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ABSTRACT Short-term demand forecasting for on-demand ride-hailing services is a fundamental issue
in intelligent transportation systems. However, previous research predominantly focused on improving
prediction accuracy, ignoring fairness issues such as systematic underestimations of travel demand in disad-
vantaged neighborhoods. This study investigates how to measure, evaluate, and enhance prediction fairness
between disadvantaged and privileged communities in spatial-temporal demand forecasting of ride-hailing
services. We developed a socially-aware neural network (SA-Net) that integrates socio-demographics and
ridership information for fair demand prediction, and introduced a bias-mitigation regularization to reduce
the prediction error gap between black and non-black, and low-income and high-income communities.
The experimental results, using Chicago Transportation Network Company (TNC) data, demonstrate that
our de-biasing SA-Net model outperforms other models in both prediction accuracy and fairness. Notably,
the SA-Net exhibits a significant improvement in prediction accuracy, reducing 2.3% in Mean Absolute
Error (MAE) compared to state-of-the-art models. When coupled with the bias-mitigation regularization,
the de-biasing SA-Net effectively bridges the mean percentage prediction error (MPE) gap between the
disadvantaged and privileged groups, and protects the disadvantaged regions against systematic underes-
timation of TNC demand. Specifically, our approach reduces the MPE gap between black and non-black
communities by 67% without compromising overall prediction accuracy.

INDEX TERMS Spatial-temporal travel demand prediction, algorithmic fairness, demand forecasting,
ride-hailing service.

I. INTRODUCTION

IN RECENT years, on-demand ride-hailing services have
grown rapidly. Transportation network companies (TNCs)

such as Uber and Lyft provide the ride-hailing services
by connecting passengers with drivers based on real-time
information [1], [2]. Reliable and accurate short-term travel
demand forecasting is a promising tool to balance vehi-
cle supply and demand with low cost and high quality
of service [3], [4], [5]. Researchers have developed a
series of data-driven approaches to predict travel demand
in real-time, including time series analysis methods [6], [7],
machine learning methods [8], [9] and deep learning mod-
els [3], [10], [11]. These approaches typically divide the
study region into small areas, use the past travel requests in

The review of this article was arranged by Associate Editor Erik Jenelius.

a time interval as the historical demand, and then seek to
enhance the prediction accuracy of the future travel demand
as a function of the historical demand (assuming certain spa-
tial and temporal correlations among them) and exogenous
features such as the weather and holiday.
However, a narrow focus on prediction accuracy ignores

the crucial social consequences underlying the prediction
tasks, such as unfairness in travel demand forecasting. For
instance, since the transport operators depend on the pre-
dicted passenger demand to dispatch vehicles, if travel
demand in disadvantaged neighborhoods is systematically
under-predicted, the resulting service provision may be inad-
equate. The existing literature has the following two limita-
tions: first, most previous studies evaluated the performance
of the demand predictions by the average prediction accu-
racy across the whole study region, while research into
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the disparity of predictive performance between the disad-
vantaged and privileged areas is very scarce. This raises
an equity concern because if the ride-hailing demand for
the disadvantaged neighborhoods is systematically under-
estimated, the vehicles allocated to these neighborhoods
may not be enough to serve the actual demand. Second,
most previous models did not consider the socioeconomic
and demographic information of the areas when making
travel demand predictions. Areas with different socioeco-
nomic and demographic makeup could have very different
spatial-temporal dependencies. Failure to account for the het-
erogeneity of these spatial-temporal dependencies can lead
to biased model results.
To overcome these limitations, this paper presents a novel

approach that aims to enhance prediction fairness without
compromising high prediction accuracy in zone-level ride-
hailing demand forecasts. This strategy is comprised of a new
deep learning architecture, named the socially aware network
(SA-Net), and a bias-mitigation regularization method, to
achieve fairness-aware travel demand predictions. While
previous research typically adopted spatially-invariant con-
volutional kernels to capture spatial dependencies, this new
network incorporates a novel Socially-Aware Convolution
(SAC) module that adapts the standard invariant kernel
at each area of the study region based on the socio-
demographic makeup of that area, which is highly flexible
and thus can better capture the spatial-temporal dependencies
across different locations. The bias-mitigation regulariza-
tion method modifies the traditional objective functions in
deep learning travel demand predictions by adding a fair-
ness regularization term, thus facilitating fair travel demand
predictions.
The main contributions of this paper can be summarised

as follows:
• We propose a new model (SA-Net) that adopts location-
specific modification to the standard spatially-invariant
convolutional filters. The proposed network can flexibly
capture the spatial heterogeneity by incorporating the
local socioeconomic and demographic information into
the prediction process.

• We propose a fairness metric, the mean percentage
error gap (MPE Gap), which measures the gap of mean
percentage prediction error between the disadvantaged
and privileged groups. A positive MPE indicates that
the model has underestimated the demand, whereas
a negative MPE indicates an overestimation of the
demand.

• We develop a bias-mitigation regularization method that
allows the network to learn fair predictions by bringing
down the MPE Gap between the disadvantaged and
privileged groups.

• Experiments on Chicago TNC data reveal the risk
of generating spatially unfair demand prediction
with the state-of-the-art spatial-temporal deep learning
predictions, and show that our proposed new method
can not only reduce the fairness gap between the

disadvantaged and privileged groups, but also increase
the overall prediction accuracy.

The rest of the paper is organized as follows. Section II
reviews the existing literature on ride-hailing demand
prediction and fairness in machine learning. Section III
defines the research problem. Section IV describes the model
architecture of the proposed SA-Net, the fairness evaluation
metrics, as well as the bias mitigation regularization method.
Section V shows the experiment results, which compare the
prediction accuracy and fairness between the proposed de-
biasing SA-Net and the benchmark models on the Chicago
TNC dataset. Section VIII concludes the paper.

II. LITERATURE REVIEW
A. SPATIAL-TEMPORAL TRAVEL DEMAND
FORECASTING
Spatial-temporal travel demand forecasting has been a fun-
damental issue in intelligent transportation systems [12],
[10], [13]. It involves predicting the demand for travel in
specific locations over time. Early research in this field
focused on traditional time-series regression models such
as ARIMA [6] and Kalman Filter Lippi et al. [14]. These
models were effective in capturing temporal patterns and
variations in travel demand.
In recent years, there has been a shift towards machine

learning-based approaches due to the availability of large-
scale data and increased computing power [15], [16],
[17], [18]. Machine learning models, such as support vector
regression [8] and regression trees [9], have been employed
for travel demand forecasting. More recently, deep learn-
ing methods have gained significant popularity due to their
capabilities of approximating human’s decision functions
and their capability of capturing complex spatial-temporal
correlations in the data [19], [20].
Deep learning architectures, including recurrent neu-

ral networks (RNNs) [21] and long short-term memory
(LSTM) [22], [23], have been widely used to capture sequen-
tial dependencies and long-range temporal dependencies
in travel demand data. These models can effectively han-
dle the temporal dynamics of travel demand. Additionally,
convolutional neural networks (CNNs) have been adopted
to capture spatial correlations in grid-based travel demand
predictions. By using localized kernels, CNNs can identify
local and global spatial patterns in the data [24]. Furthermore,
graph neural networks (GCNs) have been explored to cap-
ture non-Euclidean spatial correlations in network-structured
data, such as station-based or traffic network scenarios [25],
[26], [27], [28]. More recently, GCNs have been applied to
region-based scenarios, such as urban areas [29].

B. RIDE-HAILING DEMAND PREDICTION
Ride-hailing demand prediction is a specific application
of spatial-temporal travel demand forecasting, focusing on
predicting the demand for ride-hailing services in particu-
lar. This area has garnered significant attention in recent
years, given the rise of ride-hailing platforms. Researchers
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have developed various techniques to accurately forecast
ride-hailing demand.
Early ride-hailing demand prediction models utilized tra-

ditional time-series regression models, such as ARIMA and
its variants [30], [31]. However, with the advancements in
machine learning, researchers have increasingly turned to
more sophisticated approaches. Deep learning methods, in
particular, have gained prominence in this domain [4].
Several studies have proposed deep learning architectures

specifically designed for ride-hailing demand prediction.
For instance, Ke et al. [3] developed a Conv-LSTM
network that combines CNNs and LSTMs to capture
spatial, temporal, and exogenous dependencies simultane-
ously. Huang et al. [32] proposed a GAN framework-
based dynamic multi-graph convolutional network tailored
for origin-destination-based ride-hailing demand prediction.
Rahman and Rifaat [33] employed spatio-temporal deep
learning techniques to forecast demand and supply-demand
gaps in ride-hailing systems, incorporating anonymized spa-
tial adjacency information. Chen et al. [34] developed
a multivariate deep learning convolutional neural network
that incorporates socio-demographic information to forecast
ride-hailing demand.
Although the abovementioned methods have made remark-

able progress on improving the prediction accuracy, most
of them do not consider fairness when making predictions.
Fairness essentially involves the evaluation of a predictive
model regarding its social consequences, so without incor-
porating any socio-demographic information, the predictive
models are hardly aware of the social consequences.
Motivated by this research gap, this paper aims to evalu-
ate and improve fairness in TNC travel demand forecasting
by incorporating socio-demographics, proposing fairness
metrics, and developing an fairness-enhancing prediction
method.

C. FAIRNESS IN MACHINE LEARNING
There exists extensive machine learning literature showing
that a model can act discriminatorily on one population in
a variety of settings such as criminal risk assessment [35],
[36], clinical care [37], [38] and credit risk evaluation [39],
[40]. These studies made significant contributions in terms of
formalizing fairness in machine learning [41], [42], designing
fairness-enhancing algorithms [43], [44], [45] and solving
fairness concerns in real-world industries [46], [47].
However, literature that investigated the algorithmic fair-

ness issue in transportation research was very scarce. In
the domain of travel behavior modeling, Zheng et al. [48]
demonstrated prediction disparities regarding race, income,
medical condition and region in travel behavior modeling
using the 2017 National Household Travel Survey (NHTS)
and the 2018-2019 My Daily Travel Survey in Chicago.
The authors adopted an absolute correlation regularization
method to mitigate the prediction biases. In the spatial-
temporal travel demand modeling setting, to the best of

our knowledge, very few studies tried to tackle the fair-
ness issue. Yan and Howe [49] modified the loss function in
deep learning to reduce the gap of per capita predicted bike-
share demand between the disadvantaged and advantaged
regions. The modification is based on the fairness assump-
tion that the per capita predicted demand should be the same
across regions. Yan and Howe [50] leveraged adversarial
learning to mitigate the gap in prediction errors of bike-
share demand between the advantaged and disadvantaged
groups.
Although much progress has been made in addressing

algorithmic bias, there are still several research limitations
that need to be addressed. First, one critical source of bias
is feature selection, where selected variables fail to cap-
ture sufficient details that affect different outcomes [51],
[52]. To combat this, it is crucial to develop strategies to
integrate sociodemographic information into the modeling
process. Another limitation is that previous research on fair-
ness has measured it based on the absolute value of demand,
which can lead to errors in disadvantaged groups being con-
sidered insignificant. To address this, we propose a new
measure of fairness based on the relative value of demand.
This measure compares errors with the typical demand of the
region, which is based on the concept of algorithmic fairness
known as “equality of odds” [53]. This principle requires
that all individuals who have a TNC demand should have
an equal chance of having it reflected in the prediction,
regardless of their social and demographic characteristics.
By using this new measurement of fairness, we can bet-
ter understand and mitigate algorithmic bias in ride-sharing
platforms. To address these limitations, we build upon the
state-of-the-art spatial-temporal travel demand models, and
propose a novel method for fair predictions of TNC travel
demand.

III. PROBLEM DESCRIPTION AND PRELIMINARIES
The goal of this study is to predict the zone-level short-
term TNC demand in the study area. Based on the method
proposed by Ke et al. [3] and Guo and Zhang [10], the
study area is partitioned into I × J grids with each grid
referring to a zone. The temporal dimension considered is
1 hour. It is assumed that future TNC demand is correlated
with the TNC demand in the past. It is also influenced by
seasonality (time-of-day, day-of-week, etc.), and exogenous
variables such as weather conditions and the level of transit
service. The variables examined in this study are defined as
follows:

1) TNC demand: The TNC demand at the tth time slot
across the whole region is denoted as Dt ∈ RI∗J , which
is defined as the number of TNC orders happened
during that time interval. The TNC demand in grid
(i, j) is then denoted as (Dt)i,j

2) Time-of-day, day-of-week, holiday: By examining the
Chicago traffic index data,1 we categorize 24h in each

1. https://www.tomtom.com/en_gb/traffic-index/chicago-traffic/
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FIGURE 1. Socially-Aware Convolution [57].

day into three periods: the peak hours (7am - 9am
and 3pm - 7pm in workdays), the mid-peak hours
(9am -3pm in workdays and 11am - 7pm in week-
ends), the off-peak hours (7pm - 7am in workdays and
7pm - 11am in weekends). We use todt to indicate this
time-of-day variable, which takes values 0, 1, 2 if t
belongs to the off-peak hours, the mid-peak hours and
the peak hours, respectively. dowt is the day-of-week
variable, which takes value 1 if t is among the week-
days and 0 if t is among the weekends. The dummy
variable ht is used to indicate whether t is in a holiday
or not.

3) Weather:We consider precipitation as the weather vari-
able, which is denoted as pt. The precipitation data
is obtained from the website of National Centers for
Environmental Information [54].

4) Socio-demographic data: The study examines various
socio-demographic variables, including total popula-
tion, population per squared kilometers, employment
count, percentage of African-American population,
percentage of female population, percentage of span-
ish speakers, percentage of foreign-born population,
median household income, percentage of population
with 2019 household income lower than $25,000, per-
centage of college graduates, percentage of population
with age between 25 and 34, percentage of population
with age over 65, percentage of transit commuters and
percentage of population with no household vehicles.
Employment data at the census tract level is collected
from LEHD employment statistics [55]. The remain-
ing census tract level socio-demographic data derived
from the 2019 American Community Survey (ACS)
5-year estimates data. We use Zp to represent the pth

socio-demographic variable and use P to denote the
total number of socio-demographic variables.

5) Transit service level: To account for the supply-
demand interaction, transit service level represented
by the frequency of bus and rail serving each grid cell
is used. Frequency of transit service is obtained from
the General Transit Feed Specification (GTFS) [56],
which details the transit schedule service each stop.
For any grid cell (i, j), we count the total number
of bus and rail visits to all stops located in the grid
cell during time period t, and denote them as Bt and
Rt respectively. The symbol Gt represents the transit
service level at a specific time t. Gt is equal to the
concatenation of Bt and Rt, denoted as Gt = [Bt,Rt].

The target of this study is to predict the TNC demand
at time t (Dt), given the historical TNC demand, the
transit service supply, the time series features and the
socio-demographic variables: {Ds,Gs, ps|s = 0, . . . , t − 1},
{tods, dows, hs|s = 0, . . . , t} and {Zp|p = 1, . . . ,P}. This
research focuses on two objectives: prediction accuracy and
fairness. Prediction accuracy refers to the goal of minimizing
the overall prediction errors. Prediction fairness refers to the
goal of reducing the gap in mean percentage errors between
the disadvantaged and privileged groups.

IV. METHODOLOGY
This research designs a novel SA-Net to predict the short-
term TNC demand with enhanced fairness. We first introduce
the Socially-Aware Convolution (SAC), a base module that is
repeatedly used in SA-Net, and describe how SAC is adapted
from the standard CNN. We will then introduce SAC-LSTM
which combines SAC and LSTM. After that, we will explain
the complete model architecture used in this study.

A. CNN AND SAC
In this section, we will start with a formulation of the stan-
dard convolution neural network, and then extend it to the

554 VOLUME 4, 2023



FIGURE 2. Feature map (F ) construction. Z p
ij represents the value of the socio-demographic variable Z p for pixel [i, j].

Socially-Aware Convolution (SAC). The concept of SAC is
illustrated in Figure 1. We start from a standard convolution,
which can be written as:

Y
[
m, p, q

] = σ

⎛

⎝
∑

i,j,n

W
[
m, n, i, j

] ∗ X
[
n, p+ î, q+ ĵ

]
⎞

⎠, (1)

where Y ∈ RO×S×S denotes the output tensor, X ∈ RI×S×S is
the input tensor, W ∈ RO×I×S×S denotes the filter weight. O,
I, S and V represent the output channel size, input channel
size, image size, and kernel size. [p, q] denotes the pixel
coordinates. m and n are the indices for the output and input
channels. î = i − [V/2], ĵ = j − [V/2]. σ is the activation
function. From Equation 1, we can see that the filter weight
W[m, n, i, j] is invariant to image locations. Therefore, the
standard convolution is content-agnostic. To account for the
local information, we use the Socially-Aware Convolution
(SAC) which was built upon the work by Su et al. [57].
A SAC modifies the spatially invariant filter W with an
adapting kernel K, which can be expressed as follows:

Y
[
m, p, q

] = σ

⎛

⎝
∑

i,j,n

K
(
F
[
p+ î, q+ ĵ

]
,F

[
p, q

])

∗W[
m, n, i, j

] ∗ X
[
n, p+ î, q+ ĵ

]
⎞

⎠ (2)

where F ∈ RS×S is the feature map, which will be explained
in the following subsection. K represents the Gaussian kernel
function: K(f1, f2) = exp(− 1

2 (f1 − f2)T(f1 − f2)). The kernel
values are higher for regions with similar feature values.
The SAC operation represented by Equation (2) adapts the
standard convolution filter W at each pixel by multiply-
ing the spatially-invariant filter W with a spatially-varying
adapting filter K. The feature map F picks up local features
that reflect the relationships between different regions on
the map.

B. FEATURE MAP CONSTRUCTION
We construct the feature map F as a linear combination
of various socio-demographic variables, which is shown in
Figure 2. The feature value fij is calculated as fij = ∑P

p wp ∗
Zpij where Z

p
ij represents the value of the socio-demographic

variable p (e.g., population density, race, income etc.) for

region [i, j]. To ensure a fair comparison and mitigate any
potential bias stemming from variations in measurement
scales across variables, each variable p has been standardized
using z-scores. By applying a Gaussian kernel function to the
feature values of the center pixel and its surrounding pixels,
for each pixel value prediction, we emphasize the neighbor-
ing pixels that are more similar to this specific pixel in terms
of the socio-demographic features. The underlying assump-
tion is that the regions that have similar socio-demographic
characteristics with their neighborhoods should have similar
level of TNC demand with their neighborhoods as well.

C. LSTM AND SAC-LSTM
We use LSTM, a special kind of Recurrent Neural Netowrk
(RNN), to process the temporal information. LSTM is
designed to avoid the long-term memory problem. The model
first passes a sequence of input vectors to the memory cell
tensors through the input gate, and then drops the redundant
information through the forgot gate, and the cell state will
be updated accordingly. Finally, after several iterations, the
output gate will output a hidden sequence [58].
When dealing with the travel demand forecasting problem

with spatial-temporal data, Ke et al. [3] proposed using
the Conv-LSTM, which is a network that combines CNN
and LSTM, to capture the spatial dependencies. Unlike
LSTM, Conv-LSTM converts all the inputs, memory cell
values, hidden states and various gates from 2D matrices to
3D tensors. Besides, Conv-LSTM replaces the Handamard
product with the convolutional operator, which is used to
explore spatially local correlations. However, Conv-LSTM
utilizes the standard convolutional filters which are repli-
cated across the tensors with shared weights, thus failing
to account for the heterogeneity of spatial correlations. To
address this drawback of standard convolutions, we mod-
ify the Conv-LSTM by replacing the standard convoluations
with the SAC, and name the new network SAC-LSTM. The
formulation of SAC-LSTM is as follows:

It = σ
(
W ∗
xi Xt +W ∗

hiHt−1 +Wci ◦ Ct−1 + bi
)

Ft = σ
(
W ∗
xf Xt +W ∗

hfHt−1 +Wcf ◦ Ct−1 + bf
)

Ct = Ft ◦ Ct−1 + It ◦ tanh(WxcXt +WhcHt−1 + bc)

Ot = σ(WxoXt +WhoHt−1 +Wco ◦ Ct + bo)

Ht = Ot ◦ tanh(Ct) (3)
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FIGURE 3. The structure of SA-Net.

where the weight matrices Wxf , Whf ,Wxc, Whc, Wxo, Who

denote the SAC weights, which are represented by W ′ in
Figure 1. “∗” stands for the convolutional operator. It, Ft, Ct,
Ot, Ht are improved input gate, forgot gate, cell state, output
gate and hidden state that embeds the spatial dependencies.
◦ denotes Hadamard product (i.e., element-wise product).
σ and tanh are nonlinear activation functions:

σ(x) = 1

1 + e−x
; tanh(x) = ex − e−x

ex + e−x
(4)

D. MODEL DESCRIPTION
In this section, we propose a novel socially aware network
(SA-Net) to forecast the short-term TNC demand. The archi-
tecture of the network is illustrated in Figure 3, which is
comprised of two parts: the part on the right captures the
spatial-temporal variables (i.e., TNC demand) using a stack
of SAC-LSTM layers, and the part on the left processes the
non-spatial temporal variables using a stack of LSTM layers.

1) STRUCTURE FOR SPATIAL-TEMPORAL VARIABLES

We use a series of stacked SAC-LSTM layers to capture
the spatial dependencies and temporal correlations for the
spatial-temporal variable, which is the TNC demand data in
our case. Dt is used to denote the TNC demand for time
slot t. Let C denote a SAC-LSTM cell: C : Rd∗M∗N∗I →
Rd∗M∗N∗O, where d denotes the look-back time window,
which refers to the number of previous hours taken as pre-
dictors for the TNC demand in each time slot. M and N are
the dimensions of rows and columns, I and O represent the
number of channels for the input and output feature vec-
tors. L denotes the number of stacked SAC-LSTM layers.

The formulation of the model architecture that processes the
TNC demand data is written as:

(Ut−d,Ut−d+1, . . . ,Ut−1)

= CL, . . . , C1(Dt−d,Dt−d+1, . . . ,Dt−1)

X̂ u
t = W ∗

uxUt−1 + bu (5)

where Ut−k, k = 1, 2, . . . , d represent the output tensors at
the last layer of the stacked SAC-LSTM layers. Wux repre-
sents the convolutional operation with the SAC kernel, which
is applied to further capture the spatial dependency at the
final layer, and also to reduce the number of output channel
to 1.
In a similar manner, we employ a series of stacked SAC-

LSTM layers to model the transit service data. Let Gt denote
the level of transit service at time t. Gt is derived from the
concatenation of Bt and Rt : Gt = [Bt,Rt], where Bt and Rt
represent the number of bus and rail visits at time t. The
model architecture that processes the transit service data can
be expressed as follows:

(Qt−d,Qt−d+1, . . . ,Qt−1)

= CL . . . C1(Gt−d,Gt−d+1, . . . ,Gt−1)

X̂ q
t = W ∗

qxQt−1 + bq (6)

2) STRUCTURE FOR TEMPORAL VARIABLES

The temporal predictors used in this study include the time-
related variables and the weather feature. The time-related
variables include time-of-day, day-of-week and holiday indi-
cators. The weather feature is represented by the amount of
precipitation. We create a new variable vt = (dowt, todt, ht)
that concatenates dowt, todt and ht, and use pt to represent
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the amount of precipitation at time t. These temporal fea-
tures are likely to impact the TNC demand across the whole
region. Then the network for the time-series variables can
be written as follows:

(Vt−d,Vt−d+1, . . . ,Vt−1)

= LL . . .L1(vt−d, vt−d+1, . . . , vt−1, vt)

X̂ v
t = FR(wvxVt−1 + bv)

(Pt−d,Pt−d+1, . . . ,Pt−1)

= LL . . .L1(pt−d, pt−d+1, . . . , pt−1)

X̂ p
t = FR(wpxPt−1 + bp

)
(7)

where Vt−d and Pt−d, k = 1, 2, . . . , d are the output tensors
at the last layer of the stacked LSTM layers for the time
variables and the precipitation variable. wvx and wpx denote
the fully connected layers following the stacked LSTM lay-
ers, which reduce the number of output channel to 1. FR

denotes a reshaping function that repeat a value across the
space: FR : R → RM∗N∗1, where (FR)m,n,1 = x for any
m ∈ (1, 2, . . . ,M), n ∈ (1, 2, . . . ,N). FR is deployed to
make the dimensions of the LSTM outputs X̂v and X̂p the
same with the SAC-LSTM output X̂u.

3) FUSION

The final estimated TNC demand at time t is a weighted
combination of the estimated outputs from different parts of
the network, which is given by:

X̂t = Wu ◦ X̂ u
t +Wq ◦ X̂ q

t +Wv ◦ X̂ v
t +Wp ◦ X̂ p

t (8)

E. ACCURACY AND FAIRNESS METRICS
The performance of the various models is evaluated based
on two types of metrics: the accuracy metrics and the fair-
ness metrics. Two commonly used accuracy metrics - Mean
Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) - are adopted to evaluate the prediction accuracy
of the models in this work. They are defined as below:

MAE = 1

N × T

T∑

t=1

N∑

i=1

|yit − ŷit| (9)

MAPE = 1

T

T∑

t=1

1

|Nt|
∑

i∈Nt

|y
i
t − ŷit
yit

|,

Nt =
{
i : 1 ≤ i ≤ N, yit > 0.1

}
(10)

where yit and ŷ
i
t are the real and predicted travel demands at

time interval t in region i. T represents the total number of
time intervals. N represents the total number of regions. Nt

denotes the set of regions with yit > 0.1, which is defined to
guarantee that the denominator of the absolute percentage
error for the regions included is not zero.
While MAE and MAPE have been widely utilized to mea-

sure the accuracy of the model predictions, one limitation of
these two metrics is that they do not consider the directions

of the errors. Given that the underestimations and overesti-
mations of the TNC demand predictions have very different
practical implications which should not be ignored, we also
examine the Mean Percentage Error (MPE) of the model
predictions which is given by:

MPE = 1

T

T∑

t=1

1

|Nt|
∑

i∈Nt

yit − ŷit
yit

,

Nt =
{
i : 1 ≤ i ≤ N, yit > 0.1

}
(11)

The positive value of MPE indicates the underestimation of
the TNC demand (i.e., the real demand is larger than the
predicted demand), whereas the negative value of MPE indi-
cates the overestimation of the TNC demand. The magnitude
of a positive percentage error in region i at time t can be
thought of the chance of an individual in region i at time
t who had the TNC demand but failed to receive the ser-
vice, if the TNC service was exactly allocated based on the
TNC demand estimation. Therefore, it is important to make
sure that the MPE is not systematically different between
the disadvantaged and privileged communities. This concept
is connected to one important notion of algorithmic fairness
– equality of odds, which states that a predictor Ŷ satis-
fies equalized of odds with respect to protected attribute Z
and outcome Y, if Ŷ and Z are independent conditional
on Y [53].

We propose the MPE gap as a fairness metric, which
measures the difference of MPE between two groups (e.g.,
the black communities and the non-black communities). The
metric is defined as:

MPE Gap = 1

T

T∑

t=1

1

|Nt,z0 |
∑

i∈Nt,z0

yit − ŷit
yit

− 1

T

T∑

t=1

1

|Nt,z1 |
∑

i∈Nt,z1

yit − ŷit
yit

s.t. Nt,z0 =
{
i : 1 ≤ i ≤ N, yit > 0.1, i ∈ Z0

}
,

Nt,z1 =
{
i : 1 ≤ i ≤ N, yit > 0.1, i ∈ Z1

}

(12)

where Z0 denotes the minority group and Z1 denotes the
majority group. Therefore, i ∈ Z0 represents the set of
regions that are within the minority group, and i ∈ Z1 rep-
resents the set of regions that are within the majority group
(i.e., not within the minority group). For example, if the
sensitive variable of interest is ethnicity and Z0 is used to
represent the black-dominated communities, then Z1 repre-
sents the non-black communities. In this case, i ∈ Z0 and
i ∈ Z1 denote regions that belong to the black communi-
ties and those that belong to the non-black communities,
respectively.
To achieve a fair prediction, we want the absolute value

of MPE gap to be as close to zero as possible. A positive
value of MPE gap indicates that we are underestimating
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FIGURE 4. Distributions of TNC demand, black population and low-income population in the study area.

the TNC demand for the minority group compared with
the majority group, whereas a negative value of MPE gap
suggests a relative underestimation of the demand for the
majority group.

F. DE-BIASING OBJECTIVE FUNCTION
To jointly train for accuracy and fairness, we use a loss
function that is a weighted sum of an accuracy loss and a
fairness loss defined as below:

L = Laccuracy + γLfairness (13)

The accuracy loss is aimed at reducing both MAE and
MAPE:

Laccuracy =
T∑

t=1

N∑

i=1

(
yit − ŷit

)2 + λ

T∑

t=1

∑

i∈Nt

(
yit − ŷit
yit

)2

, (14)

s.t. Nt =
{
i : 1 ≤ i ≤ N, yit > 0.1

}
(15)

where yit and ŷ
i
t are the real and predicted travel demands at

time interval t in region i. T represents the total number of
time intervals. N represents the total number of regions. Nt

denotes the set of regions with yit > 0.1. λ is a regularization
parameter balancing the MAE and MAPE tradeoff. In this
study, we fix λ to be 10 since the magnitude of MAE is
roughly ten times that of MAPE.
The fairness loss is proposed as the following:

Lfairness = |
T∑

t=1

∑

i∈Nt

z̃i ∗ yit − ŷit
yit

|, s.t. z̃i = zi − z̄

σz
, (16)

s.t. z̃i = zi − z̄

σz
, Nt =

{
i : 1 ≤ i ≤ N, yit > 0.1

}
(17)

where zi denotes the value of the sensitive attribute (e.g.,
the proportion of black population) for region i. z̃i is the

normalized zi with z̄ and σz respectively representing the
mean and standard deviation of zi across all regions.
Lfairness measures the linear relationship between the sen-

sitive attribute z and MPE across time and space. To be

specific, z̃i ∗ yit−ŷit
yit

measures the joint deviations of z̃i and
yit−ŷit
yit

from zero. Therefore, Lfairness indicates the covariance
between z and MPE in the prediction, which we want to
penalize in our training process.

V. EXPERIMENTS
A. DATA DESCRIPTION
The dataset utilized in this paper is a large-scale TNC trip
record dataset collected from Chicago Data Portal [59] dur-
ing a 14-month period between November 1st, 2018 to
December 23rd, 2019. The trip records that started from
6 AM to 10 PM are included. We partition the city of
Chicago into 1km × 1km grids, and use totally 35 × 5
grids for analysis as shown in Figure 4. The hourly TNC
demand in a region is represented by the number of trips
starting from that region in a 1-hour time interval. The
weather data is collected from the website of National
Centers for Environmental Information [54]. The socio-
demographic variables including the percentages of black
population and the percentage of low-income population are
extracted from the 2019 American Community Survey(ACS)
5-year estimates [60].
Figure 4 illustrates the distributions of average hourly

TNC demand in the study period, the percentage of black
population and the percentage of low-income population in
the study area. From Figure 4(a), we can see that the spatial
distribution of the TNC demand is highly uneven, as the
downtown area takes up the majority of the TNC demand.
In terms of ethnicity, Figure 4(b) reveals a bimodal distri-
bution of African-American population, with the majority of
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FIGURE 5. Average TNC travel demand by time of day.

the northern area having African-American population below
13% and the majority of the southern area having African-
American population above 88%. We define population with
2019 household income lower than $25,000 as low-income,
and Figure 4(c) shows that the low-income population is also
mainly clustered in the south side of the study area. In this
study, we define grids with over 50% of black population
as the black communities, and the rest as the non-black
communities, which gives us 73 black communities and
102 non-black communities. Regarding income, we defined
grids with more than 25% of low-income population as the
low-income communities, and the rest as the high-income
communities, resulting in totally 90 low-income communi-
ties and 85 high-income communities. In both cases, the
numbers of disadvantaged and privileged communities are
roughly balanced.
Figure 5 illustrates the average TNC travel demand by

time of day, separated by the disadvantaged (black/low-
income) and privileged (non-black/high-income) communi-
ties. The travel demand in the privileged regions are much
larger than that in the disadvantaged regions, therefore the y-
axis scales are different in Figure 5(a) and Figure 5(b). The
privileged regions and the low-income communities have two
peak periods: 7 AM - 10 AM and 5 PM - 8 PM, whereas
the black communities only has the morning peak.
In the experiment, we apply a 70-30 training-testing split.

The data from November 1st, 2018 to July 23rd, 2019
(265 days) is used for training, the data from July 24th,
2019 to August 21st, 2019 (29 days) is used for validation
and the data from August 22nd, 2019 to December 23rd,
2019 (124 days) is used for testing. In the training, valida-
tion and testing processes, we use the TNC demand in the
previous 6 hours to predict the TNC demand in the next
hour (i.e., the look-back window is 6 hours). In addition,
we assess the robustness of our modeling results by utiliz-
ing data aggregated into 30-minute intervals. In this new
prediction task, we leverage the TNC demand observed in

the preceding 3 hours to forecast the TNC demand for the
subsequent half hour. The findings from this analysis are
presented in the Appendix. Before training the models, the
collected data is normalized by z-score process to facilitate
training. We later denormalize the prediction to get the actual
demand values, and reset the negative values to zeros since
the demand values cannot be negative.

B. MODEL COMPARISON
To explore the advantage of our model SA-Net, we compare
it against several other benchmark models, which are listed
as follows:

• Historical Average (HA): HA predicts the TNC demand
by averaging the historical demand which is in the same
relative time interval (i.e., the same time of day and the
same day of week) in the training set. For instance, the
TNC demand in Monday 10 AM -11 AM is predicted
as the average TNC demand of all past Monday’s at
10 AM -11 AM in the training set.

• Moving Average (MA): MA predicts the TNC demand
by averaging the demand in the same relative time
interval of several nearest historical values. We use the
average of 6 previous TNC demand in grid (i, j) to
predict the demand in grid (i, j).

• Autoregressive Integrated Moving Average Model
(ARIMA): ARIMA is commonly used for forecasting
time-series data [61], and has been widely applied in
traffic prediction problems [62], [63]. In this work, to
predict the TNC demand in grid (i, j), the inputs to
ARIMA were 6 previous demand in the same relative
time interval in grid (i, j).

• LSTM Net: The LSTM Net processes the TNC demand
in each grid separately. The hyperparameters and the
structures of the LSTM Net and the SA-Net are the
same. The only difference is that while we use a stack
of SAC-LSTM to process the spatial-temporal data as
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TABLE 1. Accuracy comparisons among different models.

shown in Figure 3, the LSTM Net uses the LSTM mod-
ules to processes the TNC demand data and does not
capture spatial dependencies.

• LSTM + Social Net: The LSTM + Social Net adds
a socio-demographic feature map to the LSTM Net to
facilitate predictions. The feature map is constructed
as a linear combination of different socio-demographic
variables as shown in Figure 2, and is fused with other
parts of the network in the last model layer following
Equation (8).

• Spatiotemporal Graph Convolution Network
(STGCN) [64]: STGCN is a widely compared
state-of-the-art model for spatial temporal modeling.
It applies a GCN-based method to model spatial
correlations with spectral-based GCNs and captures
temporal dependencies with temporal convolution
layers (TCNs).

• Graph Wavenet [65]: Graph Wavenet follows a simi-
lar GCN and gated TCNs frameworks as STGCN but
with adaptive dependency matrix learning. The model
performs well in the traffic forecasting task with high
accuracy and fast convergence speed.

• Conv-LSTM Net: The Conv-LSTM Net is a fusion con-
volutional LSTM specified in [3]. The hyperparamters
and the structure of the Conv-LSTM Net are the same
with the SA-Net and the LSTM Net. The difference
is that the Conv-LSTM Net uses the traditional Conv-
LSTM modules instead of the SAC-LSTM modules in
Figure 3 to process the spatial-temporal TNC demand
data.

• Conv-LSTM + Social Net: Similar to the LSTM +
Social Net, the Conv-LSTM + Social Net adds a socio-
demographic feature map to the Conv-LSTM Net to
facilitate predictions.

C. EXPERIMENT SETUP
When training Conv-LSTM Net and SA-Net, we use ker-
nels with size of 3 × 3. Each Conv-LSTM cell and each
SAC-LSTM cell consists of 32 filters/channels to capture
the spatial information. The experiments are implemented
in Pytorch using the mini-batch stochastic gradient descent

method with a batch size of 64 and a step size of 0.001 in
each training. The model that produces the lowest prediction
loss on the validation set among the 300 epochs is chosen.
To determine the best performing model, both Conv-LSTM
Net and SA-Net are trained with 1, 2, and 3 layers, selecting
the model that yields the lowest prediction loss. For STGCN,
the model is trained with graph convolution kernel sizes of 2
and 3, as well as temporal kernel sizes of 2 and 3. For Graph
Wavenet, we utilize the open-source codes provided by the
original authors, employing their default parameter settings.
The model with the lowest prediction loss is chosen as the
optimal model, which is then used for prediction on the test
data. The optimal model later performs prediction over the
test data. We run the training procedure 3 times and report
the average prediction results on the test set.

D. RESULTS
We compare our proposed algorithms (SA-Net with bias-
mitigation regularization) with baseline models along two
dimensions: accuracy and fairness, and show that our algo-
rithm achieves better results regarding both accuracy and
fairness. The better prediction accuracy is demonstrated
by lower MAE and MAPE compared with baseline mod-
els. Our proposed bias mitigation strategy demonstrates
improved prediction fairness by effectively reducing the
MPE gap between disadvantaged and privileged groups.
Importantly, this reduction in bias does not compromise the
overall prediction accuracy, allowing us to achieve fairness
in our predictions. In the following sections, we present the
results obtained from data aggregated to one-hour intervals.
The corresponding results obtained from data aggregated to
30-minute intervals are included in the Appendix.

1) PREDICTION ACCURACY

The spatial-temporal deep learning algorithms (i.e., STGCN,
Wavenet, Conv-LSTM Net, Conv-LSTM + Social Net and
SA-Net) outperform the classical statistical models (i.e., HA,
MA, ARIMA), and our proposed SA-Net model produces
the smallest overall MAE, RMSE, and MAPE among all
models on the test set. Table 1 presents the overall MAE,
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FIGURE 6. Performance measures by model and time of day.

RMSE, and MAPE, along with the MAE specifically for
black, non-black, low-income, and high-income communities
when the data is aggregated to one-hour intervals. Regarding
the overall MAE, RMSE, and MAPE, Conv-LSTM Nets
and SA-Net significantly outperform other models. Conv-
LSTM + Social Net shows a slight improvement over
Conv-LSTM Net in terms of MAE and RMSE, but per-
forms worse in terms of MAPE. This finding suggests
that incorporating socio-demographic variables as predic-
tors does not significantly enhance the model’s performance.
Next, we compare the results of Conv-LSTM Net with
SA-Net.
When comparing Conv-LSTM Net and SA-Net, we

observe that SA-Net effectively decreases MAE for both
the black and non-black communities. Furthermore, it also
reduces MAE for both the low-income and high-income
communities. These findings suggest that the inclusion of
socio-demographic information in SA-Net yields benefits for
both disadvantaged and privileged groups.
SA-Net improves prediction accuracy for the black com-

munities at all times of day compared with Conv-LSTM
Net. We examine the model performance for Conv-LSTM
Net and SA-Net across different times of day in Figure 6.
The upper row of Figure 6 shows the predictive results
for the black communities, whereas the bottom row of
Figure 6 shows the results for the non-black communities.
Figures 6(a), 6(b), 6(d), and 6(e) illustrate that SA-Net yields
lower MAE during the morning peak hours (6 PM - 8 PM),
as well as reduced MAPE across all times of the day,
compared to Conv-LSTM Net for the black and non-black
communities.

Figure 6(c) shows the MPE for the black communities at
various times of day. The MPEs are consistently positive,
indicating that both Conv-LSTM Net and SA-Net under-
predict the travel demand for the black communities at
different times of day. However, SA-Net consistently gives
smaller MPEs than Conv-LSTM Net, showing that the for-
mer model reduces the magnitude of the underprediction
of the black communities’ travel demand. The MPEs for
the non-black communities with Conv-LSTM Net and SA-
Net are more similar at different times of day as shown
in Figure 6(f).

2) PREDICTION FAIRNESS

Having demonstrated the superiority of our proposed SA-Net
over the benchmark models in terms of prediction accuracy,
we now test the effectiveness of our bias mitigation strategy
stated in Section IV-F for fairness improvement. First, we test
the results when the sensitive attribute is race, namely when
z denotes the proportion of black population in Equation 16.
Table 2 presents the results, and Figures 7(a) and 7(b) plot
MPE for black and non-black groups as well as the overall
MAE. Table 2 shows that when the de-biasing regularizer is
not applied (γ = 0), both Conv-LSTM Net and SA-Net pro-
duce large MPE gaps between black and non-black groups.
Specifically, the MPE gap (race) with γ = 0 is 0.306 for
Conv-LSTM Net, whereas the MPE gap (race) with γ = 0
is 0.224 for SA-Net. For both models, the large MPE gap
comes from a large, positive MPE for the black group and
a small, negative MPE for the non-black group. Note that
the magnitude of a positive MPE indicates the degree of
underestimation of the demand, since MPE represents the
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TABLE 2. Fairness and accuracy comparisons with bias mitigation for race.

TABLE 3. Fairness and accuracy comparisons with bias mitigation for income.

average gap of the actual and predicted demand weighted
by the actual demand. Larger the MPE, higher the underes-
timation. Therefore, the large MPE gaps between black and
non-black groups indicate that training models using the tra-
ditional objective function without bias mitigation leads to
systematic underestimation for the black group compared
with the non-black group.
Recognizing the prediction bias using only Laccuracy in

training, we adopt bias mitigation by increasing the bias
mitigation weight γ from 0 to 5 and 10. The results for
“MPE gap (race)” in Table 2 show that for both models, as γ

increases, the MPE gap between black and non-black groups
decreases, and this reduction in MPE gap mainly stems from
the reduction in MPE for the black group. Specifically, when
increasing γ from 0 to 10, the MPE gap between the black
and non-black groups drops from 0.306 to 0.040 for Conv-
LSTM Net, and drops from 0.224 to 0.074 for SA-Net. It
is also found that by mitigating the racial bias, the MPE
gap between the low-income and high-income groups has
also been reduced, probably because most low-income and
black communities are clustered in the south side of Chicago
(Figure 4), thus by mitigating bias for race, the prediction
bias (MPE gap) for income has been reduced simultaneously.
Figures 7(a) and 7(b) plot MPE for black and non-black

groups as well as the overall MAE corresponding to Table 2.
As we increase the bias mitigation weight (γ ), the prediction
MPEs for the black population (denoted by the green bars)
decrease considerably, indicating that with the bias mitigation
loss function, the underestimation of TNC demand for the

black population has been mitigated. Additionally, the MAE
also decreases as the bias mitigation weight increases.
Then, we apply the same bias mitigation strategy to miti-

gate the MPE gap between the low-income and high-income
groups. In this case, z denotes the proportion of low-income
population in Equation (16). The results for “MPE gap
(income)” in Table 3 show that similar to the bias mit-
igation results for race, the MPE gaps generally decline
as γ increases when mitigating the income bias for both
Conv-LSTM Net and SA-Net. Specifically, when γ increases
from 0 to 10, the MPE gap between the low-income and
high-income groups decreases from 0.136 to 0.026 for Conv-
LSTM Net, and decreases from 0.113 to −0.001 for SA-Net.
The MPE gaps between two income groups are also plotted
in Figure 7(c) and Figure 7(d), where we can see that the
de-biasing regularization works well to reduce the MPE gap
for both Conv-LSTM Net and SA-Net.
In addition, we find that the improving prediction fair-

ness does not necessarily sacrifice prediction accuracy. The
orange dots in Figure 7 denote the MAEs produced by
different models, which show that the application of bias
mitigation actually also brings down MAE. Notably, when
increasing the mitigation weight γ for income from 0 to
10 for SA-Net, the prediction accuracy has been greatly
improved (MAE=6.006) compared with the case when no
bias mitigation is adopted (MAE=5.944).
We also examine the change of average MPE in differ-

ent times of day with different bias mitigation strategies in
Figure 8. Figure 8(a) and 8(d) show that by increasing the

562 VOLUME 4, 2023



FIGURE 7. Performance measures by model and sensitive variable, corresponding to Table (a) Conv-LSTM Net: race (b) SA-Net: race (c) Conv-LSTM Net: income
(d) SA-Net: income.

FIGURE 8. MPE for different racial groups with different mitigation weights (γ ) by time of day.

bias mitigation weight γ from 0 to 5 and 10, the MPE for
the black communities decreases in all times of day for both
the Conv-LSTM Net and the SA-Net, and the bias mitigation

effect is slightly stronger in the Conv-LSTM Net case. For
the Conv-LSTM Net, we observe that when γ = 10, the
morning peak MPE decreases to around zero, and the MPE
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FIGURE 9. Spatial distributions of mean percentage errors using SA-Net for different bias mitigation strategies.

TABLE 4. Ablation analysis of feature set.

in the morning and evening peak periods becomes negative.
On the contrary, Figure 8(b) and 8(e) show that the effects
of the bias mitigation method on the MPE for the non-black
communities are relatively small. The increase of γ is asso-
ciated with a small drop of MPE in the Conv-LSTM Net
case and a small rise of MPE in the SA-Net case. Figure 8(c)
and 8(f) plot the gaps in MPE between the black and non-
black communities given by Conv-LSTM Net and SA-Net,
which show that for all times of day, increasing the bias
mitigation weight from zero reduces the MPE gap between
the black and non-black communities. All in all, our results
suggest that our proposed bias mitigation strategy can sig-
nificantly mitigate the travel demand underprediction issue
for the black communities in all times of day with both the
Conv-LSTM Net and the SA-Net, and can effectively reduce
the prediction bias between the black and non-black groups.
In summary, our proposed de-biasing regularization

method can considerably reduce the prediction bias measured

by the MPE gap between the disadvantaged and the priv-
ileged groups for both Conv-LSTM Net and SA-Net. This
gain in prediction fairness can be achieved while keeping
the prediction accuracy high. For SA-Net, adopting bias
mitigation can even increase prediction accuracy.

3) SPATIAL PATTERNS OF ERRORS

To better understand the spatial heterogeneity of the
prediction errors, we show in Figure 9 the spatial distribu-
tions of MPE using SA-Net for three prediction strategies:
prediction with no bias-mitigation, with race bias mitigation
(γ = 5) and with income bias mitigation (γ = 5). Areas
with positive MPE (indicating that the TNC demand has
been underestimated) are denoted by the red color, whereas
areas with negative MPE (indicating demand overestima-
tion) are denoted by the blue color. Figure 9(a) shows that
when no bias mitigation is adopted, the south side of the
study area, which has greater populations of low-income
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TABLE 5. Sensitivity analysis.

and African-American people, suffers from severe demand
underestimation. When we add the bias mitigation for race
and income, the results in Figure 9(b) and Figure 9(c) show
that the grid colors in the southern areas have become much
lighter, and the colors of several areas in the south switch
from red to blue, suggesting that the underestimation issue
has been remarkably alleviated.

VI. ABLATION ANALYSIS
To gain a deeper insight into the performance of SA-Net
concerning the different employed features, we conduct an
ablation analysis on each feature group. In this series of
experiments, we systematically remove individual feature
groups from the complete set and evaluate the resulting
performance. Common intuition suggests that removing a
crucial feature group would result in a notable decline in
performance. Figure 4 shows that transit service supply is
the most important feature regarding MAE and RMSE, as
removing this feature will lead to the largest increase in MAE
and RMSE. Employment is the second important feature in
terms of contribution to MAE. Removing employment will
also lead to the largest increase in MAPE.
It can be observed that each feature contributes to the

prediction, as none of them individually outperforms the
model with the complete feature set. Furthermore, when
different ablation strategies are applied, MAEs for black,
non-black, low-income, and high-income groups are similar
in scale.

VII. SENSITIVITY ANALYSIS
In this section, we perform a sensitivity analysis and
parameter tuning on SA-Net. We investigate three types of
parameters: the bias mitigation weight (λ), the kernel size,
and the number of output channels (OLn). Our benchmark
model is set with λ = 10, kernel size = 3, and 32 filters. For
each trial, we vary the value of one of these three param-
eters while keeping the other two parameters the same as
the benchmark model. The results on the validation set are
reported in Table 5 for reference.

When examining the parameter λ, we observe that as λ

increases, the RMSE also increases, while MAPE generally
decreases. After careful consideration, we choose λ = 10
as it strikes a good balance between MAE and MAPE. For
the kernel size, we evaluate both 3 and 5 and find that a
kernel size of 3 yields better results in terms of MAE and

MAPE. Regarding the number of filters in the convolutional
units, we discover that using 32 filters produces the best
outcome in terms of MAE and RMSE. Overall, the results
demonstrate that our benchmark model provides the optimal
performance based on the metrics evaluated.

VIII. DISCUSSION AND CONCLUSION
Fairness has long been a critical concern in transportation
studies. However, the prediction fairness issue in spatial-
temporal travel demand forecasting has been neglected in
previous literature. In this paper, we propose a two-pronged
approach to enhance fairness in TNC demand forecast-
ing, and test the effectiveness of our innovative method on
Chicago’s TNC data.
First, though previous studies have shown that there

is significant difference in travel characteristics across
demographic groups [66], [67], [68], most spatial-temporal
research failed to account for the socio-demographic hetero-
geneity in travel demand predictions. We introduce a novel
model structure, SA-Net, designed to effectively capture spa-
tial correlations variations across various socio-demographic
groups. Experimental results affirm that our proposed SA-
Net substantially improves overall prediction accuracy by
effectively integrating socio-demographic and contextual
information, such as transit service information, weather
data, and time indicators. To achieve this, the SA-Net
incorporates the Socially-Aware Convolution (SAC) mod-
ule, which adapts the standard invariant kernel based on
the socio-demographic composition of each area within the
study region.
Specifically, the SA-Net demonstrates notable improve-

ments in performance compared to the best benchmark
model, Conv-LSTM Net, across various evaluation metrics.
During the morning peak hours (6 AM - 8 AM), SA-Net
achieves lower MAE, and it consistently exhibits reduced
MAPE throughout the day. Furthermore, when examining
the predictions for both black and non-black communities,
SA-Net yields MPEs that are closer to zero than Conv-LSTM
Net, indicating that it effectively mitigates underestimation
for the black communities. Additionally, our findings under-
score the significance of transit service level and employment
information as the most influential features contributing to
the enhanced prediction accuracy achieved by SA-Net.
Second, in our analysis, we uncover a prevalent issue

in previous solutions for spatial-temporal travel demand
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TABLE 6. Accuracy comparisons among different models (data aggregated to 30-minute intervals).

TABLE 7. Fairness and accuracy comparisons with bias mitigation for race (data aggregated to 30-minute intervals).

TABLE 8. Fairness and accuracy comparisons with bias mitigation for income (data aggregated to 30-minute intervals).

prediction: the tendency to underestimate demand in low-
demand regions. This arises due to the significant impact
of high errors in these areas on MAPE, which results in
a bias towards optimizing MAPE at the expense of accu-
rate predictions in low-demand regions. To address this
challenge, we propose a novel approach that employs the
mean percentage error gap as a measure of prediction fair-
ness. Additionally, we introduce a regularization method
designed to mitigate bias between disadvantaged and priv-
ileged groups. This is accomplished by disentangling the
correlation between the sensitive attribute and the mean
percentage error.
Our experimental results strongly confirm the efficacy of

the new algorithm in effectively mitigating prediction bias for

both the traditional Conv-LSTM Net and the newly proposed
SA-Net. Moreover, our findings demonstrate that the method
excels at protecting disadvantaged regions against systematic
underestimation. Specifically, our proposed bias mitigation
strategy significantly mitigates the issue of travel demand
underprediction for the black communities across all times
of day, thus ensuring fairer predictions.
Overall, we argue that the prediction bias issue revealed

in this work should attract the attention of the researchers
and policy makers, because if the travel demand in the dis-
advantaged neighborhoods is systematically underpredicted,
we may fail to provide enough TNC services to these
communities, and the limited services will in turn lead
to further decrease of the ridership, which will eventually
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lead to a negative feedback loop. The method proposed in
this study has been proven to be capable of tackling this
prediction bias issue and promoting both accuracy and fair-
ness. This has practical implications for policymakers and
transportation planners, as it helps ensure equitable access
to TNC services for all communities, including those his-
torically underserved or underpredicted. This can contribute
to reducing transportation inequities and enhancing social
inclusion.
We identify several future research directions worth inves-

tigating. First, this paper evaluates fairness in travel demand
prediction and demonstrates the utility of the de-biasing
mitigation method on Conv-LSTM Net and the SA-Net.
However, the proposed fairness evaluation metrics and the
bias mitigation method are widely applicable. They can
also be applied to other spatial-temporal deep learning
networks such as the spatial-temporal residual networks
ST-ResNet [69] and RSTN [10]. Second, this study aims
to implement fair predictions for on-demand ride service.
However, our proposed fairness-enhancing method should
also work well for other spatial-temporal settings, such
as bikeshare demand prediction, public transport demand
prediction and crime incidents prediction. Future research
can test the performance of the proposed method on vari-
ous downstream applications. Third, we test our method on
Chicago’s TNC data as the real-world application. Future
work can study the transferability of our method to other
applications or cities.

APPENDIX
EXPERIMENTS WITH DATA AGGREGATED TO
30-MINUTE INTERVALS
In this section, we test the robustness of our results by
conducting experiments on data aggregated into 30-minute
intervals. Table 6 presents the overall MAE, RMSE, and
MAPE, along with the MAE specifically for different social
groups. Consistent with the outcomes obtained from data
aggregated into one-hour intervals, our findings indicate that
SA-Net consistently achieves the lowest overall MAE and
MAPE. This underscores the enhanced prediction accuracy
achieved by employing SA-Net.
We proceed to present the results with bias mitigation

for race in Table 7, and the results with bias mitigation for
income in Table 8. The findings demonstrate the effective-
ness of the two bias mitigation strategies in addressing bias
related to the corresponding sensitive attributes. Consistent
with the results obtained from data aggregated to one-hour
intervals, we observe that the MAE is further improved in
SA-Net when the bias mitigation approach is implemented.
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