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ABSTRACT While automotive radars are widely used in ADAS and autonomous driving, extrinsic and
temporal calibration of automotive radars with other sensors is still daunting due to the sparsity, uncertainty,
and missing elevation angles of automotive radar measurements. We propose a target-based calibration
approach of 3D automotive radar and 3D LiDAR that performs extrinsic and temporal calibration in both
factory and on-road settings. In factory calibration settings, a map is built with precise target poses; target
trajectories are estimated based on map-based target localization in which the accuracy of both nearby
and faraway target pose estimates can be ensured. The spatial and temporal relationships between radar
and LiDAR measurements are established with target trajectories to accomplish extrinsic and temporal
calibration. The proposed data collection procedure provides sufficient motion for analyzing time delay
between sensors and can significantly reduce the data collection effort and time. There is 52.3% distance
error reduction after time delay compensation in the experiment, which shows the improvements of
temporal calibration. In on-road calibration settings, the metal objects with semantic labels, such as traffic
signs, are selected as calibration targets. Although there could be insufficient correspondences to infer the
missing dimension of planar radar for six DoF extrinsic calibration as demonstrated in factory calibration
settings, the three extrinsic parameters and the time delay are shown still to be accurate. We validated
the proposed method using the nuScenes datasets, which provide sensor measurements, poses, and HD
map. With twenty-two data logs, each has over 1000 correspondences, the result of extrinsic parameters
reaches centimeter-level accuracy compared with the offered benchmark. The time delay compensation
improves 1 meter error for radar tracking in a 20 m/s vehicle case and improves mapping quality in real
world data.

INDEX TERMS Radar, LiDAR, extrinsic calibration, temporal calibration.

I. INTRODUCTION

MACHINE perception in assisted and autonomous
driving is critical. Sensor fusion is capable of ensuring

and improving the performance and reliability of machine
perception modules. Among various kinds of sensors, radars

The review of this article was arranged by Associate Editor Pardis
Khayyer.

and LiDARs are widely used for sensor fusion. A LiDAR can
offer dense environment measurements which could often be
degraded in adverse weather conditions. On the other hand,
an automotive radar provides sparse detection points with
radial velocities, which would not be influenced by weather
such as rain, fog, and snow.
Sensor calibration is a fundamental and critical procedure

for sensor fusion. Precise calibration enables the fusion of
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FIGURE 1. Sensor rack on the test vehicle equipped with a Velodyne HDL-32E
LiDAR and a Delphi ESR radar.

sensor data from multiple sources, leading to higher-level
perception and more robust autonomous systems [1], [2].
There have been a number of studies on calibration between
LiDARs, cameras or IMUs [3], [4], [5], [6], [7], [8],
[9], [10]. Although automotive radars are widely used in self-
driving vehicles, very few works in the literature address the
radar-LiDAR calibration [11], [12]. While calibration could
include intrinsic, extrinsic, and temporal calibration, we
focus on extrinsic and temporal calibration and assume that
intrinsic calibration is accomplished by the sensor manufac-
turers. In this paper, we propose a novel method to perform
extrinsic and temporal calibration between an automotive
radar and a 3D LiDAR that can adapt in both factory and
online settings. Fig. 1 shows the test vehicle equipped with
the sensors used in this work. In addition, the nuScenes open
datasets [13] are used for verifying the proposed approach
in the on-road settings.
In the nuScenes datasets, we observe that radar has around

0.05 second time delay, which can causes one meter error
for a vehicle at 20 m/s speed which could be severe on
safety. Most of the recent works [3], [4], [5], [6], [7], [8],
[9], [10] on temporal calibration between camera, LiDAR or
IMU are based on sensor motion alignment, which aligns the
estimated motions of different sensors to infer the time delay
between the sensors. The performance of these calibration
approaches highly depends on the accuracy of sensor motion
estimation. However, when the calibration involves a radar,
these approaches could not perform well as the estimation of
radar motion is not accurate enough due to the sparseness and
uncertainty of radar measurements. Accordingly, we apply a
target trajectory alignment approach in this work. Owing to
the uncertainty of radar measurements, rapid velocity of the
target relative to the radar and LiDAR sensors is preferred
during data collection for ensuring the time delay’s observ-
ability. In our previous work [14], the long range targets
with planar automotive radar’s yaw rotation motion is used
to magnify time delay effects. The LiDAR target localiza-
tion method is proposed to deal with the sparse LiDAR
measurements in far range.
In this work, we propose an algorithm and a data col-

lection procedure that can calculate extrinsic and temporal
calibration parameters in both factory and on-road scenarios.

The general idea of the proposed method is to leverage
a target trajectory alignment approach to enable extrin-
sic and temporal calibration between automotive radar and
3D LiDAR sensors. The proposed method effectively deals
with sparse LiDAR measurements at a far range by uti-
lizing a LiDAR target localization method. Our approach
is designed to be adaptable for both factory settings and
on-road scenarios. For factory calibration, a pre-built map
of the calibration environment, designed targets, and spe-
cific motion generation of the sensor rack are required to
establish correspondence and generate sufficient deviation
for calibration. While on-road calibration could be essential
for calibration parameter deviation diagnosis on daily opera-
tions of self-driving vehicles, the proposed method can also
accomplish on-road calibration with sensor measurements,
pre-selected targets, and a pre-built map. Due to the state-
of-the-art (SOTA) LiDAR-based detectors have low accuracy
for faraway objects [15], the proposed target localization
method (Section III-C) would be more suitable for on-road
calibration. The proposed on-road calibration method is val-
idated on the nuScenes dataset [13]. It provides LiDAR and
radar measurements with annotation and metadata includ-
ing calibration, maps, vehicle coordinates, etc. The nuScenes
Boston dataset is chosen for on-road calibration and the result
compared with offered calibration benchmark. For the target
selection, traffic lights are chosen as pre-selected targets in
this work, which could be stably measured by automotive
radars. The target locations are estimated with the maps and
the vehicle pose estimates from LiDAR-based localization.
Notice that only 3 DoF extrinsic parameters and time

delay can be estimated with limited targets candidates
in on-road scenarios due to a lack of the radar cross-
section (RCS)-elevation dependence which is required to
infer the missing dimension in 6 DoF extrinsic calibration in
Peršić et al. [11], [12]. Although there are more interference
and restrictions in on-road scenarios, the estimated extrin-
sic parameter reaches centimeter-level accuracy. Comparing
to the offered benchmark, the errors are under 0.08 meter
and 0.03 degree. The estimated time delay is 0.05 s and
the improvement on time delay compensation is also vali-
dated on fundamental autonomous driving modules such as
mapping and object tracking in Section V.

This paper is based on our previous work [14], where the
LiDAR target localization for calibration and the approach
of 3D LiDAR–radar temporal calibration were presented. We
extend our work with three novel contributions. Firstly, we
proposed an efficient data collection approach that stream-
lines the calibration procedure. Sufficient yaw and pitch
motions are directly applied to the sensors in which cor-
respondences across radar horizontal and vertical FoV are
established for obtaining RCS-elevation dependence. This
simplifies the data collection procedure from a day of work
to an hour process. Secondly, since motion is generated
in the data collection procedure, the time delay estimation
is combined into the reprojection error minimization stage.
Thirdly, we present an on-road calibration solution, which is
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distinct from our previous work. This solution addresses the
challenge of calibrating LiDAR and radar systems in real-
world driving scenarios. We demonstrate the effectiveness
of our approach through on-road experiments and showcase
the improvements with downstream tasks, including object
tracking and mappings. The core contribution of this paper is
not just the proposal to attain extrinsic and temporal calibra-
tion between radar and LiDAR. It’s also about proving the
effectiveness under laboratory conditions as well as on-road
scenarios.

II. RELATED WORK
The extrinsic calibration methods can be categorized as
target-based or target-less, online or offline, depending on the
characteristics of sensors and application scenarios. Besides,
motion-alignment based approaches are applied for tempo-
ral calibration since the effects of time delay could be only
observable when a sufficient motion is applied to the sensors
or calibration targets. In this section, the related research on
extrinsic and temporal calibrations of radar and LiDAR is
discussed.

A. RADAR-RELATED EXTRINSIC CALIBRATION
For studies on radar-related extrinsic calibration, most stud-
ies focus on calibration between radar and camera. Since
metal materials are easily detected by radar, metal objects
are often used as targets. For instance, a metal panel is used
to estimate a 3 × 3 homography matrix mapping the radar
measurements into the camera image plane [16]. A more
common choice is corner reflectors as its specific design
ensures the reflected waves to propagate along their inci-
dent direction and return to their source, i.e., corner reflectors
can provide reliable measurements with higher RCS values
comparing with other objects. Sugimoto et al. [17] move the
corner reflector up and down to find the measurements with
local maximum in intensities and use these measurements
to optimize a homography transformation matrix.
While the aforementioned radar calibration approaches

provided decent results, these approaches could not accom-
plish full six degrees of freedom (6-DoFs) extrinsic cal-
ibration between radar and camera. The main reason is
that planar automotive radars only provide two-dimensional
measurements while missing the elevation information. This
causes the main difficulty in estimating accurate 6-DoF
extrinsic parameters between automotive planar radars and
other sensors. To solve this issue, Peršić et al. [11], [12]
use RCS values to infer the missing dimension of the pla-
nar radar because the RCS values vary with the elevation
angles. In [11], the radar’s nominal FoV in the LiDAR data
is fitted by encompassing as many measurements with high
RCS values as possible. The RCS value distribution across
radar’s vertical FoV is modelled as a curve function of the
elevation of the target [12]. An accurate 6-DoF transforma-
tion between radar and LiDAR, or between radar and camera
can then be estimated.

More recently, with the emergence of 4D radars, a number
of approaches utilize the additional elevation information
to calibrate the 6-DoF extrinsic parameters between 4D
radar and LiDAR. Heng [18] proposes a 6-DoF target-less
calibration method by optimizing point-to-plane distances
between radar scans and a 3D map. Using 4D radar veloc-
ity measurements, Wise et al. [19] also propose a target-less
calibration approach which minimizes the errors between the
radar velocity measurements and the motion of other sensors.
Although these approaches can accomplish 6-DoF calibra-
tion with fewer restrictions, it is still challenging to calibrate
planar automotive radars, which are still more widely used
in autonomous vehicles currently.

B. LIDAR-RELATED EXTRINSIC CALIBRATION
There have been extensive research on LiDAR-camera cali-
bration in which using specific designed target is a common
choice. For instance, [20] used multiple planar checkerboard
patterns to perform calibration in a single shot. A white
polygonal planar board was used in [21] since the board
is easier to be perceived by camera and LiDAR. In order
to estimate the targets’ 3D poses from images, ArUco tags
are used in [22]. The ArUco tags are printed on the rect-
angular boards such that LiDAR can perceive the targets as
well. 3D-3D correspondences in LiDAR and camera mea-
surements can be established accordingly. A planar target
with four circular holes is used in which the centers of
four circular holes can be estimated through LiDAR point
cloud and stereo point cloud [23]. Contrary to target-based
approaches, some research focuses on using the features
from outdoor environments. In [24], [25], calibration is com-
pleted via data alignment of laser depth and image edges of
outdoor environments. Besides, road markings can also be
used for the optimization of extrinsic parameters [26]. Since
these approaches use environment features, they could be
implemented as online/on-road calibration.
Compared with calibration between LiDAR and cam-

era, there are fewer works on LiDAR-IMU calibration. The
method in [27] is able to estimate 6 DoF extrinsic parameters
between LiDAR and IMU as it uses room corners as target.
In [28], a trajectory based hand-eye calibration method is
proposed in which both large and small trajectories are used
to estimate the rotation and translation respectively.

C. TEMPORAL CALIBRATION
Most of the recent works on temporal calibration between
cameras, LiDAR or IMU are target-less, motion-alignment
based approaches [3], [4], [5], [6], [7], [8], [9], [10].
Following the same motion-alignment principles, we present
an approach to accomplish temporal calibration of auto-
motive radar and 3D LiDAR. Since the motion and the
trajectory estimation using radar are less accurate compared
to LiDAR, camera, and IMU, a target-based, trajectory-
alignment approach is proposed in this work.
Specifically for the field of automotive radar and 3D

LiDAR calibration, Peršić et al. [11], [12] used RCS values

710 VOLUME 4, 2023



FIGURE 2. The targets in the experiment area. The objects which have stable radar
measurements are chosen as targets.

to infer the missing dimension of the automotive radar to
achieve 6-DoF extrinsic calibration. However, they only
addressed the extrinsic calibration of radar LiDAR cali-
bration. Our previous work [14] addressed both extrinsic
and temporal calibration problems of automotive radar and
LiDAR with two-stage optimization and validated the effec-
tiveness of the method in terms of both extrinsic and temporal
calibration compared to [11], [12]. We extend our work with
a simplified data collection approach, incorporating extrin-
sic and temporal calibration into one stage, and on-road
calibration solution.

III. SENSORS CORRESPONDENCE ESTABLISHMENT
The proposed method is a target-based calibration in which
targets are used to establish the spatial and temporal rela-
tionships between radar and LiDAR. With the established
correspondences, the spatial transformation and the temporal
delay between sensors can be estimated.
The target designed in factory-setting experiments fol-

lows [11], [12] which combines a corner reflector and a
triangular styrofoam board for radar and LiDAR detection
respectively as shown in Fig. 2(a). The proposed on-road
calibration system follows the same approach to establish
the correspondence with a given semantic map. The metal
material objects, e.g., traffic light and traffic sign as shown
in Fig. 2(b) which can be stably measured by radar are suit-
able as pre-selected targets without placing additional targets
on roads.

A. ESTIMATING THE TARGET CENTER FROM THE LIDAR
MEASUREMENTS
Although LiDAR can provide dense 3D point measurements,
the measurements could still become sparse for long-range

FIGURE 3. Point cloud map of experiment environment.

FIGURE 4. Triangle Model-fitting.

objects, resulting in the accuracy decrease of target center
estimation. Following our earlier work [14], rather than esti-
mating the target center directly, the target center is estimated
via LiDAR localization in which the target pose is given in
the pre-built map. By doing so, the centers of long-range
targets can be estimated more precisely, and the overlap of
FoV between radar and LiDAR is not necessary. In the data
collection process, it is only necessary to ensure the targets
can be perceived by radar. The approach is divided into two
steps.

1) MAPPING AND LOCALIZATION

A point cloud map of the experiment environment can
be built as shown in Fig. 3 by using the existing SLAM
algorithms/systems. And the transformation lTm(tj) from
the map frame to the LiDAR frame at time tj can
be estimated via LiDAR-based localization, e.g., Iterative
Closest Point (ICP) [29] and Normal Distribution Transform
(NDT) [30].

2) ESTIMATION OF THE TARGET CENTER

By simply transforming poses of target centers from the map
frame Fm to the LiDAR frame Fl, the target centers at each
LiDAR scan are computed. For factory setting experiment,
a triangle model is defined and optimized to fit the edge
points of the board for each target to estimate the target
pose in the map as shown in Fig. 4. We extract the edge
points from the LiDAR measurements by using geometric
and intensity information and adapt triangle model fitting to
estimate the accurate target pose in the pre-built map [14].
For on-road setting experiments, rather than detecting target
center directly, it would be more suitable and accurate to

VOLUME 4, 2023 711



LEE et al.: EXTRINSIC AND TEMPORAL CALIBRATION OF AUTOMOTIVE RADAR AND 3-D LiDAR

FIGURE 5. The closest measurement of the searching region is selected as a target
candidate. Black point: LiDAR map and LiDAR scan; red point: radar measurement;
blue box: searching regions where targets are at the centers of the regions.

obtain target pose from the offered semantic map. The radar
observability should be considered while selecting the type
of target.
We denote the position of the k-th target in the map as

mplk, and the target center in the LiDAR frame lplk at time
tj can be estimated by the following equation:

lplk
(
tj
) = lTm

(
tj
)m
plk. (1)

B. ESTIMATING THE TARGET CENTER FROM THE
RADAR MEASUREMENTS
A radar measurement includes the measured range rrr,
azimuth angle rφr, and RCS value δr, where the left super-
script represents a measurement resides at the radar frame
Fr and the right subscript means the measurement is mea-
sured from the radar. Since most automotive radars do not
provide vertical information for measurements (i.e., the ele-
vation angle is missing), there is a potential arc in which the
measured object can reside in 3D space for each radar mea-
surement. For most radar applications, the projected point
on the radar plane Pr (of elevation angle equals 0) is often
used as the position of an object. However, the missing ele-
vation angles would cause a non-negligible estimation error
when calibrating an automotive radar with other sensors.
Nevertheless, the missing components such as z-translation,
pitch, and roll, can still be refined by RCS values. The details
will be discussed in Section IV-B.
Compared to LiDARs, there could be insufficient object

structure information from radar measurements and it could
be difficult to extract targets directly from radar measure-
ments. With LiDAR target center estimation and an initial
approximate transformation, possible target location regions
are speculated. We select radar measurements which are clos-
est to the centers of these regions as targets as shown in
Fig. 5 and track the targets during the data collection pro-
cess. At time ti the target center estimation of the k-th target:
rsrk(ti) = [rrrk(ti)rφrk(ti)] with the RCS value δrk(ti) can be
collected for extrinsic and temporal calibration. The details
will be discussed in Section III-C.

C. CORRESPONDENCE ESTABLISHMENT
To associate the data from the automotive Radar and LiDAR,
the target centers estimated from LiDAR are transformed into
the radar frame by an initial approximate transformation rTl.

We follow the two-step optimization proposed by
Peršić et al. [12]. The transformation rTl from Fl to Fr
includes two parts: [rtll�r], where rtl = [tx ty tz] and
l�r = [θz θy θx] denote the translation part from Fl to Fr,
and rotation part from Fr to Fl. The Euler angle represen-
tation is used in the rotation part l�r, where θz, θy, θx are
yaw, pitch and roll, and the rotation matrix R is given by:

R
(
l�r

)
= Rx(θx)Ry

(
θy

)
Rz(θz) (2)

where Rx,Ry,Rz are the rotation matrix along x, y, z axis
respectively. The target center lplk(tj) estimated from LiDAR
is transformed to the radar frame as rplk(tj):

rplk
(
tj
) = rTl

lplk
(
tj
) = R

(
l�r

)T
lplk

(
tj
) + rtl (3)

The radar measurements which are closest to rplk(tj) and
within a predefined distance threshold is chosen as the target
center estimates. Since the target centers estimation from
radar is described in the spherical coordinate system, rplk(tj)
is converted to the representation in spherical coordinate as
rslk(tj) = [rrlk(tj)rφlk(tj)rψlk(tj)] for reprojection process in
Section IV-A. In addition, linear interpolation [31] is used to
compensate for timestamp differences. It should be noted that
uncertainties in the map and the localization module could
degrade the performance of LiDAR target center estimation.
The accuracy of the map and the localization approaches
should be analyzed and could be further improved to obtain
better calibration results. Once the correspondences between
radar and LiDAR measurements are established, extrinsic
and temporal calibration could be accomplished using these
correspondences.

IV. EXTRINSIC AND TEMPORAL CALIBRATION
In our previous work [14], we follow the two-stage
optimization procedure proposed by [11], [12], which
include the reprojection error minimization and RCS
optimization to accomplish extrinsic calibration, and then
perform the temporal calibration stage. According to the
proposed data collection method which contains rapid sensor
motions, the time delay effects should be directly considered.
In this work, the time delay is optimized in the reprojec-
tion error minimization stage. The time delay effects on the
extrinsic parameters are analyzed in Section V-A.

Since the on-road measurements do not contain sufficient
RCS-elevation dependence (see Section V-B), the RCS
optimization stage is not performed in on-road calibra-
tion. On-road calibration only performs reprojection error
minimization to estimate 3 DoF extrinsic parameters and
time delay. We propose an iterative procedure for on-road
calibration and the flow chart is shown in Fig. 6 More detail
will be discussed in Section V-B.
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FIGURE 6. The flow chart of the on-road calibration implementation.

FIGURE 7. Reprojection error (εik ). Blue filled circle: k -th LiDAR target in radar
frame at time ti (r slk (ti )); blue hollow circle: the projection of LiDAR target; red hollow
circle: the projection of k -th radar target in radar frame at time ti + δt(r srk (ti + δt)).

A. REPROJECTION ERROR MINIMIZATION
The 6 DoF extrinsic parameters are represented as a
parameter set cp = [rtll�r]. Accordingly, the LiDAR data
rslk(ti) = [rrlk(ti)rφlk(ti)rψlk(ti)] for each correspondence
can be obtained, and projected into the radar plane by ignor-
ing the elevation angle rψl,i. Considering the time delay term,
we assume the time delay between radar and LiDAR is a
constant time δt and each radar data would be compensated.

Therefore, the reprojection error term εik is defined as the
distance between the projected LiDAR data and compensated
radar data on the radar plane in which rψlk(ti) =r ψrk(ti+δt)
= 0◦ as shown in Fig. 7.

εik
(
cp, δt

) =
∥∥∥
∥

[
rrlk(ti) cos(rφlk(ti))
rrlk(ti) sin(rφlk(ti))

]

−
[
rrrk(ti + δt) cos(rφrk(ti + δt))
rrrk(ti + δt) sin(rφrk(ti + δt))

]∥
∥∥∥ (4)

The calibration parameters ĉp, δ̂t are obtained by minimiz-
ing the cost function using the Levenberg-Marquardt (LM)
algorithm implemented by the Ceres Solver [32]:

ĉp, δ̂t = arg min
cp,δt

(
N−1∑

i=0

K−1∑

k=0

ε2
ik

)

(5)

The cost function is the sum of the squares of the reprojection
error across N × K correspondences. N is the number of
LiDAR scans, K is the number of calibration targets.

B. RCS OPTIMIZATION
Once the reprojection error minimization is completed, the
six calibration parameters are estimated. However, tz, θy,

FIGURE 8. The demonstration of RCS error. Black point: measured RCS value; black
line: expected RCS value from estimated RCS-elevation dependence; red dash line:
RCS error.

θx would have higher uncertainty comparing with other
parameters since the elevation angles of measurements are
neglected in the projection process. Consequently, these three
parameters are refined in the stage of the RCS optimization.
Since a radar emits the largest amount of radiation at

the zero elevation angle, the RCS measurements should be
dependent on the elevation angle of the target. Following
Peršić et al. [12], the RCS-elevation dependence can be
modelled as a curve where the expected RCS value is
defined as:

δ̂l(ti) = c2 · rψl(ti)
2 + c0, (6)

where c0, c2 are the curve parameters. Accordingly, the RCS
optimization parameter set consists of a subset of extrinsic
parameters and curve parameters: cδ = [tz θy θx c0 c2].
Fig. 8 shows the meaning of the RCS error term which is
defined as the expected RCS value δ̂l and the measured RCS
value δr:

εi(cδ) = δ̂l(ti)− δr(ti) (7)

The cost function is defined as the sum of squares of RCS
error and the parameter set ĉδ is obtained by minimizing the
cost function using the Ceres Solver [32]:

ĉδ = arg min
cδ

(
N−1∑

i=0

εi(cδ)
2

)

. (8)

V. EXPERIMENTS
The proposed calibration method is verified with both our
datasets collected in a factory calibration setting and the
nuScenes open datasets in on-road calibration settings.

A. FACTORY CALIBRATION
The factory calibration section is divided into four parts: the
experiment setups, the target setups, the motion generation,
and the factory calibration results. Since reprojection error
minimization and RCS optimization are based on differ-
ent optimization criteria, different target setups and motion
generation method are used and described respectively.
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FIGURE 9. The targets are placed in an open area. Multiple targets are used to
collect more target measurements and accelerate the calibration process.

1) EXPERIMENT SETUPS

The sensors we use were the Velodyne HDL-32E 3D-LiDAR
and the Delphi ESR V9.21.15 radar whose frequencies are
10 Hz and 20 Hz respectively. The sensor rack equipped
with sensors can collect data easily, and can be placed on
the top of a vehicle after calibration as shown in Fig. 1.

Since the used Delphi radar does not offer timestamp for
each measurement, we generate the measurement timestamps
from both sensors according to the computer’s system clock
in our data collection process. The addition delays would
occur from communication, operating system, and Robot
Operating System (ROS) and we assume those delays are
summed to be a constant.

2) TARGET SETUPS

In this work, the target design follows our previous
work [14]. The plastic materials which has low radar echo
intensity is used to build the target stand. Thus, the actual
target positions could be estimated by radar RCS threshold-
ing. We choose the corner reflectors with 0.2 m side length.
The corner reflectors are large enough to ensure the RCS val-
ues from the target are strong and distinguishable. Since the
radar target center estimation would become unstable while
other objects are close to targets in distance, the experiments
were conducted in an uncluttered space as shown in Fig. 9.
For reprojection error minimization, the four targets

are separately placed at rrr = [5, 10, 15, 20] m, rφr =
[30, 15,−15, 0]◦ initially, and ensured to be perceived by
radars simultaneously. For RCS optimization, it is preferred
that the targets are placed near and different azimuth angles
to ensure the stability and observability of RCS measure-
ments. The three targets are placed at rrr = [5, 10, 10] m,
rφr = [0,−30,+30]◦ and adjusted to point towards radar
initially.

3) MOTION GENERATION

For reporjection error optimization, we give the sensors
an yaw motion to obtain wide measurements distribution
across radar horizontal FoV efficiently. Since the time delay
would influence extrinsic calibration results due to motion,
the time delay is also optimized in the reprojection error

TABLE 1. Simulation: The mean of error between estimated parameters and ground
truth with different motion speed.

FIGURE 10. The comparison of the spatial distribution across transformed LiDAR
data between the proposed method and our previous work which follows
Peršić et al. [12]. Each correspondence is colored according to it RCS measurement.
Black dash line: radar’s vertical FoV.

minimization stage. According to our previous work [14],
the rapid motion of sensors is required for ensuring the accu-
racy of time delay estimation. To confirm this statement, a
simulation generated based on experiments and target set-
tings is performed in which noise components according
to the specifications of radars and LiDARs are added. The
simulated measurements are generated for 10000 runs with
corresponding angular velocities of sensors in a fixed time
period, 30 seconds. Table 1 shows the higher angular veloc-
ity, the lower error on time delay while other parameters are
still estimated accurately. Accordingly, rapid motions of the
sensor rack would be preferred to estimate time delay accu-
rately. However, while a Velodyne LiDAR is used in this
work, rapid motion would lead to a distortion in LiDAR
measurements. Following our previous work, the rectifica-
tion approach which compensates the motion is applied to
resolve the distortion issue.
The RCS optimization is based on the observation that

RCS measurements would have different value distributions
across radar’s vertical FoV. Thus, the correspondences at
different elevation angles with respect to radar are required.
In the previous studies [11], [12], [14], the targets are placed
at different heights ranging from the ground level up to a
2 m height to meet the requirements. Instead, we give the
radar a slow motion of pitch changes so as to acquire dense
observations of target at different elevation angles efficiently
as shown in Fig. 10. In practice, the motions are generated
by two people who hold each side of the sensor rack. For
each data collection task, the sensor rack is rotated to obtain
the measurements distributing in the radar FOV as stable as
possible (see the video in the supplemental materials).
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TABLE 2. Monte Carlo analysis: Calibration result of two-stage optimization.

TABLE 3. Time delay effort analysis.

4) FACTORY CALIBRATION RESULTS

The two-stage optimization is accomplished and the calibra-
tion results for reprojection error minimization ĉp, δ̂t, RCS
optimization ĉδ , the tape measured translations ˜rtl are listed
below:

• ĉp = [ − 0.23 m, −0.02 m, +0.19 m,
32.96◦, 1.053◦, 6.137◦]

• δ̂t = −0.095 s
• ĉδ = [ + 0.296 m, +1.422◦, −1.256◦]
• ˜rtl = [ − 0.22 m, −0.03 m, +0.27 m]

In this setting, the initial guess was set to be
[rtl,l�r|δt] = [tx, ty, tz, θz, θy, θx| δt] =
[0 m, 0 m, 0 m, 0◦, 0◦, 0◦| 0 s], where we used carefully
tape measured translations and roughly adjusted θz such that
the correspondences could be established as described in
Section III-C. In our previous work [14], while time delay
is estimated after extrinsic calibration, the data collection
with slow motion is requested for extrinsic calibration to
reduce the influence of the time delay. In Table 3, we ana-
lyze how the time delay influence the extrinsic parameters
in the proposed data collection method. While considering
the time delay and setting the initial guess to –0.1 s which is
close to the estimated time delay, the previous method [14]
would converge near the proposed method. However, while
the time delay is ignored and set to 0 s, the θz has about 0.75◦
deviation to compensate the time delay effort according to
the motion.
We also performed Monte Carlo experiments for 1000

runs by randomly sub-sampling all the correspondences into
half of the original number. The results are fitted with a
Gaussian distribution and the estimated parameters are shown
in Table 2. In the reprojection error minimization stage, tz,
θy, θx have larger variances than other parameters. After

FIGURE 11. The distribution of range error and azimuth error. Blue: before
reprojection error minimization; red: after reprojection error minimization.

RCS optimization, the variances of those three parameters
are decreased significantly and the means are refined as well.
It could be observed that there are slight differences

between the estimated parameters in translation and the
tape measurements. The differences could originate from the
imprecision in tape measurements and the limits of accuracy
in radar measurements (±0.25 m for range accuracy; ±1◦
for azimuth accuracy [33]).
To assess the quality of the calibration results after repro-

jection error minimization, we examine the distribution of
range errors (rrl −r rr) and azimuth errors (ral −r ar) of all
correspondences as shown in Fig. 11. The result shows that
there are 93.2% correspondences with the range error within
the range accuracy; 79.8% correspondences with the azimuth
error within the azimuth accuracy which would make sense
according to radar specification.
Given the spatial transformation estimated from reprojec-

tion error minimization, the performance of the temporal
calibration is shown in Fig. 12. With the time delay com-
pensation, the radar data are well aligned with transformed
LiDAR data and the average reprojection error has 52.3%
improvement in which the error is reduced from 0.35 m to
0.167 m.
For RCS Optimization, Fig. 13 shows the relation between

the RCS value and the elevation angle rψlk(ti) of transformed
LiDAR data. In contrast to the result in the reprojection error
minimization stage, most target measurements are located
outside radar’s vertical FoV and have a symmetrical pattern
across radar’s elevation central after RCS value optimization.

B. ON-ROAD CALIBRATION
Comparing to the factory calibration, the on-road calibra-
tion performs in outdoor driving scenario in which there are
more restrictions on targets and sensors motions. The pur-
pose of on-road calibration could be to diagnose calibration
parameters deviation and to offer a preliminary calibration.
In detail, we use nuScences offered extrinsic parameters with
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FIGURE 12. The comparison of time delay compensation at the target. Black curve:
transformed LiDAR data; green points: radar data before temporal compensation; blue
points: radar data after temporal compensation.

FIGURE 13. RCS distribution across the elevation angle of transformed LiDAR data.
Blue points: before RCS optimization; red points: after RCS optimization; black dash
line: radar’s vertical FoV.

addition bias and zero time delay as initial guess, pre-built
semantic map, and vehicle pose to estimate the target center
with measurements and establish the correspondences for a
period of time in the beginning. The established correspon-
dences are then used in reprojection error minimization to
estimate extrinsic parameters and time delay. The result of
this cycle would be treated as initial guess in the next cycle
and this procedure would be iterated until the calibration
parameters converge as shown in Fig. 6.

The nuScenes dataset [13] provides radar, LiDAR mea-
surements, LiDAR pose and semantic maps in urban areas,
which is suitable for verifying the performance of the
proposed approach in on-road scenarios. In the categories
of semantic map objects, traffic lights should be one of the
best choices as pre-selected targets since traffic lights could
be measured by radar steadily, as shown in Fig. 14.
However there are still other objects, such as pedestrian,

pole and vehicle, which interfere the radar measurements
as shown in Fig. 15, the calibration performance would
decrease comparing to factory calibration settings. Since the
target measurements provided by traffic sign are less accurate

FIGURE 14. The demonstration of measurements and targets in on-road calibration.
Black point: LiDAR map and LiDAR scan; red point: radar measurement; blue box:
searching region where target at the center.

FIGURE 15. The interfering objects on road which would degrade the radar target
estimation. Black point: LiDAR measurement; red point: radar measurement; blue
box: searching regions where target at the center. (a) Pedestrian (b) Pole (c) Vehicle

compared to reflector, extended Kalman filter (EKF) tracking
is performed to refine the target trajectories. The LiDAR pose
and traffic light annotation offered by nuScenes are used for
LiDAR target center detection. It is observed that the RCS
optimization would have low accuracy. It is shown that the
RCS value and the target distance is not strongly correlated
in Fig. 17 which does not follow the RCS-elevation depen-
dence. Thus, RCS optimization does not involve in on-road
calibration of the nuScenes datasets in this work.
Besides, it should be noted that the annotation of the

traffic light is marked on the traffic light box, specifically.
However, the traffic light’s metal pole also provides firm
radar measurement. This raised the concern of whether the
radar measurement comes from the traffic light box or pole.
We have inspected the structure of traffic lights in all exper-
iments’ data logs and concluded that there are two types
of traffic light structures, as shown in Fig. 16. There is no
disturbance for those traffic light boxes far from the pole
(Fig. 16(a)). For the traffic light boxes close to the metal
pole, we use extended Kalman filter (EKF) to track the
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FIGURE 16. The two types of traffic light structures in on-road calibration
experiment.

FIGURE 17. The relationship between the RCS value and the target distance for
designed target and traffic light.

traffic light’s trajectory to reduce the disturbance from the
metal pole.
There are twenty-two data logs located in Boston used for

on-road calibration. Each log has over 1000 correspondences,
and the result shows in Fig. 18. The mean errors of the esti-
mated extrinsic parameters are under 0.08 meter and 0.03
degree compared to the benchmark from nuScenes. However,
the variances of the estimated extrinsic parameters are under
0.14 meter and 0.23 degree which might be due to the
interference on roads and that the uncertainties of measure-
ments are larger than laboratory experiments. The results of
the proposed method reach centimeter-level accuracy which
proves it is feasible for on-road driving scenario.

FIGURE 18. The result of on-road calibration. Red line: the benchmark offered from
nuScenes; Box plot: the result estimated by proposed method.

FIGURE 19. The comparison of radar map built before and after time delay
compensation. Black point: LiDAR map; red point and green point: radar map built
before and after time delay compensation; cyan line: the radar measurement
correspondence before and after time delay compensation.

In addition, the foundational self-driving car tasks, map-
ping and object tracking, are used to demonstrate the effect
of time delay compensation. With the offered poses, the radar
measurements can be transformed and built to a radar map.
With time delay compensation, the radar map is more con-
centrated and close to the LiDAR map as shown in Fig. 19.
For object tracking, the time delay effects can be observed
on nearby moving vehicles. The radar measurements with-
out and with time delay compensation are compared with
tracked target positions. Fig. 20 shows that a vehicle moves
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FIGURE 20. The comparison of moving object before and after time delay compensation. The object tracker frames the radar measurements more completely means radar and
LiDAR become more consistent in time domain after time delay compensation. Black point: radar measurements; red and green frame: moving object label before and after time
delay compensation.

at about 20 m/s, which cause about one meter compensation
with 0.05 s estimated time delay. After time delay compen-
sation, the radar measurements are more aligned with LiDAR
measurements which shows the improvements from temporal
calibration.
In summary, the performance of our on-road calibration

procedure is confirmed. The 3 DoF extrinsic parameters are
estimated and verified by benchmarking with the extrinsic
parameters from nuScenes, and the improvement of time
delay compensation is also evident.

VI. CONCLUSION
In this paper, we have presented a simultaneously extrin-
sic and temporal calibration approach for planar automotive
radar and 3D-LiDAR using targets in factory settings and
pre-selected objects in on-road settings. The feasibility and
performance have been demonstrated using our collected
datasets in factory calibration settings and nuScenes open
datasets in on-road calibration settings.
For factory calibration settings, the proposed data collec-

tion procedure is demonstrated to significantly reduce the
data collection effort and time and the six DoF extrinsic
calibration and temporal calibration are accomplished. For
on-road calibration settings, with the use of pre-labelled/pre-
selected outdoor targets and their poses, the 3 DoF extrinsic
parameters and time delay can be precisely estimated. It
has been demonstrated that the extrinsic parameters reach
centimeter-level accuracy, and time delay compensation
improves the performance of radar tracking and mapping.
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