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ABSTRACT In recent years, vehicle detection in intelligent transportation systems using 3D LIDAR point
clouds based on deep neural networks has made substantial progress. However, when the point clouds
are very sparse, the detection model cannot generate proposals efficiently, resulting in false negative
results. Considering that the object tracking technology accurately predicts vehicles based on historical
measurements and motion models, and these prediction results can become proposals for object detection.
Therefore, this paper proposes a novel object detection paradigm based on tracking feedback to address
the false negative problem based on sparse point clouds. According to the distribution of the state vector
from the Kalman prediction, multiple proposals are sampled and fed back to the second stage of two-
stage detection models. After regression and non-maximum suppression, the false negative results can be
effectively reduced. This method enhances the vehicle detection capability of classical neural networks.
Comparing the recall metric of multiple detection models at different distances in the public KITTI and
nuSences datasets, the proposed method can promote up to 5.31% compared to the previous method,
which reflects the effectiveness and versatility of the proposed method.

INDEX TERMS Vehicle detection, tracking feedback, sparse point clouds.

I. INTRODUCTION

DRIVEN by data, computation, and algorithms, deep
learning-based vehicle detection methods have been

greatly improved in terms of accuracy and robustness [1].
Since the 3D LIDAR point cloud can directly obtain the
depth information of the target, the deep learning method
based on the 3D LIDAR point cloud has also been developed
rapidly [2], [3]. However, such method has encountered the
problem of point cloud sparsity, and sparsity increases with
distance. Fig. 1 shows the change in the number of points
for the same vehicle at different distances. When the distance
of the vehicle is 12.21 m, the point clouds are dense, and
the vehicle outline is roughly visible. However, when the

The review of this article was arranged by Associate Editor Guoyuan Wu.

distance is 62.46 m, there are only 6 points, and the point
cloud is very sparse, which makes vehicle detection based
on sparse point clouds more challenging. Sparse point clouds
are a common phenomenon in industrial applications [4].
Specifically, when the object point cloud is very sparse,

the neural networks are unable to generate candidate pro-
posals, or the generated proposals are ignored due to low
confidence. It is difficult to extract semantic features of the
point clouds, resulting in false negative results. For the two-
stage detection model, the number and quality of candidate
proposals impose the upper bound of detection recall. Thus,
improving the number and quality of candidate proposals is
the critical issue.
Since the actual point cloud is continuous data, we

naturally try to solve this problem with object tracking
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FIGURE 1. Changes in the number of points at different distances from the same
vehicle, the data is from the KITTI dataset [5].

technology. Object tracking uses continuous multi-frame
detection results to filter inaccurate measurements and esti-
mate high-order states (velocity, acceleration, etc.). For
vehicles in a structured road environment, their motion is
regular [6], and object tracking can predict the objects’ states
accurately by using the historical motion state and motion
model. These prediction results can be used as candidate
proposals for object detection to improve the number of
proposals.
Although object state prediction integrates historical mea-

surements and motion models, prediction results are often
incorrect due to the inaccuracy of measurements and the
noise of the motion model. When the vehicle is gradually
far away from the sensor, the inaccuracy of measurements
increases, which leads to a larger error of the prediction
results. Therefore, if prediction results are directly used as the
candidate proposals, the network may not return the correct
results. To solve this problem, this paper samples multiple
prediction proposals as candidates according to the proba-
bility distribution of the predicted state to further improve
the number and quality of the proposals.
Therefore, to address the challenge of false negative results

caused by sparse point clouds, this paper proposes an object
detection method based on tracking feedback, which mod-
ifies the previous tracking-by-detection paradigm and uses
the sampled prediction proposals generated by object track-
ing as candidates to improve the detection recall. The main
contributions of this paper are as follows:

1) A novel object detection paradigm based on track-
ing feedback to address the false negative problem is
proposed.

2) The method adapts to various two-stage object detec-
tion networks, and enhances the long-distance vehicle
detection capability of the classical neural network.

3) A sampling strategy to further improve the number
and quality of candidates based on the probability
distribution of predicted states is introduced.

The remainder of this paper is organized as follows:
Section II presents the related work of object detection and
tracking. In Section III, the proposed novel object detec-
tion paradigm is presented in detail. Experimental results
are presented in Section IV. Finally, we conclude the paper
in Section V.

II. RELATED WORKS
Since we aim to address the false negative issue based on
tracking feedback, the following related works are carried
out in both 3D object detection and 3D object tracking.

A. 3D OBJECT DETECTION
Object detection methods using 3D LIDAR point clouds can
be divided into two categories: rule-based methods and deep
learning-based methods. The rule-based method decomposes
object detection into multiple steps: ground segmentation,
object clustering, and bounding box generation. The deep
learning-based methods use deep neural networks to extract
features from data and generate end-to-end object bounding
boxes.
Given the 3D point cloud data, the rule-based method

first uses the ground segmentation algorithm to segment it
into ground point clouds and obstacle point clouds [7]. The
ground point cloud refers to the points hit on the ground and
the obstacle point cloud refers to the points hit on obstacles,
such as vehicles, pedestrians, and trees. Since ground seg-
mentation is a process of binary segmentation, obstacle point
clouds are discrete points without instance-level information.
Therefore, it is necessary to cluster the obstacle point cloud
and divide it into independent object clusters [8]. For the
point cloud clusters obtained by object clustering, their sizes
and shapes vary, which is inconvenient for the use of sub-
sequent tracking and prediction modules. Therefore, these
point cloud clusters need to be uniformly characterized as
bounding boxes [9].

Due to high accuracy and robustness, deep learning meth-
ods have become the mainstream method of object detection
in the last few years, and can be further divided according
to the representation of the point cloud as 2D projection
representation-based methods, 3D voxel representation-based
methods, raw point cloud representation-based methods, and
multiple representation fusion-based methods [10].
Since deep learning-based 2D object detection in images

has made great progress, many researchers use a plane or
spherical projection to transform the 3D point cloud to 2D
to ensure that standard 2D object detection methods can
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be used. Among them, the method based on plane projec-
tion generally projects the point cloud onto a birds-eye view,
where each pixel contains information, such as height, inten-
sity, density, etc. The only difference in the image detection
method is that the orientation of the object needs to be
estimated [11]. The spherical projection-based method gen-
erates a 2D image with the height of the number of laser
beams and the width of rotation resolution, which preserves
the neighborhood relationship between points [12]. Although
the methods based on 2D projection representation can use
mature 2D detection algorithms, they inevitably cause the
loss of accuracy or introduce scale variation in the image.
The 3D voxel representation method divides the 3D phys-

ical space into neatly arranged voxels to ensure that the
irregular point cloud can be characterized by a 3D matrix,
and the 2D convolution operation can also be extended to
3D [13]. In contrast from the method based on 2D projec-
tion representation, it retains the structural information of
the point cloud, and thus, the detection accuracy is higher.
However, due to the sparseness of the point cloud, there
are many empty voxels, which seriously affect the effi-
ciency of the detection algorithm. Therefore, some scholars
have proposed sparse convolution, which can greatly reduce
the computational cost by constructing a hash table [14].
Although the method based on 3D voxel representation
makes full use of 3D information of the point cloud,
it inevitably brings information loss to the process of
voxelization.
To reduce the information loss caused by projection or

voxelization, a method based on the raw point cloud rep-
resentation is proposed [15]. The pioneering work of this
method is led by PointNet, which uses a multilayer percep-
tron to extract features for each point, and then aggregates
global features through a pooling layer to ensure the inde-
pendence of point order [16]. PointNet++ extends it to
encode more complex features through a hierarchical struc-
ture, which improves the feature expression and receptive
field [17].
To make full use of the advantages of different representa-

tions, an increasing number of methods consider the fusion
of multiple different representations. Reference [18] com-
bined the raw point cloud representation and the 3D voxel
representation. The 3D voxel branch uses 3D sparse convo-
lution to encode features and generate high-quality candidate
proposals. The raw point cloud branch aggregates semantic
features in voxels at different scales and predicts the weight
of the points.

B. 3D OBJECT TRACKING
For object tracking, tracking-by-detection has emerged as
the preferred paradigm, which first uses the object detection
algorithm to locate the position of all objects in the scene.
Then, data association and state estimation are performed
across multiple frames to generate the object trajectory.
Thus, the following mainly expands on two aspects: data
association and state estimation.

Data association aims to find the correspondence between
multiple objects across multiple frames and mainly includes
two key issues: similarity measurement and association
problem solving. In multi-object tracking, the most com-
monly used similarity metric is the distance between objects,
such as the Euclidean distance and the Mahalanobis dis-
tance. The distance metric is simple and efficient, but it is
not robust to handle complex scenes [19]. To tackle this
challenge, many researchers have proposed other similarity
measurement metrics, including direction distance, bounding
box size distance, point num distance, histogram distance
and a combination of multiple metrics [20]. However, these
handcrafted metrics have limited representability. To increase
the discrimination between different objects, recent works
explore the use of deep structured support vector machines,
convolutional neural networks and recurrent neural networks
to measure similarity [21].
To solve the association problem, the nearest neighbor

method successfully takes the pair with the largest sim-
ilarity as the association and then deletes this pair from
the object list. These two steps iterate until the similar-
ity score is less than a given threshold [19]. To achieve
global optimization, the Hungarian algorithm regards the
data association problem as a linear assignment problem
and achieves maximum matching by finding an augmentation
path [22]. Compared with the nearest neighbor algorithm to
find a one-to-one correspondence between multiple objects,
an object in Probabilistic Data Association can correspond
to multiple agents with different probabilities [23]. For
decoupling, Joint Probabilistic Data Association first cal-
culates the joint probability between objects, then calculates
the marginal probability, and finally uses the Probabilistic
Data Association [24]. Compared with the previous method,
which only processes current observations, multiple hypothe-
sis tracking considers the connection of observations between
multiple frames [25]. In the last few years, deep learning
methods have also been applied to solve association prob-
lems, such as recurrent neural networks and convolutional
neural networks [26].
State estimation refers to filtering the multi-frame detec-

tion results of the same object and estimating high-order
states, such as velocity and acceleration. The Kalman filter
is the most popular method in state estimation, which uses
the linear system state equation to optimally estimate the
system state [27]. The essence of the Kalman filter is to
iteratively fuse two normal distributions and obtain a new
normal distribution so it can only deal with linear problems.
In real applications, the motion model of the object is gen-
erally nonlinear, and thus, some researchers have proposed
the extended Kalman filter. The extended Kalman filter uses
the first-order Taylor expansion to approximate the nonlinear
function and calculates the Jacobian matrix [28]. However,
when the motion model is more complicated, it may be dif-
ficult to calculate the Jacobian matrix analytically, and when
the motion model is not continuous, the Jacobian matrix can-
not be calculated. To solve these problems, the unscented
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FIGURE 2. The framework of our vehicle detection method based on tracking feedback.

Kalman filter is proposed to approximate the probability
distribution [29]. Specifically, the unscented Kalman filter
selects a set of minimum sampling points so that its mean
and variance are the same as the probability distribution.
Therefore, the nonlinear function transforms these sampling
points to calculate the new state. To break the normal dis-
tribution assumption, the particle filter expresses unknown
distributions by sampling a large number of particles into
the space [30]. The sampled distribution may be random at
first, but it will finally converge to a specific distribution as
the system runs.

III. PROPOSED METHOD
A. FRAMEWORK OVERVIEW
In this work, we modify the conventional tracking-by-
detection paradigm by feeding back the sampled predictions
as detection candidates to tackle the false negative challenge
over a long distance. The overall framework is shown in
Fig. 2, which consists of three modules: object detection,
object tracking and tracking feedback.
The work in this paper is aimed at a two-stage object

detection network, and the network structure has been
changed. In the traditional two-stage network, the first-stage
network is feature extraction and candidate box genera-
tion, which is input to the second-stage network, and the
second-stage network is candidate box pooling and posi-
tion optimization. In our work, the candidate boxes input
to the second-stage network are not only generated in the
first stage, but also from the tracking feedback module. Our
tracker will sample multiple prediction boxes as candidates
according to the distribution of the predicted state of the tar-
get state, which greatly increases the number of candidate
boxes entering the second-stage network, improves the recall
rate of the vehicle, and thus improves the vehicle detection
performance.
For object tracking, data association is applied to find

the correspondence between objects in adjacent frames, and
state estimation filters the historical measurements of the
same object. Among them, state estimation mainly includes
two parts: state prediction and state updating, where the

result of state prediction is used for tracking feedback. For
tracking feedback, we sample multiple candidate proposals
according to the probability distribution of the state vector
obtained by state prediction, and then feed these proposals
back to the second stage of the detection model for further
optimization.

B. OBJECT DETECTION
As mentioned above, deep learning-based 3D object detec-
tion has become the most popular method, and can be further
divided into one-stage methods and two-stage methods. The
one-stage method uses the powerful feature learning capa-
bilities of deep neural networks to infer the category and
position of the object in one network, but the accuracy
cannot be guaranteed. The two-stage method first generates
candidate proposals, and then verifies and optimizes them
in terms of score and position. Thus, the detection accuracy
of the two-stage method is often higher than that of the
one-stage method, and it is usually used for long-distance
vehicle detection [10].
Specifically, for the two-stage object detection method,

the first-stage network extracts semantic features of point
clouds by different representations. Then, it generates can-
didate proposals using anchor-free or anchor-based methods.
The second-stage network pools semantic features and spa-
tial features together, refining the bounding box in terms
of position, size and score. Note that most two-stage object
detection networks can be applied into our methods.

C. OBJECT DATA ASSOCIATION
In actual road scenes, there are generally multiple targets.
To continuously track the same target, it is necessary to
determine the corresponding relationship between the current
frame and the previous frame to perform target data asso-
ciation. As the core problem in multitarget tracking, many
classic methods have been proposed in the last few decades,
such as the nearest neighbor, global nearest neighbor, prob-
abilistic data association, joint probabilistic data association,
and multi-hypothesis tracking.
A data association matrix is a method to describe the

problem of target association in two frames through a

474 VOLUME 4, 2023



two-dimensional matrix. It stores the similarity between tar-
gets. We use the current frame measurement to construct a
detection list with a dimension of m, and the target con-
struction dimension of the previous frame prediction is n
for the prediction list. Then, the data association matrix is
as follows:

C =

⎡
⎢⎢⎢⎣

c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...

cm1 cm2 · · · cmn

⎤
⎥⎥⎥⎦ (1)

Among them, C is the data association matrix, and element
cij represents the mth detection target and the similarity of the
nth predicted target. For similarity calculation, we choose the
three-dimensional intersection of union (IoU) of two target
bounding boxes for this paper. Among them, Bg and Bp are
the bounding boxes of the two targets as follows:

cij = |Bg ∩ Bp|
|Bg ∪ Bp| (2)

Among them, the numerator is the intersection of two
bounding boxes and the denominator is the union of two
bounding boxes. According to the equation, it can be seen
that it not only describes the similarity of the two target
positions but also includes the similarity of the target size
and orientation.
For each frame, we suppose there are m detected objects

and n predicted objects, and cij is the similarity measured by
the 3D intersection of Union between two objects. The data
association problem can be regarded as a linear allocation
problem, and its mathematical form is as follows:

max E =
m∑
i

n∑
j

wijcij

s.t.
∑n

j=1 wij = 1, i = 1 . . . ,m;∑m
i=1 wij = 1, j = 1 . . . , n;

wij ∈ {0, 1}, i = 1 . . . ,m, j = 1 . . . , n;
(3)

where wij is the element of the permutation matrix, wij = 1
means that the ith detected object and the jth predicted object
are the same, and wij = 0 means that it is different.

D. OBJECT STATE ESTIMATION
After target data association, the detection results of the same
target in different frames are obtained. The primary purpose
of target state estimation is to reasonably estimate the motion
state position, velocity, and acceleration, as well as to carry
out the state in the future forecast. In the actual tracking
process, there is noise in the sensor data and errors in the
target detection results, which have an unstable effect on
the tracking results. Target state estimation can filter these
errors and noises to make the tracking results more stable.
When the target is missed, the state of the target can also
be predicted. This prediction is used as a candidate region
in the next section. Common target state estimation methods
include the Kalman filter, the histogram filter, the particle

filter, etc. Among them, the Kalman filter is simple and
efficient, and it is the most commonly used method in target
tracking. This article is also based on the Kalman filter for
state estimation.
For 3D object detection, the object is represented as

(x, y, z, l,w, h, θ), where (x, y, z) is the object’s position and
(l,w, h) are the length, width and height of the object, respec-
tively. θ is the object’s orientation about the z-axis. In the
urban road environment, objects generally move along the
ground plane, and thus, the movement along the z-axis can
be ignored. At the same time, the size of the object changes
little during tracking. Thus, we model the object’s state as
follows:

x = [
x y θ v θ̇

]T
(4)

where v and θ̇ are the linear and angular speeds of the object,
respectively.
For object state prediction, the constant turn rate and

velocity (CTRV) model is applied, which assumes that the
linear and angular velocities of the object are constant. Thus,
it is consistent with the movement in a real traffic scene.
According to the definition of the CTRV model, the

differential expression of the state vector is as follows:

ẋ =

⎡
⎢⎢⎢⎢⎣

v cos(θ)

v sin(θ)

θ̇

0
0

⎤
⎥⎥⎥⎥⎦

(5)

Given this motion model and the object’s previous state
xk, the state at the current frame xk+1|k can be predicted
using the extended Kalman filter as follows:

xk+1|k = g(xk) + ν (6)

Pk+1|k = JPkJ
T + Q (7)

where g(x) is the state transition function, P is the state
covariance matrix and its initial value is generally specified
manually. Q is the process covariance matrix, or the noise
vector ν ∼ N (0,Q). For more details, refer to [31].

Given the correspondence between the detected objects
and the predicted objects, the state at the current frame can
be updated as follows:

Kk+1 = Pk+1|kHT
(
HPk+1|kHT + R

)−1
(8)

xk+1 = xk+1|k + Kk+1
(
zk+1 − Hxk+1|k

)
(9)

Pk+1 = (I − Kk+1H)Pk+1|k (10)

where z = [
x y θ

]T is the measurement vector, H3×5 =[
I 0

]
is the measurement matrix, R is the measurement noise

covariance matrix, K is the Kalman gain, and I is the identity
matrix.
In this way, the overall process of object tracking is as

follows:

1) We predict the object state from the previous frame
using equations (6) and (7).
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FIGURE 3. An illustration of state sampling.

2) We associate detected objects and predicted objects by
solving equation (3) using the Hungarian algorithm.

3) We update the object state at the current frame using
equations (8) to (10).

4) We iterate repeatedly 1) to 3).

E. TRACKING FEEDBACK
Since the Kalman filter is an optimal estimation algorithm,
it assumes that the state vector obeys a normal distribution
and selects the mean of the state vector as output. Although
the probability of the true state falling at the mean posi-
tion for the normal distribution is the highest, more states
can be obtained by sampling the probability distribution to
ensure that the probability of including the true state and the
accuracy of the bounding box regression is further improved.
For state sampling of a normal distribution, we refer to the

selection of σ points in unscented transformation [32]. One
of the sampling states is located at the mean of the normal
distribution, and the other sampling states are symmetrically
distributed at the main axis of the covariance matrix (each
dimension has two). For an n-dimensional normal distribu-
tion with mean μ and variance �, 2n + 1 sampling states
can be obtained as follows:

x0 = μ

xi = μ +
(√

(n+ λ)�
)
i
, i = 1, 2, . . . , n

xi = μ −
(√

(n+ λ)�
)
i−n, i = n+ 1, n+ 2, . . . , 2n

(11)

where λ = α2(n+ κ) − n is the regulating parameter, which
determines the distance between the sampling state and the
mean value. The hyperparameter α determines the spread
of the sigma points and is usually set to a small positive
value. In our experiment, α is set to 1e-3. The hyperparam-
eter κ is a secondary scaling parameter that is set to 0 in
our experiment. (

√
(n+ λ)�)i represents the ith row of the

square root of the matrix. To calculate the square root of
the matrix, the Cholesky decomposition is applied, which
decomposes the symmetric positive definite matrix into the
product of the lower triangular matrix and its transpose.
Fig. 3(a) shows an illustration of state sampling for a 2D
normal distribution, where the blue ellipse is the covariance
ellipse and the red points are sampling results.

For state vector x = [
x y θ v θ̇

]T
, v and θ̇ are second-order

and have no relationship with the object’s bounding box.
Thus, only the position and orientation of the object are
applied for sampling. For each object, the mean and the
variance of the predicted state are obtained using equa-
tions (6) and (7). By taking the first three dimensions
to form a 3D normal distribution, the state is sampled
according to equation (11). As a result, seven sampling
states are obtained. To acquire the complete bounding
box of objects, the sampled states are expanded using
the size of the mean state, and the final sampled bound-
ing boxes are shown in Fig. 3(b). The red points are the
object point cloud, the pink bounding box is the sam-
pled state at the mean location, the bounding boxes of
other colors are symmetrically distributed near the mean
location, and all bounding boxes have the same size and
height.
After state sampling, multiple bounding boxes are obtained

and fed into the second-stage network together with the
feature extracted by the first-stage network. In this way, after
further optimization and non-maximum suppression of the
second-stage network, the final detection results are obtained
with fewer false negative results.

IV. EXPERIMENT
To validate the effectiveness of the proposed method, we
conduct a comprehensive experiment on the KITTI bench-
mark dataset and nuSences benchmark dataset. First, we give
a brief introduction to the two datasets. Second, the detection
accuracy and the recall before and after tracking feedback
are evaluated. Finally, the experimental results are visualized
and further analyzed.

A. DATASET
Among the datasets commonly used in autonomous driv-
ing systems, the most famous are the KITTI dataset [5]
and the nuSences dataset [33]. The KITTI dataset includes
several tasks, such as object detection, object tracking, and
road segmentation. The data in the object detection bench-
mark are randomly scrambled, but in the object tracking
benchmark, they are stored continuously. Since we employ
tracking results to solve the false negative problem, temporal
information is needed, and we validate the proposed method
in the object tracking benchmark.
The object tracking benchmark in the KITTI dataset con-

sists of 21 training sequences and 29 test sequences, where
the test sequences can only be evaluated on the private
KITTI dataset evaluation server with object tracking met-
rics (MOTA, MOTP, etc.). The detection models employed
in this paper are trained in object detection benchmarks.
Therefore, we test our method on the training sequences
with 8008 aggregated frames. The nuSences dataset con-
tains 1000 driving sequences for both object detection and
tracking.
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TABLE 1. Comparison of AP before and after tracking feedback in the KITTI dataset.

TABLE 2. Comparison of the AP before and after tracking feedback in the nuSences
dataset.

B. PERFORMANCE EVALUATION
Our method adapts to various two-stage object detection
networks without extensive modification. To validate
this, we employ three classic two-stage detection mod-
els: PointRCNN [15], Part-A2Net [34], PV-RCNN [18],
PointPillars [35], CenterPoint [36] and Pointformer [37].
We first evaluate the most widely used metric AP of three

detection models before and after tracking feedback, and
the results are shown in Tables 1 and 2. Among the three
detection models, the performance of PV-RCNN is better
than Part-A2Net and further better than PointRCNN. After
tracking feedback, the AP of all three detection models has
been improved. Notably, the PointRCNN detection model
has been promoted by 4.41% in the KITTI dataset and 5.3%
in the nuSences dataset, and the gap with Part-A2Net has
been dramatically reduced. It can be observed that all model
progress has been improved to varying degrees. We also
notice that our method improves significantly for models
with lower accuracy.
Since this paper focuses on tackling the false negative

challenge and the recall metric reflects the missing rate of
objects, the recall of the three detection models is evalu-
ated and shown in Tables 1 and 2. After tracking feedback,
the recall of the three detection models has been improved,
especially for the PointRCNN detection model. Its recall has
been improved by up to 5.80% in the KITTI dataset, which
is why its AP has increased considerably.

C. ABLATION STUDY ACCORDING TO THE DISTANCE
To evaluate the effectiveness of the proposed method for
long-distance objects, the recall metrics of three detection
models are evaluated at different distances and shown in
Table 3. The experiment is conducted in the KITTI dataset. It
can be seen that for three detection models, the improvement
of detection recall increases with distance after tracking feed-
back. For the PointRCNN detection model, when the object
distance is 40-50 m, the detection recall is increased up to

6.40%. For the Part-A2Net detection model, the improve-
ment in recall reaches 2.85% when the distance is 40-50 m.
Although the improvement is reduced when the distance is
60-70 m, it also reaches 2.21%. The PV-RCNN detection
model has the best detection performance. The improve-
ment is relatively small compared to the other two methods,
reaching a maximum of 1.73% when the object distance is
50-60 m.
In summary, the proposed tracking feedback method

can effectively reduce false negative results, especially for
long-distance objects with sparse point clouds. Due to the
reduction of a false negative results, the average precision
of object detection has also been improved.

D. ABLATION STUDY OF THE STATE VECTOR SAMPLING
We compare the scheme that only samples the mean of
the state variable, because the probability of the true state
falling at the mean is highest. The result is shown in
Table 4. The table shows that state vector sampling has a
good effect, because state vector sampling provides more
states, corresponding to more candidate bounding boxes, and
the probability of containing the real state will be further
improved.

E. RUNTIME
In addition to evaluating the accuracy of the proposed
method, we test the runtime on all frames of the training
sequences. The algorithm is implemented in Python, run-
ning on a desktop computer with Intel Core i7-4790 CPU
and GeForce GTX TITANX GPU. The running time (ms)
of the three detection models before and after tracking feed-
back is shown in Table 5. It can be seen that the increase
in runtime is only approximately 10-20 ms, which has little
effect on the raw detection models.

F. QUALITATIVE RESULTS
For an intuitive analysis, we visualize the quantitative results
before and after the tracking feedback of two detection mod-
els, PointRCNN and PV-RCNN. Fig. 4 shows the result of
the PointRCNN detection model. The object with ID 7 is
detected successfully after tracking feedback approximately
45 m away from the ego-car. It is worth noting that there is
another object approximately 60 m away from the ego-car
behind object 7, but since the object distance is too far, the
object cannot be detected and tracked for multiple frames,
and therefore, cannot be fed back.
The qualitative results of the PV-RCNN detection model

before and after tracking feedback are shown in Fig. 5. The
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TABLE 3. Comparison of the recall before and after tracking feedback for three detection models at different distances.

TABLE 4. Ablation study of the state vector sampling based on PointRCNN.

TABLE 5. Comparison of runtime before and after tracking feedback for three
detection models.

object with ID 6 is approximately 25 m away from the
ego-car and not detected due to the design or training defect
of the model itself. However, the object is detected success-
fully after tracking feedback. That is the reason why the
maximum promotion of the PV-RCNN detection model is
approximately 20 m. At the same time, for the long-distance
object with ID 9, it cannot be detected because there are
only 6 points, but our tracking feedback method can also
successfully detect it.

V. CONCLUSION AND PROSPECT
In this paper, we propose a vehicle detection method based
on tracking feedback, which can effectively address the
challenge of false negative results due to the sparse point
clouds. For object detection, the two-stage detection model
with higher accuracy is employed. For object tracking, the
Hungarian algorithm is applied for data association, and
the extended Kalman filter is applied for state estimation.
The predicted state is sampled and fed into the second-stage
network for better refinement using tracking feedback, and
more candidate proposals with higher quality are generated.
Experiments show that the detection recall and the precision
of the three detection models have been improved, especially
for long-distance vehicles.
Our method builds the tracker based on the CTRV model,

so it is more accurate when the speed changes of surround-
ing vehicles are small. This method will fail if the speed

FIGURE 4. Comparison of tracking feedback results for the PointRCNN detection
model.

FIGURE 5. Comparison of tracking feedback results for the PV-RCNN detection
model.

or direction of the vehicle changes drastically. This is the
limitation of this method. The method in this paper may work
better on the highway. In the future, for different scenes,
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integrating different motion model trackers to make the
method perform better in more scenes will be an important
work in the future.
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