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ABSTRACT The transportation efficiency and driving safety of road networks, which play an essential
role in economic prosperity, are impacted significantly by damage and defects on the road surface. In
current practice, it can take weeks or even months before related government departments repair such road
conditions, mainly due to lack of awareness of any damage. This paper reviews the current status and
limitation of a framework for sensors devices and assessment of road surface conditions. The review also
incorporates the most relevant machine learning-based methods, challenges, and future trends to underpin
large-scale deployment of road defects automation identification. It is expected that the technology can
provide both qualitative and quantitative information about the road surface condition and thus enable
timely maintenance to improve transportation efficiency and driving safety.

INDEX TERMS Internet of Things, road surface condition, networked sensor, transportation, machine
learning.

I. INTRODUCTION

ASROADS serve as a main connection between residen-
tial, commercial, and industrial areas, they are essential

for allowing people to travel between their homes and work.
The risks along the roads depend on multiple factors, such
as human error, weather conditions, transport mode, vehi-
cle type, and road conditions. It may cause car accidents,
which affect human lives and influence surrounding areas.
On one hand, roads need to be maintained in good condi-
tion to prevent car accidents. All phases of road repair take
time and effort in the search for defects and fix the issues.
Thus, it is essential for roads to have continuous maintenance
schedule to reduce the risk of accidents. On the other hand,
some methods are promoted to prevent accidents, such as
driver safety education, development of safer vehicles, and
enhancement of infrastructure maintenance rules, etc. [1]. In
the U.S., a quarter of major metropolitan roads are classified
as being in poor condition [2].

The review of this article was arranged by Associate Editor
Emmanouil Chaniotakis.

Reference [3] claimed that potholes and bumps cause
inconvenient trip experiences to road users, and strain peo-
ple’s mobility. In contrast to damaged roads, roads in good
condition provide economic and social benefit. Consequently,
effective, and efficient road maintenance is an important sub-
ject for the country’s public assets. The road management
includes monitoring, assessing, and decision- making for
necessary maintenance, repairs, and replacement of roads.
As stated by the American Society of Civil Engineers, the
prognosis “in the coming decade, the economy will lose
almost four trillion dollars as a result” of roadway damage
and defects (ASCE, 2016). This caution indicates the sig-
nificance of the Infrastructure Management (IM), and that
road conditions should be improved [4]. The assessment of
road conditions is crucial for designing, planning, and deter-
mining the proper road maintenance program. Ninety-nine
percent of the current data collection and analysis are con-
ducted manually [5], [6]. The collected data is insufficient for
road networks due to the network’s size and the frequency
of monitoring. As a result, efficient road maintenance and
accuracy are affected negatively. Thus, most recent studies
focus on using automated detection sensor devices to observe
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FIGURE 1. Overview of Methods of Communication for Automated Roadway Defect Detection.

and identify road defects to better support road maintenance
department.
This paper efforts aim to the review and contrast of

the current state of development in automated identification
of road conditions. It leads to the problem of identify-
ing road defects for automated monitoring and assessment
of road asset conditions using networked vehicles with
sensing capabilities and machine learning algorithms. The
motivation of this paper is two-fold. There are two sets
of stakeholders, the first is the transportation departments
who want to maintain infrastructure to make the roads
in good condition, and the drivers who want to use the
roads for transportation. The earlier potholes are repaired
the lower, the cost as the size increasing causes the cost
to increase. The second set of stakeholders are drivers and
businesses that use the roads for transportation goods who
do not want unexpected damages or accidents because of
poor road conditions. Researchers are working alongside the
transportation department to provide developed instruments
and avoid this issue. In the past, researchers used single
sensors such as cameras, GPS, lasers, and accelerometers,
etc., as instruments to collect road defects data manually.
Most recently, these single sensors can be integrated to one
device to automatically collect data and find specific defect
points.

Hence, this paper helps and provides the reader with the
importance of road defects detection problem and its impacts
on vehicle damage and human life. It is gradually show-
ing the tools of finding road defects in past and present.
For instance, how earlier single sensors devices were and
become integrated into one sensor device to collect dataset
automatically. As shows in Figure 1, transferring the dataset
stored in the sensor device data to the cloud database cen-
ter indicates to IoT usage and process of automated results.
Moreover, it shows the treatment tools of processing algo-
rithms using techniques such as sliding window, Machine
Learning algorithms, frequency analysis and sensor fusion
methods. Then, the limitation and challenges leading to the
future trends of road condition. This comprehensive theory
taking to understand the field and may also the gaps of this
research zone. This paper distinguished from other papers
due to general coverage of detect road defects beginning
from the sensor device and ending in automation detection
methods.
The organization of this review focuses on each major

component for automated road defect detection. In Section II,
the overview of various selected sensors and one integrated
sensor platform are presented. Detailed review on process-
ing algorithms for road pavement is explained in Section III.
Section IV. shows how Cars are taking part in road surface
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FIGURE 2. A Comparison of Accelerometer Response Due to (Left) a Pothole and (Right) a Bump.

damage detection experiments. Section V will show the lim-
itations and challenges, which involve five parts. Section VI.
Shows the future trends which include five types of review
points. Finally, a conclusion is presented in Section VII.

II. OVERVIEW OF SENSOR TYPES FOR ROAD DEFECTS
DETECTION
Sensors are considering a main instrument in the road defects
identification field. This instrument is key to finding the road
defects and starting point for treatment. There are various
kinds of sensors, which can be used to detect road defects
based on a case-by-case basis. Moreover, there are inte-
grated sensors used as advanced identification of manual or
automated data collection. These sensors measure the vehi-
cle response to the defects, such as potholes, bumps, and
cracks. The following parts explain most common single
sensors. Then, the last part is the integrated sensor platform
part shows how single sensors grow gradually and become
computed in one-sensor device. This sensor device can detect
defects using simple automation to decrease the issue of road
condition.

A. ACCELEROMETER
An accelerometer is an electromechanical device for mea-
suring velocity change or range in a single or multiple
directions. This scale led to physical acceleration due to
gravitational force, which is a unit of acceleration that acts
as an electrical signal. On a practical scale, an accelerometer
measures the acceleration of a mass connected on a spring.
Under motion, as the mass is accelerated, a force is applied
to the spring, either extending or compressing the spring
depending on the direction of the acceleration. Then, the dis-
placement of the mass is proportional for the acceleration [7],
[8]. There are multiple types of accelerometer sensors catego-
rized based on the technology used for their outputs. Some of
these types are the piezoelectric accelerometer, piezoresistive
accelerometer, and capacitive accelerometer. The piezoelec-
tric accelerometer transfers the output of a mass voltage

to acceleration. The piezoresistive accelerometer uses the
alteration in resistance for measuring acceleration, whereas
those that use the alteration in capacitance for measuring
acceleration are called a capacitive accelerometer.
Due to the alterations in sensed magnetic domain of

accelerometer influence, which are transferred into an elec-
trical signal. That signal is because of alterations in the
resistivity of material of the magnetic field called the
Magneto resistive accelerometer [7].

The accelerometer sensor considered as a transducer that
converts a mechanical pressure or equivalent energy to an
electrical signal. Each one of three- axes of the accelerometer
is dedicated as specific monitoring activity of the vehicle.
The X axis monitors the turning left and right of vehi-
cle, the Y axis monitors the slope on the road while the
upward and downward movement of vehicles are measured
by the Z axis that is utilized primarily for road defects
detection. The accelerometer sensor has found applications
in engineering scopes such as vehicle airbag deployment and
crash detection. Moreover, recently accelerometer sensors
have been used for road defects detection, with a compari-
son of accelerometer data show in Figure 2. Based on the
concentration of this review, it was used for road surface
condition monitoring and anomaly detection as well. One of
the important advantages of accelerometer sensor is working
in constant and stable position to decrease the noise signal
issued by the Accelerometer. On the other hand, one of the
disadvantages of less resistance accelerometer sensor is the
fixed time and internal constant domain, which limiting their
usage in some applications [7].

B. LASER, LIDAR
Light Detection and Ranging (LiDAR) is a remote sensing
technology that uses light radiation to collect information
about subjects without making physical contact with those
subjects. This type of sensor considers one of technology
sensors used for road defects identification [9]. Lidar systems
uses scanning system reflecting light beams off of subjects.
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The light pulse emitted from the sensor bounces off the goal
subject, then it is reflected again to the sensor. The time it
takes for the reflection to take the space between the scanner
and the scanned subject can be computed [10]. There are two
types of lidar systems: one is scanning lidar and the second
is non-scanning lidar. Scanning lidar has single line scanning
lidar and multi-line scanning lidar, where single or multiple
laser beams are used to create a contour map. Non-scanning
lidar is used as a 3D-flash lidar, which supplies data over
a given region rather than a single point. The components
of each type of lidar are based on system structure, work-
ing principle, the improvement around the world, and other
existing problems. Lidar has high resolution and distant 3-D
data in the absence of light and dangerous weather. In con-
trast to make fusion of lidar data, camera, and millimeter, the
plenty can cover all the driving conditions dependably and
entirely. Lidar accuracy can distinguish a human status, as
riding, walking, movement speed, or direction. Also, it can
work under extremely weather normally, which is considered
an important sensor of a Level 3 or higher-level driverless
vehicle. Lidar is a developed sensor converting information
through laser technology [10].
LiDAR data can be collected from airborne objects, using

airplanes. Spaceborne is collected using satellites, and ter-
restrial is collected form the ground, which can be either
static or mobile. This needs to be indented. Mobile Laser
Scanning (MLS) is the most common path to collect data
for transportation applications since road advantages could
be captured with a high scale of detail. In MLS scanning
the system is installed on vehicles, which travel along the
highway of concern capturing 3600 images of the roadway.
The advantage of laser sensors that the data collection of
vehicles is mounted with Global Navigation Satellite System
(GNSS) receivers and inertial measurement unit (IMU) that
spread information about the specific status of the sensor [9].
In other words, that laser sensors do not have to be close
to the thing being measured, unlike accelerometer sensors
which can only record defects that the vehicle as run across.
The main disadvantages are Lidar systems can expensive and
inability to measure distance in case of heavy rain, snow, or
foggy weather, due to interference with the light beam path.

C. CAMERA TYPES
1) SINGLE CAMERA

Single still image, digital cameras are used for detecting a
variety of distresses based on two- dimensional (2-D) photos.
These cameras come in several types. The single mounted,
high-speed charge coupled device (CCD) camera is consid-
ered one of the most applicable equipment for a 2-D result,
which has been used for previously for distress detection in
specific potholes and cracks. With the development of new
camera technologies, there is another option, which is called
the metal-oxide-semiconductor (CMOS) sensor. CMOS cam-
eras are advantageous when a lower resolution is adequate
and sensor speed does not require high speeds. Also, it has
various advantages commonly used in digital imaging such

as, an easy-to-use output, reasonable price, accessibility, and
a high maturity of CMOS technique. In current years, the
CMOS sensors have become widespread, as their disadvan-
tages, such as low resolution has been overcome. However,
recent sensor devices in high-speed vehicles does not seem
to be used due to cost and technically related issues [4].

2) VIDEO CAMERA

The video camera is one of instruments used for collecting
data from which 2-D images are extracted. In order of that,
the video application was comparable to the line-scan and
area-scan cameras. These are to be used for patches iden-
tification, among cracks and potholes, as these three kinds
of defects have clear 2-D characteristics. Some researchers
conducted video imaging for finding road defects. A compa-
rable approach was developed by Radopoulou and Brilakis
(2016) who used the video images from previously installed
parking cameras on passenger vehicles. Furthermore, pothole
detection based on video cameras has been researched [11],
which resulted in the patch detection as described before
and rear-view parking cameras, integrated in modern pas-
senger vehicles, are used for data collection. A fisheye lens
is installed to spread the angle of the camera. Dash cam-
eras called Blackbox cameras have also been studied [4].
The advantages of video cameras that cameras can monitor
scenarios of road defects and activities of vehicle damage,
provide time resolution of defect development, and col-
lect evidence of defects. In contrast, it can be costly and
vulnerable.

3) LINE-SCAN CAMERA

The regular area scan cameras as described before have some
disadvantages in output, such as a relative difference because
of the angle and struggles in lighting, which is covered by
using a line scan camera. Two cameras were used in the
study of [12] with a resolution of 2000 × 1 pixel, including
a pavement width of 4000 × 1 mm. A high-frame range
such as 28 kHz, gives the ability for the vehicle to drive
up to 90 km/h, while still collecting usable data. Another
lower frame rate appoints the same resolution but can be
less expensive and still provide data due to financial aspects.
The commercial Laser Road Imaging System (LRIS) used in
this content and merges the linear camera with laser lighting
for obvious crack view. Also, line scanning can be con-
ducted without the lighting, but this raises the challenges in
the image processing level, equivalent to area-scan imaging.
The Line scan approach is appointed only for pavement dis-
tresses, which are visible without depth as used by companies
such as NEXCO and International Cybernetics. Furthermore,
the line scan is proper for cracks, patches, and pothole detec-
tion. The advantage of Line scan cameras is high resolution,
high-speed, and image large objects [4].

D. MICROPHONE
The microphone sensor can be used to measure pothole-
induced signals, which can be analyzed to figure out road
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quality. Reference [13] noted that road features, especially
potholes, could be detect by mobile vehicles fitted with shelf
microphones and global positioning devices. Therefore, the
microphones record pothole sound signals as the vehicles
pass over defects. The microphones use a distributed vehic-
ular sensing system to record sounds, which supply data
needed to create urban noise maps. Microphone sensors
are based on Nericell, a platform used in mobile phones
by cyclists for detecting potholes, braking, and honking.
It detects spikes in sound frequencies to estimate honk-
ing. Reference [13] set up an experiment in a controlled
surrounding to determine the use of a microphone in detect-
ing self-made irregularities on the road. The advantage is
that they found out that the microphone accurately detects
the irregularities. More powerful pothole patrol is conducted
by a vehicular sensor network platform that uses superior
microphones to estimate road quality.
Also, [14] observed that acoustic array sensors, comprised

of a set of microphones, are use in detecting the increas-
ing sound energy produced by vehicles passing by areas
where they are installed. Therefore, based on the sound
energy of approaching and leaving vehicles, the acoustic
sensors can be used to determine the quality of the road.
Reference [15] assumed further that the acoustic sensors fit-
ted with directional microphones are embedded normally in
the roadside and configured to receive sound that is cat-
egorized into a heavy vehicle, light vehicle with speed,
high-speed light vehicle, and no vehicle classes. The dis-
advantage of microphone sensor may be that is extremely
sensitive for any noise sound issued by the vehicle, which
means it may not be defect or abnormal noise. The study
used Mel-frequency Cepstrum Coefficients (MFCC) and
Linear Predictive Coefficients (LPC) algorithms to accurately
extract road features, and signals sent to smartphones.

E. GPS
Rapid innovations in GPS technology have increased its
application due to its geo-positioning and tracking capa-
bilities. One of the main applications of GPS technology
is monitoring road transport routes [44]. GPS technology
supports imaging satellite sensing to aid in gathering geo-
position information and is applicable in extracting road
features for instant updates to systems such as Google
Earth [17]. When using GPS sensors to explore spatial posi-
tions, in this case, road features, the portable GPS device
will need unimpeded sight to at least four satellites [18].
More accurate tracking data can be achieved by increasing
the frequency of the receivers, using advanced chipsets in
the GPS device, and augmentation-supported carrier-phase
measurements.
Extracting road features uses remote sensing imagery

based on exploring distinct characteristics of road features. If
extracted successfully and correctly, the road features could
help model a road [17]. However, road modeling is com-
plex because roads have different sections with properties
that affect the path shape. Consequently, knowledge-based,

morphological-based, classification-based, and dynamic pro-
gramming methods are used in extracting road features. GPS
sensors, fitted at the center of gravity of vehicles, can help in
autonomously supplying data input for these methods [17].
GPS sensors advantage is to provide vibrations and dynamics
of the vehicles that machine learning algorithms and statis-
tics can use to classify road infrastructure features, and thus,
determine the condition of the road [45]. Also, GPS is easy
to navigate and cost less compared to other types of sensors.
Barriers to the application of GPS technology in exploring

road features include track dynamics and environment, which
are preventable through matching geo-locations and tracks to
the road through a digital map of the road network [20]. This
approach solves the challenges of precision and accuracy
of tracking data. Also, the map-matching algorithms offer
the differential between GPS match and GPS positions of
locations devices on the map. The disadvantages are lack of
immediate updates of locations and battery failure.

F. INTEGRATED SENSOR PLATFORM (E.G., MOBILE
PHONE)
Mobile phones are one of the devices included various sen-
sors integrated into one device. In the past, sensors are
used separately to detect and find road defects. Currently,
advanced technologies are integrating sophisticated sensors
to develop and improve road defects conditions identifica-
tion. Modern integrated devices, such as smartphones are
equipped with several sensors along with on-board storage,
communication capabilities, and computing. Due to these
characteristics, integrated sensors could be scalable, an intel-
ligent, distinguished, and with no additional cost component
of coming generation civil infrastructure monitoring systems
in future smart cities. Over the past few years, there has been
a growing focus on the spread of smartphone-based mon-
itoring technologies inside the civil engineering track. The
smartphone sensing model overall is still in its infancy, with
encouragement for researchers to quickly expand its several
applications [21].
The sensors included in the smartphones such as a barom-

eter, gyroscope, accelerometer, proximity sensor, camera,
touch screen, microphone, ambient light sensor, magnetome-
ter, all have an important on-board computing capability.
Researchers are considering the usage of smartphones with
batteries that are charge by the users and have storage in
gigabytes. Furthermore, smartphones are support by mobile
operating systems and wireless communication hardware
which can be used for field of data collection and uploading
real-time data to server by Bluetooth, Wi-Fi, 3G, 4G, and
5G networks. Significantly, the smartphone-based monitoring
method creates a cyber–physical system (CPS) via mobile
crowdsourcing. The CPS platform empowered to connect the
cyber, physical, and sensor system objects to a multilayered
information processing domain [21].
All these features show that smartphones can become the

primary sensing unit for the future civil infrastructure of
monitoring systems. There has been a surge of research in
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FIGURE 3. Sliding Window Approach Applied to Accelerometer Data from Road Defect Oscillations.

the last few years of mobile sensing for data collection,
signal processing, and data visualization in real-world appli-
cations [21]. Lately, smartphones are helpful instruments for
pavement condition assessment in a cost-efficient direction
with comprehensive spatial coverage. Moreover, they provide
a chance for frequent, comprehensive, and quantitative moni-
toring of pavement infrastructure. In the last few years, several
studies have been conducted to explore the feasibility of using
smartphone to assess pavement condition. Overall, pavement
status could be categorized by the defects in the pavement
surface, which affects the ride quality of vehicles. These
defects can be in the shape of surface roughness, unevenness,
potholes, cracks, deterioration, or damages. Pavement rough-
ness is accepted globally as the pavement status sign because
of its impact on ride quality, additional vehicle delay costs,
maintenance costs, and fuel consumption. Most of the cur-
rent studies in this scope are concentrating on detecting road
bumps and defects instead of expecting pavement roughness.
The first major smartphone-based app for the monitoring of
road and traffic conditions was “Traffic Sense,” created by
Microsoft Research in 2008. This project concentrated on
using the accelerometer, microphone, GSM radio, and GPS
sensors in smartphones to detect potholes, bumps, braking,
and honking [21]. The advantages of integrated sensors are
the accuracy and flexibility to collect road defects based on
computed sensors abilities in one sensor device. In contrast,
some road defects in difficult zones do not need integrated
sensors device due to difficulty of its road condition and
reaching out using a vehicle. For example, a camera sensor
device to detect road defects in mountains.

III. PROCESSING ALGORITHMS
A. SLIDING WINDOWS
A Sliding Windows processing algorithm is an adaptive
road-distress detection method that is based on finding both
non-crack features and the proper road feature classification
steps to reduce the number of false-positives during moni-
toring. Road surface classification is a key step in finding
different road features. Also, the sliding window approach
is an important in detecting road defects because it provides
a standard approach of minimal false positives.
Due to the pre-processing, which facilitates the process of

defect detection not only reducing the noise, or enhancing
cracks, but also referring to as dark linear features of the
road. Pre-processing uses methods such as gray-scale mor-
phological filters, image equalization, median filters, and
amalgamation of segmentation methods, and morphological
tools. Reference [22] implemented the sliding window tech-
nique by assuming that the intensity of the crack pixels was
darker than the intensity of the pixel around the road defect.
The size of the region of interest (ROI) around a crack area
determines the position or location of the peak as shown
in Figure 4. Therefore, according to the sliding technique,
square ROIs with pre-determined size, (Sizepre) are created
around the image. A pre-defined and specific step (Steppre)
are used in shifting the window. In this case, the size of
the pre-processing image is determined by Sizepre because
every ROI is represented by one pixel. On the other hand,
regions are likely to overlap based on Steppre. Based on this,
cracks on the road will appear darker than the surrounding
pixel.
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FIGURE 4. Region of Interest Movement in the Sliding Window Algorithm.

On the other hand, [22] applied the sliding window tech-
nique by densely sampling windows from detected road
features and finds the Scale Invariant Feature Transform
SIFTS descriptors in the windows. They used Fisher Vector
formulation to decode the descriptors and then used a clas-
sifier to categorize the encoded features as damaged or
good-quality roads. Lastly, they used a window-by-window
voting system through the Gaussian Windows to create a
segmentation responsible for detecting damaged features of
the road. The strength of sliding window processing algo-
rithm aims to decrease the use of nested loop and exchange
it with a single loop, hence reducing the time complexity.
For example, in the following Figure 5, the first sliding win-
dow move from left to right direction has three nested loops
became a single loop. This approach limited the overlapping
and shows the major defect that need maintenance.

B. MACHINE LEARNING
Reference [23] described machine learning as an application
of Artificial Intelligence through which computer systems
can learn and improve without being programmed. After
a computer algorithm is trained, it applies the relationship
learned to offer a solution to similar problems. This considers
the main strength of using Machine Learning algorithms in
automated identification of road defects. Moreover, these
variety algorithms support and facilitate the study as related
studies in Table 1, which we can assess and try multiple
algorithms to show the accurate results. Machine Learning
can be used with automated detection systems, especially
those based on sound vibrations recorded through sensors [24].
Once these systems collect vibration signals and locations, the
data is upload, processed, and divided into sliding windows
as shown in Figure 3. Road defect segments are find using
threshold techniques and learning classifiers. Potholes found

from different sensors’ data are clustered to find the exact
location of the potholes, which are saved for addressing by
maintenance. Themachine learning aspect in this process takes
place by filtering thresholds used in tuning parameters such as
speed, speed vs. z-ratio, high-pass, xz-ration, and z-ration to
optimize the accuracy of the system used in detecting potholes.
Clustering results based on location helps the detection system
increase the accuracy in determining the final location of the
pothole by 92.4% for labeled data. Reference [25] observed
that, unlike other pothole detection methods, for instance,
vision-based methods and vibration-based methods, machine
learning is advanced and comprehensive in extracting critical
information from features.
Machine learning has affected pothole detection through

machine learning classification [25]. The core competence of
machine learning used in pothole detection is machine clas-
sification, which involves using a constructed model with a
trained dataset to make predictions based on a set of variables
in the testing test. Also, [24] postulated that besides breaching
the limitations of traditional pothole detection method includ-
ing a focus on specific types of road damages, for instance,
cracks and potholes, and the incapability to work in dire
situations, machine learning offers vision-based road defect
detection and classification systems that are both cheaper and
cost-effective compared to traditional AI methods.

1) SUPERVISED ALGORITHM

Supervised algorithms, including Artificial Neural Network
(ANN), Support Vector Machine, Logistic Regression,
Random Forest, and Naïve Bayesian, are used in training
labeled training data to make predictions [40]. For instance,
supervised learning is used in training an Artificial Neural
Network (ANN) model to make predictions through artifi-
cial neurons, hence capable of solving pattern recognition
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FIGURE 5. Sliding Window Algorithm with Nested Loops for Detection.

problems [23]. Therefore, the neuron can learn by adopt-
ing values of weights, which is used in determining the
hidden value and weight based on provided input, which
is the foundation of supervised learning identifying road
defects. Also, [27] described supervised learning as the train-
ing of models by using datasets that join input data with
labeled data. Like ANN, the convolutional neural network
(CNN) leverages image information as input data. When
using supervised algorithms, a data set of road images with
potholes and without potholes are used for model training
and validation, also known as the ground truth [23].

Also, Support Vector Machine (SVM) is a supervised
machine-learning model that once a date set is putting
into the system, it evaluates the data-seeking patterns for
both classification (classes or groups) and regression (con-
tinuous relationship between data variables) analysis [11].
SVM algorithm classifies data sets by finding a hyperplane
that optimizes the difference between data point clusters of
different classes. The advantage of SVMs, is their ability
to classify data with different labels besides their effec-
tiveness in high-dimension space and memory efficiency.
Reference [41] adopted crack forest, a framework that uses
random structure forests, to detect uneven road cracks along
the edges and cracks that were presented with complex
topological structures. To achieve this, [41] extracted road
features from various levels and directions, which they used
in training the random forest model to detect similar defects
along the edges and on the round surfaces.
One of the widest applications of a supervised algorithm

is the automatic pavement crack detection, which requires

preprocessing of the crack image to smooth the texture
and increase the feasibility of existing cracks [20]. After
preprocessing, the image is segmented into multiple non-
overlapping blocks with unique feature vectors. This process
is supported with SVM in detecting cracks.

2) UNSUPERVISED ALGORITHM

Unsupervised learning is described as a machine learning
algorithm used in generating new input data or finding
hidden features from datasets with input data but lack-
ing labeled responses (Goodfellow, Bengio, & Courville,
2016). Therefore, the difference between supervised and
unsupervised algorithms is the absence of data labels during
the training of models. In other words, unsupervised algo-
rithms used in training models neither have labeled samples
or definite results for output, which means they help the
computer in learning the relationship between the samples
and classify them by themselves. The fact that unsupervised
algorithms do not need to label datasets, it is considered
more accurate because it reduced the impact of human
subjective factors on the results. Another study by [42]
postulated that unsupervised algorithms offer better training
to datasets used in developing a training model, because
their accuracy in detecting and quantifying road defects
is not dependent on the model parameters. For instance,
the algorithm does not require advanced lighting and can
perform under any lighting conditions except under direct
sunlight.
Earlier literature has adopted an unsupervised algorithm

to train models to detect road damages. For instance, [40]
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TABLE 1. Machine learning studies used for automated identification of road defects.

used an innovative unsupervised method that involved a
gray histogram and Otsu method to detect road cracks
under a low signal-to-noise ratio. Similarly, [5] leveraged

minimum path selection to modify the unsupervised learn-
ing method of detecting road cracks. The improved algorithm
reduced the loop and peak artifacts used in road crack
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TABLE 1. (Continued) Machine learning studies used for automated identification of road defects.

(Continued)

detection. Another research by [35] integrated an unsuper-
vised algorithm with the minimum intensity path of the
window to obtain cracks at every scale in the image. The

improved algorithm compares various cracks and develops
a model for evaluating cracks using multivariate statistical
hypotheses.
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TABLE 1. (Continued) Machine learning studies used for automated identification of road defects.

(Continued)

3) SEMI SUPERVISED ALGORITHM

Semi-supervised is blends between supervised and unsuper-
vised algorithms by integrating the right mix of both labeled

and unlabeled datasets [43]. Research has showed that many
of the unlabeled datasets used in the semi-supervised algo-
rithm are pseudo-labeled so that a large dataset is achieved.
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TABLE 1. (Continued) Machine learning studies used for automated identification of road defects.

(Continued)

Although having a large, labeled dataset would be ideal
in road damage detection. The process of using a semi-
supervised algorithm in detecting road damage starts with

training a model to detect damages on a road surface
using labeled data. The algorithm uses an unlabeled image
dataset of the trained models to get predicted output image
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TABLE 1. (Continued) Machine learning studies used for automated identification of road defects.

(Continued)

dataset, which is considered semi-labeled image datasets.
To improve the efficiency of the trained image model, an
ensemble method, which is comprised of multiple models,

is created so that the detection does not merely depend
on a single trained model with the best performance but
instead an integration of results from multiple trained models.
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TABLE 1. (Continued) Machine learning studies used for automated identification of road defects.

(Continued)

Therefore, these datasets are combined with a labeled dataset
to train an algorithm used in detecting damages on a road
surface.

Research has showed that despite semi-supervised learn-
ing’s capacity to produce more sophisticated results through
an ensemble, it is hardly preferred or used alone because
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these datasets require long time of training [43]. Therefore,
during road damage detection, both supervised and semi-
supervised learning are used. Supervised algorithm leverage
estimation without pseudo-labeled datasets while semi-
supervised algorithm uses labeled and semi-labeled datasets.
A combination of both supervised and unsupervised learn-
ing helps in reducing false positives and hence better
performance in the detection of road defects, as opposed
to depending only on datasets trained from a supervised
algorithm.

C. FREQUENCY ANALYSIS
The frequency of the sampling camera mounted on vehi-
cles to collect datasets for the training model is a principal
factor influencing the accuracy of detecting road damage.
Earlier literature has shown that high-acquisition frequencies
are responsible for reducing missing defects to the mini-
mum [44]. The sampling frequency is a function of traffic
flow, experimental environment, and the number of vehicles.
A high-frequency sampling camera mounted on a low-speed
traveling vehicle expected to result in better detection of
road defects. Also, mounting a low-frequency camera on a
high-speed vehicle is likely to result in less collection of
images.
Reference [4] used ground-penetrating radar (GPR) to

determine cracking and claimed that choosing a high
frequency of 5GHz or more was ideal in achieving the pur-
pose of the experiment. This is the strength of selecting high
frequency rate and to be more accurate. Similarly, [1] studied
how high frequencies could be use in determining cracking
and based his research on 2GHz GPR. The results of the
experiment based on GPR could be couple with images col-
lected by a camera to develop a 3-D model of the road.
The rationale for adopting high frequencies could be based
on [46] assertions that when a camera running at 30Hz is
used in collecting images to detect potholes, it has been done
at a low speed to avoid misdetection. Nevertheless, [26] rec-
ommended using an extra high-speed, charge-coupled device
camera to compensate for high driving speed.

D. SENSOR FUSION METHODS
Reference [47] proposed that different sensors could be fused
to form multi-dimensional information on the structure of
the pavement. The authors observed that sensor fusion is
based on spatial registration and synchronization of data
collected using navigational sensors such as GPS, DMI, and
INS sensors. The rationale for sensor fusion is increases the
quality of the signal, and image information relied upon
for the extraction and classification of features, thereby
improving the detection of damages or defects on road sur-
faces [47]. When sensors fitted on mobile vehicles and along
the road collect raw data, the features and parameters are
preprocessed. They used in determining the quality of the
road including defects, artefacts, and deterioration areas are
extracted and classified. Data from various sensors are reg-
istered and matched with a GPS receiver to map detected

defects on a 2D road. The sensor output data to establish
the relationship between the detected surface and the sur-
face defects based on their presence, extent, and severity. The
sensor data fusion becomes a decision-support output that
operators rely on to diagnose the condition of road surfaces.
Distributed vehicular sensing is one of the most predom-

inant methods of sensor fusion, which is based on people
and mobile sensing. It uses onboard computers that have
been integrated with accelerometers, Wi-Fi access, and GPS
to detect features on the road. Vehicular sensing integrates
various application-specific sensors including microphones
sensors for sound analysis and GPS sensors for localiza-
tion [34]. The two sensors are used with a generic algorithm
for location and time-oriented detection of potholes from
sound recorded by the microphone.

IV. HOW CARS ARE PARTICIPATING
Earlier literature has used vehicles as participants of road
surface damage detection experiments. The vehicles are fitted
with sensors that are used in collecting training datasets.
For instance, [1] used one vehicle, which was fitted with
cameras to collect training datasets while driving on a road
in South Korea. The vehicle traveled on expressways and
through city roads at 100km/h to train the neural works
model, so it automatically detects defects and damages on
road surfaces. A smartphone was installed where the black
box is usually located, which enabled the cameras to take
photographs of 1920 X 1080 resolution. A total of 6756
labeled datasets were collected, segmented, and categorized
into six classes based on images obtained from driving on the
roads. The accuracy of the experiment was reported as 0.8728
and 0.9387 when supervised and unsupervised algorithms
were used in training the neural networks model.
Also, [48] used one vehicle moving at 27.8 FPS (approx-

imately 30km/hr.), through two imaging lenses fitted with
different fields of view (Fives) of 30◦and 70◦. The col-
lected dataset was trained through deep learning, particularly
deep YOLOv3 (you only look once, version 3) to train
a model for automatic detection of potholes, cracks, and
other road defects. The images lenses were fitted on the
dashboard of the vehicle with a 30◦ FoV lens was respon-
sible for detecting road defects from a distance while the
70◦ FoV lens compensated for detecting road defects from
close and medium distances. The detection of road defects
reached 71%, with a 29% miss rate. Likewise, [5] used
one vehicle, moving at 10-15 km/h, with a camera mounted
on the rear, below the number plate, to collect a dataset
for training an SFT model to automatically detect potholes,
cracks, and patches. The reported accuracy in the identifica-
tion of potholes using the cameras and STF algorithm was
approximately 74%.
Despite the above trend in literature, [16] observed that the

use of multiple cars is recommended because it is difficult
for a single car to detect all the distress characteristics of
a road surface. Therefore, using a single car predisposes
the outcome to inconsistencies attributed to misdetections.
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FIGURE 6. An Example of the Senor Response at Different Vehicle Speeds.

Using multiple vehicles (at least five) provides room for
superimposition by multiple detections, and the matching of
data gives a wider perspective on the condition of the road.

V. LIMITATIONS AND CHALLENGES
A. AXIS
Most studies used less than three sensors in detecting pot-
holes and cracks because they mostly rely on car vibrations
in determining the quality of the road. Using less than three
sensors hinders the accuracy of collected data, because it
does not account for all aspects of the features detected.
Although there might be some slight variations in the time
taken in extracting features when using more axes, the entire
process is fast enough to be complete in real time and
offers more variables of features, hence providing a more
accurate representation of road quality [8]. This is because
when features from at least three axes are used in train-
ing a machine language classifier, it results in less loss and
enhances performance compared to using features from a sin-
gle axis (perpendicular to the ground). Each axis is dedicated
to measuring a particular activity and improving precision
and recall rates for cracks.
Therefore, the challenge while multiple studies used the

Y-axis, which focused on collecting vibration-oriented fea-
tures, it is possible to use more axes to increase the precision
and recall rate such that results are not depended on pothole
detection but also other features like cracks and roughness
of road’s surface. For instance, in a study using three axes,
the X, Y, Z-axes are used in measuring 3-dimensional verti-
cal acceleration, which involves monitoring the upward and
downward movement of vehicle vibration, making it easier
to detect anomalies [7].

B. SPEED
Reference [49] studied the effect of vehicle acceleration on
the quality of detecting road roughness. To achieve this, the
author used probe vehicle body acceleration measurements,
which involved comparing probe vehicle measurement with
profiler measures using probe vehicle roughness index
(PVRI) and vehicle vertical acceleration. The authors used
PVRI in the study not only because it approximates the inter-
national roughness index (IRI), which determines the quality
of the road, but also because the acceleration measurements
that a probe car obtains are a representation of the accelera-
tion response of a normal car as shown in Figure 6. Based on
the calculations of the probe vehicle, the study observed that
with a sampling frequency of 10Mz, at 2200mm intervals,
the traveling speed was 80km/h. However, they associated
the interval with high conflicts in results because the distance
was too large to capture all variables for calculations. The
author recommended that future experiments using probe
cars should consider using a frequency of 1000 Hz because
the calculated PVRI is based on the sampling rate.
Therefore, the accuracy of detecting road defects depends

not only on the speed of vehicles but also on the frequency
of the camera used in detecting the defects [16]. As a result,
the probability of collecting an image at a specific location
of the road surface through detection of a vehicle on an
expressway depends on the traveling speed of the vehicle
and the frequency of the sampling camera. Hence, a high-
traveling speed car with a low-frequency camera could miss
some information on the road surface and show low detec-
tion of road defects. On the other hand, a vehicle traveling
at a slow speed with a frequency sampling camera is likely
to detect the road surface better but risks duplication of
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detected features. The study recommended a traveling speed
of 50km/h, with camera frequencies of 2 Hz for better detec-
tion of road defects using five vehicles. Hence, the speed can
be increased gradually to be able detecting road defects in
highways. The highways detection needs a high speed and
high frequency of the sensor device collected by five vehi-
cles. In this challenge, it can be comparison of each vehicle
results and reach out the goal of road defects detection.
As highlighted above, [5] experimented using a vehicle

traveling at speed of between 10 and 15 km/h to collect
images that were used in training STFs model on how to
find cracks on the road surface. According to the authors, a
low speed was preferred to high-speed because they wanted
to mitigate the effects of unexpected vibrations of the car
as it traveled on roads across the cities which could have
affected the quality of collected data. On the other hand, the
dynamics of individual vehicles such as suspension and tiers
have a high performance of the vehicle such as a BMW M3
experiencing potholes differently than off-road vehicle such
as a Range Rover.

C. COST
To accurately detect road defects, one needs robust strategies
to monitor the quality of the road surface [50]. Nevertheless,
earlier literature has pointed out that methods for manually
detecting and evaluating the challenge of road quality are
expensive and time-consuming [50], [51]. However, there are
more affordable and simple technologies that could be used
to automatically detect road defects but there are concerns
about their accuracy. A simple cost-effective experiment
could be used to determine pavement distress. For instance,
a real-time, low-cost road quality inspection system-based
high-speed 3D transverse scanning technique fitted with an
infrared laser-line projector and digital camera could be used
to detect pavement distress like cracks, potholes, and shov-
ing [23]. However, it suffers from low detection accuracy
that is mostly due to its limited calibration procedure, which
accepts few samples of collected images.
Also, the Kinect sensor has been used in detecting pot-

holes and it proved cost-effective. Reference [52] adopted
this technique to collect images of pavement depth from con-
crete and asphalt roads. Based on the results of the collected
images, they used the images to determine the volume of
the potholes using the area of the pothole and correspond-
ing depth. They applied the trapezoidal rule on obtained
area-depth curves and were able to determine the volume of
the potholes. Although cost-effective, in comparison to the
cost of using industrial cameras and sensors, it uses a small
sample and hence might not affect its accuracy in automat-
ically detecting potholes if the results from the experiments
were used in building a training model. In summary, vision-
based experiments or methods offer cost-effective strategies
of detecting and finding road defects but suffer from inaccu-
racy caused by distortion and noise in collected imaged and
video data. Therefore, [50] recommended adopting a more
efficient technology capable of detecting various features

from 2D images to improve the probability of accurately
detecting and finding various road distress.

D. MOBILE PHONE
Mobile phones, particularly smartphones have been used in
implementing vibration-based automated pothole detection
systems [10]. An application is installed on the phone and
sends vibration signals and location data to a server or com-
puter. The application preprocesses the collected data through
resampling, filtering, and reorientation. Then, it leverages a
sliding window to divide the continuous signal into segments.
On the other hand, the mobile communication network sends
information about the segments of the pothole acquired
through a simple threshold. The server uses a pre-trained
machine learning classifier to find real potholes based on fea-
tures extracted from the uploaded data. Data collected from
multiple vehicles are used in finding the potholes, which the
algorithm clusters to find the reallocation of the potholes.
As highlighted, these challenges are expensive but could

be cheaper, for instance, if the mobile phones were not used.
Since vibration-based automated pothole detection systems
are based on mobile sensors, namely, accelerometer and
GPS and not mobile phones, these sensors can be installed
on vehicles making mobile phones redundant. Also, it is
arguable that substituting the car’s accelerometer with an
application to measure the velocity of the traveling vehi-
cle and send it to the server for pre-processing, exposes the
pothole detection system to trade-offs such as phone or appli-
cation malfunction or incompatibility of the technologies
besides other concerns of battery-life and data corruption.
Therefore, between extra costs of purchasing the mobile
phone, setting up all the devices that make up the tech-
nology, the risk of incompatibility of devices, concerns over
the mobile phone’s battery life, and corruption of signal data
makes for a lot of avoidable exchanges.

E. ALGORITHM
A wide range of algorithms has been adopted by earlier
literature to achieve train models to automatically detect
defects of the road surface. The rationale and the challenge
for the existence of multiple algorithms is that there is no
unique optimal algorithm that can be used in each case and
thus, the best algorithm always depends on the nature of
the problem. For instance, [23] used semantic texton for-
est (STF), a supervised algorithm on a labeled region of
interest on the pavement to train a dataset model to auto-
matically detect longitudinal and transverse cracks from data
collected from roads across the streets of Cambridge. STF
was preferred because its use of kernel features instead of
point features during classifier/model training randomized
decisions allowed for use of multiple features in segmen-
tation including color, texture, and context. This promoted
accuracy of detecting multiple longitudinal and transverse
cracks on pavements there.
Likewise, [25] leveraged a pothole-detection algorithm,

which was an arrangement of filters including speed, speed
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vs. z-ratio, z-peak, xz-ratio, and high-pass to dismiss a non-
pothole event type based on data collected by mobile sensors
(accelerometer, GPS) installed. The algorithm treated the
threshold of each of the filters as tuning parameters to enhance
the accuracy of the system in detecting potholes, which is
the essence of machine learning. The algorithm helped in
clustering the results based on location and hence achieving
the location of the pothole with an accuracy of 92.4%.
Also, [9] adopted a pothole detection method that used

traveling vehicles as virtual sensors to assess vibrations. The
vehicles were fitted with a sensor, smartphone, and Internal
Measurement Unit. The accelerometer collected data, which
was normalized and used by the pothole detection algorithm
to achieve information through interpolation of a GPS. The
authors used the pothole detection algorithm because of its
capacity to deal with fusion data techniques used in virtual sen-
sors. Therefore, the module trained by the algorithm collected
data from sensors mounted on the vehicle, processed the large
dataset, and sent the results for detailed discussion. Therefore,
the experiment followed three steps including collecting and
normalization of data by the accelerometer, training module
to detect potholes using the algorithm, and using the GPS to
locate the pothole.

VI. FUTURE TRENDS
A. MULTI-SENSOR TYPE PROCESSING
Researchers are exploring the possibility of achieving real-
time monitoring of the conditions of the roads and processing
for potential automatic detection of road distress [1], [5],
[40], [53]. Recent literature has examined how different
accelerometer sensors, not merely those related or used with
smartphones, computers, tablets, and other servers, could be
adopted in road defect detection, and provide real-time noti-
fications about road crack, potholes, and humps among other
road defects [19], [45], [48]. The studies have projected that
GPS technologies could be coupled with sensors to achieve
a strategy-oriented solution to collect and use information
about the condition of the road to enhance road maintenance.
On the other hand, the scope of the application of sensors

is expanding. Earlier literature shows that automotive manu-
factures have leveraged the auto-detect capability of sensors
to expand their application in safety and traffic management
among others [45]. Therefore, automobiles have integrated
in-vehicle sensors with vehicles to increase sensing and
communication capabilities to offer smart and intelligent
transportation systems. Also, government institutions are
installing cameras and sensors along the road to monitor
raw data about the environment and traffic conditions
Despite the success achieved in using sensors in collecting

datasets, which are preprocessed and used in training mod-
els, there is a need for further development. For instance,
the focus should be on optimizing the signal and image
processing solutions for enhanced and effective handling of
raw sensor data streams to enhance detection of defect fea-
tures while minimizing the effect of environmental factors
and devices used [47]. Also, the knowledge-based systems

used in extracting features from collected datasets need to
be improved to adopt more sophisticated pattern-recognition
techniques for better segmentation of features and identifica-
tion of road defect features. Furthermore, one of the major
challenges addressed in the reviewed literature is the exces-
sive cost of industrial cameras, sensors, and assembly of the
system for accurate detection and identification of road dis-
tress. Therefore, future work should explore the possibility
of cheaper sensors and technology that could be adopted
without compromising the accuracy and reliability of road
distress monitoring.

B. MASS PARTICIPATION (LARGE CAR FLEET)
Rental car companies have adopted sensors and sensing tech-
nology by seamlessly integrating sensing devices within their
car fleets. Reference [54] noted that car rental companies are
beneficiaries of the rapid development of online Web-based
applications, which they have integrated with GPS-based
content alerts, to enhance the accessibility of cars to every
person at a minimum cost. Therefore, implementing (IoT)
sensing devices in rentals is helping the customer achieve
comfort and privacy in their rides. The seamlessness of these
systems is transforming traveling in cabs or rental cars since
rental cars can access a wider pool of customers requesting
services around cities. The technology is helping cabs and
rental car agencies increase their market shares and peo-
ple getting easy access to cars, especially in cities where
traveling by cab is part of city life.
Also, [55] noted that the IoT technology, implemented

through sensors and GPS, is enhancing mobile-based vehicle
fuel activities including monitoring of fueling in real time.
Car rental companies might consider fitting ultrasonic fuel
sensors in their car fleets to help management and drivers
keep track of the fuel gauge. The ultrasonic fuel sensors are
designed to send notifications through mobile applications
when fuel is below a certain level. The sensors are integrated
with GPS tracking that helps the system find the nearest
pump locations. Therefore, drivers can depend on the system
to manage their fuel-reloading patterns, especially when in
route and ensure that the passenger enjoys uninterrupted rides
because the driver forgot to fill up the tank with fuel before
launching the trip.
Literature has shown that the rapid technological innova-

tions in blockchain and IoT are being integrated to promote
the efficiency, effectiveness, and reliability of car rental agen-
cies in providing readily available cars to customers [56].
Therefore, blockchain allows for mass registration of cars by
agencies or individuals pooling their cars together not only
for the sake of providing a significant resource to customers
who need them, but also as a means of enhancing the sus-
tainability of resources to minimize carbon emissions. The
authors noted that car rentals or owners can register their cars
and users of the blockchain can choose the readily available
car and acquire services through a peer-to-peer transaction
governed by an automated system. The system monitors car
usage in real time using sensors. The collected information
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helps making car service and maintenance schedules besides
making the availability and usage more dependable for car
rental agencies and customers.

C. ROAD MAINTENANCE DEVELOPING PLAN
After successfully collecting, analyzing, processing, and
updating the status of the conditions of the roads, the per-
sonnel responsible for road maintenance should develop
sustainable strategies to rehabilitate and keep the roads
based on an accurate and efficient pavement management
system [57]. Therefore, the process that succeeds analysis
of the structural conditions in the area of interest includes
geo-referencing to determine critical parts of the road, and
simulations to highlight the impact of previous maintenance
work. The authors observed that this plan improved highway
performance because it gives room for both planning and dis-
tributing of resources based on need. Therefore, it helps in
making proper maintenance and rehabilitation decisions.
Results of a trained model used in detecting road distress

form part of the decision support concept (DSC) and deci-
sion in planning activities for maintaining and rehabilitating
urban roads and support [58]. The authors recommended
the adoption of the decision-support concept to improve
planning for improving the urban roads using multicrite-
ria methods and artificial neural networks. As a result,
proper interaction between DSC promotes better decision
making during the planning process. Planning happens on
three decision levels including database, model base, and
dialogue module but all relevant interactions between the
three levels are achieved during the decision-making pro-
cess. Therefore, decision makers, stakeholders, and experts
can interact in the process when tackling various problems,
whether structured or unstructured. The first management
level includes the integration of data and information and
is responsible for defining and structuring problems as well
as it is feed of information to the higher decision levels.
The second level is the tactical management level, respon-
sible for delivering tactical decisions and creating solutions
based on gathered information. Depending on the nature of
the identified problem, different methods could be deployed.
The third management level depends on the deliverables of
experts from the preceding level to formulate strategies and
frameworks for road maintenance.
Reference [59] noted one of the common strategies that

most third-world countries and emerging economies give pri-
ority to roads in good condition that require minimal work
and budget to keep and achieve a steady state of 100%. The
authors argued that this plan of road maintenance assumes
that road preservation offers maximum results in keeping
road distress with more efficient maintenance costs. In most
cases, planning is guided by a two-level, decision-making
process, namely prioritization and optimization because road
maintenance is expensive, and Department of Transportation
hardly has enough resources to ensure roads are in a sat-
isfactory condition [60]. As a result, road administrators
rely on prioritization in coping with insufficient funding.

Road administrators establish priorities based on collected
information about road conditions. These priorities include
blackspots, cost-effectiveness, functional types of road com-
munications, the severity of road distress, and extreme traffic
volume roads. Nevertheless, optimization is a crucial factor
in planning because maintenance is to be done on optimal
time and cost.

D. SLIDING WINDOWS
Sliding window is supportive technique of automated road
defects identification. It considers one of the future solu-
tions of road defects detection problems. However, there is
an event window technique, which consider helpful tech-
nique beside the sliding window overlapping. One feature is
that sliding windows may obtain an overlapping based on
the sequence road defects findings. This overlapping may
combine to an event window, which corresponds to pos-
sible real defects. For example, instead if there are four
sliding windows overlapping, it can be one mean window.
This technique is not used much in recent research and
could be developed to mitigate the overlapping and may be
a solution to categories the highest or lowest road defect
vibration point. This category will help transportation main-
tenance team to find an obvious road defect need urgent
maintenance intervention.

E. THE RISE OF AUTONOMOUS VEHICLES
The development and use of autonomous vehicles (AVs) can
be described based on the respective level of automation (SAE
levels) and the operational design domains (ODD) through
which these vehicles provide automation features [61]. ODDs
comprise weather conditions, roadway type, and speed. Also,
unlike generic vehicles, their use is influenced by the SAE
level of driving and various autonomous use cases that have
been designed for specific ODDs, which interact with road
features differently. In other words, AVs affect infrastruc-
ture owner–operators differently, and thus, road distress. For
instance, depending on how AVs are implemented, platooned,
and positioned, they will affect the condition of pavement
and bridges.
From a stakeholder’s point of view, AVs require a high

maintenance of sensors that support its deployment for
fleet use but could challenge proofing infrastructure [61].
Nevertheless, its adoption is rapidly increasing, especially for
commercial fleets, and might lead to a partnership between
fleet operators and infrastructure owner-operators, which
would increase reliability in maintenance because of shared
interests. However, the [61] noted that increasing the adop-
tion of AVs will influence the quality and uniformity of
road features. For instance, road marking signage will have
to be consistent and well maintained. Also, since AVs rely
on digital information, for instance, work zones will have to
be standardized, concise, and secure enough to ensure the
AVs are dependable.
More research into the potential increase of autonomous

vehicles in city roads has projected that this technology
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will result in increased productivity in the transport sec-
tor, decreased costs, and increased safety [62]. However,
the authors noted that the magnitude of the expected posi-
tive or negative consequences is undetermined. Preliminary
findings states that the effect of truck loadings positioning
on transportation infrastructure project is declining life of
pavement structures. However, the use of AVs could ben-
efit the infrastructure, especially pavement design, if they
are deployed appropriately where their numbers increase
to occupy 505 vehicles of the traffic. Therefore, their
effect on the road infrastructure will depend on deployment.
Appropriate deployment will benefit road pavement while
inappropriate deployment will result in detrimental damage
to the road infrastructure, especially pavement smoothness,
fatigue cracks, and rutting.

VII. CONCLUSION
Road maintenance and rehabilitation is an expensive process
that requires multiple resources to collect, the analysis of
processes, the update status of roads, and draft maintenance.
Nevertheless, road administrators, department of public asset
management, and other stakeholders have limited resources
to perform their tasks but are required to ensure road con-
ditions are satisfactory. However, the rapid innovations in
mobile sensing technologies coupled with machine learn-
ing have provided glimpses of hope as systems could be
trained to automatically collect data through in-vehicle sen-
sors, which are used in training models to automatically
detect road distress features. Diverse types of algorithms,
divided into unsupervised, supervised, and semi-supervised
algorithms, have been adapted depending on the goal of
the researchers to implement automatic detection of road
features as stated in Table 1.

The reviewed literature has also shown that the accuracy
of various pavement detections systems trained by algorithm
depends not only on the traveling speed of the vehicle but
also the frequency of cameras used in data images collection.
Although the quality of the sensor’s device can be change
such as cameras, the reviewed literature highlights that using
industrial cameras and other standard devices affects the
financial feasibility of the application. As a result, the use
of alternative and cheaper set-ups was explored. It was
shown that less expensive set-ups provided cost-effectiveness
at the expense of accuracy of detecting road features and
cab be used in public transportation such as ambulances,
fire vehicles, and postal vehicles. Also, the machine learn-
ing algorithms accuracy is automated and improved when
multiple vehicles are used in the detection of road features
because it mitigates the risk of misidentification.
Besides road maintenance, sensors applications have ben-

efited car rental services. They have led to better and
more reliable fuel management, and increased reliability in
determining the availability of cars, hence helping the trans-
portation department by updated reports of defects dataset
and providing customers with satisfactory services. Hence,
focusing on inexpensive sensors device, using an algorithm

to automate the process of identification, and spread group
of vehicles with installed sensors devices are valuable factors
to reduce road defects issue and make the future of roads are
smooth. On the other hand, mobile sensing has led to AVs,
which according to reviewed literature, will transform the
transportation sector. Nevertheless, the extent of their effect
on transportation infrastructure is not yet fully understood.
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