley, “K-D trees for semidynamic point sets,” in Proc. 6th
Annu. Symp. Comput. Geomet., 1990, pp. 187–197.

[64] M. Muja and D. Lowe, FLANN-Fast Library for Approximate Nearest
Neighbors User Manual, Dept. Comput. Sci., Univ. British Columbia,
Vancouver, BC, Canada, 2009.

[65] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using
hierarchical binary Petri nets to build robust mobile robot applica-
tions: Robograph,” in Proc. IEEE Int. Conf. Robot. Autom., 2008,
pp. 1372–1377.

[66] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos,
“The explicit linear quadratic regulator for constrained
systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[67] H. Kellerer, U. Pferschy, and D. Pisinger, “Multidimensional knapsack
problems,” in Knapsack Problems. Heidelberg, Germany: Springer,
2004, pp. 235–283.

[68] R. A. DeVore and V. N. Temlyakov, “Some remarks on greedy
algorithms,” Adv. Comput. Math., vol. 5, no. 1, pp. 173–187, 1996.

[69] R. Motwani and P. Raghavan, “Randomized algorithms,” ACM
Comput. Surveys, vol. 28, no. 1, pp. 33–37, 1996.

[70] “SrsLTE.” Accessed: Jan. 12, 2023. [Online]. Available:
https://www.srslte.com/

[71] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER:
A software-defined networking platform for 5G radio access
networks,” IEEE Trans. Netw. Service Manag., vol. 16, no. 2,
pp. 715–728, Jun. 2019.

[72] T. Hayashi, “Evolved packet core (EPC) network equipment for long
term evolution (LTE),” Fujitsu Sci. Tech. J, vol. 48, no. 1, pp. 17–20,
2011.

[73] “NextEPC.” Accessed: Jan. 12, 2023. [Online]. Available:
https://nextepc.com/

[74] “Open vSwitch.” Accessed: Jan. 12, 2023. [Online]. Available:
https://www.openvswitch.org/

[75] T. O. Olwal, K. Djouani, and A. M. Kurien, “A survey of resource
management toward 5G radio access networks,” IEEE Commun.
Surveys Tuts., vol. 18, no. 3, pp. 1656–1686, 3rd Quart., 2016.

[76] R. Molina-Masegosa, J. Gozalvez, and M. Sepulcre, “Configuration
of the C-V2X mode 4 sidelink PC5 interface for vehicular communi-
cation,” in Proc. 14th Int. Conf. Mobile Ad-Hoc Sens. Netw. (MSN),
2018, pp. 43–48.

[77] “ETSI.” Accessed: Jan. 12, 2023. [Online]. Available: https://
www.etsi.org/technologies/multi-access-edge-computing

[78] A. Hegyi, H. Flinck, I. Ketyko, P. Kuure, C. Nemes, and L. Pinter,
“Application orchestration in mobile edge cloud: placing of IoT
applications to the edge,” in Proc. IEEE 1st Int. Workshops Found.
Appl. Self* Syst. (FAS* W), 2016, pp. 230–235.

[79] “Circles.” Accessed: Jan. 12, 2023. [Online]. Available: https://circles-
consortium.github.io

[80] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Robot. Inst., Univ. Carnegie-Mellon, Pittsburgh, PA, USA,
Rep. CMU-RI-TR-92-01, 1992.

[81] K. Rana and M. Zaveri, “A-star algorithm for energy efficient
routing in wireless sensor network,” in Trends in Network and
Communications. Heidelberg, Germany: Springer, 2011, pp. 232–241.

[82] J. A. Benayas, J. L. Fernández, R. Sanz, and A. R. Diéguez, “The
beam-curvature method: A new approach for improving local realtime
obstacle avoidance,” IFAC Proc. Vol., vol. 35, no. 1, pp. 409–414,
2002.

[83] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet:
Efficient residual factorized convnet for real-time semantic segmenta-
tion,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 263–272,
Jan. 2018.

[84] D. Held, J. Levinson, and S. Thrun, “Precision tracking with sparse
3D and dense color 2D data,” in Proc. IEEE Int. Conf. Robot. Autom.,
2013, pp. 1138–1145.

[85] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960. 1960.

VOLUME 4, 2023 813

ACAR et al.: SURVEY ON THE USE OF CONTAINER TECHNOLOGIES IN AD AND THE CASE OF BEINTELLI

[86] J. H. Friedman, F. Baskett, and L. J. Shustek, “An algorithm for
finding nearest neighbors,” IEEE Trans. Comput., vol. 100, no. 10,
pp. 1000–1006, Oct. 1975.

[87] A. M. Joy, “Performance comparison between Linux containers and
virtual machines,” in Proc. Int. Conf. Adv. Comput. Eng. Appl., 2015,
pp. 342–346.

[88] R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose, “Performance
analysis of virtual machines and containers in cloud comput-
ing,” in Proc. Int. Conf. Comput., Commun. Autom. (ICCCA), 2016,
pp. 1204–1210.

[89] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, “The security of
autonomous driving: Threats, defenses, and future directions,” Proc.
IEEE, vol. 108, no. 2, pp. 357–372, Feb. 2020.

[90] D. Krajzewicz, L. Bieker, and J. Erdmann, “Preparing simulative
evaluation of the GLOSA application,” in Proc. CD ROM 19th ITS
World Congr., 2012, Art. no. EU-00630.

[91] M. Y. I. Idris, Y. Y. Leng, E. M. Tamil, N. M. Noor, and Z. Razak, “Car
park system: A review of smart parking system and its technology,” Inf.
Technol. J., vol. 8, no. 2, pp. 101–113, 2009.

[92] J. B. Greenblatt and S. Shaheen, “Automated vehicles, on-demand
mobility, and environmental impacts,” Current Sustain. Renew. Energy
Rep., vol. 2, no. 3, pp. 74–81, 2015.

[93] F. Caicedo, C. Blazquez, and P. Miranda, “Prediction of parking
space availability in real time,” Expert Syst. Appl., vol. 39, no. 8,
pp. 7281–7290, 2012.

[94] D. M. Gavrila and V. Philomin, “Real-time object detection for ‘smart’
vehicles,” in Proc. 11th IEEE Int. Conf. Comput. Vis., vol. 1, 1999,
pp. 87–93.

[95] “Diginet-PS.” Accessed: Oct. 15, 2022. [Online]. Available:
https://diginet-ps.de/en/home/

[96] “Lanelet2.” Accessed: Apr. 17, 2023. [Online]. Available:
https://github.com/fzi-forschungszentrum-informatik/Lanelet2

[97] S. Ma, S. Guo, K. Wang, and M. Guo, “Service demand prediction
with incomplete historical data,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2019, pp. 912–922.

BENJAMIN ACAR received the master’s degree
in technomathematics (mathematics with a minor
in physics) from the Karlsruhe Institute of
Technology, Germany. He is currently pursu-
ing the Ph.D. degree in computer science
with Technische Universität Berlin, focusing on
multiagent systems. Previously, he worked as
a Risk Analyst in one of the largest German
banks. His research interests encompass dis-
tributed systems, machine learning, and software
engineering.

MARC GUERREIRO AUGUSTO is a computer sci-
entist who has been working as a consultant in
the port logistics industry with an emphasis on
process optimization and automation. He currently
leads the BeIntelli Research Project, exploring AI
in mobility based on platform economy, a unique
showcase project on autonomous driving in the
heart of Berlin. He also acts as Partner and a
Program Manager with the Center for Tangible AI
and Digitalization (ZEKI). His research focuses on
platform economy and distributed AI for CCAM
solutions.

MARIUS STERLING received the master’s degrees
in statistics from the Joint Masters Program
in Berlin, a cooperation between Humboldt-,
Technische, and Freie Universität Berlin, and in
statistics for smart data from the École Nationale
de la Statistique et de l’Analyse de l’Information,
Rennes, France. He currently leads the sub-project
responsible for platform development and creat-
ing selected showcase services within BeIntelli
Research Project. His research interests encompass
data science, applied machine and deep learning,

and CCAM, with a particular interest in CCAM-based smart and efficient
parking systems.

FIKRET SIVRIKAYA received the bachelor’s degree
in computer engineering from Bogazici University,
Istanbul, Turkey, in 2000, and the Ph.D. degree
in computer science from Rensselaer Polytechnic
Institute, NY, USA, in 2007. Since 2008, he
has been working as a Senior Researcher
and a Lecturer with Technische Universität
Berlin, Germany. He has also been serving as
the Research Director of the German-Turkish
Advanced Research Center for ICT, an affiliated
institute of TU Berlin, Berlin, Germany, since

2016. His research interests include future mobile networks, Internet of
Things, and artificial intelligence, with an application focus on intelligent
transport systems and smart cities.

SAHIN ALBAYRAK received the Ph.D. degree in
computer science and the Habilitation degree
from Technische Universität Berlin, Germany,
in 1992 and 2002, respectively. He currently
holds the Chair Agent Technologies in Business
Applications and Telecommunication, TU Berlin
as a Full Professor, where he is the Founder and
the Head of the Distributed Artificial Intelligence
Laboratory. He is also the Founding Director of
the Connected Living Association, the German-
Turkish Advanced Research Centre for ICT, and

the Center for Tangible AI and Digitalization (ZEKI), Berlin, Germany.
His research interests include distributed systems, machine learning,
cybersecurity, multiagent systems, and autonomous systems, with their
particular applications in autonomous driving, smart cities, smart energy
systems, telecommunications, and preventive health.

814 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

