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ABSTRACT As autonomous vehicles (AVs) become increasingly prevalent on the roads, their ability to
accurately interpret and understand traffic signs is crucial for ensuring reliable navigation. While most
previous research has focused on addressing specific aspects of the problem, such as sign detection and text
extraction, the development of a comprehensive visual processing method for traffic sign understanding
remains largely unexplored. In this work, we propose a robust and scalable traffic sign perception system
that seamlessly integrates the essential sensor signal processing components, including sign detection, text
extraction, and text recognition. Furthermore, we propose a novel method to estimate the sign relevance
with respect to the ego vehicle, by computing the 3D orientation of the sign from the 2D image.
This critical step enables AVs to prioritize the detected signs based on their relevance. We evaluate the
effectiveness of our perception solution through extensive validation across various real and simulated
datasets. This includes a novel dataset we created for sign relevance that features sign orientation. Our
findings highlight the robustness of our approach and its potential to enhance the performance and
reliability of AVs navigating complex road environments.

INDEX TERMS Autonomous systems, sign detection, sign recognition, sign relevance.

I. INTRODUCTION

ASSELF-DRIVING cars become more widespread, they
will require new capabilities that allow them to navi-

gate more ambiguous or difficult driving situations such as
construction zones or accident sites.
Traffic signs play a crucial role in ensuring reliable

and smooth traffic flow. They provide essential information
to drivers, including warnings, regulations, and direc-
tions. Understanding traffic signs can be challenging for
autonomous vehicles (AVs) due to various factors such as
robustness and sign relevance, as illustrated in Figure 1.
These challenges stem from the dynamic and complex nature
of real-world driving environments, and addressing them is
critical for ensuring the efficient operation of AVs. One sig-
nificant limitation of current self-driving technology is that
it lacks the ability to detect, recognize, and interpret uncom-
mon or temporary traffic signs. This limitation restricts their
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application to more limited environments that have already
been mapped or modeled.
Precise and robust traffic sign detection and recognition

are essential for sign understanding. However, this presents
a challenge due to factors such as the varied nature of
signs and unpredictable scenarios. For instance, traffic signs
are exposed to various environmental conditions, including
changing lighting and weather, that can affect clarity and vis-
ibility. Moreover, signs can be partially occluded, vandalized,
or damaged.
Aside from detecting and recognizing traffic signs, the

AV must determine whether a traffic sign is relevant to
its planned path. To address this challenge, we introduce
a novel approach for estimating the sign’s relevance to the
AV, enabling the AV to prioritize detected signs.
Despite significant advances in recent years, the develop-

ment of robust sign perception systems remains a challenging
task [1], [2], [3], [4]. An AV that fails to recognize a rel-
evant stop sign, for example, can cause fatal accidents. As
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FIGURE 1. Illustration of some of the challenges of understanding traffic signs for
autonomous vehicles.

such, it is crucial to develop a perception system capable of
robustly detecting, recognizing, and estimating the relevance
of various traffic signs. To address this need, we propose a
unified approach that integrates sign detection, and sign rel-
evance together with text extraction and recognition, along
with comprehensive experimental analyses across multiple
datasets. We focus on robust traffic sign perception and
visual understanding, to improve the performance of AVs
navigation in complex environments.
Figure 2 showcases a sample of the datasets employed

to evaluate our pipeline and an overview of the essential
perception tasks, highlighting the diversity of traffic signs.
The examples illustrate traffic signs found on both highways
and urban streets. Signs may contain symbols, text, or both.
Certain signs convey information about current driving con-
ditions (such as speed limit signs), whereas others provide
information irrelevant to AVs (such as signs to encourage
seatbelt use). This wide array of scenarios presents sig-
nificant challenges, which we address with the following
contributions:
• We introduce a comprehensive and robust sign percep-
tion system that seamlessly incorporates sign detection,
sign relevance, text extraction, and recognition.

• We propose a novel approach for estimating the rele-
vance and 3D direction of traffic signs from 2D images,
which allows AVs to prioritize relevant signs.

• We validate the robustness of our perception pipeline
across different real and simulated datasets. In partic-
ular, we created a comprehensive dataset with a novel
sign orientation feature, which provides the angular ori-
entation of traffic signs relative to the ego vehicle. To
the best of our knowledge, we are the first to create a
dataset specifically designed to address sign orientation,
enabling a more accurate assessment of our perception
pipeline.

Current solutions have demonstrated feasibility in detect-
ing and understanding traffic signs. However, they are often
limited to a specific subset of signs, predominantly stop signs
and traffic lights [5]. In contrast, our research aims to develop
a system that can accurately perceive and interpret arbitrary
traffic signs, an objective that extends significantly beyond
current systems. Our model incorporates not only detection
and recognition but also sign relevance estimation and text

extraction, thus providing a more comprehensive understand-
ing of traffic signs and their implications. Our experiments
demonstrate that our approach outperforms state-of-the-art
solutions across multiple datasets, which can significantly
improve the performance and reliability of AVs.

II. RELATED WORK
A. SIGN DETECTION
Traffic sign detection is essential for AVs, as it enables them
to recognize and interpret traffic signs, thereby improving
their overall driving performance. There has been a sig-
nificant amount of research on traffic sign detection over
the years, with various techniques proposed to improve
accuracy and speed [1], [6]. Popular object detection algo-
rithms such as Fast-RCNN [7], Mask R-CNN [8], ViT [9]
and YOLO [10] have been re-purposed for sign detection.
Recent advancements in deep learning have significantly
improved the accuracy of these techniques, enabling them
to achieve state-of-the-art performance on various datasets.
In that direction, Cao et al. [11] proposed a sparse R-CNN
utilizing residual connections in the ResNet backbone and a
self-attention mechanism to handle foggy, frosty, and snowy
images. Meanwhile, Zhang et al. [12] introduced a cascaded
R-CNN with multiscale attention, which employs data aug-
mentation to balance the class prevalence of small signs
often missed. The method is specifically designed to reduce
false detections caused by illumination variation and adverse
weather conditions. These detectors are trained on a small
set of common signs, and they assign observed signs to their
best match within this set. Consequently, they cannot iden-
tify signs outside this fixed, predetermined set. This is a
severe limitation in real-world driving scenarios, as traffic
signs can exhibit countless shapes and forms not accounted
for during training.
Several studies have explored ways to enhance the accu-

racy of traffic sign recognition systems, particularly focusing
on error detection. Hacker and Seewig [13] proposes a
comprehensive approach that combines various techniques.
Their method, tested on a traffic sign recognition task
using self-created 3D driving scenarios, successfully han-
dled Deep Neural Network (DNN) errors associated with
in-distribution, out-of-distribution, and adversarial data. A
method for traffic sign recognition that is robust against
camera failures is proposed in [14]. Through experimen-
tal evaluation using three public datasets and artificially
injected camera failures, they demonstrate that using a
sliding window of frames, rather than a single frame, signif-
icantly enhances the robustness of DNN classifiers against
compromised frames. They further corroborate their find-
ings using explainable AI techniques to understand the
variable performance of different classifiers under camera
failure conditions. Similarly, Geissler et al. [15] introduces
a plausibility-based fault detection method for high-level
fusion perception systems in autonomous driving applica-
tions. Although these studies substantially improve system
robustness, they primarily focus on bolstering robustness
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FIGURE 2. Illustration of diverse traffic sign images from the datasets tested and an overview of the components of our method.

through error detection and do not fully consider broader
scenarios or diverse datasets.

B. SIGN RELEVANCE
Sign relevance is a critical visual processing task that enables
AVs to prioritize detected signs based on their significance
to driving. AVs must accurately determine which signs are
relevant to the current driving conditions and filter out any
irrelevant information. In this study, we specifically focus
on sign orientation and introduce a novel method for visu-
ally estimating the 3D direction and relevance of traffic signs
from 2D images. While the majority of existing work focuses
on sign detection and recognition, estimating the relevance of
signs has received less attention. Several studies have shown
that visual features such as color, contrast, shape complex-
ity, and size, can influence the salience and detectability of
traffic signs, but algorithms that estimate sign relevance are
limited. For instance, Greer et al. [16] conducted a prelimi-
nary study on traffic sign salience recognition and introduced
a novel dataset that considers sign salience. Their CNN pre-
dicts the sign salience with 76% accuracy. However, the
study is limited to a small map area and does not consider
the orientation of the sign.
Some AV systems try to match perceived signs with geo-

located signs from a map to estimate the sign relevance
for the ego vehicle. However, this approach is limited if
communication with the map is lost, if the region is not
covered by the map, or if the environment undergoes changes
that are not reflected in the map. For example, incidents
such as road construction or accidents temporarily alter the
environment and it is infeasible to update the map in real
time.

C. TEXT EXTRACTION
Image text extraction involves locating text within images.
Numerous techniques have been proposed to address this
problem, ranging from traditional feature-based methods to
more advanced deep learning-based approaches. However, it
remains a challenging problem because of the varying qual-
ity and complexity of real-world road images, e.g., blurring
artifacts due to motion, lighting that affects text con-
trast, etc. Some approaches are character-based and usually
involve complicated character detectors such as Stroke Width
Transform (SWT) and Maximally Stable Extremal Regions
(MSER) followed by filtering [17], [18]. However, these
methods require elaborate design, involve multiple stages of
processing, and are time-consuming, leading to suboptimal
performance due to error accumulation. Recent advance-
ments in deep learning have shown significant promise in
addressing these challenges, enabling more accurate and
robust text extraction. In particular CNN [19] and instance-
segmentation-based [20], [21] methods have been proposed.
In this context, Ye et al. [21] proposed TextFuseNet, which
exploits richer features fused for text detection by perceiving
texts from different levels of feature representations, achiev-
ing robust arbitrary text detection. The multi-level feature
representation adequately describes texts by dissecting them
into individual characters while maintaining their general
semantics.

D. TEXT RECOGNITION
Text recognition (TR) refers to reading text in images, con-
verting text images to machine-readable strings, and it has
been an important task in a wide range of applications such
as digitizing printed books and documents, processing bank
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FIGURE 3. Importance of text recognition in traffic signs for autonomous vehicles,
highlighting the critical role it plays in ensuring reliable navigation, compliance with
traffic regulations, and informed decision-making.

checks, recognizing license plates, and assisting visually
impaired individuals [22], [23]. TR is especially important
for AVs as it enables them to interpret crucial information,
(shown in Figure 3). This ensures that AVs can navigate
securely, adhere to traffic regulations, and make informed
decisions in diverse situations. Furthermore, text recognition
improves navigation and route guidance, as it allows AVs
to identify street names, highway exit numbers, and other
pertinent information.
One of the most common approaches is optical charac-

ter recognition (OCR) [24], which involves segmenting the
image into individual characters and identifying them with
pattern recognition algorithms. These techniques achieve
high accuracy in extracting text from high-quality images,
e.g., images with high resolution and controlled lighting.
However, they often struggle with low-quality images and
handwritten text. Recent advancements have shown sig-
nificant promise in addressing these challenges, enabling
more accurate and robust text recognition. Baek et al. [25]
introduce a unified scene text recognition (STR) approach,
along with a text recognition benchmark including a new
dataset and metrics. Luo et al. [26] leverage the improved
results from using text rectification and combine the multi-
object rectification network (MORN) and an attention-based
sequence recognition network (ASRN) for general scene text
recognition. The image is rectified by the MORN and given
to the ASRN improving the final TR. For a comprehensive
review, readers are encouraged to refer to [3], [4].

Despite their success, most existing methods for sign
perception focus on detection and recognition. While this
approaches suffices for common road signs, they fail in unex-
pected or uncommon situations involving complex signs or
variable message signs containing customized text [2], [27].
Moreover, existing approaches are inadequate for real-world

scenarios, where road signs can have countless shapes and
forms not accounted for during training [1]. In that direction,
authors Lampkins et al. [1] proposed MOSER (Multimodal
rOad Sign intERpretation System for Autonomous Vehicles),
a scalable solution that interprets arbitrary road signs using
multimodal techniques. We build on top of that, improving
robustness and considering sign relevance. In contrast with
previous solutions, our method can estimate the relevance
of various signs using 2D images, making it more versatile
and adaptable to a broader array of situations.
While individual aspects of our research have been exam-

ined in isolation in prior work, one distinctive value of our
study lies in the integration of all these components into one
unified system, which we argue has not been sufficiently
explored in the existing literature. We develop a robust sign
perception system that seamlessly incorporates sign detec-
tion, sign relevance, text extraction, and recognition. Another
important novelty of our work is our approach for estimating
the relevance of traffic signs, and we created a unique dataset
that includes a novel sign orientation feature that indicates
the angular orientation of traffic signs relative to the ego
vehicle. To the best of our knowledge, no other study has
developed a dataset specifically designed to evaluate sign
orientation.

III. PERCEPTION PIPELINE
The proposed architecture integrates sign detection, sign rel-
evance, text extraction, and text recognition, as parts of our
perception process. The system is fully modular, making it
flexible and customizable. It accepts an image as input and
outputs the detected sign locations along with their text and
relevance. Our pipeline has the advantage of being able to
process any type of text without making any assumptions
about the specific sign categories that might be encountered,
making it highly adaptable to a diverse range of driving sce-
narios. In the remainder of this section, we discuss each of
these steps (illustrated in Figure 4), which are summarized
as follows:
• Sign detection: The sign detector processes RGB images
received from the camera and outputs sign instances
(sign boxes and segmentation mask).

• Sign relevance: The sign relevance module processes
the sign instances to estimate their relevance for the
AV, which helps the AV to prioritize the detected
signs.

• Text extraction: Each sign instance is fed into the text
extraction module, which extracts regions of interest
that contain text.

• Text recognition: Finally each text instance is fed to the
text recognition module that converts the text instances
to strings.

• The output is post-processed to obtain the final tex-
tual information. The text instances that lie within
the bounding box of a sign instance are combined
and rearranged into logical reading order (top-down,
left-right) [1].
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FIGURE 4. An illustration of our architecture’s step-by-step process, including sign detection, sign relevance, text extraction, and text recognition.

FIGURE 5. Step-by-Step Example output: 1) displays the results after sign detection (sign instance masks, shown in the blue shaded region); 2) shows the outcomes of sign
relevance, with the orientation of each extracted sign indicated by green and red line segments (green represents the y-directional eigenvector, and red represents the
x-directional eigenvector); 3) illustrates the individual text extractor instances; and 4) demonstrate the processing of individual instances for recognition and the resulting text
recognition outcomes.

A. SIGN DETECTION
Sign detection is the first step of the pipeline (Figure 4),
which receives an image and generates sign instances,
comprising sign boxes and segmentation masks (shown in
Figure 5.1). Our sign detector is based on Mask R-CNN [8]
which we modified and trained to detect generic sign shapes
and text without any notion of specific sign categories. It
simultaneously detects objects in the image while generating
a high-quality segmentation mask for each instance. The first
module of Mask R-CNN is the backbone, which functions
as an image feature extraction network. The output of the
feature extraction network is a set of feature maps, which are
used to generate candidate regions in the next step. We use
a ResNet50 architecture to extract features from the image
and a Region Proposal Network (RPN) to generate candidate
object bounding boxes. Once the candidate regions have been
generated, the network is split into two heads: a classification
and bounding box regression head, and a segmentation head.
The classification and bounding box regression head classi-
fies each region as containing a specific object and predicts
the precise location of the object within the region. Finally,
the segmentation head generates a mask for each detected
object. For additional details, readers are encouraged to refer
to He et al. [8].
To achieve scalability, we designed the sign detection

network to extract generic signs, rather than those belonging
to specific classes, e.g., stop, yield, etc. In other words, our
method is not limited to the kinds of signs it can detect but
instead extracts sign-like regions, characterized by bounding
box locations, and a corresponding prediction confidence

FIGURE 6. Visually estimating the 3D direction of traffic signs from a 2D image
mask.

score. The model is trained to simultaneously optimize for
object detection and instance segmentation by minimizing
two losses: the RPN classification and regression loss, and
the mask prediction loss.
The sign detector is a critical component for the sign

relevance module described in the next section, as we require
precise boundaries (segmentation mask) to compute the 3D
orientation of the sign.

B. SIGN RELEVANCE
The sign relevance module processes the sign instances to
compute the sign relevance and orientation, as shown in
Figure 5.2. Our method introduces a novel approach for esti-
mating the 3D direction and relevance of traffic signs from
2D images (shown in Figure 6), it estimates their orienta-
tion from the first-person perspective of the vehicle, which
determines their relevance. It processes each individual sign
instance and estimates their direction with respect to the
vehicle’s heading, then finally assigns a relevancy score
(i.e., whether or not the sign is relevant to the ego vehicle).
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FIGURE 7. Flow chart of the sign relevance algorithm: 1) polygon reduction function, 2) apply fitness function, 3) filtering operation, 4) sign direction estimation from
vanishing points, and 5) relevance threshold, to determine the relevance and orientation of a detected sign based on its segmentation mask.

Algorithm 1 Sign Relevance Algorithm
Input: sm: Sign Mask; K: Intrinsic camera parameters; thJ :
Fitness threshold;thR: Relevance threshold

1-Polygon reduction
polygon = fPolygonReduction (sm)

2-Apply fitness function
Set A: sign mask, B: polygon mask
Compute J(A,B) = |A∩B||A∪B|
3-Filtering sign
if J(A,B) >= thJ then
Keep the sign

else
Remove the sign → End

end if
4-Estimating the direction of the sign
(Vx, Vy) = fVanishingPoints (polygon, K) //compute the
vanishing points (Vx, Vy)
Follow equations from 2-9 to compute pan (θx) and tilt
angle (θy)

(θx, θy) = fSignDirection (Vx, Vy)
5-Relevance Estimation
Compute relevance as relsign = cos(θx)
if relsign >= thR then
The Sign is relevant → End

else
The Sign is irrelevant → End

end if

The sign relevance algorithm receives the sign segmen-
tation mask and determines whether the sign is relevant
using the estimated 3D orientation (pan and tilt angle) of
the sign. The algorithm consists of the following compo-
nents (shown in Figure 7): 1) a polygon reduction function,
2) a polygon fitness function, 3) a filtering operation, 4) sign
direction estimation from vanishing points, and 5) a relevance
threshold. The pseudocode of our algorithm is presented in
Algorithm 1.
1-Polygon reduction (Figure 7.1): After extracting the

segmentation masks, they are fed into a contour-quadrilateral
fit function, which reduces the number of contour points
that form the sign boundaries to a simplified polygon. In

essence, this removes noise and rough edges from the out-
put of the segmentation algorithm. This step is essential
for computing the direction of the signs since the con-
tours form the lines that are used to compute vanishing
points.
2-Apply fitness function (Figure 7.2): Occasionally, the

segmentation masks are irregularly shaped, which often cor-
responds to false positives. In these situations, we measure
the shape similarity between the fitted contour and the origi-
nal contour to detect irregularly shaped objects. To determine
the normalized fitness score [0, 1] of two arbitrary masks,
we compute their Jaccard Index, i.e., intersection over union
of mask A and B as,

J(A,B) = |A ∩ B||A ∪ B| (1)

3-Filtering sign (Figure 7.3): After computing the Jaccard
index between the segmentation masks and their fitted con-
tours, we remove those with a low score using a fitness
threshold. If J(A,B) >= thJ we keep the sign, otherwise
we remove it. The threshold (thJ) can be defined either
empirically or with a data-driven approach. A higher simi-
larity between two shapes (A and B) yields a higher Jaccard
Index score. Irregular shapes will have a poor similarity to
their fitted quadrilaterals.
4-Estimating the direction of the sign (pan and tilt) from

two vanishing points (Figure 7.4): With the remaining con-
tour points, we compute the horizontal and vertical vanishing
points (Vx, Vy) of the signs and use the intrinsic camera
parameters K to recover the tilt (the elevation angle) and
pan (the horizontal angle) [28].
To compute the vanishing point (Vi) using the edges, we

first find the equations of the lines representing the edges
and then compute the intersection point of the lines. From
two edges, we first identify their endpoints (xi, yi). Then,
we compute the line equations for both edges in slope-
intercept form, y = mx + b, where m is the slope and b
is the y-intercept. We calculate m1, b1 for the first edge and
m2, b2 for the second edge. To compute the vanishing point
Vi = (Vxi ,V

y
i ), in which (Vxi ,V

y
i ) are the (x, y) coordinates

for Vi vanishing point, we find the intersection of the two
line equations:

m1x+ b1 = m2x+ b2 (2)
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When computing the vanishing point, if the slopes of the
two edges, m1 and m2, are equal, the denominator becomes
zero, leading to a singularity. To address this issue, we intro-
duce a conditional check. If m1 equals m2, we can set the
x-coordinate of the vanishing point (Vxi ) to a large predefined
value that can represent infinity or consider this condition
as an exception, handling it separately based on the con-
straints of the application. For instance, we can assign the
relevance as unknown or a fixed value (if m1 = m2, we can
assume that the sign is facing perpendicular to the vehicle,
such that θx = 0). This way, we avoid division by zero and
accommodate the interpretation of parallel lines.
Solving for x:

if m1 = m2 then
Vxi ←∞ //or handle according

else
Vxi ← b2−b1

m1−m2
end if

The value of Vxi is substituted back into one of the line
equations to find the corresponding y-coordinate Vyi .
Next, the rotation matrix R3×3 = [r1, r2, r3] can be com-

puted using the intrinsic matrix (K3×3) and the 2 vanishing
points (Vx, Vy). We then covert the vanishing points to
camera coordinates (xcVx,xcVy) with:

xcximg = K−1 ×
[
xximg, x

y
img, 1

]T
(3)

where xximg, x
y
img are the x,y location of the point in the

image coordinate ximg. Then, xcVx = K−1 × [Vxx ,V
y
x , 1]T

and xVy = K−1 × [Vxy ,V
y
y , 1]T , with Vxx ,V

y
x been the x,y

location of the horizontal vanishing point Vx and Vxy ,V
y
y the

x,y location of the vertical vanishing point Vy. From that
r1, r2 and r3 are computed as follows,

r1 = xcVx
‖xcVx‖ =

K−1Vx
‖K−1Vx‖;Vx =

[
Vxx ,V

y
x , 1

]T (4)

r2 = xcVy
‖xcVy‖ =

K−1Vy
‖K−1Vy‖;Vy =

[
Vxy ,V

y
y , 1

]T
(5)

r3 = r1 × r2 (6)

From r3 = [r31, r32, r33]T , we can compute the pan (θx)

and tilt angle (θy) [28] as,

θx = tan−1(r31, r33) (7)

θy = sin−1(r32) (8)

5-Relevance Estimation (Figure 7.5): Finally, we use the
pan angle to estimate the relevance. We assume that signs
are upright, so we disregard the tilt angle for relevancy esti-
mation. We compute the cosine of the estimated pan angle,
which yields a relevancy score relsign , i.e., normalized scalar
in the interval [0, 1], corresponding to the direction of the
sign with respect to the vehicle heading. For example, a
relevancy score of 0 indicates that the sign is facing perpen-
dicular to the vehicle (no relevance), while a relevancy score

of 1 indicates that the sign is facing directly toward the vehi-
cle (highest relevance). We then apply a relevance threshold
(thR) to the relevancy score to determine whether the sign
is relevant; this threshold can be applied either empirically
or using a data-driven approach:

relsign = cos(θx)

If relsign > = thR, sign → relevant

else, sign → irrelevant

C. TEXT EXTRACTION
The text extraction module processes the sign instances to
extract text instances and text regions of interest for each
detected sign as shown in Figure 5.3. The text extractor is
based on TextFuseNet [21], designed to efficiently detect and
extract text from images. It employs three levels of feature
representations: character, word, and global. This multi-level
approach allows for a more comprehensive understanding of
the text, while maintaining its overall semantics. It effectively
aligns and merges features from different levels, producing
a richer and more accurate representation of various text
shapes. This reduces false positives and improves detec-
tion accuracy. The text extractor is specifically designed to
segment text instances in images, identifying the precise
coordinates that form the area of individual words. This
precision is crucial for our system, as it enables us to
accurately estimate logical text ordering.

D. TEXT RECOGNITION
The text recognition module receives text instances as
input and outputs machine-readable strings as shown in
Figure 5.4. Our text recognition module is based on the
work of Baek et al. [25], which introduces a unified four-
stage Scene Text Recognition (STR) framework. The STR
framework involves four stages: spatial transformation, fea-
ture extraction, sequence modeling, and prediction. A Spatial
Transformer Network (STN) normalizes the input text image
to simplify downstream stages. Feature extraction maps the
input image to a representation that emphasizes attributes rel-
evant to character recognition while suppressing irrelevant
features like font, color, size, and background. Sequence
modeling captures contextual information within a sequence
of characters, enabling more robust character prediction as
opposed to independent predictions. Finally, prediction esti-
mates the output character sequence based on the identified
features of an image. In our implementation, image regions
corresponding to individual words are fed into an STR model
to convert each text instance into a machine-readable form
(strings).
Following this, similar to Lampkins et al. [1], the sign text

synthesizer integrates outputs from the sign detector, text
extractor, and scene text recognizer into a unified structure.
This module determines sign-text membership and governs
the logical reading order of text through a five-step pro-
cess. First, to establish sign-text membership, we compute

VOLUME 4, 2023 617



VALIENTE et al.: ROBUST PERCEPTION AND VISUAL UNDERSTANDING OF TRAFFIC SIGNS IN THE WILD

TABLE 1. Comparison of the various datasets used for evaluation, highlighting their distinct characteristics. Novel to our CARLA dataset, we include the camera parameters
and annotations of sign orientations to evaluate sign relevance.

the overlapping region between text instances and sign-
bounding boxes, with text instances fully encapsulated by a
sign-bounding box being assigned as members of that sign.
Second, to determine text order, we compute the orientation
of each text instance using their image points and their x
and y covariances, with estimated orientations obtained from
the eigenvectors of those covariances. Third, the x-directional
eigenvectors are extended to form line segments with end-
points intersecting their corresponding sign bounding box.
Fourth, for any intersecting line segments, the correspond-
ing text is appended to a list and reordered by increasing
the x position, determining left-to-right ordering for a sin-
gle text-readable line. Finally, if multiple text-readable lines
exist within a sign instance, they are ordered by increasing
the y-position, establishing a top-to-bottom order as shown
in Figure 5.4.

IV. EXPERIMENTAL RESULTS
In this section, we detail the methodology for the evaluation
of our perception system, focusing on sign detection, sign
relevance, and text recognition. We begin by providing an
overview of the datasets used for our experiments, followed
by a description of the evaluation metrics and baseline mod-
els employed for comparison. Finally, we present and discuss
our results.

A. DATASETS
We conducted our experiments on five diverse and chal-
lenging datasets, chosen to encompass a wide range of sign
types to evaluate the robustness and performance of the per-
ception pipeline in real-world situations (e.g., motion blur,
lack of perspective capture bias, dynamic lighting conditions,
etc). Table 1 summarizes the unique characteristics of each
dataset.
Traffic Guide Panel (TGP) Dataset [29]: This dataset

consists of 3,841 high-resolution images captured by car-
mounted cameras in highway environments, with 2,315
images containing traffic guide panel annotations. The
dataset includes various types of traffic guide panels like
direction, toll plaza, destination distance, and exit indica-
tion. It contains mainly traffic panel signs collected in the
U.S. and comes with text annotations.
RoadText-1KDataset [30]: This dataset, designed for text

detection in driving videos, consists of 1,000 unbiased video
clips with annotated text bounding boxes and transcriptions.
These 10-second video clips are sourced from the diverse

and unconstrained BDD100K database, which includes 100K
driving videos captured in various weather conditions, times
of day, and locations across the United States.
VMS Dataset [31]: The Variable Message Signal (VMS)

Spanish dataset consists of 1,216 instances, within 1,152
JPEG images, captured from inside a vehicle and focused
on Spanish road Variable Message Signals. Annotations are
provided in XML files in PASCAL VOC format, and a
CSV file contains information about the geographic position,
image location, and text annotations.
Mapillary Dataset [32]: This dataset is a large-scale,

diverse collection of 25,000 high-resolution street-level
images annotated into 66 object categories, with instance-
specific labels for 37 classes. Captured using front-facing
cameras mounted on moving vehicles, it encompasses a wide
geographic range, including North and South America, Asia,
and Europe.
CARLA Dataset. Recognizing the absence of exist-

ing datasets for evaluating sign relevance, we developed
the CARLA dataset consisting of 2000 synthetic image
frames, each featuring traffic signs. Novel to our dataset,
we annotated each traffic sign with bounding boxes and 3D
orientation, which we use to evaluate relevance (i.e., their
directional heading with respect to the vehicle). Another
novelty of our dataset is that traffic signs are positioned at
various angle orientations along the road, ensuring a diverse
and comprehensive representation. The ground truth (GT)
pose of each sign is provided, which encompasses their
orientation (rotation angle) and global position (world coor-
dinates). The camera is mounted on the dashboard facing
forward and the camera parameters are known.
Finally, as adverse weather affects the quality of images

and consequently, the performance of the detection frame-
work, we investigate the influence of different weather
conditions on our system. Using the CARLA simulator, we
have created five additional datasets under diverse weather
settings: normal, cloudy, foggy, rainy, and night. Figure 8
shows a sample image of each dataset. Each dataset consists
of 1000 synthetic image frames, with the respective annota-
tion data. We used these datasets to assess the performance
of our framework in detecting traffic signs and determining
their relevance under varied weather conditions.
To assess the performance of traffic sign detection,

we utilize datasets that provide GT bounding boxes for
signs, i.e., the TGP, VMS, Mapillary, and CARLA datasets
(Table 1). To evaluate text recognition performance, we
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FIGURE 8. Sample images of the different CARLA datasets under diverse weather settings: normal, cloudy, foggy, rainy, and night.

employ the TGP, RoadText-1K, and VMS datasets because
they contain text annotations. We evaluate sign relevance
on the CARLA dataset, given that it is the sole testbed
that includes GT sign orientations. By leveraging these
datasets, we can effectively measure the performance of var-
ious aspects of traffic sign detection, sign relevance, and text
recognition, paving the way for improvements in traffic sign
interpretation.

B. EVALUATION METRICS
We evaluate the performance of our perception system
based on:

• Sign detection, assessing the system’s ability to identify
and localize signs within an image.

• Sign relevance, assessing the system’s ability to predict
the sign relevance.

• Sign text recognition, assessing the system’s ability to
recognize text in the detected signs and convert it into
machine-readable strings.

• Computation time, assessing the average time needed
to process an input image from sign detection through
text recognition.

Sign Detection: We assessed sign detection performance
by measuring recall at different Intersections over Union
(IoU) thresholds and computing the Area Under the Curve
(AUC) [33]. Recall measures the proportion of positive cases
(true positive instances of the sign) that the model correctly
identified as positives out of all the actual positive cases:

Recall = True Positives

(True Positives+ False Negatives)
(9)

A larger AUC value indicates better sign detection, as it
indicates that the model has high recall across different IoU
thresholds or confidence scores. We do not evaluate precision
because the datasets contain annotations for specific signs,
while other signs are missing from the GT annotations. These
missing signs, however, can be detected by our pipeline. For

example, the dataset may include GT data for VMS signs
but exclude GT information for all other sign types.
Sign text recognition: We assessed sign text recognition

performance by measuring Word Recognition Rate (WER),
Character Recognition Rate (CER), and Cosine Similarity.
Because none of these metrics individually capture all the
nuances of a model’s performance we used multiple metrics.
CER measures the ratio of the total number of character-level
errors in the predicted text to the total number of characters
in the reference (ground truth) text, i.e.,

CER = Substitutions+ Insertions+ Deletions

Total Reference Characters
(10)

WER measures the ratio of the total number of word-level
errors in the predicted text to the total number of words in
the reference (ground truth) text, i.e.,

WER = Substitutions+ Insertions+ Deletions

Total Reference Words
(11)

Finally, we use cosine similarity to measure the similarity
between the two text strings by representing them as vec-
tors and calculating the cosine of the angle between them.
We convert the predicted text and the reference text into
numerical vectors and compute their cosine similarity:

Cosine Similarity = A · B
||A|| ||B|| (12)

A lower WER and CER value indicates better
performance, as it implies that there are fewer character-
level/word-level errors in the predicted text compared to the
reference text. Similarly, a higher cosine similarity suggests
improved performance.
Sign relevance: We assessed the performance of our sign

relevance module by measuring sign angle estimation error,
which is the difference between the GT sign angle and the
angle estimated by the system. A smaller error value indi-
cates that the estimated angle is closer to the ground truth,
and thus, the system is more accurate in predicting the angle
of the detected sign. In the context of sign detection, the

VOLUME 4, 2023 619



VALIENTE et al.: ROBUST PERCEPTION AND VISUAL UNDERSTANDING OF TRAFFIC SIGNS IN THE WILD

FIGURE 9. Comparison of Recall vs. IoU performance for three state-of-the-art object detectors on different datasets for the sign detection task, showcasing their respective
effectiveness.

angle refers to the orientation of the sign in the image or
the angle between the sign and the ego vehicle’s line of
sight.
Computation Time: The computation time consists of

several sub-metrics that measure the average time needed to
process different stages of an input image (1 to 6), from
sign detection to text recognition. These sub-metrics are:

• 1) Sign Detection Time (s).
• 2) Sign Relevance Time (s).
• 3) Text Extraction Time (s).
• 4) Text Recognition Time (s).
• 5) Text-Sign Synthesizer Time (s): The average time
required to synthesize the extracted text with the
corresponding detected signs, creating a unified output.

• 6) Execution Time (s): The average time required to
complete the entire process, from sign detection to text
recognition and synthesis, for an input image.

These sub-metrics provide a comprehensive evaluation of
the computational efficiency of our system.

C. BASELINES
In this section, we discuss the implementation and train-
ing of three state-of-the-art object detectors employed as
sign detector baselines for our experiments: YOLO ver-
sion 5 (YOLOv5), Mask R-CNN [8] (Mask R-CNN), and
Mask R-CNN-SWIN [9] (SWIN). YOLOv5 is a popular
real-time object detection model known for high accuracy
and speed [10]. Mask R-CNN is a framework that extends
Faster R-CNN [7] with a branch for predicting segmenta-
tion masks. The SWIN transformer is a hierarchical vision
transformer that employs shifted windows to capture both
local and global information.
In contrast to previous methods, we modified the models

to detect generic sign shapes and text without the notion
of specific sign categories. We achieve this by combining
all classes containing sign-like objects to formulate a single
metaclass, “sign”, and fine-tuning all sign detection mod-
els to create a specialized sign detection model. Given an
input image, the sign detector extracts location coordinates
in the form of a bounding box or a segmentation mask.
YOLOv5 and Mask R-CNN leverage a 50-layer residual
network backbone (ResNet50), whereas SWIN consists of a
96-layer shifted window transformer network.

Model Training: Each model was trained for 30 epochs,
utilizing the stochastic gradient descent learning algorithm
with a starting learning rate of 0.02, a momentum of 0.9,
and a weight decay of 0.0001. Throughout the training
process, we implemented conventional image augmentation
techniques to enhance their robustness [34].

D. ANALYSES AND DISCUSSION
In this section, we present the analysis of our sign per-
ception pipeline with respect to the aforementioned metrics
and datasets. We first present the quantitative analysis, then
we discuss the qualitative results of our approach and their
implications for traffic sign perception in the wild.

1) QUANTITATIVE ANALYSIS

Sign Detection: Our results as shown in Figure 9 indicate
that the Mask R-CNN model outperforms YOLOv5 and
SWIN at sign detection across all datasets, including TGP
(AUC=0.91), VMS (AUC=0.86), Mapillary (AUC=0.78),
and CARLA (AUC=0.92). This suggests that Mask R-CNN
has greater effectiveness at detecting arbitrary signs. Our
proposed system demonstrates considerable promise in
detecting less common and complex signs present in the
Mapillary and VMS datasets. This is a significant finding, as
it suggests the system’s ability to generalize to sign detection
“in the wild” for autonomous driving applications.
Sign Relevance: Due to the unavailability of GT sign

angles in existing datasets, we evaluated the sign relevance
and angle estimation performance of our system on the
CARLA dataset. We performed our assessment by calculat-
ing the error between the estimated angle and the GT angle.
We observed that frame-by-frame sign relevance estimation
from 2D images could introduce noise, as distant signs are
difficult to segment and pixel-level errors in segmentation
can result in inconsistent outcomes.
To improve sign direction estimation consistency, we aver-

age the pan angle across multiple frames. We calculated
this average over 10 to 40 frames, yielding more accurate
angle estimations. We found that pixel-level segmentation
errors can make results less consistent. We observed that
larger signs are less prone to noise, as the increased number
of pixels results in a better estimation of vanishing points.
Averaging the 10 frames within the closest view of the sign,
we attained the lowest estimation error (shown in Table 2).
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TABLE 2. Comparison of angle estimation errors for varying frame averages
(Closest N Frame, from 10 to 40).

TABLE 3. Average Cosine similarity (CosSim), Character Error Rate (CER) and Word
Error Rate (WER) evaluated across different datasets.

To further refine the estimation method, we could employ
filtering techniques to improve segmentation and integrate
sign tracking to enhance accuracy and consistency.
The novel approach to estimating sign relevance plays

a key role in prioritizing detected signs. This enables AVs
to focus on the most critical information, facilitating more
accurate and responsive navigation.
Sign Text Recognition: In order to evaluate the text recog-

nition performance of our perception system, we conducted
assessments using the TGP, VMS, and RoadText-1k datasets.
We compared the text strings generated by our system to the
annotated text using CER, WER, and Cosine similarity met-
rics on matched strings associated with signs. To perform a
linear assignment between detected and annotated signs, we
established the following process. Let A represent a bound-
ing box for a detected sign and B represent a bounding box
for a ground-truth sign. We then calculated a score based
on the following rules:
• a) If text is present in A XOR B, the score is 0, indi-
cating no similarity between the two signs when only
one contains text

• b) If text is present in both A and B, we compute the
CER, WER, and Cosine similarity metrics to quantify
the degree of similarity

• c) If text is absent in both A and B, we ignore the pair
and do not assign a score.

Our method achieved average cosine similarity scores of
0.84 for the TGP dataset, 0.59 for the VMS dataset, and 0.46
for the RoadText-1k dataset. The distribution of CER and
WER between extracted and ground truth text from sign-
text pairs across different datasets is presented in Figure 10
and Table 3 presents the average Cosine similarity, CER and
WER across the different datasets.
Computation Time: To evaluate the computational effi-

ciency of our sign perception pipeline, we measured the
inference time, i.e., end-to-end runtime for processing one
image; we also measured the runtime for each of the sub-
components (i.e., sign detection, relevance estimation, text
extraction, text recognition). The experiments were con-
ducted on a machine with 32 Intel Xeon W3245 3.20GHz
CPUs and 790GB of memory, with the Perception module
utilizing a single Quadro RTX 8000 GPU. We observed

FIGURE 10. Distribution of Cosine Similarity, Character Error Rate (CER) and Word
Error Rate (WER) between extracted and ground truth text from sign-text pairs,
evaluated across different datasets.

that although Mask R-CNN achieved the highest recall
(Figure 9), it also exhibited the highest computation time.
As a result, practitioners aiming to deploy our approach on
resource-limited computation platforms may need to weigh
trade-offs between detection speed and recalls.
As previously discussed, the computation time metric

comprises several sub-metrics that measure the average time
needed to process different stages (1 to 6) of an input image,
ranging from sign detection to text recognition. Tables 4, 5,
and 6 provide a detailed breakdown of the results for each
stage in the process.
By analyzing and optimizing these individual components,

we can enhance the overall performance of the system in
real-world scenarios. We conducted the following experi-
ments for each dataset, reporting the individual sub-metrics
for each experiment (presented in Tables 4, 5, and 6):

• Experiment 1 (Table 4): Text extraction is performed
on individual sign instances, cropped from the image
(zoom), with each cropped sign passed through the text
extractor (as shown on the right side of Figure 11).

• Experiment 2 (Table 5): Text extraction is performed on
individual sign instances (zoom) while filtering the signs
based on their score (probability output of sign detector)
and relevance value. For example, if the prediction score
is less than 0.15 or the relevance score is less than
0.3, the sign is filtered and not passed through the text
extractor, reducing computation time.

• Experiment 3 (Table 6): Text extraction is executed just
once on the entire image, rather than on individual sign
instances (as shown on the left side of Figure 11).

Our findings indicate that the average computation time
per image is the lowest when text extraction is executed
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FIGURE 11. Side-by-side comparison of text extraction on the whole image (no
zoom) vs. text extraction on individual sign instances, cropped from the image (zoom).

TABLE 4. Average inference time in seconds per image for different stages of the
perception system (1 to 6), when the text extraction is performed on individual sign
instances (Experiment 1).

TABLE 5. Average inference time in seconds per image for different stages of the
perception system (1 to 6), when the text extraction is performed on individual sign
instances and filtering by score and relevance (Experiment 2).

TABLE 6. Average inference time in seconds per image for different stages of the
perception system (1 to 6), when the text extraction is performed on the whole image
just once (Experiment 3).

just once on the entire image, as it does not require addi-
tional runs of the text extractor for individual signs. However,
this approach reduces our system’s performance for low-
resolution and small signs. In contrast, zooming into each
sign instance increases the image resolution, which improves
text extraction performance. Therefore, it is crucial to bal-
ance computation time and extraction accuracy for efficient
and reliable sign perception in AVs.

FIGURE 12. Comparison of Recall vs. IoU performance for different weather
conditions.

To further reduce computation time we incorporate heuris-
tics that allow our system to only process frames which
contain signs with both high detection scores (greater than
0.7) and relevance scores (above 0.6). These score thresh-
olds allow the system to ignore non-essential frames, thereby
reducing unnecessary computations. Additionally, as text
extraction and recognition tasks can be computationally
expensive, we introduced a filter based on the resolution
of the detected signs. We found that a higher resolution typ-
ically correlates with better readability. Therefore, we only
process signs with a resolution exceeding 60 pixels in both
width and height. Thus, each frame is evaluated based on
these scores and resolution requirements. Frames that do not
contain any signs meeting these criteria are skipped entirely.
If a frame does contain signs that meet the criteria, we
apply selective zoom to those signs and process them for
text extraction and recognition. By doing this, we have man-
aged to reduce computation time significantly, allowing our
system to process around two images per second. We would
like to highlight that these score thresholds were selected
meticulously and optimized in a manner to ensure that the
overall performance of the system did not degrade signifi-
cantly. We experimented with a range of values to find the
values that maximized speed without affecting the reliability
of our system.
Influence of adverse weather: Figure 12 shows the com-

parison of Recall vs. IoU performance for different weather
conditions. As expected, our system’s best performance was
observed under normal weather conditions. However, even
under adverse weather conditions, the system demonstrated
competent performance levels, suggesting its robustness to
such scenarios.
In addition, Table 7 presents the evaluation results of sign

angle estimation under various weather conditions. As antic-
ipated, the best performance is observed under favorable
weather conditions (normal weather). The impact of weather
conditions becomes increasingly noticeable as we consider
signs at greater distances (higher number of frames).

2) QUALITATIVE ANALYSIS

We show example outputs of our sign perception pipeline
in Figure 13, which represents a diverse number of traffic
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FIGURE 13. Illustration of diverse traffic sign images from the tested datasets, providing an overview of the components of our system. The figure showcases the outputs at
different stages of the pipeline.

TABLE 7. Comparison of angle estimation errors for varying frame averages across
different weather conditions.

sign images. The figure highlights the robustness and accu-
racy of different modules in detecting signs and recognizing
their text. Moreover, our system shows significant potential
in detecting less common and complex signs found in the
RoadText-1k, Mapillary, and VMS datasets. This underlines
the system’s capacity to generalize “in-the-wild” sign detec-
tion, laying the foundation for advancements in traffic sign
understanding.

V. CONCLUSION
In this paper, we presented a robust sign perception pipeline
for autonomous vehicles that incorporates sign detection,
sign relevance, text extraction, and recognition as essential
components of the perception process. The comprehensive
analysis of our system demonstrates its effectiveness in sign
detection and text recognition across various datasets, con-
tributing to more reliable autonomous vehicle navigation.
Our system shows promise in detecting uncommon and
complex signs, which is crucial for addressing the diver-
sity and complexity of traffic signs, as well as the sign
relevance, paving the way for improvements in traffic sign
interpretation. Our novel approach to estimating sign rele-
vance allows the autonomous vehicle to prioritize detected
signs based on their orientation, thereby enabling more
responsive navigation.
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