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ABSTRACT In cooperative, connected, and automated mobility (CCAM), the more automated vehicles
can perceive, model, and analyze the surrounding environment, the more they become aware and capable
of understanding, making decisions, as well as safely and efficiently executing complex driving scenarios.
High-definition (HD) maps represent the road environment with unprecedented centimetre-level precision
with lane-level semantic information, making them a core component in smart mobility systems, and a key
enabler for CCAM technology. These maps provide automated vehicles with a strong prior to understand
the surrounding environment. An HD map is also considered as a hidden or virtual sensor, since it
aggregates knowledge (mapping) from physical sensors, i.e., LiDAR, camera, GPS and IMU to build
a model of the road environment. Maps for automated vehicles are quickly evolving towards a holistic
representation of the digital infrastructure of smart cities to include not only road geometry and semantic
information, but also live perception of road participants, updates on weather conditions, work zones
and accidents. Deployment of autonomous vehicles at a large scale necessitates building and maintaining
these maps by a large fleet of vehicles which work cooperatively to continuously keep maps up-to-
date for autonomous vehicles in the fleet to function properly. This article provides an extensive review
of the various applications of these maps in highly autonomous driving (AD) systems. We review the
state-of-the-art of the different approaches and algorithms to build and maintain HD maps. Furthermore,
we discuss and synthesise data, communication and infrastructure requirements for the distribution of
HD maps. Finally, we review the current challenges and discuss future research directions for the next
generation of digital mapping systems.

INDEX TERMS Autonomous driving, high-definition maps, intelligent transportation systems.

I. INTRODUCTION
A. HISTORICAL BACKGROUND

THE INTEREST of humans in creating and using maps
for navigation dates back thousands of years [1]. A clay

tablet from around 600 BC depicts the region surrounding
Babylon, showing the Euphrates River, as well as the sur-
rounding mountains and ocean. In Roman Egypt, Ptolemy

The review of this article was arranged by Associate Editor Xin Xia.

published his scientific treatise, Geographia in 160 including
maps covering various parts of the world and recording their
longitude and latitude lines. Al-Idrisi created a world map
for Roger II of Sicily in 1154. The Renaissance in Europe,
the invention of printing, and the discovery of America have
led to substantial development of geography and mapping.
Furthermore, with the development of mathematical tools to
understand the geometry of the earth, e.g., projections, these
maps became more complex and accurate.
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B. DIGITAL MAPS
The advent of modern satellite systems and imagery tech-
nology has revolutionized the creation of accurate and
detailed digital representations of the world, giving rise
to what we now call digital maps, such as Google Maps,
OpenStreetMaps, Apple Maps, Garmin, and Mapbox. Digital
maps encode road structures and basic semantic information
as well as points of interest (POI). Several methodologies
and techniques exist to extract and recognize geographic fea-
tures needed to build these maps from satellite images [2].
Digital maps are now an essential tool in our daily life,
especially when integrated with GPS. Indeed, such inte-
gration has been a core component in building a huge
number of digital services, most importantly for naviga-
tion and routing. These maps have been mainly developed
to help humans and are now available in the most recent
vehicles to assist human drivers. However, these maps are
limited in accuracy and precision and update time for AD
requirements [3], [4], [5], in which the vehicle needs some
degree of positional precision as well as detailed lane-level
information.

C. ENHANCED DIGITAL MAPS
Digital maps have been significantly improved to meet the
requirements of advanced driver assistance system (ADAS)
functions such as lane-keeping assist [6] and adaptive
cruise control (ACC) [7]. Typical features included in these
Enhanced Digital Maps are speed limits, road curvature and
gradient, lane information, as well as traffic signs and traffic
lights [8]. Enhanced digital maps are also called ADAS maps
and are currently an integral part of most modern vehicles
to enable ADAS functions. Although enhanced digital maps
introduced lane-level information, their geometric precision
and the level of semantic details limit their applicability at
higher levels of autonomy. In AD systems, the vehicle is
required to be localized with high precision with respect
to its environment [9], [10], understand the current situa-
tion [11] and plan collision-free trajectories [12]. To reach
this level of autonomy, automated vehicles are required to
have access to maps not only with centimetre-level positional
accuracy and lane-level geometric information but also a 3D
model of the environment, as well as all static and dynamic
features of the road environment.

D. HIGH DEFINITION MAPS
The need of the above mentioned requirements gave rise
to what we call nowadays the high-definition maps, or sim-
ply HD maps. Figure 1 highlights the evolution of maps,
their features and usage as well as the information they
contain and their level of precision and details. The strate-
gic research planning workshop organized by a small group
of researchers at Mercedes-Benz in Stuttgart in 2010, is
where HD maps were born [13].The Bertha Drive Project
marked the first successful use of HD maps in various
functions of an AD system [14]. In this project, fully AD
experiments along the Bertha Benz memorial route have

FIGURE 1. Evolution timeline of maps and their specifications in terms of type of
data they contain, level of details, their precision and application.

been conducted using HD maps developed by HERE, one
of the project partners [5], [13]. One of the key outcomes
from the Mercedes-Benz planning workshop is likely the
requirement for a highly detailed and accurate map, which
can serve as an additional sensor to enhance the vehicle’s
understanding and perception of its surroundings. An HD
map is sometimes referred to as the hidden or the virtual
sensor, since it provides the autonomous vehicles with a
strong prior to understand the surrounding environment, even
far beyond what onboard physical vehicle sensors can pro-
vide [4], [15]. It is even considered as the most intelligent
sensor in AD [16]. Furthermore, maps can offer an unlimited
range and therefore, they could improve decisions and situa-
tion awareness, especially in occluded zones [5], [17]. While
most physical sensors used in autonomous vehicles are vul-
nerable to environmental conditions, especially cameras and
LiDARs, maps would not fail if kept accurate, consistent
and up-to-date [18]. HD maps are believed to enable the
next generation of automated vehicles, and there is a wide
agreement that these maps will be central to the digital trans-
formation of intelligent infrastructures, as well as strongly
contribute to more sustainable mobility solutions. HD maps
become a crucial component to power vehicles dealing with
complex driving scenarios. They are used to improve vehicle
localization by matching map data with collected sensor data
in real-time [10]. Furthermore, they play an important role in
improving the accuracy and reliability of perception in auto-
mated vehicles perception as they include information of the
various features found in the road environments [19]. This
can help the vehicle accurately recognize and classify these
features. As HD maps contain rich lane-level information,
they can also be used to support the calculation of efficient,
feasible and safe routes and itineraries. Having information
about the capacity and capabilities of roads, such as the num-
ber of lanes, the speed limit, and the presence of turn lanes.
This can be used to calculate routes that are suitable for the
specific vehicle and its capabilities [20], [21]. Additionally,
HD maps can provide a detailed and accurate representa-
tion of the road environment, including the location and
shape of roads, intersections, landmarks, POIs and many
other features that allow one to model the structure of the
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environment, understand the driving context and thus antici-
pate risks and potential hazards [22]. Furthermore, HD maps
can also be used to predict the likely paths and movements
of other road users, such as pedestrians and other vehi-
cles [23], [24]. These predictions are possible thanks to the
detailed geometric representations and the rich semantics in
HD maps. Moreover, HD maps can support the planning
of feasible and collision-free trajectories that respect traffic
rules [12]. Although, there exist several surveys that cover
the different AD functions, reviewing those that depend on
HD maps are timidly covered in the state-of-the-art. Part of
this paper extensively reviews the previous works in each of
the above-mentioned use cases.

E. SCALABLE MAPPING: OVERVIEW OF CHALLENGES
During the last decade, there have been tremendous research
and development efforts both from academia and industry
to push the limits towards affordable, self-maintained and
scalable HD maps. However, there are various unsettled chal-
lenges in building HD maps at scale [25]. These challenges
hold up HD maps to attain their full potential and ultimate
goal in autonomous mobility. These challenges fall into one
of the following categories.

1) DATA COLLECTION

Data collection for an HD map can be a time-consuming and
labour-intensive process. It typically involves using a combi-
nation of sensors, such as GPS, IMU, LiDARs, and cameras,
to gather detailed information about the environment.

2) DATA COMMUNICATION

Data communication involves the transfer of mapping data
from where they are collected to where they are processed to
build an HD map, and finally to where they are consumed,
e.g., by an autonomous vehicle. Mapping vehicles generate
large quantities of data from different sensors that need to be
processed to build and update maps. Handling these data in
real-time from a large number of mapping vehicles is indeed
a challenge.

3) DATA PROCESSING

Data processing is the step to create an HD map by extract-
ing the elements and features needed to build it [26]. This
can be a very complex task, especially for large maps,
as it involves aggregating and aligning data from multiple
sources and ensuring that the map is accurate and up-to-
date. Creating HD maps at scale with a large number of
mapping vehicles involved in the mapping process precise
temporal synchronizations must be guaranteed to avoid data
misalignment [27]. Synchronization using the pulse-per-
second (PPS) signal generated by GPS tends to be the
most common approach to have all onboard vehicle sensors
synchronized [28].

4) MAP MAINTENANCE

Map maintenance is the process of continuously keeping the
HD map up-to-date according to the changes in the road
environment, such as construction sites, road blockages, and
modifications of road connections. Since the road environ-
ment is highly dynamic and undergoes changes, this process
requires frequent data collection and processing efforts.

5) DATA SECURITY AND PRIVACY

Data security and privacy are crucial for HD maps, as they
often contain sensitive information, such as the locations
of buildings and infrastructure. Ensuring that this data is
protected and not misused is a significant challenge.

6) MAPPING COST

Mapping cost is an important factor in the process of cre-
ating HD maps. Building maps at large scale necessitates
using a big number of mapping vehicles, each equipped
with an expensive suite of mapping devices with high-
precision sensors. This cost becomes significantly important
when mapping large areas. HD mapping using consumer-
grade sensors is possible, but it comes at the cost of the
sophistication of the mapping algorithms used.

F. CONTRIBUTIONS
This paper provides an in-depth overview of HD maps
including a unified model of their layered architecture.
Further, the paper highlights the importance of HD maps
in modular AD systems and provides a synthesis of how
they are used in the various AD core functions. Given
the aforementioned challenges of mapping data collection,
communication, processing, security, and costs, this paper
extensively reviews the previous works on building and main-
taining HD maps, including cost-effective solutions as well
as the communication and mapping data requirements from
generation to distribution. Additionally, the paper discusses
the current challenges in each of the above areas for build-
ing and maintaining HD maps. Finally, we shed some light
on the future and next generation of HD maps for mobility.
The main contributions of this work can be summarized in
the following:

• A free-standing overview of HD maps as a background
for the broader community of intelligent transportation
systems.

• A detailed review of the state-of-the-art of HD maps
uses in the various core functions of AD systems.

• A comprehensive review of the different approaches,
methods and algorithms to maintain the different layers
of HD maps and keep them up-to-date.

• Discussion on key challenges and future perspectives
of HD maps in CCAM and beyond.

G. ORGANIZATION
The objective of this survey paper is to provide a detailed and
extensive review of recent research works in HD maps. In
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Section II, we synthesis and analyze relevant survey papers in
the state-of-the-art of AD and HD maps. We further discuss
how the present survey is positioned among previous works
and its contributions. In Section III, we provide an overview
of HD maps as well as a description of the different layers
and the information contained in each. In Section IV, we
provide an extensive review of applications of HD maps in
AD systems. For each component in AD systems, previous
works are classified based on two criteria: (a) which map
data are used (layer) and (b) and what these data are used
for. In Section V, we extensively review different approaches
and algorithms to build HD maps. Section VI is dedicated
to maintenance of HD maps, where we review the different
methods to keep HD maps up-to-date. Section VII discusses
the different communication infrastructures and protocols
needed for HD maps. In Section VIII, we conclude the paper
by discussing the current challenges of building, maintaining,
and distributing HD maps at scale.

II. RELATED SURVEY WORK
Although there are numerous review papers covering various
AD topics, the vast majority of them do not exten-
sively address the subject of HD maps in more detail.
Yurtsever et al. [29] presented a comprehensive survey of
AD systems focusing on emerging technologies, the common
practices from high-level system architectures to the differ-
ent methodologies and typical core AD functions. In [29],
besides the review of the various AD core components,
namely localization, perception, planning and control, the
mapping part has been briefly discussed. Further, map-
ping is often presented as an integral part of localization,
e.g., in the scope of Simultaneous Localization and Mapping
(SLAM) and not for HD maps in AD. Moreover, the
various core components of AD systems have been the
subject of discussions in several survey papers, for local-
ization [9], [10], perception [30], [31], scene understanding
[11], motion prediction [24], [32], [33], motion planning and
control [12]. Mapping for autonomous vehicles has been dis-
cussed very often in the context of SLAM [34], [35], [36].
However, HD maps as a subject are far more complex
and more comprehensive compared to classical mapping in
robotics. Furthermore, the insight of most of these papers
is oriented towards building maps for robot navigation in
unstructured environments. On the other hand, the envi-
ronment of autonomous vehicles is highly structured and
subject to traffic rules. HD maps enable autonomous vehi-
cles to understand and navigate the road environment while
respecting these rules.
The present paper tries to provide a comprehensive and

systematic review of the state-of-the-art of HD maps com-
pared to available surveys that cover either one aspect of
HD maps or provide a very general overview. For instance,
Puente et al. in [28] reviewed the different technologies and
platforms used in data collection for HD maps, e.g., Mobile
Mapping Systems (MMS). Elhashash et al. [37] reviewed
the different sensors used to build MMS and discussed

their utility and applications. Ma et al. [38] moved a step
forward and discussed the different methodologies and algo-
rithms used to extract road features from the point clouds
generated by MMS. Their work, however, focused on geo-
metric road features. Similarly, Zheng et al. [39] presented
an overview of the different methods used to extract lane-
level road geometry as well as a mathematical model used
to represent extracted features. More recently, a compre-
hensive survey of the generation algorithms for the various
elements and layers of HD maps and their formats has
been presented in [26]. While the current generation algo-
rithms for HD maps may have limitations and fall short
of desired performance and accuracy [26], there are exten-
sive and rapidly advancing research endeavours focusing
on building HD maps, particularly utilizing deep learning
techniques. Reliable algorithms for building HD maps are
considered the main part of the challenge. Building HD
maps at scale involves various aspects, such as data col-
lection from several vehicles, data processing by building
algorithms, aggregation in cloud servers and distribution to
autonomous vehicles in standardized formats via suitable
communication protocols [40]. Motivated by the fact that the
road environment is highly dynamic and undergoes changes
frequently, the review of Boubakri et al. [41] has focused
only on the techniques of updating HD maps. The multidisci-
plinary character of HD maps motivated several researchers
to present an overview [5], tutorial [3] and high-level review
papers [4], [15]. The present survey paper differs from the
above-mentioned reviews in three main points. (1) First, we
provide a thorough overview of HD maps and review their
different formats. Furthermore, we adopt a generic defini-
tion of the different static and dynamic layers in HD maps.
The elements in these layers constitute the basis of the tax-
onomy used in the rest of the paper to classify previous
works in HD maps. (2) Second, we provide a comprehen-
sive review of the use cases of HD maps in the different core
components of AD systems, e.g., in localization, perception,
routing, motion prediction and motion planning. In each of
these functions, we synthesize how HD maps are used to
improve their functionality. We systematically classify these
works based on the HD map layer. (3) Finally, we review in
detail the recent research papers focusing on building and
updating HD maps. More precisely, we synthesize and pro-
vide a taxonomy of these works both on sensor data used
as well as the features generated and its corresponding map
layer.

III. HD MAPS: AN OVERVIEW
Early HD maps were only extensions of Enhanced Digital
Maps used in ADAS, and they were referred to as prior
maps [14], [43]. The term HD maps is quite recent but
now becomes widely accepted in CCAM industry, includ-
ing Tier I automotive companies, map providers, and
OEMs. HD maps encapsulate all necessary information
for automated vehicles to understand the driving environ-
ment at a very-high precision [5]. While generally there
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is a consensus that HD maps are a core enabler for
CCAM, there are no clear guidelines or a standard of what
information constitutes an HD map, and how they are rep-
resented [44], [45], [46]. Nevertheless, available HD maps
in the market share common features. Centimetre-level posi-
tional accuracy and the availability of lane-level geometric
and semantic information are the essential features found
in most HD maps [3], [5], [46]. At its most basic level,
an HD map can simply be a set of points and line seg-
ments with accurate positions representing road signs, lane
markings, lane borders, and lane dividers [26]. Today’s HD
maps are becoming more complex due to the requirements
of AD systems, where data from different sources constitute
several layers of information about the driving environ-
ment [47]. Breaking down an HD map into multiple layers
allows to have a more structured data representation of the
road environment. This facilitates accessibility by the dif-
ferent components of an AD system, which requires that
the environment is modelled at different levels of detail.
Furthermore, a layered data representation makes it easy to
build, store, retrieve and maintain the map. The HD map
used in Mercedes-Benz Bertha Drive research project [13]
defined three layers [14]. A two-layered HD map has been
used in the BMW AG experiments, where the first layer was
dedicated to geometric and semantic lane information and the
second one of road/lane markings used for localization [48].
Similar to the map used in Bertha Drive, TomTom and
HERE also adopted a three-layered data structure for their
HD maps [49], [50]. The data in these three-layered mod-
els somehow represent the lane geometry, road connection
network and a few semantics, but in different standard for-
mats [5]. The HD Live Map of HERE is composed of three
layers, namely, the Road Model, HD Lane Model, and HD
Localization Model [49]. The Road Model defines road-level
topology and geometric features as well as country-specific
road classification. As the name implies, the HD Lane Model
provides highly-precise lane-level features such as lane driv-
ing direction, lane type, lane boundary, and lane marking
types. These data allow automated vehicles to plan more
comfortable local trajectories. The HD Localization Model
is composed of object-level semantic features such as traffic
signs, traffic lights, and other road features. This layer helps
the vehicle to accurately estimate its position using object
location. Examples of these hierarchical layers are given in
Fig. 2. Similarly, TomTom HD map is composed of a three-
layers model, namely Navigation Data, Planning Data, and
RoadDNA [5]. The latter is used for localization [51].
There are several ways to represent and store the data

of HD maps. Among existing formats used to represent
HD maps are OpenStreetMap [52], Lanelet2 [53], [54],
OpenDrive [55], Navigation Data Standard (NDS) [56],
Geographic Data Files (GDF) [57], GeoJSON [58] and ESRI
shapefiles [59]. More details about different formats of map
data for AD can be found in [4], [45], [46]. Software tools
are available for conversions between most of these for-
mats [60], [61], [62], [63]. Using HD maps to aid automated

FIGURE 2. Six-layers generic model of HD maps.

vehicles in improving their localization with respect to the
environment has been one of the early motivations for cre-
ating such a geographic database [10]. The principle of
map-based localization is to match observations obtained
by the perception system with features included in the HD
map. These features are either geometric (e.g., lane mark-
ings) or semantic map elements (traffic signs, road signs,
and POI) [14]. Localization using geometric and seman-
tic features tends to be challenging, especially in zones in
which these features are sparse [64]. An alternative approach
for localization is to match dense raw sensor data with a
3D spatial representation of the road environment [65], [66]
(e.g., point cloud map). Although localization based on a
dense map layer and raw sensor data can achieve better
pose estimation results [10], storage and processing require-
ments tend to be one of the limitations of this approach.
One solution is to use compact 2D/3D representations such
as 3D occupancy grid or voxels. Obviously, having a pre-
built 3D spatial dense layer of the road environment in
HD maps becomes crucial for highly AD systems, since
the accuracy and robustness of localization determines the
reliability of the whole system (cf. Section IV for more
details). This motivates map providers to include a layer
with such a representation in their map hierarchy. TomTom
supports their RoadDNA layer with a 2D raster image that
converts from a 3D point map [51]. In addition to its vec-
tor map in Lanelet2 format, Autoware, the open-source AD
software uses a separate 3D point cloud map [67], mainly
for localization using the Normal Distribution Transform
(NDT) method [68]. Likewise, Apollo, the open-source
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FIGURE 3. Examples of HD maps from HERE [42].

AD software of Baidu uses a prebuilt point cloud map in
their localization system [69] and another vector map in
OpenDrive format [70]. HD maps are now an integral com-
ponent of most AD simulation tools to account for more
realistic scenarios [71], [72]. Furthermore, new releases of
several AD datasets come with an HD map (Waymo open
dataset [73], [74], Argo AI Argoverse I [75] and Agroverse
II [76], Motional NuScenes [77], Lyft L5 [23]).

As discussed above, there are several ways to represent
map information used in AD systems including lane-level
details, such as lane boundaries, lane marking types, traf-
fic direction, crosswalks, driveable area polygons, and
intersection annotations. Although the driving environment is
highly dynamic, the data represented in these three layers are
static. A holistic representation of the environment shall also
include real-time traffic information about observed speed,
weather conditions, congestion zones, blocked road zones
(constructions), etc. This section tries to provide a global
overview of the information stored in these layers in a uni-
fied manner. Although most HD map providers have their
own definition and formats, and there is no unique standard
yet for HD maps, we categorize the information contained
in HD maps into six distinct layers as described in Figure 2.

A. BASE MAP LAYER
The base map layer is the foundation of an HD map and
is considered as a reference layer on which all other layers
are built. It contains a highly-accurate 3D geo-spatial repre-
sentation of the environment, such as the location and shape
of roads, buildings, and other structures. A 3D geospatial
model of the road environment is becoming an important
source of information for autonomous vehicles. It is now
common for an HD map to contain a 3D representation of
the environment. The base map layer is typically created
using point clouds from LiDARs and/or images from one
or more cameras, sometimes assisted with GPS/IMU. This

suite of sensors constitutes an MMS that allows to create
a highly accurate and detailed 3D point clouds represent-
ing the environment. Road and lane geometric and semantic
features are extracted from this layer to build other layers
in HD maps. Since this layer contains a dense data rep-
resentation of the environment, it plays an essential role
in the precise localization of autonomous vehicles. Several
techniques for point cloud registration allow estimating the
vehicle pose by matching raw sensor data against a point
cloud from this layer. Building and updating this layer is
challenging in terms of data processing and communication
requirements [78].

B. GEOMETRIC MAP LAYER
Despite its precise and dense representation of the environ-
ment, the base map layer ability to support understanding
of the environment is limited, due to the lack of mean-
ingful features in its representation. The geometric layer in
the HD map provides detailed information about the geom-
etry of the road environment, including the location and
shape of roads, lanes, curbs, and other features. The geo-
metric layer typically includes information about road width,
the number of lanes, the centerline of each lane, the bor-
ders of lanes in each road, and the elevation of the road
surface. It also includes information about the precise loca-
tion and shape of curbs, sidewalks, pedestrian crossings, and
both vertical and horizontal traffic signs. Each of these fea-
tures is represented in terms of basic geometric primitives,
i.e., points, lines, multilines, and polygons. For example, the
location of a vertical traffic sign could be represented by a
point. A lane centerline or borders can be represented by a
set of line segments connected to one another, e.g., multi-
line. Similarly, a pedestrian crossing can be represented by
a polygon. Geometric features of this layer are created by
processing data of the base map layer. Building the geomet-
ric layer from the base map data typically involves several
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processing steps, including road segmentation, extraction of
lane information, road signs, poles, traffic signs, curbs, bar-
riers and road surface features. This layer provides a highly
accurate and lane-level geometric representation of the road
features. Geometric features in an HD map are essential for
various AD core components, most importantly for precise
motion predictions of dynamic road participants, as well as
for safe planning of geometrically feasible trajectories.

C. SEMANTIC MAP LAYER
The semantic map layer defines the significance of road fea-
tures provided by the geometric map layer. The data in this
layer provide a context as well as meaning to the features
represented in the map. For example, the semantic map layer
in an HD map contains information such as the type of road
(e.g., highway, residential roads), and lanes (e.g., change
possible, to left or right), their numbers, the direction of
traffic, and whether a lane is for turning or for parking. It
also includes information on speed limits, lane boundaries,
intersections, crosswalks, traffic signs, traffic lights, parking
spaces, bus stops and many other features that are important
to build the contextual representation of the environment.
The semantic map layer allows the autonomous vehicle to
build a detailed situational representation of its environment
and understand the traffic rules, and thus be able to make
correct and safe decisions in different traffic scenarios. In
simple terms, the semantic map layer assigns semantic labels
to road features and objects defined in the geometric map.
For example, a point in the geometric layer is nothing but an
ordered set of coordinates in the map coordinate reference
system. Only the semantic layer defines whether this point
corresponds to a traffic light, yield or stop sign. HD maps
are known to contain rich semantic information. The seman-
tic layer also associates metadata to road features such as
road curvature, recommended driving speed, and a unique
identifier of each semantic feature. Indeed, semantically rich
HD maps enable autonomous vehicles better understand the
driving situation, and therefore to make complex decisions
in sophisticated scenarios. Nevertheless, building a reliable
and high-fidelity semantic map of the road environment is
not a straightforward process. Several processing steps, not
limited to scene segmentation, object detection, classifica-
tion, pose estimation and mapping are required. With recent
advances in computer vision, deep learning, sensor fusion
and semantic SLAM algorithms, building accurate semantic
maps becomes possible.

D. ROAD CONNECTIVITY LAYER
The road connectivity layer describes the topology of the
road network and how the various geometric elements are
connected. Contrary to the standard definition of digital
maps that contains only road-level information and road-
level connectivity, HD maps contains lane-level geometric
and semantic information, thus connectivity between roads
becomes complex, as it defines the connection between two
or more group of lanes. More precisely, this layer provides

the layout and connectivity of roads including lane borders
and centre lines as well as intersections. Lane-level con-
nectivity information is necessary to plan legal transitions
between roads and lanes as well as plan manoeuvres that
are permitted at each intersection, which is crucial for the
path planning of autonomous vehicles. In simple terms, this
layer defines how the primitives constituting the geometric
layer are connected with each other. These connections are
established by defining sequential pairs of geometric and
semantic elements. Assigning a unique identifier to each
geometric and semantic element makes it possible to rep-
resent this information using a graph data structure, where
each element is represented by an edge and their connection
as a node. The graph structure allows for fast querying and
searching of the map and planning routes efficiently.

E. PRIORS MAP LAYER
This layer is also known as the experimental map layer since
it represents and learns information from the past experi-
ences. It concerns the geometric and semantic elements in
the map that their states changes temporally. Learning the
status of traffic flow and accident zones from data of a fleet
of vehicles allows for a more efficient and predictive driving
behaviors. This layer also acquires and learns information
that aides to predict the behavior of human driving and
the dynamic states of traffic lights at intersections. It also
accommodates temporal road settings, such as the parking
orders, their occupancy and time schedules. For example,
roadside parking places in some cities change during some
week days, predicting the probability of occupancy and the
timing rule that governs a given parking place is derived
from the prior map layer sensor readings of different fleet
vehicles that drive by that place. Learning and predicting
the driving behaviour of road agents could be challenging
due to sociocultural differences between different societies.
Modeling these behaviours from experience is crucial for
universal and scalable AD systems.

F. REAL-TIME MAP DATA
The real-time layer in an HD map is a dynamic layer
that provides real-time information about the environment,
such as traffic conditions, road closures, and other events
that may impact the navigation of the autonomous vehi-
cle. This layer is typically created by combining data from
various sources, such as cameras, sensors, and other con-
nected devices, which are mounted on the vehicle or located
on the roadside. The data is collected in real-time and is
used to update the HD map, either through crowdsourcing
by participating vehicles or from intelligent infrastructures
using specific communication networks. The real-time layer
can include information such as the location and speed of
other vehicles, the location and status of traffic signals,
and the presence of construction areas or other obstacles
and blockages on the road. This information is crucial for
autonomous vehicles to make safe and efficient driving
decisions in real-time to optimize traffic flow and reduce
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FIGURE 4. Keyword network visualization resulting from the VOSViewer [79]
analysis of all Google Scholar papers from 2012 to 2022 filtered by the same keywords
included in the graph. The thickness of graph edges and the size of graph nodes
quantify the dependency between keywords and the number of occurrences of
keywords, respectively.

congestion. Furthermore, the real-time layer can be used to
improve the accuracy and completeness of the HD map,
by providing up-to-date information about the environment
that may not be captured by the sensors used to create
the map. In simple terms, the real-time layer in HD maps
provides a dynamic, up-to-date representation of the envi-
ronment. Live updates of an HD map for dynamic elements
are challenging and require sophisticated intelligent com-
munication infrastructure and cooperation between multiple
actors. Data transmission between Intelligent Transportation
Systems (ITS), HD map providers and vehicles must be reli-
able and meet certain requirements which are covered later
in this survey.

IV. HD MAPS IN AD SYSTEM ARCHITECTURES
HD maps provide the AD system with a detailed and
precise representation of the road environment [15]. These
maps contain lane-level geometric, topological and semantic
information necessary for safe and efficient navigation of
autonomous vehicles [14]. Using HD maps in autonomous
vehicles allows them to better understand their surround-
ings, plan their routes, and make more accurate driving
decisions, thus ensuring the safety of passengers and other
road users. This section discusses the importance and uses
of HD maps in AD systems. The ultra-precise map data are
now an integral part of most various core components in AD
systems [14]. In order to discuss the importance and uses
of HD maps in AD, we briefly describe the architecture
and standard components of typical modern AD systems.
Figure 5 shows the standard components of an AD system
demonstrating those relying on HD maps. This section begins
by briefly describing the architecture of an AD system and
how it works as well as its various components. The rest

of this section provides an extensive review of the state-
of-the-art on those AD components that rely on HD maps.
A keyword graph constructed based on analysing Google
Scholar papers using the name of AD components as the
search keywords definitely results in a strong dependency of
core AD components on HD maps.

A. AD SYSTEM ARCHITECTURE
Automated vehicles are complex cyber-physical systems in
which different components have to work together to achieve
the overall driving tasks in a robust, reliable and safe way.
While there does not exist a unique architecture of AD
systems [29], we rely in this work on a common and generic
architecture that helps us understand how HD maps are used
to improve the different functions of AD systems. Likewise
any robotic system, an autonomous vehicle can be considered
a cognitive agent, with its three main elements, (1) a sensing
element, (2) a cognitive element and (3) an action element.
Splitting up these elements into an industry-level AD system
results in several components as depicted in Figure 5. The
sensing component in modern AD system architectures typ-
ically includes different sensors such as IMU, GPS, camera,
LiDAR, and radar. A Subset of these sensors allows the
vehicle to know its position with respect to the environ-
ment, i.e., for localization and the remaining sensors are
used for perceiving the environment itself. Reading and pre-
processing raw sensor data and making it available to the
rest of the AD system is the role of the sensing component.
In its simplest form, the sensing component is composed
of a set of sensor drivers to read raw sensor data in real-
time. The localization component is one of the most critical
for the whole AD system to function reliably. Its role is
to precisely estimate the position of the vehicle [9]. Error
in localization propagates to the rest of the AD processing
pipeline. Localization is simply a state estimator that fuses
raw sensor data from the sensing component. Additionally,
the availability of a map allows to improve and robustify
localization, especially in zones in which some of the sen-
sors fail or have degraded performance [10]. In Section IV-B,
we review map-based localization techniques. Further, we
discuss how the base, geometric and semantic data from an
HD map are matched with raw sensor data, mainly how
LiDAR point clouds and camera images are used to better
estimate vehicle pose. The role of the perception compo-
nent is to generate an intermediate-level representation of
the current state of the environment, including information
about obstacles and road agents [80], [81]. This representa-
tion also includes details about lanes (their position, borders,
markings, and types), traffic signs, traffic lights, and driv-
able areas. Computer vision and deep learning techniques
are extensively used for segmentation, clustering and clas-
sification tasks. Furthermore, object-level fusion is also an
essential part of this component. The output of the perception
is a list of tracked objects as well as a semantic segmentation
of the image used for scene understanding. The geometric
and semantic information from an HD map can also be used
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FIGURE 5. Standard components in modern AD system architectures. Five AD core components rely on HD map data.

to improve object detection and fusion. Accurate perception
is crucial for safety, as perception errors can affect the quality
of information used throughout the AD system. Therefore,
using redundant sources of sensor data can enhance con-
fidence in the accuracy of perception, thereby improving
overall system robustness. We discuss later in this section,
how the information provided by an HD map can con-
tribute to the confidence, accuracy and overall robustness of
the perception component. The scene understanding com-
ponent serves as a bridge between the abstract mid-level
state representation of the environment given by the per-
ception component and the high-level cognitive components
in the AD system [82]. This component aims to provide a
higher-level contextual understanding of the driving scene by
building upon the data provided by both the HD map and the
perception component [81]. Later in this section, we discuss
how these two sources of information are fused to build a
scene representation for understanding the driving context.
Another component in the AD pipeline that relies on HD
maps is the motion prediction component. It builds on the
high-level spatio-temporal representation of the environment
provided by scene understanding to predict the behaviour
of road agents surrounding the vehicle [33]. The role of
HD maps in motion prediction is to provide prior trajecto-
ries of each road agent in the scene. Motion prediction is
a highly multi-modal problem in which HD maps play a
key role discussed in detail in this section. The motion plan-
ning component aims to calculate a feasible, collision-free
and safe trajectory of the autonomous vehicle [12]. This is
achieved by optimizing a global shortest path obtained by
a routing algorithm running on HD map data as well as
the predicted trajectories of road agents. Motion planning
also includes a behavioural planning function that relies on
the state of the current scenario defined by detected objects

and the HD map. The control component receives a planned
trajectory and computes control commands for the steering,
brake and acceleration actuation systems [12]. The control
component does not explicitly rely on map data, thus it will
not be considered in this survey. Finally, a special component
is used to serve all other components by handling requests
to provide map data as shown in Figure 5. HD map data are
often stored in databases queried by map servers (local or
cloud) to routing, tiling and update requests by a map client
in the vehicle. As the routing element necessitates special
algorithmic treatment, it will be considered in our survey of
applications of HD maps in AD systems.

B. LOCALISATION
The localisation component in AD systems aims to esti-
mate the position and orientation of the vehicle with respect
to a global reference coordinate system. Its critical role
is to continuously keep high accuracy and robustness of
the estimation needed by the successive components in the
system [112]. The precision of localization algorithms deter-
mines the reliability of the entire AD system. The robustness
of localization under inclement weather conditions is a key
requirement of modern AD systems as degraded estimation
performance may lead to severe consequences and poten-
tial damages. The significant research efforts on localization
during the last two decades have witnessed a remarkable
performance, and at the same time have led to a wide
range of assorted approaches. In order to guarantee normal
operating conditions and achieve global system safety, an
autonomous vehicle is required to be localized within 10cm
precision [84], [113]. The vast literature in localization tech-
niques for autonomous vehicles can be allocated into either
of two main categories. The first category assumes prior
knowledge about the vehicle environment, i.e., a map, hence
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TABLE 1. Different approaches of HD map-based localization and the map data they use.

is referred to as map-based localization [10], [83], [95],
[106], [114]. The other category assumes no prior knowledge
about the environment and aims at building this knowledge
and simultaneously estimating vehicle location, e.g., SLAM
based approaches [34], [35]. This section categorizes and
analyses the localization techniques based on the different
data provided by HD maps. SLAM-based approaches have
a map-building element, thus it will be discussed among
algorithms used to construct HD maps in Section V. As
a rich and precise representation of the environment, HD
maps are considered one of the most suitable prior maps
for localization [115]. We review localization techniques
by analysing and discussing “which” and “how” map data
are used to localize autonomous vehicles with respect to
their environment. Localization in its abstract form is a pose
estimation problem that basically amounts to the fusion of
onboard observations from different sensing modalities with
map data. How sensors are fused with map data can be cate-
gorised into three main approaches. the first approach tries to
associate map features with onboard observations of percep-
tion sensors. This association basically amounts to solving
a geometric problem, with the solution being the position of

the autonomous vehicle. The solution is usually obtained by
solving an optimization problem that tends to optimize the
poses from pairwise relative observations and map elements,
e.g., using pose graph optimization (PGO) [104] or iterative
closest point (ICP) [106]. This is referred to as the geometric
approach and in some other works is referred to as the map
matching approach [90], [97]. The second approach handles
the problem of map-based localization using probabilistic
techniques in the sense that a belief of pose probability dis-
tributions of observations and map data are used to obtain
the accurate belief of vehicle pose. Reference [86] matched
curbs and lane markings with features detected by camera.
The resulting residual error from geometric matching is send
as an observation to a KF for vehicle pose estimation (thus
Kalman is for smoothing not probabilistic localization). GPS
has been used for initialization only.

C. PERCEPTION
The perception component in an AD system is often linked
with processing raw camera images and LiDAR point
clouds for the detection and tracking, not only of static
objects (e.g., traffic signs and road markings), but also
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dynamic agents, e.g., surrounding vehicles, pedestrians, and
cyclists [30], [80], [81]. Perception is one of the critical
core functions of an AD system. Ensuring its reliability
and real-time performance is crucial to ensure collision-free
navigation [116], [117]. Fusing perception data with the
detailed and precise geometric and semantic information
included in the various layers of HD maps potentially
improves perceptions by focusing on the most relevant
Regions of Interest (ROI) [81], [117]. More precisely, the
geometry of an HD map allows to define an ROI to filter
out point clouds, leaving only those of particular interest
to the perception function, thus simplifying and improving
the computational efficiency of object detectors [119]. For
instance, removing point clouds corresponding to buildings
would avoid unnecessary computations in object detection.
Reliable object detection for AD systems remains an open
challenge mainly in occluded zones and beyond the reach
of onboard sensors [80], [120]. Although the primary use
of HD maps is to improve vehicle localization, they still
could provide useful information to boost the performance
and confidence of detected dynamic objects [19]. Recently
there has been an interest in using HD maps to improve the
perception of autonomous vehicles [117]. Fadadu et al. [121]
used a local rasterized image of HD map as an input to
a deep learning architecture in parallel with raw camera
image and LiDAR point cloud for map-aware object detec-
tion. Yang et al. [118] and Carrillo and Waslander [122]
developed a deep learning framework for 3D object detec-
tion leveraging HD maps to improve the performance and
robustness of state-of-the-art 3D object detectors. On the
other hand, detecting static objects, e.g., traffic signs and
road markings is of interest to build HD map geometry and
semantic features. This precision contributes to the overall
quality of the HD map, and consequently the AD functions.
For instance, errors in the positions of detected traffic signs
and road landmarks make it difficult to match against their
counterparts in the HD map with strict matching thresholds.
Map geometry and semantics allow defining scene represen-
tation models that facilitate recognising the most relevant
obstacles to decision-making while ignoring those without
impact on the current situation [22]. Matching detected
objects against an HD map makes it possible to identify rel-
evant objects for decision-making. Perception at this higher
level is refereed is referred to as situation understanding.

D. SCENE UNDERSTANDING
Understanding the driving context is imperative to make cor-
rect and safe decisions by autonomous vehicles. One of the
early motivations of HD maps is to provide autonomous vehi-
cles with precise and detailed information to help understand
their environment. This information enables the AD system
to understand the current driving situation and interpret all
entities constituting the scene. Geometry and semantics con-
tained in the map make it possible to build compact data
models and representations of the environment systemati-
cally, thus enabling the vehicle to deal with complex driving

scenarios [123]. More precisely, the scene understanding
component in an AD system, supported by an HD map’s
geometric and semantic information, could consistently pro-
vide a meaningful context of perception [82]. Beyond the
raw object detection, scene understanding aims at extract-
ing and estimating safety critical information and making
it available to subsequent processing stages [11]. As dis-
cussed earlier in this section, raw perception mostly deals
with object detection, tracking, and fusion, without consid-
ering the context of the object. Projecting raw perception
objects onto the map layers allows building a comprehen-
sive layout of the driving scene. This layout sometimes is
referred to as the world model [22]. The main benefit of hav-
ing such a layout is that it enables matching a perception
object with the semantic features in the map, thus obtaining
a more enriched perception, e.g., a pedestrian on a cross-
ing and a car in the same lane [22]. Encoding static and
dynamic information of the environment in a unified world
model facilitates the subsequent AD tasks, mainly motion
prediction and planning. Furthermore, HD maps facilitate
the estimation of the drivable area taking into consideration
the adjacent driving lanes. In summary, HD maps provide
information to facilitate scene modelling and understanding,
e.g., by providing complementary information on sidewalks,
pedestrian crossings and drivable paths [99]. They further
include information about local traffic regulations, including
speed limits and priority rules [5]. The higher the precision
of the map geometry and the richer its semantics, the bet-
ter the AD system will be at interpreting and interacting
with complex scenarios. Scene representation with unreli-
able perception and outdated HD maps may potentially lead
to misinterpretations of the context.

E. ROUTING
Road-level digital maps assist human drivers in navigating.
The route calculations in these maps cannot go beyond using
road-level connectivity, since these maps do not include
lane-level details. Accurate and optimal driving routes are
necessary for time and energy saving, as well as contributing
to global vehicle safety. Efficient and low-cost drive route
calculation must consider a lane-level model of the environ-
ment [20]. Furthermore, in a highly dynamic environment,
details about the status of the traffic and lane occupancy are
essential to adapt the route dynamically as the autonomous
vehicle navigates in the environment [124]. Considering the
detailed and accurate lane-level information of the HD map
static layers together with the priors and real-time layers, an
efficient dynamic route calculation is possible [125]. For a
routing subsystem in an autonomous vehicle to be able to
calculate a drivable path from the current position to a set
destination, a fresh and up-to-date map must be made avail-
able to the system from the HD map server as depicted in
Fig. 5. Alternatively, as in digital maps, route calculations
could be offered as a service. Upon sending its accurate
position to the HD map server, an optimal route could be
calculated and fed back to the vehicle for supporting the
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other core components of the system. Over the last few years,
those routing services have involved taking into account real-
time traffic conditions and energy factors (e.g., most energy
efficient route). For autonomous vehicles, additional factors
can be taken into account, such as routes avoiding complex
urban environments that are difficult to navigate for ADS, or
routes with a good network coverage to guarantee continu-
ous connectivity for online services, including the real-time
HD map service [126].

F. MOTION PLANNING
The role of motion planning in an AD system is to generate
feasible, safe, collision-free and energy-efficient trajectories.
The motion planning task typically incorporates trajectory
generation and behaviour planning [12]. Behaviour planning
is a high-level decision-making function that decides transi-
tions between the different driving states, e.g., lane change,
in-lane vehicle following, decelerating to stop, etc. To make
these transitions safely, a local map tile and vehicle per-
ception are needed by the behaviour planner to build a
transition model of the vehicle environment. Unlike nav-
igation in mobile robots, the road environment is highly
structured [127] and all road users have to respect traffic
rules. Generated trajectories for AD are strictly required to
ensure that traffic rules are respected and motion is within
drivable road areas. There exist different approaches for
motion planning for autonomous vehicles, they all rely some-
how on the geometric and semantic information provided by
HD maps to respect traffic rules [21], [128], [129], [130]. In
sample-based motion planning approaches, the lane geom-
etry of the HD map is used to limit the search space by
rejecting candidate trajectories that are not feasible [131]. In
optimization-based motion planning, map geometry is used
to define a set of constraints to confine the solution to a
feasible road region [128], [130]. Recently, there has been
an increasing interest in end-to-end frameworks in AD. One
deep-learning architecture could replace all components of
a sophisticated motion planner while guaranteeing the effec-
tiveness to generate safe and collision-free trajectories in
real-world driving scenarios. An example is the end-to-end
neural motion planner developed by Zeng et al. [132]. The
proposed deep learning pipeline is composed of stages. The
first input point clouds from LiDAR as well as a local map
and outputs an intermediate map-aware representation of 3D
perception. The second stage samples and optimizes over this
representation all physically possible trajectories. The trajec-
tory of minimum learned cost is chosen as the system output.

G. MOTION PREDICTION
The driving environment is highly dynamic and involves
different road participants, such as pedestrians, vehicles
and cyclists. Predicting future motions and behaviours of
these road participants is imperative for autonomous vehicles
to build a context-aware representation of their interactive
environment, thus anticipating potentially dangerous situa-
tions [24], [32], [33]. From an abstract point of view, these

traffic participants can be considered as a complex multi-
agent system. Indeed, the development of reliable solutions
to motion and behaviour prediction of road agents will
enhance the safety and capabilities of autonomous vehicles
to adapt human-like behaviour in real-world traffic condi-
tions. The authors in [150] review the tracking prediction and
decision-making. Predicting the behaviour of these agents
is crucial for AD systems [75], [151], mainly for risk
assessment [24], [29], and safe and comfortable motion plan-
ning [12], [130]. Motion prediction refers to estimating the
future behaviour of road agents given their current states
and a model of the environment in which they navigate. The
problem of predicting the future motions of road participants
has been addressed by various research works. An overview
of motion prediction can be found in [152]. A survey of early
methods of motion prediction of intelligent vehicles has been
conducted in [24]. Early methods of predicting the intention
of road participants are based on modelling the motion of the
agent. One way to predict the intention of a road participant
is to model its motion using kinematic and dynamic mod-
els. The state evolution of these models allows us to know
the future state or the trajectory of the agent [153]. This
approach does not require information from the surrounding
environment. As a result, it fails at long-term predictions.
One limitation of common motion prediction approaches lies
in their inability to perform long-term predictions (model
simplicity and availability of measurements, context, etc).
This issue can be handled by using the data available from
HD maps, where lane information is available. Using HD
map allows to associate each actor with one or more lanes
as given by the geometric layer of the HD map. Then all
possible trajectories of an actor can be generated based on
the lane connectivity and the current state of the vehicle.
While this method, in contrary to previous works, is quite
good for long-term predictions, it nevertheless tends to make
predictions in common driving scenarios which are prone to
errors in the map and vehicle position. Moreover, it cannot
predict the strange behaviour of an actor. Methods in the
state-of-the-art of motion prediction using HD maps can be
classified into two main approaches as depicted in Table 2.
The first approach uses a raster of an HD map as an input of
the motion prediction architecture [145]. This raster is often
formed by projecting the geometric and semantic elements
of the map into a common plane, e.g., to be aligned with
other sensing modalities, e.g., images and point clouds from
sensors. Although this approach allows leveraging powerful
methods from CNNs, One limitation of this approach is the
difficulty to model certain spatio-temporal features, which is
essential for motion prediction. On the other hand, the sec-
ond approach allows to use directly map elements in their
vector formats which facilitates agent modelling and other
dynamic features in the map [146], [147], [154].

H. THIRD-PARTY APPLICATIONS
HD maps can provide accurate and reliable ground truth
data that can be used as a reference for calibrating sensor
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TABLE 2. Survey of recent work on motion prediction classified by the type of road representation from HD maps.

outputs [155]. For example, LiDAR can be calibrated and
perfectly aligned with an IMU using the highly-precise coor-
dinates of geometric elements of an HD map. By comparing
the sensor measurements with the HD map data, any errors
or discrepancies can be identified and corrected, leading to
improved calibration of the sensors. Furthermore, HD maps
can be used for online (self) calibration. The availability of
an HD map, raw sensor data in real-time, and algorithms to
perform comparison makes it possible to compute the error
between sensor measurements and the ground truth. Thus it
allows for continuous correction of calibration errors of the
sensors in real-time. This enables the AD system to be more
robust and reliable to changing environmental conditions as
well as sensor performance variations. Online calibration
can result in more accurate and robust sensor calibration
compared to offline calibration methods. More recently, HD
maps can also be used to boost road annotations for creating
large datasets for traffic landmark detection [156].

V. BUILDING HD MAPS
A. MOBILE MAPPING SYSTEMS
Building HD maps is a sophisticated procedure in which
several steps are involved. The first step in the procedure of
building an HD map is to send specialized vehicles equipped
with a suite of high-precision and well-calibrated sensors to
survey and collect data about the environment. Data collec-
tion vehicles for mapping are likely to be equipped with
a highly-precise GNSS connected with or that implements
correction services such as RTK (Real-Time Kinematic)
positioning accuracy up to very few centimeters. GNSS posi-
tioning measurement are often fused with the measurements
of high-performance IMU (Inertial Measurement Unit) and
wheel odometry. Several commercial products exist that com-
bine both GNSS and IMU in one unit as an INS (Inertial
Navigation System). Mapping vehicles are also equipped

FIGURE 6. Two examples of MMS: Trimble MX9, Leica Pegasus Two Ultimate.
Courtesy: Trimble and Leica-Geosystems websites.

with one or more high-resolution LiDAR and cameras to
collect raw 3D/2D data of the road environments. There are
two ways to set up a data collection vehicle for mapping. The
first is to buy the above mentioned sensors, choose a suit-
able configuration and mount them on a vehicle. Although
this approach offers the flexibility to define sensor con-
figuration beforehand; nevertheless calibrating several and
different sensors to the required precision for mapping is not
trivial and time-consuming, especially with cameras [157].
Alternatively, several manufacturers provide the whole suite
of sensor in one package, referred to as a mobile mapping
system (MMS) [28], [37]. Examples of commercially avail-
able MMS are shown in Figure 6. More information about
commercially available MMS, their specifications and appli-
cations can be found in [158]. More details about MMS as
well as the technology, the sensor used, their specifications,
and applications can be found in [28], [37], [159], [160].
Although MMSs are easy to install and calibrate, they do not
provide more flexibility to define the sensor configuration,
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TABLE 3. Layer-based classification of change detection and update algorithms of HD maps.

e.g., where each sensor is positioned and oriented with
respect to the body of the vehicle. MMS generates highly-
detailed and precise geo-referenced 3D point clouds that
need to be stitched to create a 3D representation of the
environment.

VI. MAINTENANCE OF HD MAPS
Having an up-to-date HD map is crucial for the various AD
core components to function correctly. Errors in HD maps
could lead to severe damage due to inappropriate decisions
taken by the system. Erroneous decisions could be avoided
through frequent updates by the mapping vehicles. The road
environment is highly dynamic and likely undergo frequent
changes due to new infrastructure constructions, road main-
tenance, and lane extensions. Mapping vehicles must be
able to detect changes in the environment and send them to
update the map. The map update procedure involves com-
plex processing steps, including handling data from multiple
sources and sensors at different scales, identifying the devi-
ation between the stored map and the newly collected data
from the environment, and finally integrating these devi-
ations to update the different layers of the map. Several
methods and approaches have been developed in the litera-
ture to capture HD map changes and update them [161]. In
the following, we review the different approaches and meth-
ods to detect changes in HD maps and how this information
is applied to update the maps. The approach we follow to
review previous works to maintain HD maps is based on
analysing which layer is maintained by each state-of-the-art
method as summarized in Table 3.

A. MAP CHANGE DETECTION
Change detection in HD maps refers to the process of identi-
fying changes in the environment, such as new constructions,
road closures, etc. This is followed by updating the layers of
the map accordingly. HD maps undergo changes regularly

and having a map that can be trusted by autonomous vehicles
is crucial to guarantee navigation safety [18], [167]. Change
detection is typically achieved through the use of various
sensors, such as cameras, LiDAR, and radar, combined with
computer vision algorithms and machine learning techniques.
Change detection algorithms have found their way to many
applications, even before HD maps. Remote sensing is one
of the early applications of change detection and update of
maps [177]. It has also been applied successfully to urban
monitoring, forest changes, crisis monitoring, 3D geographic
information updating, construction progress monitoring, and
resource surveying [120]. At the most basic level of these
applications, the problem amounts to comparing raw sen-
sor data, mostly 3D point clouds [178], 2D images [179]
or both [180]. In 3D point clouds, change detection can
be divided into three main categories, namely point-based,
object-based and voxel-based change detections.
Although off-the-shelf methods from remote sensing still

could be adapted to change detection in HD maps, however,
their applicability is limited to detecting changes in the base
layer, which is typically represented as a point cloud map.
As an HD map is complex layered architecture with geomet-
ric, semantic and topological information for which change
detection is challenging. In this context, there are obviously
two methodologies to update an HD map. The first is to
update the base map layer only and then use it to regenerate
the geometric, semantic and road connectivity layers. The
second is to directly detect changes and update each layer
individually, avoiding unnecessary computations to regener-
ate the other layers in the map. In the following, we briefly
review the recent layer-specific change detection works.
Regardless of the methodology used, previous works in

change detection could be categorized as either probabilistic,
geometric or deep learning approaches. Kim et al. proposed
a probabilistic change detection algorithm based on proba-
bility and evidence theories to update the base layer from

540 VOLUME 4, 2023



crowdsourced LiDAR data [78]. For change detection in the
geometric layer, Pannen et al. [162] proposed a method that
uses the probability distribution of a particle filter (PF) to
define various metrics to quantify change detection between
detected lane markings and boundaries with their counter-
parts in the map. These metrics are then evaluated using weak
and AdaBoost classifiers to quantify geometric map changes
through thresholding. Although the approach in [162] has
shown promising results to detect changes in lane markings
and road edges, one limitation of this approach lies in the
detection of minor changes in road geometry, mainly due to
sensor sparsity and noise. Another probabilistic approach is
the work of Welte et al. [163] in which a Kalman smoothing
technique has been used to detect positional errors in seman-
tic features in HD maps. The method has been applied to
detect road signs inaccurate positions. Alternative to Kalman
or particle filter-based techniques, Jo et al. [170] have used
Dempster–Shafer’s theory of beliefs to infer the existence
of map features. Klejnowski et al. [171] have used a simi-
lar approach for change detection of traffic signs. While the
vast majority of change detection techniques in the literature
have focused on change detection of base, geometric, and
semantic layers, only few works detected changes in road
connectivity. Yang et al. [169] have used fuzzy logic to match
GPS traces with the lane-level road network. Fuzzy mem-
bership degree between GPS data and lane segments is used
to quantify matching and consequently change detection.
In a framework of HD map verification against certain

geometric errors, Pauls et al. [166] proposed a geometric
approach to detect changes in road markings by grouping
road features via spatial-semantic clustering. Ordering these
groups and projecting them into 1D space yield a 1D sig-
nal that quantifies changes in road markings. An improved
version has been presented by the authors in [167], where
boosted classification trees are used to ensure the consistency
of each feature group as a robust alternative to the maxi-
mum margin classifier used in [166]. Both [166] and [167]
have been evaluated on the road evaluation dataset they have
presented in [18]. Another geometric framework for change
detection has been presented in [168]. The main idea in this
framework is to vectorize road features from a semantically
segmented point cloud via Euclidean clustering. Then, these
features are geometrically matched with their counterparts in
the HD map. Other works have focused on change detection
of very specific features, such as the width of the leftmost
lane [172]. While most of the discussed approaches on geo-
metric change detection of geometric features have focused
on road and lane markings, Zinoune et al. [164] develop
an approach based on graphical pattern recognition using a
Bayesian classifier to detect missing roundabouts in a map.
Recently there has been an interest to use deep learn-

ing to detect changes in the different features of HD maps.
Plachetka et al. [173] developed a deep neural network
(DNN)-based pipeline to detect deviations of certain geomet-
ric and semantic features in HD maps using LiDAR point
clouds. The main concept in their approach is to encode both

map elements and LiDAR point cloud into a common feature
map, both are then fed into a DNN architecture to verify, fal-
sify, or detect missing map elements. The proposed approach
has been successfully applied to detect changes in traffic
signs, traffic lights, and pole-like objects and validated on the
3DHD CityScenes dataset [181]. Alternative to LiDAR point
clouds, Heo et al. [174] proposed an encoder-decoder deep
learning framework that takes as inputs both RGB camera
images in addition to an HD map raster formed by project-
ing the map geometric elements on the same image plane,
i.e., using camera intrinsic and extrinsic camera calibra-
tion parameters. The output of this framework is pixel-wise
change probability. The two modalities are then fed into an
adversarial learning block in order to reduce the discrep-
ancy between the two input modalities. This is followed
by a deep metric learning block to measure the similar-
ity between the output of the adversarial learning block.
The output of this framework is pixel-wise probability of
change. This framework has been successfully applied to
detect changes in lane geometry as well as lane markings.
However, the algorithm fails to recognize partially visible
objects. He et al. [175] presented Diff-Net as a feature-based
change detection framework by leveraging deep learning
object-detection algorithms. The main idea in Diff-Net lies
in inferring map changes through parallel feature difference
calculation. Similar to [174], the change detection framework
in Diff-Net receives an RGB image as well as a rasterized
image formed by projecting HD map features on the same
image plane. The applicability of Diff-Net is however limited
to change detection in vertical semantic features, e.g., traf-
fic signs and lights. In contrast to the above image-based
deep learning method that detects changes in image plan,
the framework presented in [176] to detect changes in cross-
walks, Mask R-CNN for instance segmentation of crosswalks
and ResNet-50 combined with a Feature Pyramid Network
(FPN) has been used for feature extraction in Bird-Eye-View
(BEV). Most of these approaches are applied to very limited
and simplified use cases. Obviously, change detection in HD
maps is still in its infancy and universal change detectors
for HD maps are still missing.

B. MAP DATA UPDATE
The second stage in the maintenance of an HD map is
to update the map elements based on the outcomes of
change detection. In simple terms, map update amounts
to a probabilistic data fusion problem. Continuously mon-
itoring changes in the ever-changing environment in near
real-time and fusing different data modalities both in time
and space, and from different sources to update several
layers is indeed a challenging task. In their survey paper,
Cadena et al. [182] identified that the distributed process of
updating and maintaining HD map created and used by large
fleets of autonomous vehicles is a cogent subject of future
research. Towards this direction, Kim et al. [183], [184]
proposed a solution to keep new feature map layer [161]
up to date from crowdsourced point cloud data. This new
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FIGURE 7. Data communication infrastructure for building, maintenance, and distribution of HD maps.

feature map forms a basis to build the different semantic and
geometric features of an HD map. Pannen et al. [165], [185]
proposed a problem partitioning approach for the mainte-
nance of HD maps from crowdsourced data. However, the
applicability of this work is limited to the update of lane
geometry, more precisely to lane markings and road bound-
aries. In an attempt to update the base map layer from
real-time crowdsourced point cloud data, Kim et al. [78]
developed and validated a maintenance framework to update
a point cloud map using evidence theory [186] and a
pose graph SLAM approach for localization. Obviously, the
results on change detection and update of HD maps in
real-time are very limited due to the need for a reliable low-
latency communication infrastructure to handle this complex
process.

VII. DATA AND COMMUNICATION INFRASTRUCTURE
FOR HD MAPS
Building and maintaining HD maps at scale is a matter of
data exchange between multiple stakeholders, e.g., govern-
ment as the owner of the ITS roadside infrastructure, map
providers and vehicles, as depicted in Figure 7. Collection,
building, maintenance and distribution of map data require a
reliable communication and distributed computing infrastruc-
ture [187]. This section discusses the data and communica-
tion infrastructure needed to scale the creation, maintenance
and distribution of HD maps.

The first connected concepts have been proposed in 2012,
by introducing Local Dynamic Maps (LDM) defining four
layers, including static and dynamic information stored
locally [188]. Onboard sensors, Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) data are used to collect
dynamic information and make it available locally to the
driver and ADAS. Next, concepts that update the local map
with global information retrieved via the cellular network
have been proposed [47]. More specifically, techniques that
take into account the network coverage and performance
are used to come up with optimised schedules for data
transmission [189]. A first national deployment has been
tested in Japan in 2018 using the four-layer LDM princi-
ple [190]. More recently, sophisticated centralized dynamic
mapping systems have been proposed and validated on a
city-scale [191]. In the same vein, a cross-border system
involving multiple network operators has been proposed and
experimentally validated [192].

Crowed-sourcing approaches to share local perception
data that rely on different processing and uploading strate-
gies constitute the vast majority of studies that have
been published over the past couple of years [47], [192],
[193], [194], [195], [196], [197]. Some propose theoretical
concepts [193] other validate their approach through simula-
tions [47], [195], [196] and experiments [192], [194], [197].
The uploading strategies generally focus on three abstrac-
tion layers: (1) local processing [188], (2) uploading
and processing on the network edge [195], [196], [198],
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(3) uploading and processing in the cloud [189]. This
abstraction allows to categorize the connected mapping
platforms into four categories: (1) centralized, i.e., cloud
systems, (2) decentralized, i.e., edge systems, (3) dis-
tributed systems, i.e., self-organized local systems using
direct communications such as V2V, and (4) hybrid
approaches [80], [197], [199]. Furthermore, the dynamic
nature of the data needed for the different map layers impacts
the choice of communication technology used. For instance,
the static layers that do not change frequently can rely on
delay tolerant and slow communication technologies, such
as 2/3G cellular networks. The more dynamic the data,
the more reliable and available the network needs to be.
Transient dynamic data such as weather and traffic con-
ditions can tolerate seconds or minutes of delay. However,
highly dynamic data such as the state of traffic signals or the
presence of close by vulnerable road users (VRU) like pedes-
trians or cyclists, require a specialised network technology
(e.g., C-V2X or ITS-G5 [200]), and a dedicated offloading
and processing architecture, to meet requirements of safety
applications [199]. Standardisation efforts are ongoing to
facilitate the dissemination of highly dynamic data so that
it can be used as an input for the corresponding layers of
the HD map [201]. However, the format and integration of
this type of data remain a challenge on their own and will
be covered in more detail in the next section.

VIII. CHALLENGES AND FUTURE PERSPECTIVES
Despite notable advancements in CCAM over the past
decade, achieving complete autonomy in vehicles is still
an unresolved challenge. For autonomous vehicles to be
deployed on a large scale, scalable solutions for HD maps are
essential. In this section, we shed light on the various chal-
lenges needed to be addressed to reach the full potential of
HD maps CCAM [25]. Undoubtedly, the availability of cost-
effective and flexible solutions for building, maintaining,
and distributing map data among stakeholders will greatly
enhance the scalability of CCAM in future generations of
smart cities. Further, we also discuss future perspectives and
applications of HD maps.

A. CHALLENGES
1) STANDARDIZATION AND DATA REPRESENTATION

The concept of HD maps becomes widely accepted as a key
enabling technology for CCAM. Nevertheless, there is no
common agreement on how mapping data are represented,
how many layers are needed, what mapping data have to
be stored in each layer and in which data format. Defining
a common standard for HD maps is difficult due to their
complexity and large amount of data and information they
contain, making it challenging to create a standard that is
both comprehensive and easy to understand, store, main-
tain, update and distribute effectively. Defining a common
standard for mapping data will provide more data compati-
bility and facilitate access to data while reducing the costs of
development and integration. Furthermore, this will improve

the quality, consistency, and privacy of data, consequently
improving the road safety of all participants including auto-
mated vehicles. Recently, there have been few initiatives
to define a common standard. The NDS aims at defining
worldwide standards for HD map data in automotive ecosys-
tems [44], [56]. There are more than 44 members in the NDS
consortium, ranging from automotive constructors, OEMs,
and map solutions providers. Nevertheless, the NDS stan-
dard is not yet adopted by most of the leading companies
that shape the AD industry today.

2) SCALABILITY

Scalable HD map solutions are imperative to the mass
deployment of autonomous vehicles. Building a city, regional
and national-wide HD maps and keeping them updated
remains a big challenge, especially to deal with the differ-
ent standards, traffic rules and regulations used to represent
geometric road features as well as traffic signage. These
standards differ from one region to another. Mapping algo-
rithms have to be universal and be able to work in different
regions and countries. Mapping is supposed to be a contin-
uous process of data collection and processing, in order to
heal zones that have been changed. This process becomes
challenging in large geographical areas, where a huge num-
ber of vehicles have to be part of the mapping process.
The mapping cost directly depends on how large the zone
to be mapped is and the number of vehicles needed to
serve it. Mapping vehicles are very expensive as discussed
early in this paper. Furthermore, using individual vehicles
equipped with consumer-grade sensors requires sophisticated
algorithms that are not yet mature. Additionally, the commu-
nication and the distributed computing infrastructure needed
to handle this use-case is the subject of ongoing research
and studies [193], [197], [202].

3) NETWORKING AND COMPUTING INFRASTRUCTURE

Handling and processing large amounts of data as in the
case of building and updating scalable HD maps requires a
reliable networking and computing infrastructure that shall
work in harmony and near real-time [192]. With the advent
of 5G/6G cellular communications, Internet of Things (IoT)
and edge computing architectures, many opportunities for
vehicular communications become available in general [203],
and solutions that handle building HD maps become a
commercially viable option [40]. These communication and
computing infrastructures are designed to handle such data-
hungry applications and meet their latency and bandwidth
requirements. Large-scale crowdsourced mapping with a
massive number of connected vehicles will be one of the
principal applications of these infrastructures [197].

4) LIMITATIONS OF MAPPING ALGORITHMS

Despite the tremendous research and development efforts
expended for automating the process of building HD maps,
recent research outcomes in HD maps clearly reveal that
mapping algorithms used to extract HD map features and
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build road and lane topology are still limited to simple
features [204]. Current state-of-the-art algorithms can detect
simple geometric features but fail to deal with high-curvature
features, e.g., roundabouts. Furthermore, most of these meth-
ods require several post-processing steps to get the feature
in a suitable vector format. Mapping semantic features is
still limited to very few and easily detectable traffic signs.
Very few recent works started to address building lane topol-
ogy to construct simplified road/lane connection networks.
Developing a universal mapping pipeline makes it possible to
build a fully-featured HD map containing geometric, seman-
tic and topological information. Building such a pipeline
remains a challenge.

5) MAP DATA OWNERSHIP, PRIVACY, INTEGRITY AND
DISTRIBUTION

The future of building and maintaining HD maps will be
to automate and distribute the process in which millions
of individual vehicles are involved. Collecting, processing
and storing large amounts of distributed data from the
environment raise several concerns about data ownership,
privacy, integrity and distribution. Raw mapping data are
generated in vehicles aggregated with other sources of data
from public authorities, processed and distributed by map
providers. Map data ownership from collection to distribu-
tion potentially needs to be addressed in large-scale HD
mapping. Furthermore, preserving the privacy of individu-
als and vehicles is crucial and must be considered in the
mapping process. Mapping data may include sensitive user
information such as precise locations of vehicles as well
as a precise description of their environment. The integrity
of HD map data must be ensured in order to avoid incor-
rect and fatal decisions, especially if used by autonomous
vehicles. Building accurate and trustworthy HD maps still
is an ongoing research question. Commercially available
HD maps often undergo manual checks and verification by
humans. Generating accurate and reliable HD map data from
multiple sources of data, e.g., via crowdsourcing poses sev-
eral technical issues, yet to be solved. The ownership, privacy
and integrity of scalable HD maps have started recently
to attract the attention of researchers. On the other hand,
blockchains have proven themselves as a promising solution
ensuring data integrity due to their distributed and secure
nature [205], [206]. The use case of building and updating
scalable HD maps while keeping the traceability of data, their
privacy and integrity is a perfect application of blockchains.
This technology is expected to play a central role in building
and distributing the next generation of HD maps.

B. FUTURE PERSPECTIVES
1) PHOTOREALISM

Precise localization has been one of the key motivations to
introduce HD maps to autonomous vehicles. The existence
of dense, and at the same time compact representations of
the road environment is fundamental for HD maps; espe-
cially for localization. There has always been a compromise

between the density of information included in an HD
map and the computational effort needed to process them.
Recent progress in neural 3D scene representations makes it
possible to reconstruct photorealistic 3D scenes in a very
compact representation [207], [208], [209], [210], [211],
[212]. Representing the base map layer using neural radiance
fields (NeFR) allows benefiting from both compact and
photorealistic representation of this layer. This technology
will probably get maps for autonomous vehicles to a new
era.

2) APPLICATIONS BEYOND AUTONOMOUS VEHICLES

HD maps are mainly developed to help autonomous vehicles
to understand and safely navigate in the environment. Thanks
to the detailed and precise representation of the environment
they provide, HD maps can also be used to improve the
quality of various services offered by classical digital maps.
Furthermore, HD maps can play an important role in digital
assistive technologies for people with disabilities. Mobility
and safety of visually impaired persons could be signifi-
cantly improved if they are equipped with suitable sensors
and have access to a highly precise, detailed and seman-
tically rich representation of the environment. If precisely
localized, a digital assistive device will be able to interpret
and understand the environment, therefore generating vocal
navigation messages for safe navigation. The real-time sta-
tus of traffic lights and other traffic information in HD maps
for pedestrians are relevant to enhance the functionality of
these devices. Presently, most HD map providers only offer
maps representing the vehicle environment. Mapping routes
of participants other than vehicles, e.g., sidewalks of pedes-
trians and cycling tracks are still missing in HD maps of
today. Building and updating HD maps for all participants
will pave the road towards a broad range of autonomous and
non-autonomous navigation as well as several useful digital
services.

3) TOWARDS DIGITAL TWINS

The environmental digital twin is a holistic digital represen-
tation of the environment including all of its physical and
functional characteristics [213], [214]. A city-scale digital
twin is an emerging concept in CCAM that aims at build-
ing a data-driven model that combines data from various
sources of IoT sensors, connected vehicles, buildings, intel-
ligent infrastructure and transportation networks and all other
data sources to help create a comprehensive, real-time model
of the city [215], and thus improves road services [216]. This
concept generalises HD maps as a digital model for con-
nected and autonomous vehicles to a holistic digital model
that helps all entities in a society. Digital twins can even
be used to model the behaviour of the different entities in
the environment even at micro-scale of details [217]. An
HD map will be a single module of a digital twin [218]
that supports different functions and services for connected
and autonomous vehicles in our smart cities [219], [220],
[221], [222]. As HD maps can be used to simulate complex
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driving scenarios, digital twins will be used to simulate and
analyze complex city-scale scenarios for these vehicles [223].
Digital twins will allow studying, analysing and simulating
the impact of new development projects or the effects of
changes in traffic patterns, and can help city planners and
decision-makers to analyze and optimize the performance of
the city by predicting future scenarios, and identify oppor-
tunities for improvement. Building a city-scale digital twin
is indeed a big challenge that requires a large amount of
data, and it can be a complex and time-consuming process.
Cross-validation, integrity and trustworthiness of distributed
large amounts of data remain a challenge in creating digi-
tal twins [224], [225]. Crowdsourced mapping of roads by
vehicles will be replaced by a unified process of simultane-
ous outdoor and indoor mapping using large amount of data
available from heterogeneous connected sensors.

IX. CONCLUSION
HD maps continue to be a rapidly evolving aspect of real-
world CCAM applications, driving innovation and progress
within the field. Despite the existence of significant research
and development efforts on the applications of HD maps
in AD systems and the algorithms and infrastructures to
build and maintain HD maps, there is very little literature to
summarize and provide a standing point on these works.
This paper extensively reviewed the previous works on
building and maintaining HD maps, including cost-effective
solutions as well as the communication and mapping data
requirements from generation to distribution. Furthermore,
the paper discussed the current challenges in each of the
above areas for building and maintaining HD maps. More
precisely, we provided a free-standing overview of HD maps
as a background for the broader community of intelligent
transportation systems. We also discussed and analyzed the
state-of-the-art of using HD maps for the various core func-
tions in AD systems. Furthermore, we extensively discussed
and reviewed the different approaches, methods and algo-
rithms to build the different layers of HD maps and keep
them up-to-date. Finally, we shed some light on the prospec-
tive developments of HD maps for the next generation of
mobility applications.
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