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ABSTRACT An increasing number of connected vehicles (CVs) driving together with regular vehicles
(RVs) on the road is an inevitable stage of future traffic development. As accurate traffic flow state detection
is essential for ensuring safe and efficient traffic, the level of road intelligence is being enhanced by the
mass deployment of roadside perception devices, which is capable of sensing the mixed traffic flow
consisting of RVs and CVs. In this background, we propose a roadside radar and camera data fusion
framework to improve the accuracy of traffic flow state detection, which utilizes relatively more accurate
traffic parameters obtained from real-time communication between CVs and roadside unit (RSU) as
calibration values for training the back propagation (BP) neural network. Then, with the perception data
collected by roadside sensors, the BP neural network-based data fusion model is applied to all vehicles
including RVs. Furthermore, considering the changes of road environments, a dynamic BP fusion method
is proposed, which adopts dynamic training by updating samples conditionally, and are applied to fuse
traffic flow, occupancy and RVs speed data. Simulation results demonstrate that for CVs data and all
vehicles (including RVs) data, the proposed dynamic BP fusion method is more accurate than single
sensor detection, entropy based Bayesian fusion method and traditional BP fusion without training by
CVs. It can achieve smaller error, and the accuracies of vehicle speed, traffic flow, and occupancy are
all above 95%.

INDEX TERMS Connected vehicles, V2X communication, radar, video, data fusion, state detection.

I. INTRODUCTION
A. BACKGROUND

WITH the rapid development of intelligent driving
technology, the composition of traffic flow is changed

by the emergence of connected vehicle (CV). It is fore-
seeable that the traffic flow will consist of regular vehicle
(RV) and CV in the next few decades [1]. As a result,
the characteristics of traffic flow will be changed accord-
ingly [2]. Therefore, it is necessary to detect mixed traffic
flow to realize the fine management of the road. At present,

The review of this article was arranged by Associate Editor Stefania
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in order to detect mixed traffic flow, roadside sensors such as
radar and camera are adopted to sense the road environment.
Moreover, sensor fusion technology has been introduced into
the problem of traffic state detection [3]. It is expected to
obtain more reliable and precise traffic state by combin-
ing data from different sensors [4], [5], [6]. The advantage
is that the fusion results have higher accuracy, reliabil-
ity and robustness [7]. On the other hand, communication
technology has the potential to provide more accessible
and available information for data fusion in transportation
systems [8]. For example, wireless communication has been
adopted in data fusion to estimate vehicle travel time [9]
and solve the problem of positioning in Vehicular ad-hoc
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networks(VANETs) [10], which motivates our research on
data fusion with the aid of communications for mixed traffic
flow state detection.

B. RELATED WORK
A variety of sensors are widely employed for traffic state
detection, including camera in [11], [12], [13], LiDAR sen-
sor in [14], mmWave radar in [15], loop detector in [16],
satellite remote sensing in [17], float car and probe vehi-
cle in [18], [19], etc. Thus, different traffic flow parameters
can be detected such as vehicle trajectory, speed, road space
occupancy, density, and volume. Furthermore, through data
fusion technology, the data of these sensors is expected to
be fully utilized to obtain more comprehensive and accurate
traffic state information. For example, fusing camera and
LiDAR sensor data to recognize the environment around
the vehicle [20], fusing floating car data (FCD) and sta-
tionary detector data (SDD) to accurately detect traffic flow,
density, vehicle speed [21], fusing video and GPS-equipped
vehicle data to accurately detect travel time and density [22].
However, loop detector has low detection accuracy and is not
suitable for installation and maintenance, LiDAR is vulner-
able to weather. Considering that camera can provide visual
data, millimeter wave radar can provide high-precision and
robust detection data that is not affected by weather. The
fusion of the two can complement each other’s functions.
Therefore, they are the most commonly adopted combina-
tion of sensing devices. The fusion of them has priority over
other sensor fusion [23].
A number of fusion methods based on radar and

camera sensors have been proposed [24], [25], [26], [27],
[28], [29]. In [24], in order to improve the accuracy of
target detection, the author proposed a Camera Radar Fusion-
Net (CRF-NET) which is employed to fuse the data of
camera and radar, pointing out a new direction for sen-
sor data fusion work. In [25], YOLOv3 convolutional neural
network is used to detect the vehicle. The camera calibra-
tion algorithm is utilized to combine the radar targets and
video vehicle detection targets, simultaneously measure the
speed of multiple vehicles. In [26], the main idea of sensor
fusion is to extract image patches according to regions of
interest (ROIs), generated by radar points in camera coordi-
nates. Finally, the target data are fused based on Bayesian
estimation. In [27], a model implemented using the Robot
Operating System (ROS) environment is proposed to han-
dle radar and camera sensor synchronization and fusion for
accurate object detection. In [28], a spatio-temporal synchro-
nization method for roadside radar and camera is proposed
to fuse targets and match vehicle trajectories. In [29], a
radar and camera fusion sensing method is proposed to
improve target recognition and tracking, which reduces the
missed detection rate of autonomous vehicle environmen-
tal awareness in severe weather. These demonstrate that
the fusion of information from each sensor provides more
accurate and faster information than using each sensor
individually [30].

In addition, as an important technology of intelligent
transportation system, the key features of vehicle-to-
everything(V2X) focus on ultra-reliable and low latency
communication in vehicular networks [31]. At present, taking
long-term evolution (LTE)-V2X and new radio (NR)-V2X
as the main technical line is the development trend of
future intelligent transportation system. 5G NR V2X is
designed to complement LTE V2X [32], which enables the
exchange of sensor data between vehicles, RSUs, devices
of pedestrians, and V2X application servers [33]. Among
them, vehicle-to-infrastructure (V2I) is an important module
of V2X [34]. Vehicles can achieve a global awareness of
the network around them, whereas the RSUs can improve
their information about traffic through the local information
obtained from the vehicles [35]. In [36], a traffic envi-
ronment collection method based on V2I is proposed.
Location information from different sources is provided
through roadside cameras and vehicle GPS. Then, sensor
data is fused in the RSU and mapped onto the credibility
map provided to vehicles, which effectively alleviates traffic
congestion.
However, to the best of our knowledge, existing researches

focus more on target-level fusion, such as radar and video
correlation, target detection, and target classification. There
are few specific researches on data-level fusion of traf-
fic parameters from radar and camera. Meanwhile, existing
researches usually use the data from a certain historical day
or period as training samples, which can easily lead to low
accuracy of the fusion results. In addition, existing researches
focus on the on-board sensors, and few studies have consid-
ered taking advantage of mixed traffic flow characteristics
to improve the accuracy of roadside sensor fusion.
Therefore, this paper proposes a data-level sensor fusion

method using CVs communication data to improve the detec-
tion accuracy of traffic parameters. Moreover, the method
utilizes updated samples to maintain the accuracy of fusion
for a longer period. Its main applications include directly
transmitting the fusion results back to CVs through V2I for
assisted driving. Besides, it can be used in the edge comput-
ing unit in the mixed traffic flow. For example, the dynamic
BP method is employed in MEC to obtain more accurate
parameters. Then, the real-time state parameters are used
in the demonstration of the traffic monitoring system to
assist the traffic management department in effectively
controlling the road.

C. CONTRIBUTIONS
The main contributions of this paper are summarized as
follows:

• We propose a CV assisted data fusion framework for
accurate mixed traffic flow detection, which utilizes rel-
atively more accurate traffic parameters obtained from
5G V2I communication between CVs and RSU as cali-
bration values for training the BP neural network based
data fusion model.
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FIGURE 1. The scenario of mixed traffic flow based on roadside radar and video holographic perception.

• Considering the changes of road environments, we pro-
pose a dynamic BP fusion method that conditionally
updates samples for training BP neural network, which
are applied to fuse traffic flow, occupancy and RVs
speed data. Simulation results show that the proposed
data fusion method is more accurate than single sensor
detection, the entropy based Bayesian fusion method
and traditional BP fusion method.

The remainder of the paper is organized as follows.
In Section II, we introduce the mixed traffic flow data
fusion system framework upon which we raise questions
of interest. In Section III, existing entropy based Bayesian
and traditional BP neural network algorithm are reviewed.
In Section IV, the fusion method of dynamic BP neural
network is presented in detail. In Section V, numerical sim-
ulations and results of this study are presented, followed by
conclusions in Section VI.
Notations: Bold lowercase letters denote vectors; bold

uppercase letters denote matrices. ||·|| denotes the Frobenius
norm, � denotes the element-wise product and (·)T denotes
transpose. (·)′ denotes the derivative. ∇(·) is the partial
derivative. R represents the set of real numbers.

II. MIXED TRAFFIC FLOW DATA FUSION SYSTEM
A. THE ROLE OF CV IN MIXED TRAFFIC FLOW
Vehicle-to-infrastructure (V2I) communication technology in
mixed traffic flow can obtain more accurate and stable data
in real-time [37]. Connected vehicles are able to share their
state information (such as position, speed, acceleration, etc.)
with infrastructure within a certain range through V2I com-
munication. Due to the ability to share state information,
compared with regular vehicles, connected vehicle has a
shorter reaction time when it follows the car [2]. Therefore,
it can contribute to the efficiency and safety of the transporta-
tion system. A number of studies have been devoted to the
effect of CV on traffic flow. In [38], it is demonstrated that
connected and autonomous vehicles can improve string sta-
bility, and its effects on throughput is also explored. In [39],

analytical methods for the stability and the fundamental dia-
gram models of mixed traffic flow are studied. Moreover, it
is proved that intelligent and connected vehicles (ICVs) can
improve the stability of mixed traffic flow under critical
speed. It can be confirmed that CV plays an indispens-
able role in mixed traffic flow, which transmits perception
information such as speed, position to the RSU. Due to the
low delay of communication, the obtained communication
data produce small errors, but its accuracy is still higher than
that of roadside radar and camera sensors. Thus, we adopt
the CVs communication data as the calibration value to train
the neural network, input the CVs parameters corresponding
to the radar and the camera, then obtain the trained fusion
model, which is employed to fuse traffic flow, occupancy
and RVs speed data. Previous studies in this area are very
limited. We take advantage of the communication capabil-
ities of CVs to detect all vehicles to improve the traffic
efficiency of mixed traffic flow.

B. SYSTEM ARCHITECTURE
At present, a variety of advanced roadside sensors have been
widely deployed to improve the perception of mixed traffic
flow environment. In the system, roadside radar and cam-
era sensors can detect the information of all the CVs and
RVs on the road within their detection range. At the same
time, CVs can transmit their real-time information to the
roadside unit (RSU) through V2I communication, as shown
in Fig. 1. The system is divided into data acquisition and
data processing. The data acquisition part includes roadside
radar, camera sensor and CVs. In contrast, the processing
part includes RSU as communication terminals, mobile edge
computing (MEC), base station (BS), as well as cloud plat-
form. In mixed traffic flow, V2X technology can provide two
communication modes. On the one hand, CVs can use the
cellular mode to realize V2N communication with the BS
through the UU interface for map downloading and other
tasks. On the other hand, it can use direct mode to real-
ize V2I communication with RSU through PC5 interface.
RSU is responsible for receiving detection data of all
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FIGURE 2. The demonstration of our developed radar and video fusion transportation monitoring system.

vehicles from different sensors and real-time communication
data of CVs.
The data fusion process of mixed traffic flow can be

summarized as follows. First, when CVs enter the cov-
erage of an infrastructure, each CV can transmit its own
vehicle information to the RSU through V2I communi-
cation, including ID, speed, location, etc. Simultaneously,
RSU also receives the license plate, speed and other data
of all vehicles including CV and RV within the detection
range of the roadside perception sensors in the correspond-
ing road section. Further, the roadside MEC can associate
and fuse local sensing data from different sources. At last,
different MEC transmit the fusion results to the cloud
platform through optical fiber or UU interface to fur-
ther splice the data of different road sections to obtain
global road state fusion, so as to manage and control
the road more effectively and improve operation efficiency.
Simultaneously, the comprehensive traffic situation is dis-
played through the radar and video fusion transportation
monitoring system, as shown in Fig. 2. The display interface
shows detailed information of all vehicles on the road in
the range of radar and camera, including real-time vehicle
speed data, and traffic flow data, occupancy data and other
statistics.
Based on the real-time and convenience of vehicle data

acquisition, a fusion framework of roadside perception data
assisted by connected vehicles is proposed. The fusion
of perception data can improve the detection accuracy of
real-time traffic flow state information to realize the iden-
tification and analysis of mixed traffic flow environment
information.

III. REVIEW OF EXISTING PARAMETER FUSION
METHODS
A. ENTROPY BASED BAYESIAN FUSION
A multi-sensor data fusion algorithm based on entropy
weight method and Bayesian inference method is
proposed [40]. The method has the following steps.
First, d is a class variable representing different sensors,
ci = {ci1, ci2, . . . , cij} is a feature variable consisting of
observations, i = 1, 2, . . . ,M and j = 1, 2, . . . ,N, where
M is the number of sensors, and N is the number of traffic
parameter samples. The probability density function (PDF)
of ci is expressed as

p(ci) = 1

(2π)M/2 | �i |1/2
exp

{
−(

ci − μi
)T

�i
−1(ci − μi

)}
,

(1)

where μi and �i are the maximum likelihood estimates of the
mean and covariance respectively. The posterior probability
p(d|ci) of each sensor is obtained according to the Bayes
rule. Second, the joint entropy and mutual information of ci
and d are calculated using the above probabilities as

H(ci,d) = −
N∑
j=1

M∑
k=1

p
(
cj,dk

)
log p

(
cj,dk

)
, i = 1, 2, . . . ,M,

(2)

p(ci,dk) = p(dk|ci)p(ci), (3)

I(ci,d) = H(ci)+ H(d)− H(ci,d). (4)

Third, the weight of each sensor is given as

wk = Ik
I1 + I2 + · · · + IM , k = 1, . . . ,M. (5)
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Based on (4), the fusion result can be expressed as

fj =
M∑
j=1

wjcij, (6)

where cij is the jth observation of the ith sensor.
The limitation of this algorithm is that in reality, the

acquisition of the prior probability and the conditional
probability needs to be represented by the empirical value
obtained by the sensor collecting the vehicle speed or traffic
flow parameters in different weather and different time peri-
ods, which has a large deviation from the actual situation.
Therefore, the data accuracy is low.

B. TRADITIONAL BP NEURAL NETWORK
BP neural network is a multi-layer feedforward neural
network with neuron signal forward propagation and error
back propagation. According to the statistics, 80%-90% of
the neural network models have adopted BP network or its
transformations [41]. In the current research, it can effec-
tively process some complex nonlinear mapping data, which
is an important method for processing traffic flow data. The
actual speed, flow and other traffic data are used as the
sequence of input vectors, and the gradient descent method
is employed for training. During the training process, the out-
put of each layer is obtained by sending the weighted sum
of the input to an activation function σ(x) = 1

1+e(−x) , and the
connection weights between layers are continuously adjusted.
Finally, the network output value of the traffic parameter has
the smallest error with the calibration value [42].
The traditional BP neural network algorithm has strong

fault tolerance and anti-interference performance, and can
meet the requirements of data processing of multi-sensor
collection. However, it does not consider the adaptability of
the algorithm when the traffic data changes.

IV. FUSION OF SENSORS DATA WITH THE PROPOSED
FUSION FRAMEWORK
The Fig. 3 shows the specific process of mixed traffic flow
data fusion architecture and data flow, mainly including data
collection, dynamic neural network model construction and
fusion application.

A. DATA COLLECTION
Existing researches usually select statistical traffic
parameters such as flow [43], speed [44], occupancy [45],
density [46] and travel time [47] to describe the traffic state
within a certain period of time. Therefore, in the paper, the
three most commonly used statistical parameters including
flow, occupancy and speed data are adopted for simulation.
Currently, roadside sensors can collect all types of vehicle

information including CVs and RVs within their respective
detection ranges. HD cameras can monitor multiple lanes
and have high environmental requirements. The embedded
recognition software includes modules such as video acqui-
sition, license plate detection, and data transmission, which

can collect vehicle speed, traffic flow, and time occupancy.
In addition, the GB/T 24726 standard specifies the parame-
ters index of the traffic flow detector, requiring the visibility
to be no less than 5500m, the sample size to be no less
than 100, and the vehicle speed to be 0-120km/h. When the
road illumination is not less than 5000lx, the accuracy of
flow, vehicle speed and time occupancy is not less than 92%,
92% and 90% respectively; Otherwise, the accuracy of flow,
vehicle speed and time occupancy is not less than 85%.
In the mixed traffic flow data fusion system, the radar and

camera are installed on the crossbar on the roadside and are
not blocked by vehicles with high height on the road, so as
to detect the maximum range. We use the on-board GPS,
IMU, etc. of CVs to obtain perception information such as
vehicle speed and location. CVs transmit the speed and other
sensing data corresponding to their own vehicle identifier
(ID) to RSU through V2I communication. During the time
interval Ttol, the road sections within the detection range of
the sensor are observed, and the traffic flow data of CVs
can be counted according to the license plate information
uploaded by different CVs. CVs upload their own time of
passing the section to the RSU for storage. At the same
time, roadside radar and cameras separately measure the
time that all types of vehicles pass through the section. The
time occupancy data of CVs and all types of vehicles are
obtained by formula

O = 1

Ttol

V∑
v=1

Tv, (7)

where O represents the time occupancy rate, Ttol represents
the total observation time, Tv represents the time taken by the
vth vehicle to pass through the section, and V represents the
number of passing vehicles.

B. CONSTRUCTION OF DYNAMIC BP NEURAL
NETWORK MODEL
The collected data is transmitted by RSU to MEC for
network construction and data fusion. Due to only a few
number of iterations being required for training, the road-
side MEC is capable of performing real-time processing of
the traffic data. Moreover, due to the fact that the updated
samples are more consistent with the law of traffic flow state
data in the current period, the fusion results are more real-
time and have higher accuracy. In this paper, the parameters
of the BP neural network model are determined into three
categories, which are from radar, camera and V2I commu-
nication between CVs and RSU. The specific steps can be
summarized as follows.

• First, dynamic BP uses N consecutive groups of CVs
data collected from radar and camera within the obser-
vation time as input sequences, and N communication
data of CVs within this time period as calibration value
sequences. And aggregate them into a training group,
which is divided into speed training group, flow training
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FIGURE 3. Mixed traffic flow data fusion architecture and data flow.

group and occupancy training group. Then immediately
start training the fusion model.

• After training, a BP neural network fusion model is
obtained. Ntes groups of radar and camera sensing data
are directly input into the trained model for fusion,
Ntes represents the number of test samples. The real-
time fusion results are obtained and the accuracy of the
results is calculated.

• If the accuracy meets the requirements, the results are
directly output without having to train the fusion model
again. Until the accuracy does not meet the requirements
due to significant changes in road conditions or the
accuracy of the camera deteriorates, the N groups of
radar, camera and CVs data adjacent to the test data
are used as updated samples to train the model in the
MEC. Then, the Ntes groups and subsequent test data
are fused using the retrained model to obtain real-time
fusion results.

• Repeat the above dynamic update steps, and
sequentially calculate the new result.

Among them, the working process of the neural network
can be divided into two processes, one is the forward
propagation process, and the other is the back propagation
process [48].

In the first stage, the network receives the input of traffic
data samples, the neurons are activated from the hidden layer
to the output layer, and the output value of each node is cal-
culated layer by layer until the summary calculation of each
node is completed. In the second stage, if there is a difference
between the output value and the calibration value, the error
starts from the output layer and goes back through the hidden

FIGURE 4. The structure of BP neural network.

layers to correct the weights between the neurons. Then go
back to the input layer and enter the forward propagation
again. Such repeated forward propagation and back prop-
agation process is a process of continuously adjusting the
weights between each neuron until the number of iterations is
reached or the output layer obtains a value whose error with
the calibration value meets the requirements. Fig. 4 shows
the three-layer BP neural network structure designed in
this paper. A neural network composed of multiple neurons
includes L layers: input layer of two sensor measurements,
Xc,s,Xc,f ,Xc,o are the speed, flow, occupancy data detected
by the camera, Xr,s,Xr,f ,Xr,o are the speed, flow, occupancy
data detected by the radar, (L − 2) hidden layer and the
output layer with value corresponding to the fusion result
Fc,s,Fc,f ,Fc,o. Each layer can be interconnected, while the
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neurons in the same layer are independent of each other,
and the hidden layer can be set to a single layer. During the
forward propagation of the neural network, sensor measure-
ments are used as the input of the first layer, and the state
and neuron output values of the lth layer are calculated as

z(l) =W(l)a(l−1) + b(l), (8)

a(l) = σ
(
z(l)

)
, (9)

where W(l) ∈ R
nl×nl−1 is given as the weight matrix from

layer (l−1) to layer l; nl is the number of neurons in layer l.
w(l) is an element in the weight matrix W(l). b(l) is given
as the bias from layer (l − 1) to layer l; Parameters W(l)

and b(l) are first initialized with extremely small random
values. z(l) represents the state of neurons in layer l; And
a(l) represents the output value of the neuron in layer l; σ(·)
is an activation function.
The second step is the back propagation process. The cost

function for training data can be defined as

E(W,b) = 1

2

∑
|| y− a ||2, (10)

where y represents the expected output given by the training
data, and a represents the actual output produced by the
neural network for the input x. In order to minimize E, the
gradient descent method is used to update the weight. Let
δ represent the defined local gradient. Then, the local gra-
dient of the output layer and hidden layer can be expressed
separately as

δ(L) = −
(
y− a(L)

)
� σ ′

(
z(L)

)
, (11)

δ(l) =
((

W(l+1)
)T

δ(l+1)

)
� σ ′

(
z(l)

)
. (12)

Then, the partial derivatives of the cost function with respect
to the parameters are given as

∇W(l)E = δ(l)
(
a(l−1)

)T
, (13)

∇b(l)E = δ(l). (14)

Finally, the updated weight and bias values can be calcu-
lated by

W(l) = W(l) − η
∂E(W,b)

∂W(l)
, (15)

b(l) = b(l) − η
∂E(W,b)

∂b(l)
. (16)

Repeat the above process continuously until the error meets
the requirements and end.
The training process of dynamic BP neural network is

summarized in Algorithm 1, in which (x, y) = {(x(1), y(1)),

(x(2), y(2)), . . . , (x(N), y(N))} is a set of N training pat-
terns (input-output pair), x(j) is the input vector in the
M-dimensional pattern space, M is the number of sensors,
Fj, j = 1, 2, . . . ,N is the corresponding fusion value,
η, ε, tmax,L, are the learning rate of error back propagation,
the minimum error of the training target, the number of

Algorithm 1 The Training Process of Dynamic BP Neural
Network
Input: (x, y), η, ε, tmax, L, N
Output: Fj, j ∈ [1,N]

1: procedure NEURAL-NETWORK((x, y), η, ε, tmax,
L, N)

2: while The number of samples reaches N do
3: Initialize W(l), b(l)

4: for l = 2:L do
5: z(l) =W(l)a(l−1) + b(l)

6: a(l) = σ(z(l))

7: end
8: δ(L)← use (11)
9: for l = (L− 1):2 do

10: δ(l)← use (12)
11: end
12: while (�b > ε)or(t < tmax) do
13: t = 0
14: for l = 2:L do
15: t = t + 1
16: W(l)← use (15)
17: b(l)← use (16)
18: end
19: end
20: return Fj, j ∈ [1,N]
21: end
22: ACC← use (19)
23: if ACC < 95% do
24: Update (x, y)
25: Back to step 2
26: end
27: end procedure

iterations and the number of neural network layers respec-
tively. The algorithm obtains a trained model by continuously
updating the weights and bias parameters w(l),b(l) of each
layer of the network. Then we input the testing data to
be fused into the trained model and output the fusion
result. Finally, the training data is updated according to the
calculated result accuracy to repeat the above steps.

C. COMPUTATIONAL COMPLEXITIES
Dynamic BP updates samples based on BP neural networks
to train fusion models. The neural network includes L layers,
with the number of neurons in each layer being nl1 , nl2 , nL.
Its time complexity is determined by forward propagation
and backward propagation. During forward propagation, each
training sample will perform L− 1 matrix calculations. The
number of neurons in the input and output layers are deter-
mined, so the computational complexity of each sample is
O(n2

max), where nmax is the maximum number of neurons.
The computational complexity of the back propagation is the
same as that of the forward propagation, and N samples are
trained once, it can be obtained that the time complexity of
training a neural network is O(N ∗n2

max). When the accuracy
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of the parameter fusion results meets the requirements, it is
not necessary to train the neural network again, so its com-
putational complexity is O(N ∗ n2

max). When the accuracy
of the fusion results does not meet the requirements, it is
necessary to update the samples and retrain the appropriate
model, so the computational complexity of the dynamic BP
algorithm is O(2N ∗ n2

max). The higher fusion accuracy is
achieved as sacrifice algorithm complexity.

D. EVALUATION INDICATORS
This paper adopts formulas to calculate the fusion result
accuracy, root mean square error (RMSE), and mean absolute
error (MAE) to evaluate the model. RMSE is the root mean
square error, which is used to measure the deviation between
the calibration value and the fusion value. It is also a way
to describe the accuracy of the fusion model. The smaller
the value, the more accurate the fusion model is. It can be
written as

RMSE =
√√√√ 1

Ntes

Ntes∑
t=1

(Rt − Ft)2. (17)

MAE is the mean absolute error, which prevents the errors
from canceling each other to better reflect the actual situation
of the error. It can be given as

MAE =
∑Ntes

t=1 |Rt − Ft|
Ntes

. (18)

According to the GB/T 20609 standard, ACC is defined as
the average detection accuracy, which can be written as

ACC = 1

Ntes

Ntes∑
t=1

(
1− |Rt − Ft|

Rt
× 100%

)
. (19)

In the above formulas, Rt represents the calibration value
of the connected vehicle in one direction, as the calibration
value. Ft represents the fusion value of radar and camera
sensors in one direction. Ntes represents the number of sam-
ples in the test group. In order to evaluate the fusion effect
of the model, this paper compares the results of the dynamic
BP fusion with the traditional BP fusion and entropy based
Bayesian fusion method, and further highlights the adapt-
ability of the data fusion model based on the dynamic BP
neural network.

V. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION SETTINGS AND RESULTS
This simulation adopts the gradient descent method as the
training method of the network. Other simulation parameters
are set in the Table 1. The datasets we use include speed,
traffic flow, occupancy data measured by sensors as well as
connected vehicles through V2I communication. The trained
model is used to different state data fusion of roadside radar
and camera sensors. Finally, we draw a comparison curve
between the fusion result and the calibration value. RMSE,
MAE and the accuracy are employed as evaluation indicators
to evaluate the results.

TABLE 1. Network parameter settings.

In the simulation, different numbers of CVs sample data
are selected lots of times to train the network, and the fusion
effects of the trained models are compared. The sample data
is the characteristic value of the network input.
When training fusion models, there are certain require-

ments for setting the samples. Firstly, the updated training
samples should correctly reflect the general laws of the
current traffic environment. Therefore, the sensor and CV
communication data adjacent to the test group are adopted
as updated training samples. Secondly, the number of
training samples remains consistent before and after the
update. In this manuscript, the number of training samples
is set to N. Finally, the number of training samples cannot
be too small or too large, as too few training samples
lead to increased inaccuracy of the model. An appropriate
increase in samples improve the accuracy of training
results, but excessive training samples lead to an increase
in training volume and time costs. At the same time, there
are significant changes in the sample rules, resulting in a
decrease in the accuracy of the results. In this manuscript,
according to the results shown in Table 2, the sample
numbers of three different types of data are chosen to be
230, 190, and 190, respectively. The threshold values for the
flow sample and the speed sample are 80. Since occupancy
data is calculated based on traffic data, its sample number
is set to be the same as the flow sample number.
Our method is compared with the entropy based Bayesian

fusion method described above and with single-source data
before fusion to show the advantages. Fig. 5 shows the com-
parison of the speed, flow, and occupancy of CVs before
and after fusion. From Fig. 5(a), (b) and (c), it can be seen
that CVs communication data is particularly close to the
real value, proving its high accuracy. Moreover, V2I com-
munication can meet the real-time requirements, so it can
be adopted to train the fusion network model. In terms of
overall trends, both the individual sensor data and the fusion
result values agree with the target output. In contrast, the
deviation of the camera perception data is the largest, and
the effect is poor. The results obtained by dynamic BP neural
network model (red solid curve) are generally the closest to
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FIGURE 5. Comparison of different data of CVs before and after fusion: (a) CVs speed data comparison, (b) CVs flow data comparison, (c) CVs occupancy data comparison.

FIGURE 6. Error distribution of different data for CVs before and after fusion: (a) CVs speed data error, (b) CVs flow data error, (c) CVs occupancy data error.

TABLE 2. Fusion results using different training samples.

the target output (blue dotted curve). From Fig. 6(a), (b) and
(c), it can be seen that the error distribution of different data
of CVs before and after fusion. The errors of individual
sensors and communication data tend to Gaussian distribu-
tion. The error generated after the fusion of the dynamic BP
neural network model also tends to a Gaussian distribution,
and its distribution is more concentrated than that of a single
sensor, which proves that the fusion result obtained by using
the fusion model has higher accuracy and satisfactory results.
Then, we utilize the RV data for testing. Specifically, it

can be seen from Table 3 that for the speed, flow, occupancy
data, the error generated by the dynamic BP model fusion is
the smallest, the fusion value is numerically closer to the cali-
bration value. The mean absolute error (MAE) of the fusion

TABLE 3. Error evaluation index of different models.

model based on dynamic BP neural network are 1.1332,
0.1252, and 0.0058 respectively, which are lower than the
MAE produced by the other two fusion models. Moreover,
the root mean square error (RMSE) generated by the dynamic
BP model is also the lowest, which are 1.4502, 0.1491, and
0.0069. It shows better fusion performance. Fig. 7 shows
the error distribution of different data of RVs before and
after fusion. From Fig. 7(a), (b) and (c), it can be seen
that the error value generated by using RVs data for fusion
also tends to a Gaussian distribution, and the probability of
small errors increases, which proves that the fusion model
has good results for the data fusion of RVs.
As can be seen from Fig. 8, for the parameters of RVs,

the accuracy of dynamic BP network fusion is significantly
improved, the fluctuation of the accuracy curve is reduced
and the value is closer to 1. When the camera accuracy is
poor, the results are affected, but the model still shows good
fusion performance. As shown in Table 4, the fusion results
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FIGURE 7. Error distribution of different data before and after fusion: (a) RVs speed data error, (b) traffic flow data error, (c) occupancy data error.

FIGURE 8. Accuracy of results using dynamic BP fusion models: (a) RVs speed data, (b) traffic flow data, (c) occupancy data.

TABLE 4. Average accuracy of single-source data and results by different fusion
models.

using the dynamic BP neural network model can be further
improved on the basis of the traditional BP model, and the
accuracy of the results is above 95%.
The improved module of the proposed dynamic BP

method based on the traditional BP method is to calculate the
accuracy of the first fusion results, and update the training
samples for the second fusion. Therefore, it is necessary to
compare traditional BP with dynamic BP in order to clearly
understand the effectiveness of the proposed method.

B. MODEL CONVERGENCE
In the process of training the network model, the correction
of weight values between each layer reduce the error. When
the training is terminated, the error between the output value
and the calibration value is less than the set error thresh-
old, which means that the network model converges. In this
manuscript, we have set an error threshold of 10−6. Taking
occupancy data as an example, we use the same 190 groups
of samples to train the traditional BP and the dynamic BP
model, and then use the same 30 groups of test samples

to input the two trained models for fusion. When the accu-
racy of result does not meet the requirements, 190 groups of
samples are updated to retrain the model, and the 30 groups
of test samples are fused. Finally, the convergence of the
algorithm is shown in Fig. 9, in which the output continu-
ously decreases with the number of training times. The black
dotted line indicates a preset error threshold. The traditional
BP ends after 14 training epochs, and the dynamic BP ends
after 10 training epochs. There is no significant difference
in the final mean square error and training times between
the two algorithm models, that is, the convergence speeds
of the two methods are basically the same.

VI. CONCLUSION
To accurately detect mixed traffic flow states, we propose
a roadside sensor data fusion framework, which takes into
account the characteristics of mixed traffic flow and makes
use of relatively more accurate data obtained from V2I real-
time communication. Specifically, the V2I data between CVs
and infrastructure is adopted as the calibration value of BP
neural network to construct a model for fusing parameters
including flow, occupancy and speed. Furthermore, we adopt
a dynamic BP fusion method that conditionally updates
samples for training BP neural network to adapt to the
changes in the traffic environment and keep the accuracy for
a long time. The simulation results show that for CVs data
and all vehicles (including RVs) data, the fusion results of the
dynamic BP model are more accurate than the fusion results
of single sensor detection, entropy based Bayesian fusion
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FIGURE 9. The convergence of the algorithm.

and traditional BP fusion without CVs training. The dynamic
BP method can achieve smaller errors, and the accuracies of
vehicle speed, traffic flow, and occupancy are all above 95%.
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