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ABSTRACT In this work we present a novel deep learning-based approach to detect and specify map
deviations in erroneous or outdated high-definition (HD) maps using both sensor and map data as input to
a deep neural network (DNN). We first present our proposed reference method for map deviation detection
(MDD) utilizing a sensor-only DNN detecting traffic signs, traffic lights, and pole-like objects in LiDAR
data, with deviations obtained by subsequently comparing detected objects and examined map. Second,
we facilitate the object detection task by using the examined map as additional input to the network.
Third, we employ a specialized MDD network to directly infer the correctness of the map input. Finally,
we demonstrate the robustness of our approach for challenging scenes featuring occlusions and a reduced
point density, e.g., due to heavy rain. Our code is available at https://github.com/Volkswagen/3dhd_devkit.

INDEX TERMS 3D object detection, automated driving, convolutional neural network (CNN), deep neural
network (DNN), deviation detection, high-definition (HD) map, LiDAR, map verification, map validation.

I. INTRODUCTION

DUE to shortcomings of today’s perception and environ-
ment modeling algorithms [1], the driving function of

automated vehicles relies on prior knowledge regarding the
stationary environment in the form of high-definition (HD)
maps. Such driving function is prone to failure as map data
can deviate from the real world. In our previous work [2], we
proposed a system framework to achieve dependable maps
to address the issue of such map deviations. Such depend-
ability requires a system that detects, specifies, and corrects
map deviations to obtain maps that are safe to use, reliable,
and available. Specifically, the safe use of map data refers
to the detection of deviations ahead of the vehicle, while
reliable maps feature short update cycles. Available maps
are obtained by correcting deviations on the fly within the
vehicle, e.g., in construction sites. This article proposes a
map deviation detection (MDD) method of such a system.

The review of this article was arranged by Associate Editor Abel C. H.
Chen.

FIGURE 1. General concept of our deep learning-based map deviation
detection approach. Top: The real world (grey: LiDAR reflectivity) is sampled and
encoded into a first feature map m. Bottom: HD map elements (e.g., poles, signs, and
markings) are discretized and encoded into a second feature map m′ . Right: A deep
neural network (DNN) compares feature maps to verify (green), falsify (red), or detect
missing map elements (orange), if not unknown due to occlusion (blue). White car:
ego vehicle and its reference frame.

Existing MDD or map verification approaches
(e.g., [3], [4]) are not able to detect and specify map
deviations on the level of individual HD map elements
and, thus, are not suitable for achieving map dependability.
Moreover, algorithms for detecting HD map elements are
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known (e.g., for road markings [5], traffic lights [6], or
lanes [7]) but underperform in bad weather conditions [8]
or in the presence of partial occlusions [7]. Therefore, a
deviation detection method is needed that simplifies the
detection task wherever possible by leveraging the map
as source of prior hypotheses regarding possible element
locations and features. In this work, we present a novel
approach to MDD based on a deep neural network (DNN)
that takes both map and sensor data as input (see Fig. 1
for illustration). With this additional map input, fewer mea-
surements are potentially required to either verify or falsify
the correctness of an existing hypothesis, as respective
measurements can be compared to an expected measurement
distribution for a specific type of map element. Using a
DNN, respective distributions and the comparison method
can be learned, whereas hand-crafting yields unsatisfying
results in a related attempt [9], as expected distributions
have been proven difficult to be derived manually. Thereby,
contextual knowledge from the scene can be incorporated
to facilitate the deviation detection task, e.g., locations for
pole-like objects (subsequently referred to as poles) increase
the likelihood for traffic signs.
As proof of concept, we train and evaluate our DNN using

the 3DHD CityScenes dataset [10] as the only publicly avail-
able dataset providing a holistic set of HD map elements,
i.e., comprising signs, lights, and poles. The dataset features
high-density LiDAR point clouds that were used to annotate
the corresponding HD map, yielding accurate labels both in
terms of completeness and spatial alignment between sensor
and map data. Such a high-quality dataset has several key
advantages compared to data obtained from onboard sen-
sors. First, nearly all deviations are known, apart from those
due to annotation mistakes, as we induce artificial deviations
by changing both map and LiDAR data intentionally. Also,
no other dataset provides annotated map deviations. Second,
the usage of high-density point clouds without occlusions
allows for respective ablation studies, where both a reduced
point density (simulating onboard scans or bad weather con-
ditions) and occlusions can be exactly controlled. Third,
the highly precise spatial data alignment allows for the
induction of artificial misalignment errors in a controlled
fashion. Our holistic approach extends to various types of
HD map elements and can be combined with different
DNN architectures for 3D object detection. In this work, we
apply 3DHDNet [10] being designed for predicting vertically
stacked elements such as signs. As 3DHD CityScenes does
not provide camera images, we only employ LiDAR point
clouds as method input. However, also multimodal architec-
tures additionally fusing camera images can be employed
(e.g., [11], [12], [13]), given a respective dataset.
Our contributions are fourfold. First, we present our ref-

erence method for MDD utilizing a sensor-only DNN for
object detection, with deviations being obtained by compar-
ing detected objects with the examined map. It comprises
a multitask extension of our earlier single-task 3DHDNet
architecture [10], now capable of predicting traffic signs,

traffic lights, and poles simultaneously. Second, we demon-
strate a way of facilitating the object detection task by
providing the DNN with the encoded, examined map as addi-
tional input. Third, we present our specialized MDD network
that directly evaluates the correctness of individual map ele-
ments as the full expression of our concept shown in Fig. 1.
Last, we perform ablation studies simulating bad weather
and low-density onboard scans by reducing point density,
and simulating partial occlusions of objects, showing the
superior performance of our specialized MDD network. Our
deviation annotations published along with our code allow
for benchmarks in the field of MDD, while our open-source
method may serve as a baseline for future research.

II. RELATED WORK
In this section, we review detection methods for HD map
elements in both geodesy and in the automotive domain
regarding traffic signs, traffic lights, and poles, followed by
a review of existing methods for map deviation detection. We
conclude with a brief review regarding DNN-based object
detection in LiDAR point clouds.

A. MAP ELEMENT DETECTION
The generation of HD maps based on detecting map elements
in high-density point clouds is a frequently researched topic
in geodesy [14], [15], [16], while in the automotive field,
such maps are typically only used while driving [17], [18].
Compared to subsequently presented approaches, we pro-
vide a holistic, DNN-based method that extends to various
types of map elements and omits the need for hand-crafted,
type-specific algorithms. Our novel multitask 3DHDNet inte-
grates our previous work on DNN-based pole and sign
detection [10], [19], and is extended in this work to also
detect traffic lights.

1) GEODESY

In geodesy, methods for detecting traffic signs commonly
feature two stages [20], [21], [22]: First, three-dimensional
(3D) traffic sign locations are detected in the point cloud.
Second, detections are projected into the 2D camera image
for further classification. The LiDAR-based detection stage
generally employs three steps: ground point removal [23],
[24], [25], segmentation using various clustering algo-
rithms [21], [22], [23], [24], [25], [26], and plane fitting [21],
[22], [25], [26]. The classification stage typically utilizes
machine learning-based algorithms [21], [22], [27], [28],
[29]. Regarding poles, detection methods can be grouped into
shape-based [30], [31], [32], [33], feature-based [33], [34],
[35], [36], [37], and machine learning-based [37], [38], [39],
[40] approaches. In particular, shape-based methods rely on
prior assumptions regarding the shape of the objects to be
detected, e.g., fitting cylindrical [30] or circular [31] shapes
to the voxelized point cloud. Feature-based approaches first
extract geometrical [34], intensity [34], or density [35]
features from the point cloud to provide the input for
downstream detection or segmentation algorithms [33], [34],
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[36], [37]. Traffic lights have been considered in the context
of pole detection, i.e., as detected traffic light poles, without
being represented as individual instances [33], [34], [37].
Further, traffic lights occur as class in various proposed
semantic segmentation algorithms for point clouds relying
on conventional algorithms [41], [42], [43] or DNNs [44].

2) AUTOMOTIVE FIELD

In the automotive field, traffic sign detection methods gener-
ally follow the two processing stages found in geodesy [45],
[46], [47]. To address the sparsity of onboard scans, pseudo
images are constructed from point clouds [47], [48]. Also,
the point cloud is augmented with color features to facilitate
the clustering process [45], [46], with RANSAC [45], [46],
[48] or PCA [47] being utilized for plane fitting. For the
classification stage, SVM-based [46], or template-matching
approaches [47] have been proposed. Poles, on the other
hand, are most commonly detected as part of a landmark-
based self-localization using conventional algorithms and
various sensor setups (e.g., [18], [49]). Regarding traffic light
detection, proposed methods are image-based [50], relying
on conventional algorithms [50], [51] or single-shot (2D)
CNNs [6], [52]. Commonly, the detection is bypassed by
projecting known traffic lights obtained from an HD map
into the camera image to classify the traffic light state (i.e.,
red) [53], [54], [55], [56]. To this end, LiDAR data is only
used to facilitate the localization of the ego vehicle on the
map [55], [56].

B. MAP DEVIATION DETECTION (MDD)
Our conceptual system framework for dependable maps [2]
assumes an MDD component capable of evaluating indi-
vidual HD map elements, for which we propose a holistic
and robust solution in this article. In comparison, early
approaches to MDD examine ordinary navigation maps,
which do not provide the level of detail (e.g., lane geometry)
required for map-based driving [4], [57], [58]. More recently,
MDD methods for lane markings have been proposed [55],
[59], [60], [61], [62], [63], [64], whereby respective methods
rely on prior object detection results as input. In contrast,
our proposed solution features an additional map input to
facilitate object detection in the first place, which allows for
a robust map verification in challenging conditions. Only
few works consider the additional map input for MDD
[3], [65], [66]. Specifically, Hartmann et al. [65] consider
the detection of lane geometry deviations using a DNN
predicting the probability of the entire map being correct,
whereas our method is able to evaluate map elements indi-
vidually. Also predicting the correctness of the map as a
whole, Lambert and Hays [66] fuse image and rendered
map data within a DNN, whereby map deviations regarding
lane geometry and crosswalks are simulated by modifying
the map. They highlight the generalization of simulated devi-
ations to those seen in the real world. In our work, we also
simulate map deviations, but we modify both map and sensor
data to create various deviation types.

Moreover, probabilistic methods for evaluating map cor-
rectness have been proposed [9], [67], [68]. Specifically,
Raaijmakers [9] manually derived estimated sensor measure-
ment distributions for roundabouts, which yielded unsatisfy-
ing results. Fabris et al. [67], [68] estimate map correctness
using Bayesian networks assuming respective conditional
probabilities, e.g., to model the influence of bad weather
on the map correctness estimation. In contrast, we propose
a method that learns expected measurement distributions
without the need of prior assumptions.

C. DNN-BASED OBJECT DETECTION IN POINT CLOUDS
While early research for DNN-based object detection relied
on hand-crafted encodings [69], [70], the paradigm has
shifted towards learned feature encodings [71], [72], [73],
reducing the loss of geometrical information. More recent
research examines point-based networks [74], [75] that omit
the discretization step and create predictions for each point.
Our 3DHDNet architecture draws from network topologies
designed for road user detection [71], [72], [73], but specif-
ically allows for the resolution of vertically stacked map
elements such as signs.

III. DNN-BASED MAP DEVIATION DETECTION
In this section, we introduce our approach to DNN-based
map deviation detection (MDD). To this end, we first pro-
vide definitions on maps and types of map deviations in
Section III-A. Subsequently, we present an overview on the
three MDD method variants examined in Section III-B. We
then present in detail our reference method MDD-SC in
Section III-C, serving as performance reference for later
evaluations. Thereby, we present our core concepts on
DNN-based map element and deviation detection, which are
adopted or modified by the method variants MDD-MC and
MDD-M, subsequently presented in Sections III-D and III-E,
respectively. The variant MDD-M incorporates our specialized
MDD network that directly infers the correctness of the map
input, implementing the concept shown in Fig. 1.

A. DEFINITIONS ON MAPS AND MAP DEVIATIONS
An HD map can be defined as a set M = E ∪ R, consist-
ing of a set of map elements E (e.g., traffic signs or lane
markings) and relations R between elements (association,
composition, or link relation) [2]. Map elements can be cat-
egorized into physical (real-world objects) and semantical
elements (mental models, e.g., lanes or roundabouts), and
can be differentiated by a type (major class, e.g., sign,
light, or pole) and a set of (mandatory or character-
istic) attributes (e.g., subclass or orientation). In
general, to provide a complete definition for map deviations,
deviating map items comprise both elements and relations:
F = FE ∪ FR. However, we only consider deviations
regarding map elements FE in the following. To obtain map
deviations, a set of map elements ̂E extracted from sensor
data is associated with a set of examined, presumably devi-
ating map elements ˜E , which yields the set of evaluated map
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elements Eeval = V ∪ U ∪ FE , with the set of verifications
V comprising successfully associated (“verified”) elements,
U being the set of “unknown” elements that could not be
evaluated due to occlusion, and FE being the set of “deviat-
ing” map elements. To successfully associate elements, their
major class and type-dependent overlap criteria must be ful-
filled. Moreover, the set FE = FPS ∪ FA can be further
categorized into the set of deviating physical and semantical
map elements FPS, referring to the existence of respective
elements, and the set of elements with attributional devia-
tions FA. In our approach to MDD, physical and semantical
“deviations” FPS = D ∪ I ∪ S are determined first during
the association step, comprising elements that are missing in
the examined map (deletions D), falsely existing elements
(insertions I), and replaced elements (substitutions S). In
a second step, map elements with attributional deviations
FA may be obtained from the initial set of verifications V
by comparing attributes of associated elements on a more
detailed level. As the second step is straightforward, we focus
only on the more challenging predecessor step of predicting
FPS = D∪ I ∪S in this work. An examined element e ∈ ˜E
for which we detect a deviation (e ∈ (I ∪ S) ⊂ ˜E) is called
“falsified”.

B. OVERVIEW ON EXAMINED MDD VARIANTS
The method variants performing MDD that we compare
in this work are shown in Fig. 2. Subsequently, we briefly
introduce these variants, with respective details provided in
Sections III-C to III-E.

Our reference method for MDD (MDD-SC) in Fig. 2 (a)
utilizes a sensor-only (-S) object detection DNN and a
subsequent comparison (-C), serving as a performance ref-
erence for later evaluations. Specifically, map elements are
first detected in the sensor data using an object detection
algorithm, yielding the set of predicted map elements ̂E ,
which is then compared to the examined set of (potentially
deviating) map elements ˜E to obtain the set of evaluated
map elements Eeval, which comprises respective map devi-
ations FPS. To this end, a point cloud P as unordered set
of points is sorted into a spatial voxel grid m of fixed size
featuring three spatial dimensions (subsequently referred to
as “LiDAR feature map”, see Fig. 1). Our DNN uses an
encoder stage to learn an optimal feature representation for
points contained in each voxel, which yields the encoded
LiDAR feature grid g, that preserves the spatial dimensions.
The network’s backbone further extracts abstract features of
higher semantics and provides the extracted feature grid g̃
as input to the network heads. Specifically, we attach three
individual network heads (visualized as one “heads” block
in Fig. 2 for simplicity) that output bounding shapes for traf-
fic signs us, traffic lights ul, and poles up, respectively. In
a post-processing step, these respective output feature maps
are converted into the set of predicted map elements ̂E as
input to the aforementioned comparison with ˜E . As we use
high-density point clouds that are free of occlusions as sen-
sor data for our proof of concept, the evaluated set of map

FIGURE 2. Method variants performing map deviation detection examined in this
work. The reference method MDD-SC (a) detects traffic sign, light, and pole objects in
sensor data P (-S) and obtains map deviations based on comparison (-C). The
method MDD-MC (b) supports the object detection task using the (deviating) map ˜E as
additional input (-M). This approach is further advanced using a specialized deviation
detection DNN in MDD-M (c) that directly predicts map deviations without explicit
comparison. Blue: DNN components. Green: Map processing path.

elements Eeval = V ∪ FPS = V ∪ D ∪ I ∪ S omits the set
of unknown elements U , which yields the four “evaluation
states” S = {VER,DEL,INS,SUB} considered in this work:
verification, deletion, insertion, or substitution, respectively.
As shown in Fig. 2 (b), the proposed and more advanced

method MDD-MC, featuring a map-supported object detec-
tion DNN, uses the encoded, presumably deviating map as
additional input m′ (-M) to facilitate the detection task, with
map deviations still obtained by comparing detected objects
in ̂E with the set of examined map elements ˜E (-C). The
network can leverage the map as source of initial hypotheses
regarding possible element locations and features, and as a
source for contextual knowledge. However, as the map con-
tains deviations, the network cannot rely on the map only to
detect missing map elements (deletions) or falsify existing
map hypotheses (insertions or substitutions) in ˜E , but has
to decide internally when to rely on sensor or map data,
respectively. To this end, MDD-MC additionally includes the
map encoding step in Fig. 2 (b), whereby map elements in ˜E
are matched to a voxel grid of the same size as the encoded
LiDAR grid g, with respective element features (e.g., major
class and bounding shape features) being incorporated into
matched voxels, yielding the map representation m′.
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The third method variant includes a map-supported devi-
ation detection DNN (MDD-M) that directly evaluates the
correctness of the additionalmap input (-M)without an explicit
comparison. Specifically, we force the network to classify the
evaluation state s ∈ S for each map element individually by
using a specialized loss function, with a changed network
output including the evaluation state classification in ũs, ũl,
and ũp. In consequence, the network has to directly evaluate
an existing element hypothesis by comparing available sen-
sor data to map data. Thereby, the network needs to model
expected sensor data distributions for specific map element
types internally to infer an element’s evaluation state, i.e., by
comparing current sensor data to a learned, typical distribution
in order to verify an element. A point density ablation study
(cf. Section III-C1) will demonstrate the high performance
of such an approach in the presence of degenerated sensor
data, where the evaluation state has to be determined using
few LiDAR points only.

C. REFERENCE VARIANTMDD-SC: SENSOR-ONLY
In this section, we provide details regarding our refer-
ence method MDD-SC. First, we briefly summarize our
DNN architecture for object detection and the loss function
used during training. Subsequently, we present the required
post-processing and comparison steps.

1) OBJECT DETECTION DNN

For the object detection DNN in Fig. 2 (a) and (b) used for
the methods MDD-SC and MDD-MC, respectively, we apply
the 3DHDNet architecture [10] comprising three stages:
encoder, backbone, and heads. Compared to the original
architecture, we provide a multitask extension of the network
with multiple heads attached to the backbone, simultaneously
predicting signs, lights, and poles. The network provides a
learned encoding g for the point cloud input P [19], [71]. For
more details regarding the internal operation of the encoder
and backbone stage, see AppendixA.

Let p = (pint, pcrd) ∈ P be a single point of the point
cloud P that is input to any of the three methods depicted
in Fig. 2, with pint ∈ I = [0, 1] being an intensity measure-
ment of the reflected LiDAR beam, and pcrd ∈ R

3 being
the Cartesian coordinate of a point. As a pre-processing
step, the point cloud P is first voxelized into a 3D voxel
grid with Nx, Ny, and Nz voxels in the x-, y-, and z-
dimension of the grid. Subsequently, to increase network
speed, only the N occupied voxels with a maximum of
K = 96 points per voxel are collected into the augmented
LiDAR feature map m = (mn,k) of size N × K × 10 as
input to the encoder, with n ∈ N = {1, . . . ,N} being
the voxel index and k ∈ K = {1, . . . ,K} being the point
index, respectively. Each (augmented) point of the grid
mn,k = (pintn,k, p

crd
n,k, p

crd
n,k − pn, p

crd
n,k − vn) provides ten fea-

tures, with pn ∈ R
3 being the mean of all Cartesian

point measurements contained in voxel n, and vn ∈ R
3

being the Cartesian center coordinate of the point’s assigned
voxel n.

FIGURE 3. Map element heads (gray) for signs (a), lights (b), and poles (c). A
convolution operation (3D or 2D) is denoted as Conv(C, F), with C being the kernel size
and F the number of filters, respectively.

First, the encoder stage encodes all points contained
in a voxel, providing a single feature vector of length
L = 256 for each voxel, which yields the encoded LiDAR
grid g ∈ R

Nx×Ny×Nz×L. Subsequently, the 3D backbone
processes g using a series of 3D (transposed) convolutions,
extracting more abstract features and including context from
surrounding voxels, which provides g̃ ∈ R

Nx×Ny×Nz×L′
, with

L′ = 384 features per voxel. As shown in Fig. 3, in a last
step, the abstract feature grid g̃ is decoded by three individ-
ual map element heads to provide the network outputs us,
ul, up for signs, lights, and poles, respectively, which we
define subsequently. Note that for poles, g̃ is reorganized
by concatenating all features along the vertical z-dimension,
providing the poles head input ˜̃g ∈ R

Nx×Ny×(Nz·L′).
Each head operates in a single-shot fashion [76] simultane-

ously predicting existing likelihoods and regression bounding
shapes for a set of predefined objects, so-called “anchors”. If
an anchor is likely to contain (part of) a real-world object,
the existence likelihood increases. Let et ∈ T = {s, l, p}
be the map element type, sign, light, or pole, with T
being the set of considered map element types. For signs and
lights, we employ the 3D anchor grids Gs,Gl = {1, 2, . . . ,G}
with G = Nx · Ny · Nz being the number of voxels, allowing
for the vertical resolution of individual objects. For poles,
due to their ground placement, we employ a 2D anchor
grid in the x-y-plane, which reduces runtime and memory
requirements, with Gp = {1, 2, . . . ,G′} and G′ = Nx · Ny

being the number of cells in the 2D grid. A map ele-
ment head output uet = (uetg ) contains predictions uetg for
each anchor, with g ∈ Get being the anchor index. Each
anchor prediction uetg = (oetg , retg ) comprises an object detec-
tion head output oetg and a regression head output retg .
According to Fig. 3, both outputs are obtained by decoding g̃,
employing 3D or 2D convolutions, depending on the anchor
grid.
The object detection head predicts an existence likelihood

for each anchor oetg ∈ I, with I = [0, 1], while the regres-
sion head adopts the anchor’s (predefined) bounding shape
to match the size and position of a real-world object. The
bounding shape parameters differ for each map element head.
For poles, we employ a bounding cylinder with the set of
regression parameters Qp = {px, py, pz, d}, with px, py, pz

being the Cartesian position of a pole’s base point, and d
being the pole’s diameter. For lights, we use a bounding box
Ql = {px, py, pz, h,w, ϕ}, with h being the bounding box
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height, w the width of a squared base plate, and ϕ being
the light’s orientation. Last, for signs modeled as bounding
rectangles, the set Qs = {px, py, pz, h,w, ϕ} applies, with h
and w indicating the rectangle’s height and width, respec-
tively. For signs and lights, p(·) indicates the element’s center
position.
Instead of directly predicting bounding shape parame-

ters, the regression head predicts the difference between a
real-world object’s bounding shape (superscript O), and the
bounding shape of the respective anchor (superscript A) for
normalization purposes. With sxvox × syvox × szvox = s3vox and
svox = 40 cm being the size of a cubic voxel, and the orienta-
tion ϕ being encoded as complex number with real and imag-
inary components ϕre and ϕim, we define the regression head

outputs rsg = rlg = (r(p
x)

g , r(p
y)

g , r(p
z)

g , r(w)
g , r(h)g , r(ϕ

re)
g , r(ϕ

im)
g ),

and rpg = (r(p
x)

g , r(p
y)

g , r(p
z)

g , r(d)g ) with:

r(p)g =
(

pOg − pAg
)

svox
, p ∈ {

px, py, pz
}

, (1)

r(�)g = log
(�Og

�Ag

)

, � ∈ {w, h, d}, (2)

r(ϕ
re)

g + j · r
(

ϕim
)

g = cos
(

κ · ϕO
)

+ j · sin
(

κ · ϕO
)

, (3)

with j = √
–1 being the imaginary unit, and κ = 1 for

lights. Regarding signs, the network cannot easily distinguish
between a sign’s front and back without camera images.
Thus, we limit a sign’s orientation to ϕ ∈ [−90◦, 90◦],

instead of encoding a full 360◦ range. To ensure that signs
with the same spatial orientation (difference of 180◦) gen-
erate no loss, we use the factor κ = 2 in (3). We derive the
default anchor parameters (·)Ag based on the ground truth
(GT) parameter distributions (cf. Appendix B), which yields
wA
g = hAg = 0.65m for signs, wA

g = 0.3m and hAg = 0.9m
for lights, and dAg = 0.2m for poles.

2) OBJECT DETECTION LOSS

To generate the target existence likelihoods oetg and target
regression features retg (with (·) denoting ground truth (GT))
during training, GT map elements have to be matched to
the anchor grid, setting matching anchors oetg = 1 and their
regression features retg according to (1), (2), and (3), whereby
a single element can match with multiple anchors. To this
end, we employ type-specific matching strategies, association
metrics, and criteria. Anchors with only a small overlap with
a GT element are ignored during training using a “don’t care”
state. For more details, see Appendix C.
We define the loss function optimizing the object detection

DNN applied in MDD-SC and MDD-MC (cf. Fig. 2) similar
to PointPillars [71] and SECOND [73] as

J =
∑

et∈T

1

Net ·
∑

g∈Get

λ · J
(

oetg , oetg
)

+ (1 − λ) · J
(

retg , retg
)

, (4)

with et ∈ T = {s, l, p} denoting the element type (sign,
light, or pole), Net being the type-specific number of
elements contained in a training sample, J(oetg , oetg ) and
J(retg , retg ) denoting the object detection and the regression
loss obtained for a specific element type, respectively, and
λ = 2/3 being a weight factor. We formulate the object
detection loss as focal loss [77], which focuses on par-
ticularly hard-to-detect elements using adaptive weights.
Using the original paper settings [77] for the weight factors
α = 0.25, β = 2, and with the mask factor λmask

g ∈ {1, 0}
being zero in the “don’t care” state, we define:

J
(

oetg , oetg
)

= −λmask
g αg · (

1 − γg
)β · log(γg

)

,

γg =
{

oetg if element in voxel g
(

oetg = 1
)

1 − oetg otherwise
,

αg =
{

α if element in voxel g
(

oetg = 1
)

1 − α otherwise
,

(5)

whereby an anchor contained in voxel g is weighted higher
when a prediction is further away from the target value (see
the distinction of cases depending on oetg in (5)).
The type-specific regression loss is formulated using the

smooth L1-loss (also known as Huber loss [78]):

J
(

retg , retg
)

= λ
obj
g

∑

q∈Qet

smoothL1
(

	r(q)g

)

, (6)

smoothL1
(

	r(q)g

)

=
⎧

⎨

⎩

0.5
(

	r(q)g

)2
if |	r(q)g | ≤ 1

|	r(q)g | − 0.5 otherwise
, (7)

with q ∈ Qet being a type-specific regression parameter
defined in Section III-C1, 	r(q)g = r(q)g − r(q)g being the
difference between predicted and target regression values,
respectively, and with λ

obj
g ∈ {1, 0} being 1 only if an element

is present in voxel g.

3) POST-PROCESSING AND COMPARISON

To obtain the list of predicted elements ̂E during inference
for both MDD-SC and -MC, the map element head outputs
uet are post-processed (cf. Fig. 2 (a) and (b)). First, only
map element predictions for single voxels g with a predicted
existence likelihood oetg exceeding an element-type-specific
threshold 
et

score are considered as a valid detection:

oetg ≥ 
et
score, (8)

with the selection of thresholds being discussed in
Section V-A. For valid detections, the normalization of
bounding shape predictions is reverted. As multiple anchors
can make predictions for the same real-world object,
respective overlapping bounding shapes are filtered using
non-maximum-suppression [71] to obtain the predicted map
element set ̂E comprising signs, lights, and poles, respec-
tively. Thereby, only the element with the highest existence
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likelihood among overlapping predictions remains. To mea-
sure the overlap, we apply the association metrics detailed
in Appendix C.
To obtain verifications V and map deviations D ∪ I ∪ S ,

predicted map elements ̂E are now compared with elements
in the potentially deviating map ˜E . In the first association
step, map elements in ̂E and ˜E with the same major type
(sign, light, pole) are compared using again the associ-
ation metrics. Successfully associated elements are appended
to V , while predicted elements in ̂E that cannot be found in
the examined map ˜E are considered as deletion and appended
to D. Vice versa, elements in ˜E for which no prediction from
̂E can be associated, are considered as falsely existing and
appended to the set of insertions I. Substitutions S are a spe-
cial case, where one element of a specific major type (e.g.,
light) is interchanged with another element of a different
major type (e.g., sign). In our case, only signs and lights
are physically interchangeable with one another. Specifically,
a sign cannot be interchanged with a pole, as the pole must
already exist to serve as a mounting location. If the sign is
mounted on a wall, there is no space available for a pole.
Similar considerations apply regarding lights. For instance,
after the first association step, let’s assume a light falsely
exists in ˜E (insertion), with a sign missing in ˜E (deletion)
at the same location. In this case, to identify such substitu-
tions in a second step, deletions and insertions are associated
among signs and lights. As the aforementioned association
criteria are defined for elements of the same major type, we
simply require the Euclidean distance dE between elements
to be dE ≤ 
SUB

E for successful association of deletions and
insertions, with 
SUB

E = 0.3m being a threshold value. If an
association is successful, both deviations are removed from
respective sets D and I, and replaced by a single substitution
appended to S .

D. MDD-MC: MAP-SUPPORTED OBJECT DETECTION
The method MDD-MC follows the same concepts as presented
in the previous section for MDD-SC, while additionally
applying the map representation m′ as input to the object
detection DNN (cf. Fig. 2 (b)), providing the network with
initial hypotheses for possible map elements locations and
features. In this section, we first define the map represen-
tation and subsequently present the applied map encoding
procedure to obtain m′, with a respective example result
depicted in Fig. 7 (a). Last, we describe the integration of
the generated map representation into the DNN.
Let the tensor m′ = (m′

g) be of size Nx × Ny ×
Nz × 10, whereby g denotes the voxel index of the spa-
tial grid (cf. Section III-C1). Each map feature vector m′

g =
(Psg,P

l
g,P

p
g, r

(px)
g , r(p

y)
g , r(p

z)
g , r(�)g , r(h)g , r(ϕ

im)
g , r(ϕ

re)
g ) provides

ten features, with P(·) ∈ P and P = {0, 1} being a prior
existence hypothesis that a sign s, light l, or pole p is
present in voxel g, whereby we allow only one hypothe-
sis per voxel, resulting in a one-hot encoding for Ps,Pl,Pp.
If an element of a specific type is present in voxel g, the

respective regression features r(·) are set in a normalized
fashion according to (1), (2), and (3). If a pole is present,
we provide the respective pole diameter r(�)g = r(d)g with the
other regression features set to 0. For signs and lights, we
provide the width parameter r(�)g = r(w)

g , respectively.
To obtain map feature vectors, map elements ˜E have to be

matched to voxels in the spatial grid of m′, whereby a single
element can match with multiple voxels. For such matching,
we approximate map elements using cuboid shapes. Such
an approximation is less precise than the matching strate-
gies applied during target generation (cf. Appendix C), but
provides a greatly reduced runtime during training and infer-
ence. For a successful match of a map element with voxel
g, we require

∧

dim∈{x,y,z}
|pdim − vdimg | < 
dim

dist , (9)

with dim ∈ {x, y, z} being a spatial dimension, 
dim
dist being

a dimension-specific threshold value, and pdim and vdim

being the element’s and the voxel’s center positions in that
dimension, respectively. Furthermore, we define


dim
dist = ν

max
(

�, sdimvox

)

2
, (10)

with ν = 1.1 being an empirically determined factor
enlarging the element’s shape to include voxels surround-
ing the element as matches. Regarding poles, we apply the
diameter � = d for both the x- and y-dimension, and h
being a pole-class-specific default height value for the z-
dimension. Otherwise, for signs and lights, we use the width
parameter � = w for the x- and y-dimension. The max-
operation ensures a minimal element size to obtain a
match also for small elements. For poles and (squared-
shaped) lights, this approximation yields sufficient matching
results. For signs, however, matches are further refined to
account for their rotated shape using the matching strategies
applied during target generation. For unmatched voxels, we
set m′ = 0.
Finally, to integrate the obtained map representation m′

into the network, m′ (providing 10 features per voxel) is
concatenated along the feature dimension to the encoded
LiDAR grid g providing L′ features, yielding a spatial
grid of size Nx × Ny × Nz × (10 + L′) as input to the
backbone.
Note that the camera modality can be integrated in the

same way as m′, following the concept from [11]. For
instance, a bounding box for each individual voxel can be
projected into the camera image to crop and resize [79]
respective image features (i.e., RGB or abstract features),
which subsequently can be used as a voxel’s feature vector.

E. MDD-M: MAP-SUPPORTED DEVIATION DETECTION
In this section, we first present our specialized MDD network
and the according loss function used for training. We close
with a presentation of the post-processing specific to MDD-M.
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1) DEVIATION DETECTION DNN

The deviation detection DNN applied in method MDD-M
as depicted in Fig. 2 (c) directly predicts map deviations
instead of performing a mere object detection and obtaining
deviations by comparison with the (deviating) map, omitting
the need for such comparison. To this end, we adopt the
network heads, now providing the outputs ũs, ũl, and ũp,
while leaving the rest of the network architecture (encoder
and backbone) and the pre-processing steps (voxelization and
map encoding) unchanged.
To predict map deviations, we substitute the output of the

object detection head oet (cf. Section III-C) in the respec-
tive map element head output uet = (oet, ret), as used for
MDD-SC and MDD-MC, with the deviation detection head
output det, which yields the changed map element head out-
put ũet = (det, ret). Thereby, the spatial resolution of the
anchor grids remains unchanged, comprising Nx, Ny, and
Nz voxels in the respective dimensions, with predictions
being made for each anchor (or voxel, respectively). The
deviation detection head output dg for an anchor g com-
prises four score values, representing the evaluation states
S = {VER,DEL,INS,SUB}: dg = (sVER, sDEL, sINS, sSUB),
with s(·) ∈ I = [0, 1] being a state score value. To pro-
vide the target dg during training, we set the respective
score value to 1 according to the element’s evaluation state.
Otherwise, if no element is present in a voxel, all score
values are set to 0. In case of substitutions, the network
is trained to predict the map element type present in the
sensor data. For instance, in case of the map falsely hypoth-
esizing a light, which is substituted by a sign in the real
world, we set d

s
g = (0, 0, 0, 1) to predict a substitution

and rsg according to (1), (2), and (3) to predict the sign’s
bounding shape.

2) DEVIATION DETECTION LOSS

Accordingly, we change the loss function (4) optimiz-
ing the network to comprise the deviation detection loss
J(d

et
g , detg ):

˜J =
∑

et∈T

1

Net ·
∑

g∈Get

λ · J
(

d
et
g , detg

)

+ (1 − λ) · J
(

retg , retg
)

. (11)

The deviation detection loss J(d
et
g , detg ) incorporates the

classification of evaluation states S formulated as focal loss:

J
(

d
et
g , detg

)

= −λmask
g

∑

s∈S
αg,s · (

1 − γg,s
)β · log(γg,s

)

,

γg,s =
{

detg,s if state in voxel g
(

d
et
g,s = 1

)

1 − detg,s otherwise
,

αg,s =
{

α if state in voxel g
(

d
et
g,s = 1

)

1 − α otherwise
.

(12)

Further, we apply the same regression loss as previously
formulated in (6). In case of insertions (elements not existing
in the sensor data), we train the network to reproduce the
element’s bounding shape as provided by m′.

3) POST-PROCESSING

As the network directly classifies the evaluation states for
elements of the examined set ˜E , which are encoded as
m′ and provided as input to the network, verifications
V , deletions D, insertions I, and substitutions S can be
directly obtained from the network output. Only a prediction
for voxel g with a state score s(·) exceeding a specific
threshold is considered as valid detection. As opposed to
the object detection DNN used in MDD-SC and MDD-MC,
where three element-type-specific thresholds are applied, the
deviation detection DNN in MDD-M allows for the selec-
tion and optimization of in total 3 × 4 = 12 type- and
state-specific thresholds 
et

s , with et ∈ T being the ele-
ment type and s ∈ S = {VER,DEL,INS,SUB} being the
evaluation state:

max
s∈S

(

detg,s
)

≥ 
et
s . (13)

According to (13), an element is appended to respective sets
V , D, I, and S only if the respective threshold is exceeded.

The post-processing procedure for MDD-M is different for
elements providing an existing hypothesis in ˜E (predicted
as verifications V , insertions I, or substitutions S), and ele-
ments missing in ˜E (deletions D). First, we consider elements
in the examined set ˜E . Recall that each element in ˜E is
matched to a unique set of voxels in m′ during map encod-
ing (cf. Section III-D). As the spatial grid size of both m′
and deviation detection head output det given by Nx, Ny, and
Nz are equal, the set of matched voxels in m′ corresponds to
a unique set of matched anchors A ⊂ Get in det, predicting
the evaluation state of an examined element. Thus, for each
element in ˜E , we query only the specific set of matched
anchors A instead of the entire anchor grid Get, selecting
the evaluation state (VER, INS, or SUB) of the anchor a ∈ A
providing the highest score dmax

a = maxs∈S(detg,s) among the
set A, with a being the matched anchor index, and averag-
ing the regression features of all anchors in A predicting the
selected evaluation state. Such procedure ensures that each
element in ˜E is evaluated and reduces computational cost.
Second, to regard deletions, we apply the ordinary object
detection post-processing (cf. Section III-C3). Specifically,
we consider all anchors for which the deletion score detg,DEL
is highest. Obtained deletion predictions are subsequently
filtered using non-maximum-suppression.

IV. EXPERIMENTAL SETUP
In this section, we describe our experimental setup. First,
we present the utilized dataset and applied metrics. Last, we
refer to the training strategy.
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A. DATASET
We employ the 3DHD CityScenes dataset [10] depicted in
Fig. 4, which provides a large-scale HD map with an under-
lying high-density point cloud. The map comprises 20,163
signs, 5,762 lights, and 67,540 poles. However, we exclude
bollards being the least significant but most varying pole
class, which leaves 32,283 considered poles in the dataset. If
vertically-stacked rectangular signs are of similar size with
no spatial gap between, we merge respective signs as the
individual boundaries cannot be determined.
3DHD CityScenes offers poses on the HD map comprising

geo-location and orientation of the vehicle based on recorded
real-world trajectories, providing 57,510, 8,087, and 13,061
poses for the training, validation, and test set, respectively. To
generate samples comprising a point cloud P and examined
map elements ˜E for training, inference, and evaluation, we
take crops from the larger point cloud, only considering the
subset of map elements within this crop as part of the sample.
For the MDD task of this work, in particular the detec-

tion of verifications V (map elements correctly representing
the sensor data), deletions D (elements missing in the map),
insertions I (elements falsely existing in the map), and sub-
stitutions S (false element types present in the map data),
3DHD CityScenes is not providing annotations straightaway.
Thus, map deviations have to be induced into the map
artificially, which we term map deviation simulation.
Note that we assume the initially provided map as

deviation-free, i.e., all elements represent GT verifications
V , respectively. To simulate deviations, we use a proba-
bilistic approach, whereby each map element is examined
and either left unchanged, remaining a verification with the
evaluation state VER, or turned into a deviation: deletion
DEL, insertion INS, or substitution SUB. Specifically, let
P(s) be the probability of a map element having assigned
a certain evaluation state s ∈ S = {VER,DEL,INS,SUB}.
For validation and test, we apply the probabilities
(PVER,PDEL,PINS,PSUB) = (0.75, 0.1, 0.1, 0.05), which we
regard as an intermediate setting between a mostly cor-
rect map (e.g., with PVER = 0.95), and a construction site
scene (e.g., with PVER = 0.25). For reproducibility purposes,
we use a fixed assignment of elements to evaluation states
that is generated in an offline-fashion and stored prior to
training. The assignment is published along with our code.
During training, however, we dynamically simulate devia-
tions for each sample, using higher deviation probabilities
(0.5, 0.2, 0.2, 0.1) to speed up the learning process for the
method MDD-M.
If an element receives the VER evaluation state, both ele-

ment and sensor data are left unchanged, with respective
elements appended to the set of GT verifications V . On the
other hand, if an element is assigned the DEL, INS, or SUB
state, we turn it into a deviation by modifying map ˜E or sen-
sor data P , as depicted in Fig. 5. Subsequently, the simulated
deviation is appended to the respective GT set D, I, or S . In
particular, deletions D (Fig. 5 (a)) are simulated by deleting
elements from the examined map ˜E . To create insertions I

FIGURE 4. HD map and dataset split. We show lanes (gray lines), 4 out of 14
real-world trajectories (colored lines, with the subset of visualized trajectories
selected for better visibility), and regions of the map assigned to the training,
validation, and test set (gray, blue, and green areas).

(Fig. 5 (b)), we remove the parts of the point cloud being
contained in respective bounding shapes. Typically, such pro-
cedure leaves residual points from other map elements (e.g.,
an underlying pole) in close proximity — rendering the
detection of insertions a valid task. Thereby, we consider
the removal of semantic groups as a whole. Specifically, the
removal of a pole from the point cloud leads to the removal
of adjacent signs and lights as well. Further, we generate
substitutions S (Fig. 5 (c)) by interchanging element types
in ˜E with realistic bounding shapes being created for the
artificial element, which is appended to the set of artificial
elements ˜S (e.g., an element now being a light instead of a
sign), while the respective correct element as indicated by
the sensor data is appended to the set of GT substitutions S
(remaining a sign in the example). Hence, the examined map
˜E as input to all methods comprises verifications, insertions,
and artificial elements: ˜E = V ∪ I ∪ ˜S .

B. EVALUATION STRATEGY AND METRICS
To evaluate the performance of the proposed method variants,
we associate the predicted set of evaluated map elements
Eeval = V ∪ D ∪ I ∪ S (cf. Fig. 2) with the respective
GT set Eeval = V ∪ D ∪ I ∪ S . Thereby, only elements of
sets with the same evaluation state (considered as “class”)
s = s ∈ S = {VER,DEL,INS,SUB} can be associated, e.g.,
V to V , which is the common approach in the field of object
detection (i.e., cars and pedestrians not being associated).
To establish an association between predicted and ground

truth elements among sets for which existing hypotheses
in the examined set ˜E are available (verifications V , inser-
tions I, and substitutions S), an evaluated element’s known
identifier is utilized to find the element in the respective GT
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set. For deletions (elements missing in ˜E without identifier),
we apply the association criteria as provided in Appendix C.
If a predicted element is successfully associated with an ele-
ment in the respective GT set, the element is considered as
true positive (TP). If a prediction cannot be associated with
a GT element, the detection is considered as false positive
(FP). Further, a GT element without an associated prediction
is counted as false negative (FN). We indicate the devia-
tion detection performance for each set (or evaluation state,
respectively) individually using the following metrics, with
TP and FP being the amount of true and false positives,
respectively, and FN being the amount of false negatives:

Recall: RE = TP

TP + FN
, (14)

Precision: PR = TP

TP + FP
, (15)

F1 score: F1 = 2 · PR · RE
PR + RE

. (16)

Note that false predictions exist for each evaluation state. For
instance, residual points in proximity of a GT insertion may
lead a method to predict a FP verification instead, causing a
(not associated or undetected) FN insertion. To evaluate the
regression errors, we employ the L1 and L2 metrics:

L1: E(q) = 1

TP

TP
∑

i=1

||qi − qi||1, (17)

L2: E
(

ppos
) = 1

TP

TP
∑

i=1

∣

∣

∣

∣

∣

∣p
pos
i − pposi

∣

∣

∣

∣

∣

∣

2
, (18)

with q ∈ {d,w, h, ϕ}, and ppos = (xpos, ypos, zpos) being the
center position of a predicted bounding shape, and i being
the index of the predicted element. Note that the regression
errors can only be computed from TP detections, excluding
insertion predictions, as no map element in the sensor data
is available for regression in their case.

C. TRAINING STRATEGY
Our experimental pipeline is implemented in PyTorch.
All networks are trained from scratch for 8 epochs using
a 2-GPU setup (Tesla V100) with a batch size of 2,
whereby the network weights are initialized from a nor-
mal distribution following [80]. For the point density and
partial occlusion ablation studies, we use a batch size of
4 to allow for a reduced training time. We utilize the
Adam optimizer with a fixed learning rate of 2 · 10−4.
Furthermore, we use a global augmentation strategy for
both point cloud and map elements, applying a random
translation t ∈ U3, with U = [−tdim, tdim], dim ∈ {x, y, z},
and (tx, ty, tz) = (1m, 0.2m, 0.2m), and a random rotation
around the z-axis by ϕ ∈ U ′ = [−20◦, 20◦], with U denot-
ing a uniform distribution. Additionally, we randomly mirror
both point cloud and map along the x-axis with a probabil-
ity of 0.5. As multi-occurrences of individual map elements
in different point cloud samples exist, we randomly remove

FIGURE 5. Map deviation simulation of (a) deletions (yellow), (b) insertions (red),
and (c) substitutions (blue), with verifications depicted in green. Simulated deviations
are assumed as ground truth.

20% of all points in each crop to reduce potential overfitting.
Further, we observed performance gains for MDD-MC and
MDD-M through increasing deviation probabilities for devia-
tion simulation during training, which saturate at the optimal
choice of (PVER,PDEL,PINS,PSUB) = (0.5, 0.2, 0.2, 0.1) as
applied in this work. Moreover, the utilized size of the point
cloud crop varies: For our default experiment in Section V-B,
we consider a maximum crop extent of 60.8 m, 40 m, and
9.6 m in the x-, y-, and z-dimension, respectively. For the
ablation studies, we consider an x-extent of 28.8m and
exclude samples without any map element to allow for a
reduced training time, taking into account the large number
of experiments conducted.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we first discuss the threshold optimization on
the validation set and then the results on the test set. Last,
we conduct ablation studies, simulating degenerated sensor
data and inducing sensor and map data misalignments.

A. VALIDATION SET THRESHOLD OPTIMIZATION
To obtain predictions from the anchor grids, all method vari-
ants require the selection of thresholds regarding predicted
existence likelihoods (methods MDD-SC and MDD-MC) or
evaluation state scores (method MDD-M) on the validation
set, above which an anchor is considered to provide a valid
prediction (see (8) and (13), respectively). Such selection
requires an optimization procedure, which we describe in
the following. The resulting optimized thresholds are applied
later to obtain the test set results. For the method variants
MDD-SC and MDD-MC that are based on object detection,
three thresholds 
et

score in (8) with et ∈ T = {s, l, p} for signs,
lights, and poles have to be selected, which we optimize by
maximizing the F1 score on the validation set for GT ele-
ments with a DEV evaluation state summarizing all deviating
states SDEV = {DEL,INS,SUB} ⊂ S . The method variant
MDD-M, on the other hand, predicts four individual scores for
the evaluation states in set S = {VER,DEL,INS,SUB}. This
allows for an individual threshold optimization for each eval-
uation state, which requires the optimization of 3 × 4 = 12
thresholds 
et

s in (13) by maximizing the F1 score on the
validation set for each state separately.
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FIGURE 6. Validation set precision-recall curves for lights, poles, and signs comparing MDD-SC (blue dotted), MDD-MC (green dashed), and MDD-M (red solid). The “verified”
evaluation state (elements reported as correct) is abbreviated as VER, while DEV denotes the “deviating” state, comprising all elements classified as deletions (DEL), insertions
(INS), and substitutions (SUB). For poles, no substitution by other elements exists.

To this end, we create the precision-recall curves for all
method variants depicted in Fig. 6 by varying respective
threshold values between 0.01 and 0.9 in steps of 0.01.
Specifically, Fig. 6 indicates the validation set performance
for lights, poles, and signs from left to right, reported sepa-
rately for each evaluation state (VER, DEV, DEL, INS, and
SUB) from top to bottom, with the DEV state summarizing all
deviating elements. The performances of MDD-SC, MDD-MC,
and MDD-M are depicted as blue dotted, green dashed, and
red solid curves, respectively.

First, the VER performance is quite similar over all three
method variants and element types, with MDD-SC show-
ing poorest performance and MDD-M providing the best
F1 score, reaching 0.99 for all element types. However,
all methods perform around or quite above an F1 score
of 0.9 at very high precision levels close to 1, showing
that FP verifications only occur rarely (towards very low
thresholds).
Second, the DEV evaluation state summarizing DEL,

INS, and SUB elements shows similar characteristics over
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all element types, with MDD-M again performing best
with F1 scores above 0.80, and MDD-SC showing poorest
performance (F1 ≈ 0.60). The degenerated curves for the
object detection-based variants MDD-SC and MDD-MC are
due to inverse threshold characteristics of the DEL and INS
states. Specifically, higher thresholds lead to fewer object
detections, increasing the DEL precision and the INS recall,
while decreasing the DEL recall and the INS precision (i.e.,
causing more FP insertion predictions, also see Fig. 7 for
respective examples), and vice versa. Thus, the opposed
characteristics diminish the DEV precision towards both
low and high thresholds, causing the loop-like precision-
recall-curves. In contrast, MDD-M optimizes an individual
threshold for each evaluation state, leading to regular DEV
curves.
Third, the DEL performance depends on element types.

For lights, the advanced methods MDD-M and MDD-MC per-
form best (F1 = 0.65), with MDD-M operating at higher
precision but lower recall than MDD-MC. A similar tendency
can be observed for poles, with MDD-M slightly outperform-
ing MDD-MC in this case. Regarding signs, however, MDD-M
clearly shows the best performance with an 0.12 absolute F1
increase compared to MDD-MC. The significant performance
gain can be traced to clusters of vertically stacked signs.
For the comparison-based method variants MDD-SC and
MDD-MC, detected objects are first associated to existing
map hypotheses (e.g., yielding verification predictions). Only
the remaining unassociated objects are considered as dele-
tions, leaving many deletions undetected, causing a low recall
just above 0.6. In contrast, MDD-M separates the evaluation
of existing map hypotheses and the prediction of deletions
(enabled by the evaluation state classification and exploited
by the specialized post-processing), with existing hypotheses
being evaluated directly and deletion predictions generated
independently. Thus, more (not otherwise associated) dele-
tion predictions are available, boosting the DEL recall. The
optimized post-processing also improves the precision in sign
clusters: Existing hypotheses cannot be deletions, preventing
FP deletion predictions in close proximity (cf. the sign cluster
in Fig. 7 (c) and (d)). Note that even without the optimized
post-processing, MDD-M still performs best, mirroring the
performance characteristics of lights in this case (increased
precision, lower recall, and best F1 score).

Fourth, the INS performance is similar over all map
element types, with MDD-M showing best performance at
F1 ≈ 0.95, MDD-MC being second place with F1 scores
around 0.80, and MDD-SC showing poorest performance
with F1 scores around 0.60. The performance gains are
mostly achieved by an increased precision, or fewer pre-
dicted FP insertions, respectively. For the comparison-based
variants MDD-SC and MDD-MC, FP insertions are caused
by (falsely) undetected objects correctly represented by
the map. The additional map input applied in MDD-MC
and MDD-M provides the network with initial hypotheses
regarding possible element locations, causing both methods
to detect objects reliably, if sensor and map data match.

FIGURE 7. Example predictions on the test set made by our three method variants
in (b)-(d) with used inputs in (a). The colored voxels depict the map representation m′

(poles: orange, lights: purple, signs: cyan). The black shapes in (a) depict examined
elements ˜E. For an exemplary subset of elements selected for discussion, we provide
ground truth (GT) labels in white. Obtained predictions in (b)-(d) are colored according
to their evaluation state (verifications VER: green, insertions INS: red, deletions DEL:
yellow, blue: substitutions SUB). Text labels connected in red indicate false
predictions regarding the evaluation state (false positive (FP) or false negative (FN)),
while the exemplary green connections indicate true positive (TP) predictions. All
shapes without text label are TP predictions.

Interestingly, the classification of evaluation states in MDD-M
further improves the INS precision, indicating an increased
tendency of the network to trust and confirm a map hypoth-
esis, which is also reflected by the slightly decreased INS
recall compared to MDD-SC missing the additional map
input: In some cases, MDD-M falsely confirms an existing
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map hypothesis, e.g., due to residual points or other objects
in close proximity.
Last, regarding the SUB performance for lights, all method

variants perform at a similar level with F1 scores around 0.90.
For signs, however, MDD-M clearly performs best, achiev-
ing F1 = 0.97, which is an absolute improvement of 0.23
compared to MDD-SC. The curves for MDD-SC and MDD-MC
appear degenerated in a loop-like fashion as observed for the
DEV evaluation state. Also in this case, the inverse threshold
characteristics of the DEL and INS states are the root cause,
recalling that for both comparison-based methods, substitu-
tions are created during post-processing from deletions and
insertions (cf. Section III-C3).
In total, a clear rank order is visible, with MDD-M compris-

ing our specialized MDD network performing best, and the
object detection-based variants MDD-MC and MDD-SC being
on second and third rank, respectively. Note the strong veri-
fication performance of MDD-M, indicating a greater trust of
the network on the map data, leaving only few elements with
an existing hypothesis undetected (high insertion precision)
at the cost of generally fewer objects (e.g., lights) predicted
if no such hypothesis is available (lower DEL recall but
higher DEL precision).

B. TEST SET RESULTS
In the following, we present and discuss the test set results,
which are obtained by applying the thresholds optimized on
the validation set. Specifically, we compare the method vari-
ants MDD-SC, MDD-MC, and MDD-M based on unmodified,
high-density point cloud inputs with highly precise spatial
alignment with the HD map. First, we present the devia-
tion detection and regression error results. Last, we provide
example predictions for each method variant.

1) DEVIATION DETECTION PERFORMANCE

The test set results regarding the deviation detection
performance obtained by comparing the predicted set of
map elements Eeval with the respective GT set Eeval

are summarized in Table 1, with obtained F1 score (16),
precision (15), and recall (14) results for the method
variants MDD-SC, MDD-MC, and MDD-M indicated individ-
ually for all element types and possible evaluation states
S = {VER,DEL,INS,SUB} of respective elements in Eeval

(TPs and FPs) or Eeval
(FN).

Overall, the test set results in Table 1 mirror the char-
acteristics observed on the validation set discussed in the
previous section, with the rank order of MDD-M, MDD-MC,
and MDD-SC only changing on a detail level. Specifically,
the F1 score for light deletions is now best for MDD-MC,
with MDD-M on second rank. Further, regarding light sub-
stitutions, MDD-SC slightly outperforms the other method
variants, which, however, all show similar performance with
F1 = 0.92 or F1 = 0.91, respectively.
Also on the test set, a clear rank order of methods appears

regarding the F1 score: The purely object detection-based

TABLE 1. Test set results for the three method variants MDD-SC, MDD-MC, and MDD-M.
The performance is measured using the F1 score (16), recall (14), and precision (15),
reported separately for lights, poles, and signs. Results are indicated individually for
possible evaluation (eval.) states (verification VER, deletion DEL, insertion INS,
substitution SUB, with the DEV state summarizing elements with DEL, INS, or SUB
evaluation states). Best F1 score is bold, second best is underlined.

TABLE 2. Test set regression error results for the three method variants MDD-SC,
MDD-MC, and MDD-M, reported separately for lights, poles, and signs. Errors E(·) for
position ppos (18), width w, diameter d, and height h (all (17)) are indicated in
centimeters, while the orientation error E(ϕ) (17) is provided in degrees. Best results
in bold face, second best underlined.

method MDD-SC is overall the poorest method, with MDD-MC
following on second rank, and MDD-M being the best for
almost all element types and evaluation states. On aver-
age over all three map element types (lights, poles, signs),
MDD-M achieves a strong F1 = 0.99 for map verification,
and a good F1 = 0.85 for map deviation detection.

2) REGRESSION PERFORMANCE

The L1 (17) or L2 (18) errors given in centimeter or degree
regarding the regression of bounding shapes obtained on the
test set are provided in Table 2, indicating the performance
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of the method variants MDD-SC, MDD-MC, and MDD-M
separately for each element type. As the object detection
DNN in MDD-SC operates without additional map input, the
reported errors indicate the network’s capability to deduce
respective bounding shapes from sensor data alone.
Regarding the L2 error of the predicted bounding

shape center E(ppos) compared to MDD-SC, best-performing
MDD-M provides an absolute improvement of 2.2 cm, 5.7 cm,
and 4 cm for lights, poles, and signs, respectively. Further,
regarding width and height errors E(w) and E(h), MDD-M
w.r.t. MDD-SC overall achieves greater improvements for
signs than for lights, i.e., 3.4 cm and 6.7 cm for signs com-
pared to 1.3 cm and 2.6 cm for lights, respectively. The higher
error ranges for signs can be attributed to the greater variance
of bounding shapes in size. Similar to signs, the diameter
error E(d) for poles is reduced almost to half, compar-
ing MDD-M and MDD-SC, with an absolute improvement of
3.1 cm. Regarding the orientation error E(ϕ), MDD-M reduces
the obtained error almost to a third compared to MDD-SC,
providing an absolute improvement of 9.6 ◦ and 8.1 ◦ for
lights and signs, respectively.
First, the achieved error improvements of advanced

method variants (e.g., comparing MDD-MC to MDD-SC) are
due to the provision of regression hypotheses by the map
representation m′. Second, the specialized post-processing
of MDD-M averages the regression features of multiple
predictions for elements with an existing hypothesis, which
yields a refined bounding shape. Overall, regarding the
obtained regression errors, methods rank in the same order
as before: MDD-SC, MDD-MC, and MDD-M, with MDD-M
consistently achieving lowest errors.

3) EXAMPLE PREDICTIONS

Fig. 7 provides obtained example predictions Eeval for all
method variants with visualized inputs ˜E , m′ and P
(cf. Fig. 2). Subsequently, we discuss an exemplary subset
of predictions to illustrate the performance characteristics
discussed in the previous sections.
First, Fig. 7 (a) shows the examined set of elements ˜E

(black shapes) used to generate the map representation m′
(colored voxels). The scene comprises several verifications
(map hypotheses matching the sensor data), two deletions
(missing poles on the left without map hypothesis), a single
sign substitution (with the map falsely indicating a light
instead of a sign on the left), and a single insertion (top sign
hypothesis on the right without sensor data), with the white
labels indicating the ground truth (GT) evaluation states of
mentioned examples. If an example element (be it VER, DEL,
INS, or SUB) first appears as true positive (TP) (e.g., in
Fig. 7 (b)), the respective label is omitted for better clarity
in subsequent figures (e.g., in Fig. 7 (c) and (d)), if the
example element remains correctly predicted (TP).
Regarding the GT pole deletions, both are correctly

detected (TP) by each of the three method variants (indi-
cated by the respective text labels connected in green in Fig. 7
(b), which are omitted in (c) and (d)), reflecting the high

DEL recall for poles achieved by all variants (cf. Table 1).
However, MDD-SC also provides a deletion prediction not
associated with a map hypothesis during comparison, which
yields a pole FP deletion (right of Fig. 7 (b)). The FP deletion
vanishes for more advanced method variants, corresponding
to the increased DEL precision in Table 1.

Further, the GT sign insertion is correctly detected by all
variants (green connected “TP sign insertion” label in Fig. 7
(b), omitted in (c) and (d)). However, MDD-SC fails to detect
the light object corresponding to the GT light verification
(top of Fig. 7 (b)). Thus, during comparison, no object detec-
tion is associated to the light hypothesis in ˜E (black shape
in Fig. 7 (a)), leading to one FP light insertion prediction,
and one missed light verification, counted as FN. However,
the advanced methods MDD-MC and MDD-M succeed in this
case, reflecting the increased VER recall in Table 1. Similar
considerations apply regarding the sign substitution: Both
MDD-SC and MDD-MC fail to detect the upper of both signs
on the left (Fig. 7 (b) and (c)), predicting only a single sign
in between both elements, which is associated to the bottom
sign hypothesis, leading to a (slightly misplaced) TP sign
verification. Therefore, as the sign prediction is not associ-
ated to the light hypothesis during comparison, a FP light
insertion is predicted, with the sign substitution left unde-
tected (FN). Only MDD-M (Fig. 7 (d)) succeeds in predicting
both elements correctly (bottom sign verification and top
sign substitution).
In total, we can observe in Fig. 7 that the method variant

MDD-M clearly outperforms the comparison-based method
variants MDD-SC and MDD-MC, with no false predictions
(FPs or FNs) being made in the scene by MDD-M.

C. ABLATION STUDIES
Subsequently, we present results for ablation studies. First,
we degenerate the point cloud input by reducing the point
density. Second, we induce partial occlusions. Last, to
demonstrate the suitability of our approach for onboard use-
cases, we induce an artificial misalignment between point
cloud and map, which is caused in practice by localization
errors of the ego-vehicle on the HD map. Note that driving
functions of today’s automated vehicles rely on available HD
maps as the onboard perception is unable to reliably deduce
the stationary environment, especially in bad weather con-
ditions or occlusion scenes. Thus, an approach to MDD is
required to at least verify existing map elements reliably.

1) REDUCING POINT DENSITY

We conduct a total of 12 experiments including training
and threshold optimization, randomly keeping 100%, 50%,
25%, or 10% of all points for the method variants MDD-SC,
MDD-MC, and MDD-M, with the original point density of
point clouds in the 3DHD CityScenes dataset [10] being
1/1 dm3. As the F1 score (16) results show similar trends
for each element type, we depict averaged results in Fig. 8
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FIGURE 8. Test set results for the point density ablation study obtained by
averaging individual results in terms of F1 score (16) for signs, lights, and poles,
reported for verifications (VER) and deviations (DEV). We compare the F1 performance
of all method variants for different point densities, where 100% indicates the full
resolution of the point cloud. For the lowest resolution, we keep only 10% of all points.

over signs, lights, and poles. We differentiate between verifi-
cations (VER) and deviations (DEV), the latter summarizing
deletions, insertions, and substitutions.
Regarding deviations (DEV), all method variants show

only a slight degradation of performance down to 25% point
density; only when omitting 90% of the points, significant
degradations are observed. Over all reported point densi-
ties, MDD-M remains about 21% absolute (F1) ahead of
MDD-SC. Similar observations hold for verifications (VER).
Down to 25%, all method variants degrade only slightly
in performance. However, MDD-M turns out to perform
very robustly with an F1 > 0.90 even if only 10% of the
point cloud is available. The high verification performance
at 10% point density of MDD-M demonstrates the network’s
capability to learn expected sensor data distributions for dif-
ferent map hypotheses internally, comparing (degenerated)
sensor data to map hypotheses, while sensor-only MDD-SC
frequently fails to detect and verify elements. Hereby, the
explicit classification of evaluation states in MDD-M further
facilitates distribution learning, shown by the performance
gain w.r.t. MDD-MC. Further, the stable performance down
to 25% point density for deviations and even to 10% for
verifications highlights the suitability of MDD-M also for
low-density onboard LiDAR or even RADAR data.

2) INDUCING PARTIAL OCCLUSIONS

Also in the case of induced partial occlusions, we conduct
a total of 12 experiments including training and threshold
optimization, while randomly selecting and occluding 0%,
25%, 50%, or 75% of all map elements that are still present
in the sensor data after simulating map deviations, whereby
we apply each occlusion setting to MDD-SC, MDD-MC, and
MDD-M, respectively. To generate occlusions, we always

FIGURE 9. Test set results for the partial occlusion ablation study obtained by
averaging individual results in terms of F1 score (16) for signs, lights, and poles,
reported for verifications (VER) and deviations (DEV). We compare the F1 performance
of all method variants for different percentages of occluded elements, whereby 0%
indicates that no occlusions are present. We (partly) occlude up to 75% of all
elements.

remove half of the element’s points, randomly selecting
between left, right, top, or bottom. We average and report
the obtained test set results in terms of F1 score (16) in
Fig. 9 in the same fashion as we did in Fig. 8.
Again starting with the deviations (DEV), we observe an

almost linear decrease of all methods in the F1 measure
w.r.t. the occlusion ratio. Again, MDD-M turns out to be
consistently about 20% absolute (F1) better than MDD-SC
for all occlusion ratios. With respect to verifications (VER),
MDD-SC gradually degrades up to −4% absolute, while
MDD-MC and MDD-M show only −2% absolute degradation
for up to 75% occlusion, highlighting the robustness of both
variants against scenes with dense occlusions.

3) INDUCING MISALIGNMENT

In the previously presented studies, point cloud and map data
feature a highly precise data alignment. In practice, however,
the ego-poses on the map obtained from an onboard local-
ization are erroneous, causing a shift between sensor and
map data. Also, laser scanner and ego-localization (provid-
ing the geo-location and orientation to register sensor and
map data) produce their respective measurements at differ-
ent timestamps, while the scanner typically rotates, which
further reduces timely synchronization. While the last two
effects can be compensated using odometry data, the imper-
fect ego-localization remains. As respective algorithms are
well developed, however, localization errors seen in prac-
tical urban scenarios are indeed very small, e.g., being
approx. 10 cm in translation and 0.1◦ in rotation. For our
study, we consider the default experiment for MDD-M from
Section V-B1. During test inference, we induce a misalign-
ment in x-, y-, and z-direction between 0 cm and 60 cm in
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steps of 10 cm. Rotational errors only cause a translation for
larger distances (e.g., approx. 10 cm given a 60m distance
and 0.1◦ rotational error), which we therefore omit.

To induce misalignment, we shift all map elements in
˜E by applying a translation of constant magnitude with
the direction randomly selected in spherical coordinates
using a uniform distribution, while leaving the GT ele-
ments unchanged. The obtained results in terms of F1
score (16) are averaged over all element types and reported
in Fig. 10 separately for each evaluation state, with the
gray curves depicting the performance without applying
any countermeasures against misalignment. As expected,
all MDD-M F1 curves monotonically decrease with increas-
ing map-sensor misalignment, whereby we observe steepest
performance drop for INS starting at 20 cm misalignment.
This performance drop is mainly caused by an increasing
number of insertion FPs as the network misclassifies actual
verifications due the sensor data shifted out of scope. To
further increase misalignment robustness, we retrain MDD-M
for another 4 epochs while inducing a constant misalignment
error of 30 cm during training. The obtained performance
during test inference is indicated by the colored curves in
Fig. 10. It is clearly visible that the network learns to com-
pensate misalignment errors. The performance drops for all
states are less pronounced, i.e., achieving a +0.15 abso-
lute F1 increase for INS at 30 cm in Fig. 10. Thus, for
all evaluation states, our proposed MDD-M shows a robust
F1 performance even up to 20 cm map-sensor misalignment
when employing the proposed countermeasure.

D. BENCHMARKS
As previously stated in Section I, our deviation annotations
for 3DHD CityScenes [10] published along with our entire
MDD pipeline comprising code for training, inference, and
evaluation allow for benchmarking MDD methods. To the
best of our knowledge, no other MDD methods for signs,
lights, and poles comparable to ours are publicly avail-
able, preventing direct 1:1 comparisons. However, our MDD
method, be it MDD-SC, MDD-MC, or MDD-M as variants, can
be combined with other DNN architectures for 3D object
detection in the field. Especially MDD-SC is easily combin-
able with such architectures, e.g., PointPillars [71] or
VoxelNet [72], requiring only an adaptation of the network
heads to predict map elements instead of road users. Hence,
we compare PointPillars [71], VoxelNet [72], and
our 3DHDNet [10] as employed architectures for MDD-SC
to our specialized MDD network in MDD-M, incorporating
our proposed MDD novelties, i.e., the additional map input
and the classification of evaluation states. Note that both
MDD-MC and MDD-M principally generalize to other archi-
tectures as well, e.g., point-based networks [74], [75], given
a modified map injection procedure.
All compared methods are trained1 using the strate-

gies described in Section IV-C with the larger 60.8m crop

1The results for 3DHDNet [10] (MDD-SC) and MDD-M in Table 3 are
taken from Table 1 and Table 2 to provide an easy comparison at a glance.

FIGURE 10. Test set results of MDD-M for the misalignment ablation study inducing
a translation between sensor and map. The depicted F1 score is averaged for signs,
lights, and poles. We provide F1 scores for verifications (VER, green), deletions (DEL,
yellow), insertions (INS, red), and substitutions (SUB, blue). Each colored curve is
accompanied by a gray counterpart depicting the F1 performance without
countermeasures.

extent in the x-dimension, and the threshold optimization
procedure from SectionV-A. For PointPillars, we
use a smaller grid cell size of sxvox × syvox = s2vox with
svox = 20 cm for discretizing the point cloud into the 2D
bird’s eye view (BEV) used as network input, while using
sxvox × syvox × szvox = 20 cm × 20 cm × 40 cm for the 3D
voxel grid input to VoxelNet, exactly as in the original
paper. Recall that 3DHDNet employs large cubic voxels of
size s3vox with svox = 40 cm to compensate for the com-
putationally expensive 3D convolutions applied in the 3D
backbone [10].

Table 3 summarizes the F1 score performance (16) for
the detection of verifications VER and deviations DEV, and
the L1 (17) or L2 (18) errors measuring the regression of
bounding shapes, all obtained on the test set, with the DEV
state summarizing deletions DEL, insertions INS, and sub-
stitutions SUB. Comparing PointPillars, VoxelNet,
and 3DHDNet as employed architectures for MDD-SC,
3DHDNet clearly performs best regarding all measures,
whereby the performance boost relative to VoxelNet is
most significant for signs, being +5% and +7% absolute
F1 for VER and DEV, respectively. In comparison, the F1
performance gains for VER and DEV w.r.t. lights and poles
are smaller, reaching between +1% and +4%, which is
expected as only signs appear as vertically stacked objects,
being the design focus of 3DHDNet. Similar observations
hold in terms of regression performance. For instance,
3DHDNet reduces the orientation error by −7.8 ◦ and −2.2 ◦
for signs and lights, respectively. PointPillars achieves
an unacceptable performance for all measures. Here, the
2D BEV applied for discretization poses an information
bottleneck regarding the vertical dimension. Further, our spe-
cialized MDD network in MDD-M proposed in this work out-
performs all other MDD methods based on object detection,
showing the effectiveness of both map input and evaluation
state classification. Relative to 3DHDNet, MDD-M increases
VER and DEV performance by +13% and +31% absolute
F1, respectively, and reduces regression errors significantly.

Considering the average runtime during test inference,
PointPillars requires 206ms+54ms = 260ms, adding
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TABLE 3. Test set results for benchmarking different MDD methods. We compare
PointPillars [71] (PointP), VoxelNet [72], and 3DHDNet [10] employed for MDD-SC
to our specialized MDD network in MDD-M. Results are reported separately for lights,
poles, and signs. The detection performance regarding verifications VER and
deviations DEV is measured using the F1 score (16), with DEV summarizing deletions
DEL, insertions INS, and substitutions SUB. Regression errors E( · ) for position
ppos (18), width w, diameter d, and height h (all (17)) are indicated in centimeters, while
the orientation error E(ϕ) (17) is provided in degrees. Best results in bold face, second
best underlined.

the time for GPU data transfer and network execution,
compared to VoxelNet with 210ms + 203ms = 413ms,
3DHDNet with 30ms+295ms = 325ms, and MDD-M incor-
porating the map with 43ms+ 313ms = 356ms. Regarding
network execution time, MDD-M is a factor 6 slower than
fastest PointPillars, while the application of larger vox-
els reduces data transfer time drastically from 206ms to
43ms. Using an optimized implementation with TensorRT
and low-density onboard LiDAR, PointPillars achieves
a network execution time of 16ms in [71], translating to a
runtime estimation for MDD-M of 16ms · 6 = 96ms regard-
ing onboard use cases, being at the edge of real-time
capability, considering the typical onboard scan duration
of 100ms. However, sparse convolutions can reduce the
required runtime for 3D convolution required for 3DHDNet
by factor 3 [73], further supporting real-time capability.

VI. CONCLUSION
In this article, we introduce a novel deep learning-
based approach to map deviation detection (MDD) in
high-definition (HD) maps and LiDAR data, utilizing the
map as additional input to a neural network. To this end, we
propose a specialized MDD network that verifies individual
map elements (i.e., signs, lights, and poles) or detects and
specifies respective map deviations. We compare our method
to variants relying on ordinary object detection, showing the
superior performance of our MDD network. Specifically, our
approach achieves a strong verification and a good deviation
detection performance of F1 = 0.99 and F1 = 0.85, averaged
over all element types. Furthermore, our ablation studies
degenerating the sensor input to simulate bad weather and
partial occlusions show that our network maintains its verifi-
cation performance with F1 = 0.93 on average, despite 90%
of all measurements being removed, which may allow for a
continued and safe operation of the driving function even in
challenging conditions. Also, our approach is robust against

misalignment of sensor and map data as seen in practice,
highlighting the suitability for onboard applications.

APPENDIX
In this section, we provide additional in-depth information
for the interested reader.

A. NETWORK ARCHITECTURE
Subsequently, we detail the inner operation of the encoder
and 3D backbone stages applied in the multitask extension
of our earlier 3DHDNet [10] as mentioned in Section III-C1.
Note that encoder and backbone are unchanged w.r.t. [10],
while the concatenation of the LiDAR feature map m and
map representation m′ is novel. The network architecture
visualized in Fig. 11 implements the object detection DNN
in Fig. 2 used for MDD-SC and MDD-MC.

The encoder stage learns an optimal feature representation
for the point cloud. In the first encoding stage, each point
mn,k of the LiDAR feature map m is initially mapped to
L = 128 features using a 2D convolution with a 1 × 1 × 10
kernel, which yields c1 ∈ R

N×K×L. Subsequently, the max-
imum for each feature among all K points in a voxel n is
taken to obtain c′1 ∈ R

N×1×L. This maximum feature vector
of length L is then repeated K times to match dimensions
with c1, yielding c′′1 ∈ R

N×K×L. Each point contained in c1
is concatenated with the maximum feature vector previously
obtained for each voxel n, which provides the input with
2L = 256 features to the second encoder stage. After first
mapping points to L′ = 256 features, the subsequent maxi-
mum operation yields the final encoding c2 ∈ R

N×1×L′
for

all points contained in each voxel n. In a last step, the N
obtained feature vectors for each voxel are scattered back
to their original position in the 3D voxel grid with zero-
padding applied to empty voxels, which yields the encoded
LiDAR grid g ∈ R

Nx×Ny×Nz×L′
.

The 3D backbone stage processes g and comprises a down-
stream and an upstream network, utilizing 3D (transposed)
convolutions in both networks on the 3D voxel grid, which
allows for the individual detection of vertically stacked traf-
fic signs, as we showed in our previous work [10]. The
downstream network is composed of three blocks (“Dn” in
Fig. 11), comprising 3, 5, and 5 layers, respectively. Each
layer is composed of one convolution, one batch normaliza-
tion, and one ReLU activation. For instance, Dn1 applies a
3D convolution with a 3×3×3×L′ kernel on g. Upsampling
blocks are each composed of one transposed convolution,
followed by one batch normalization and one ReLU activa-
tion. Using the upstream network, feature maps obtained at
different scales by the downstream network are upsampled
to the original grid size, and are subsequently concatenated
to obtain g̃ ∈ R

Nx×Ny×Nz×L′′′
as input to the multitask heads

in Fig. 3 from Section III-C1, with L′′′ = 3L′′ = 768 and
L′′ = 256. Note that the input concatenation of the addi-
tional map feature map input m′ with g is only active for
MDD-MC and MDD-M.
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FIGURE 11. Details of the object detection DNN (Fig. 2 (a) and (b)) as a 3DHDNet multitask architecture. Blue: Processing stages. Gray: Encoder and decoder stages. A 2D
convolution (“2D”) Conv(1x1, F) with input dimension [N × K × 10] uses F kernels of size 1 × 1 × 10, while a 3D convolution (“3D”) Conv(1x1x1, F) with [Nx × Ny × Nz × L′′′]-dim.
input uses 1 × 1 × 1 × L′′′-sized kernels. “Concat” indicates a concatenation. Downsampling (Dn) blocks comprise multiple convolutional layers.

FIGURE 12. Ground truth distributions for bounding shape parameters ( · ) for signs, lights, and poles, with the overline denoting ground truth. Brighter colors indicate higher
occurrence. The z-position of signs is encoded as height above ground level.

B. ANCHOR DESIGNS
In the following, we describe the anchor design for signs,
lights, and poles used to normalize the regression head out-
puts rsg, r

l
g, and rpg, respectively. We design our anchors

featuring positions pAg (1) and sizes �Ag (2) based on the
ground truth (GT) distributions for respective bounding shape
parameters shown in Fig. 12 (a)-(d).
Regarding signs, the ground truth distribution for bound-

ing rectangle height and width in Fig. 12 (a) features peaks
around h,w ≈ 0.65m (with the overline indicating GT),
which we use as default anchor size �Ag ∈ {wA

g , hAg } in (2).
Moreover, most signs are sized above 0.4m. Hence, we use
svox = 0.4m as voxel size for the anchor grid. Also, the his-
togram in Fig. 12 (b) shows that most signs feature a height
above ground z < 6m, which is covered by the z-extent of
point cloud crops used as network input (see Section IV-A).
For lights, the distribution for bounding box height h and
width w of the (square-sized) base plate in Fig. 12 (c) peaks
around w ≈ 0.3m, with three peaks occurring at h ≈ 0.3m,
h ≈ 0.6m, and h ≈ 0.9m, due to the varying number of
stacked lights in traffic light boxes. As we only apply single-
sized anchors, we select the highest peak h ≈ 0.9m, which
yields wA

g = 0.3m and hAg = 0.9m used as anchor size
in (2). Regarding the pole diameter distribution in Fig. 12 (d),
no clear peak can be identified. Thus, we use the mean of all
diameters as anchor size, which yields dAg = 0.2m for (2).

C. MATCHING STRATEGIES, ASSOCIATION METRICS,
AND CRITERIA
For target generation during training, comparison of map
elements, and performance evaluation, measuring the over-
lap of map elements is required. To this end, we employ
element-type-specific matching strategies (being algorithmic
procedures) visualized in Fig. 13, as well as association
metrics that measure the overlap of anchors and GT
objects. Also, we define association criteria as thresholds
for respective metrics that have to be met for a successful
association.
During training, GT objects are matched to the anchor

grid to provide the targets og and rg for the respective
network outputs. Such strategies, metrics, and criteria also
apply during the comparison (cf. Fig. 2) of predicted ele-
ments ̂E with the examined map ˜E to identify deviations,
and during performance evaluation when comparing the (pre-
dicted) set of evaluated elements Eeval = V ∪D∪I ∪S with
the respective GT set Eeval

.
In general, a single GT element can potentially match

with multiple anchors. If an anchor contained in voxel g
matches with the GT element, we set the anchor’s object
detection target o(·)

g = 1 and the regression target r(·)g accord-
ing to (1), (2), and (3) using respective ground truth shape
parameters. On the other hand, in case of a mismatch, we set
o(·)
g = 0 with r(·)g being “don’t care”, as regression features
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FIGURE 13. Strategies for matching pole, light, and sign ground truth objects (red)
to object anchors (blue). For poles, only the x-y-plane is visualized, while for lights and
signs the second row visualizes the vertical z-dimension. Matching anchors (dashed)
have their target anchor offsets rg set to match the ground truth object’s bounding
shape parameters (visualized as overlapping solid green shapes). Anchors with the
“don’t care” state (cyan) feature an insufficient overlap regarding at least one
association metric.

are not considered during loss computation for mismatches
(cf. (6)). For all elements, to ensure that a GT element is
matched with at least one anchor, we consider the anchor
with the closest Euclidean distance dE to the GT element as
match, independently from further association criteria.
Regarding poles, we employ the matching strategy visu-

alized in Fig. 13 (a). To measure the overlap with anchors
surrounding the ground truth element, we define the
“Intersection over Smaller Area” (IoSA) metric as the inter-
secting area of the two circles in the x-y-plane (given by
a respective anchor and the ground truth cylinder diame-
ter), indicated relative to the smaller of both circle areas.2

We require IoSA > 0.2 as association criterion to consider
surrounding anchors as matches (see the three green dashed
matching anchors in Fig. 13 (a)). Otherwise, if IoSA = 0,
the respective anchor is considered as mismatch (blue).
Moreover, for anchors having an insufficient overlap with

2The IoSA measure provides a maximum value of 1.0 if the anchor
completely encloses the ground truth element or vice versa.

the GT element with 0 < IoSA ≤ 0.2, we allow a “don’t
care” state (cyan) during training, in which an anchor is
not considered for loss computation. Note that for element
comparison (cf. Fig. 2) and performance evaluation, we rely
solely on the Euclidean distance dE as association metric,
which has proven to be more robust than the additional usage
of IoSA. For both comparison and evaluation, we require
dE/svox ≤ 0.75 as criterion for a successful association.

For lights, we apply a two-stage matching strategy visu-
alized in Fig. 13 (b). First, we only consider the x-y-plane to
find possible matching candidates. To this end, we approx-
imate the base plate of a light’s bounding box as a circle
with diameter w to reuse the IoSA metric defined previously,
whereby we require IoSA > 0.05 as association criterion for
a match.
Second, we consider the z-dimension for obtained match-

ing candidates, visualized in the second row of Fig. 13 (b). To
measure the overlap with anchors in the vertical z-dimension,
we define the “Vertical Overlap” (VO) metric using the over-
lap of line segments zover given by respective zmin and zmax
values of anchor and GT element, normalized by the smaller
of both segment lengths 	z as VO = zover/	z. An anchor
is considered as final match if VO ≥ 0.2, and is discarded
as mismatch when VO ≤ 0.1. Furthermore, the “don’t care”
state applies for loss computation if 0.1 < VO < 0.2.

A similar two-stage matching strategy is employed for
signs as shown in Fig. 13 (c). First, to identify matching
candidates in the x-y-plane, we define the “Distance to Line”
(DtL) metric, which indicates the shortest Euclidean distance
between the line segment of the GT rectangle (defined by the
edge points), and an anchor’s center point. Here, we require
DtL/svox < 0.5 as criterion for a match. Second, we apply
the VO thresholds in the same way as described for lights.
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