
Received 19 September 2022; revised 23 November 2022; accepted 3 January 2023. Date of publication 13 January 2023; date of current version 27 January 2023.

Digital Object Identifier 10.1109/OJITS.2023.3236531

Insufficiency-Driven DNN Error Detection in
the Context of SOTIF on Traffic Sign

Recognition Use Case
LUKAS HACKER 1 AND JÖRG SEEWIG 2

1RD ADAS Software Platform, Mercedes-Benz AG, 71059 Sindelfingen, Germany

2Institute of Measurement and Sensor Technology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany

CORRESPONDING AUTHOR: L. HACKER (e-mail: lukas.l.hacker@mercedes-benz.com).

ABSTRACT Deep Neural Networks (DNNs) are used in various domains and industry fields with great
success due to their ability to learn complex tasks from high-dimensional data. However, the data-
driven approach within deep learning results in various DNN-specific insufficiencies (e.g., robustness
limitations, overconfidence, lack of interpretability), which makes the usage in safety-critical applications,
like automated driving, challenging. An important safety strategy to address these limitations is the
detection of DNN errors (e.g., false positives) during runtime. In this work, we present a general error
detection approach for DNNs, which combines diverse monitoring methods to address different safety-
related DNN insufficiencies simultaneously. To ensure consistency with the automotive safety domain, we
take into account established concepts of the automotive safety standard ISO 21448 (SOTIF). We apply
our error detection method on the safety-related use case of traffic sign recognition by using self-created
3D driving scenarios. In doing so, we consider different types of DNN errors related to in distribution,
out of distribution, and adversarial data. We demonstrate that our approach is able to handle all these
error types. Furthermore, we show the performance benefit of our method compared to a baseline DNN
and to state of the art DNN monitoring methods.

INDEX TERMS Artificial intelligence, automated driving, deep learning, deep neural networks, safety of
the intended functionality, traffic sign recognition.

I. INTRODUCTION

INHIGHLY automated vehicles, artificial intelligence (AI)
and deep learning (DL) are crucial parts for complex tasks,

like environmental perception [1]. In deep learning, a data-
driven approach is taken, in which deep neural networks
(DNNs) learn these tasks from high-dimensional data [2].
After training and testing activities, the DNN black box
models are integrated into the overall automated driving
(AD) system architecture, as shown in the upper part of
Fig. 1, and perform safety-critical tasks, like object detection
and image classification. However, ensuring safe behav-
ior of these data-driven algorithms is challenging due to
their insufficiencies and the infinite number of scenarios in
open-world. For example, distributional shift and adversarial
attacks can force the DNN to predict high confidence

The review of this article was arranged by Associate Editor Johannes Betz.

scores on incorrect outputs [2]. In the context of safety of
the intended functionality (SOTIF) and the corresponding
automotive safety standard ISO 21448 [3], the open-world
problem is addressed by systematically minimizing the area
of unknown scenarios with iterative process steps of anal-
ysis, functional modifications, verification, and validation.
For the remaining area of unknown, potentially unsafe sce-
narios, appropriate monitoring methods have to be provided
during runtime. However, methods for monitoring traditional
software, which are recommended in the functional safety
standard ISO 26262 [4] (e.g., range checks), are not applica-
ble for DL-based algorithms, like DNNs [2]. For this reason,
various DNN runtime monitoring methods have been pub-
lished in recent years, which we discuss in the related work
in Section II-C. However, these methods do not take into
account various DNN insufficiencies simultaneously. Rather,
they focus on individual error root causes (i.e., triggering

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

58 VOLUME 4, 2023

HTTPS://ORCID.ORG/0000-0002-0061-3347
HTTPS://ORCID.ORG/0000-0002-1420-1597

Automated Driving System

Sense

… …
Plan Act

DNN … …

Insufficiency-Driven DNN Error Detector

✔ ✖Monitor 1

Monitor N

Meta
Model

…Monitoring DNN
Insufficiencies

Detection of
Triggering
Conditions

FIGURE 1. Proposed architecture for an insufficiency-driven detection of DNN
errors (using the example of DNN-based perception).

conditions), like out of distribution inputs and adversarial
attacks. Furthermore, to the best of our knowledge, estab-
lished SOTIF concepts like the cause and effect chain, which
is shown in Fig. 2, have not yet been taken into account in the
context of DNN runtime monitoring. To address these gaps,
we propose in Section III an insufficiency-driven approach
for monitoring DNNs, as shown in the lower part of Fig. 1. In
Section IV, we describe the implementation and application
of our proposed error detection method on the safety-related
automated driving use case of traffic sign recognition (TSR).
Afterwards, we present and discuss our results by comparing
our error detection approach to a baseline DNN model and
to state of the art monitoring methods in Section V. Finally,
we summarize our work and draw conclusions in Section VI.

II. RELATED WORK
In this section, we discuss theoretical background and rel-
evant research for modeling, simulating, and testing of our
proposed DNN error detection approach. First, we introduce
SOTIF and the corresponding safety standard ISO 21448 in
Section II-A. Afterwards, we discuss testing in automated
driving and deep learning including relevant datasets and
toolsets in Section II-B. Finally, we summarize methods for
monitoring DNNs during runtime in Section II-C.

A. SAFETY OF THE INTENDED FUNCTIONALITY
According to the automotive safety standard ISO 21448,
SOTIF is defined as “the absence of unreasonable risk due
to a hazard caused by functional insufficiencies” [3] of the
intended functionality. In the context of automated driving,
functional insufficiencies can be insufficiencies of specifica-
tion (e.g., gaps in specification of operational design domain)
or performance insufficiencies (e.g., technical limitations of
sensors and perception algorithms). Certain conditions of
a scenario (i.e., triggering conditions) can activate these
functional insufficiencies and might provoke a hazardous
behavior of the AD system [3], [5]. Fig. 2 shows the corre-
sponding cause and effect chain and illustrates the connection
between functional insufficiency, triggering condition, and
hazardous behavior. To ensure the SOTIF, ISO 21448 defines
an iterative development process including phases of analy-
sis, design, verification, validation, and monitoring [2], [3].
Thereby it addresses the open-world problem for complex

FIGURE 2. SOTIF cause and effect chain in the context of automated driving based
on ISO 21448 [3].

systems (e.g., unknown, unsafe scenarios in automated driv-
ing), which are not sufficiently covered within the established
functional safety standard ISO 26262 [2], [3]. In doing
so, ISO 21448 augments the process of ISO 26262 [2].
Furthermore, ISO 21448 has reasonably foreseeable misuse
of the intended functionality in scope and proposes measures,
like human machine interface (HMI) improvement and driver
monitoring implementation [2], [3]. However, ISO 21448
does not go into detail about insufficiencies in context of
deep learning algorithms and related measures to address
the safety of DNNs. This is were various research activities
come in, like Willers et al. [5], who identified DNN-specific
safety concerns and corresponding mitigation measures, or
Burton et al. [6], who proposed an approach for the con-
struction of confidence arguments in the context of DNN
performance evaluation.

B. TESTING IN AUTOMATED DRIVING AND DEEP
LEARNING
Virtual testing is becoming increasingly important in auto-
mated driving due to well-known advantages like repeata-
bility, scaling, safety and costs [7], [8]. Especially with
respect to the development of DL algorithms (e.g., DNNs
for perception tasks), testing in virtual environments is an
important field [9]. Recent survey papers [7], [9] summa-
rize relevant datasets for testing of DL-based AD systems
and virtual testing environments for open- and closed-loop
simulations, like MATLAB Automated Driving Toolbox.
Using the example of traffic sign recognition task, well-
known datasets like GTSDB (German Traffic Sign Detection
Benchmark) [10] and LISA (Laboratory for Intelligent and
Safe Automobiles) [11] are publicly available. Furthermore,
Zhu et al. [12] introduced the Tsinghua-Tencent 100K dataset
with Chinese traffic signs in bad weather conditions. To test
the AD system in relevant scenarios and to derive poten-
tial failure cases, Ghodsi et al. [13] and Wang et al. [14]
recently published methods for generation of safety-critical
scenarios. However, the data-driven approach in deep learn-
ing results in major differences compared to traditional
software, which requires DL-specific testing methods on
software level. Recent survey papers [15], [16] highlight
these differences and summarize research of appropriate

VOLUME 4, 2023 59

HACKER AND SEEWIG: INSUFFICIENCY-DRIVEN DNN ERROR DETECTION IN THE CONTEXT OF SOTIF

FIGURE 3. Runtime monitoring methods address different types of triggering
conditions (using the example of traffic sign recognition).

testing methods to address DL-specific insufficiencies, like
robustness limitations and black-box characteristics. For
example, Pei et al. [17] introduced the white-box testing
framework DeepXplore to measure neuron coverage and to
uncover thousands of incorrect DNN corner case behav-
iors [16]. Furthermore, Tian et al. [18] proposed DeepTest as
a systematic testing tool, which supports derivation of erro-
neous DNN behaviors in the context of automated driving.
Additionally, various explainability methods offer the possi-
bility in testing to explain the decisions of a DL algorithm
and to analyze and understand its errors [19]. For example,
explainability methods like GradCam [20] and Occlusion
Sensitivity [21] provide saliency maps to highlight relevant
features within the input image.

C. RUNTIME MONITORING METHODS FOR DEEP
NEURAL NETWORKS
In addition to DL-specific testing activities, it is of great prac-
tical importance to monitor the tested DL algorithm during
runtime [22]. To discuss state of the art monitoring methods
in deep learning, we define a DNN as a high-dimensional
function fθ , which maps the input data x to output values in
form of, e.g., probability scores for different classes. This
mapping depends on the DNN’s learned parameters θ from
training data distribution (i.e., in distribution) [23]. However,
the DNN probability scores are often overconfident and do
not guarantee error prediction [2], [19]. Therefore, various
methods for DNN runtime monitoring have been published
in recent years, which can be assigned to three main literature
fields [22]:

• Predictive Uncertainty
• Out of Distribution Detection
• Adversarial Detection

The methods of each literature field differ in their error detec-
tion approach and address different types of error root causes
(i.e., triggering conditions) [19], [22]. Fig. 3 shows the rela-
tion between monitoring methods and triggering condition
types. For example, out of distribution (OOD) detection
methods focus on the detection of input data outside the
training data distribution [19]. They deal with a binary clas-
sification problem, whether the input is in distribution (ID)
or OOD to prevent a DNN error on input data that have never
been seen during training time [23]. Adversarial detection
methods address intentionally modified input data to fool the

DNN (i.e., adversarial attacks [24]), which are often very
close to the training data distribution with minimal targeted
modifications [22]. Similar to OOD methods, they classify
binary, if the current input is an adversarial attack or not. In
contrast, predictive uncertainty methods provide additional
uncertainty values to reflect the level of confidence for the
current DNN prediction [23]. Because predictive uncertainty
methods improve uncertainty quantification in general, they
cannot be assigned to only one triggering condition type, as
shown in Fig. 3. In the following, we describe some well-
known representatives of each literature field. More detailed
overviews of DNN runtime monitoring methods can be found
in recent survey papers [19], [22].

1) PREDICTIVE UNCERTAINTY METHODS

Well-known predictive uncertainty methods are based on
Bayes theory, like Monte Carlo (MC) dropout and Bayesian
neural networks [25]. These methods estimate an out-
put probability distribution by multiple sampling of non-
deterministic forward passes during runtime fθ,i(x) [23]. For
an MC-dropout-based monitoring, dropout layers have to be
added to the network architecture, which randomly switch
off single neurons and introduce a regularization effect dur-
ing training time. However, Gal and Ghahramani [25] argued
that if dropout is applied during runtime as well, it can be
interpreted as an approximation of a Bayesian neural network
with Bernoulli distributions as a prior [19]. Mean μ and vari-
ance σ 2 of the output distribution are calculated by using
the DNN predictions fθ,i(x) over n forward passes through
the dropout layers, as shown in (1). The variance of the
predicted class can be seen as a score Sunc of the predictive
uncertainty.

μ = 1

n
·
n−1∑

i=0

fθ,i(x); σ 2 = 1

n
·
n−1∑

i=0

(
fθ,i(x) − μ

)2 (1)

Furthermore, Lakshminarayanan et al. [26] proposed Deep
Ensembles, which is another sampling-based approach for
estimation of the DNN output probability distribution. In
contrast to the MC-dropout method, the sampling procedure
is not performed through the dropout layers, but through
multiple DNNs, which differ in their underlying training
process (i.e., their weights θ) or additionally in their archi-
tecture. The output probability distribution over n samples
can be calculated the same way as with the MC-dropout
method by (1). One drawback of these sampling-based meth-
ods are their computational overload due to the fact that
multiple forward passes are required to achieve an accurate
approximation of the output probability distribution [19].

2) OUT OF DISTRIBUTION DETECTION METHODS

Instead of estimating a probability distribution for the cur-
rent DNN prediction, OOD detection methods deal with a
binary classification problem, whether the current input is
inside or outside the training data distribution. For example,
Cheng et al. [27] proposed a method for monitoring neuron

60 VOLUME 4, 2023

activation of the hidden DNN layers. The neuron activa-
tion patterns in the last hidden layer are stored with Binary
Decision Diagrams (BDD) [28] during design phase [23].
These patterns are built up with Boolean variables, which
indicate if the monitored neurons are active or not. To detect
anomalies, the neuron activation pattern is compared to the
stored patterns during runtime by measuring the Hamming
distance. Furthermore, Hendrycks et al. [29] proposed Outlier
Exposure, where the training process of the DNN is aug-
mented with OOD samples from auxiliary datasets (e.g., 80
Million Tiny Images [30]). The DNN is trained on the orig-
inal dataset with original labels DID(x, y) and additionally
an OOD dataset DOOD(x′). The authors modified the loss
function with an additional term, which forces the DNN
to output a high entropy score for the added OOD sam-
ples. For classification tasks, Lee et al. [31] introduced a
modified loss function, which includes the Kullback-Leibler
(KL) divergence [32] to force the DNN fθ to be closer at
the uniform distribution U for OOD inputs x′ with a penalty
parameter λ > 0, as shown in (2). Consequently, the OOD
score SOOD for the current DNN prediction can be estimated
by calculating the entropy of the DNN prediction, according
to (3).

min
θ

[
EDID(x,y)

[− logfθ (x)
]

+λ · EDOOD(x′)
[
KL

(U(y)‖fθ
(
x′

))]]
(2)

SOOD = H
(
fθ (x)

)
. (3)

3) ADVERSARIAL DETECTION METHODS

To address adversarial perturbations within input data during
runtime, Meng and Chen [33] introduced the autoencoder-
based method MagNet, which is trained on the original
dataset. The input samples are processed through the
autoencoder, which compresses and reconstructs the input.
Afterwards, adversarial inputs are detected by a high recon-
struction loss between original and reconstructed input.
Additionally, the reconstructed input is processed through
the DNN and shifts within the DNN prediction between the
original and reconstructed input are measured for adversar-
ial detection as well. Furthermore, Xu et al. [34] proposed
Feature Squeezing, which is based on DNN predictions on
squeezed input images. Therefore, a reduced color depth
image and a spatial smoothed image are generated from the
original input. The DNN predictions on the two squeezed
images are compared with the DNN prediction on the orig-
inal input image. If the difference Sadv between the outputs
exceeds a threshold, the input is classified as an adversar-
ial attack. To measure the difference between the original
prediction fθ (x) and the squeezed prediction fθ (xsqueezed),
the �1-norm can be taken into account [34], as shown
in (4).

Sadv = ∥∥fθ (x) − fθ
(
xsqueezed

)∥∥
1 (4)

III. MODELING OF AN INSUFFICIENCY-DRIVEN ERROR
DETECTOR FOR DEEP NEURAL NETWORKS
In this section, we describe the development of a general
model for DNN error detection in the context of safety of
the intended functionality, as shown in Fig. 1. Therefore,
we take into account the SOTIF cause and effect chain from
Fig. 2 and the literature fields of DNN runtime monitoring
from Section II-C. First, we create an error root cause model
for DNNs with DNN-specific insufficiencies and triggering
conditions in Section III-A. Afterwards, we derive general
DNN monitor categories and link them to the insufficiencies
in Section III-B. Finally, we combine the monitor categories
with a meta model, based on stack learning technique, in
Section III-C. This enables a general approach for monitoring
DNNs, which addresses safety-related DNN insufficiencies
and considers various types of DNN errors related to in
distribution, out of distribution, and adversarial input data.

A. CREATION OF AN ERROR ROOT CAUSE MODEL FOR
DEEP NEURAL NETWORKS
Willers et al. [5] recently defined nine DNN-specific safety
concerns leading to insufficiencies, like data distribution shift
to real world, distributional shift over time, incomprehensi-
ble behavior, unknown behavior in rare critical situations,
unreliable confidence information, brittleness, dependence
on labeling quality, inadequate separation of test and train-
ing data, and insufficient consideration of safety metrics.
Cheng et al. [35] identified core properties and correspond-
ing insufficiencies of DNNs, which have to be addressed in
safety context, like robustness, interpretability, completeness,
and correctness. Dataset limitations as well as limitations
regarding robustness, explainability, and uncertainty are also
highlighted by Houben et al. [36].
In the following, we summarize these results in six gen-

eral DNN insufficiencies and categorize them by using the
SOTIF terms of performance insufficiency and insufficiency
of specification, as shown in Table 1. Furthermore, we make
a distinction between data- and model-related insufficiencies.
Whereas data-related insufficiencies refer to the underlying
datasets, which are used in DNN development process for
training, validation, and testing, model-related insufficiencies
refer to limitations of the trained DNN model. Considering
the DNN-specific triggering condition types and the catego-
rized insufficiencies, we create an error root cause model
in the context of deep learning. Fig. 4 shows the error
root cause model and illustrates the relation between DNN-
specific functional insufficiencies, triggering conditions, and
DNN errors. In distribution, out of distribution, and adver-
sarial inputs can activate corresponding DNN insufficiencies
and lead to a DNN error (i.e., false positive or false negative
prediction). If the DNN error is not detected on software
level, it can contribute to a hazardous behavior on vehi-
cle level. To prevent DNN error propagation, we propose
an error detection approach on software level, which takes
into account the DNN insufficiencies to detect all types of
DNN-specific triggering conditions.

VOLUME 4, 2023 61

HACKER AND SEEWIG: INSUFFICIENCY-DRIVEN DNN ERROR DETECTION IN THE CONTEXT OF SOTIF

TABLE 1. Functional insufficiencies of DNNs in the context of SOTIF.

Environment

Functional
Insufficiency

Triggering
Condition

ErrorO
R

O
R

Erroneous
Features in

Input

O
R

O
R

activates

DNNLack of Data
Completeness

Lack of Data
Quality

Lack of Model
Robustness

Lack of Model
Interpretability

In Distribution

Out of
Distribution

Adversarial

Lack of Model
Correctness

Lack of Model
Uncertainty

Representation

Insufficiency
of

Specification

Performance
Insufficiency

FIGURE 4. Error root cause model for DNNs: Triggering conditions in input data
activate functional insufficiencies of the DNN and lead to an error.

B. DERIVATION OF GENERAL MONITOR CATEGORIES
TO ADDRESS DNN INSUFFICIENCIES DURING RUNTIME
To enable a general error detection approach, which
addresses the safety-related DNN insufficiencies in Table 1,
appropriate monitoring methods have to be provided for each
insufficiency. Therefore, we derive five general monitor cat-
egories, as shown in the upper part of Fig. 5. Each monitor
category should provide an error score Si ∈ [0, 1], which

DNN Insufficiency
Insufficiency of Specification Performance Insufficiency

Out of Distribution
Input

Adversarial
Input

In Distribution
Input

DNN Monitor Category

Triggering Condition

Lack of Model
Uncertainty

Representation

Lack of Data
Completeness

Lack of
Data Quality

Lack of Model
Interpretability

Lack of
Model

Correctness

Lack of
Model

Robustness

Meta Model

Saliency
Monitor

Uncertainty
Monitor

OOD
Monitor

Plausibility
Monitor

Adversarial
Monitor

FIGURE 5. DNN monitor categories address safety-related insufficiencies of DNNs
for detection of different triggering condition types.

reflects the error probability with respect to the observed
insufficiency. In the following, we describe these monitor
categories and make suggestions for their implementation.
We introduce OOD-Monitor category, to address insuf-

ficiencies regarding data completeness. For implementation
of the OOD monitor, well-known methods from the OOD
detection literature field, can be used to calculate an OOD
score SOOD. To address insufficiencies regarding DNN inter-
pretability and dataset quality (e.g., data bias), we introduce
Saliency Monitor category, which includes runtime applica-
tion of explainability methods for saliency map generation.
Similarity metrics [37] can be used to estimate a saliency
score Ssal, by quantifying how much the DNN is focusing
on the right location within input image or the right object
artifact. Additional knowledge about the complex task can
be used to build up a rule set for cross-checking the DNN
prediction, which we cover in Plausibility Monitor cate-
gory. These plausibility checks address the lack of DNN
correctness in general. For example, within camera-based
computer vision, comparisons over different sensor modal-
ities (e.g., radar, lidar) or non-DL-based software (e.g.,
conventional computer vision techniques, like Histogram
of Oriented Gradients [38], [39]) are applicable for esti-
mation of a plausibility score Splau to quantify conformity
with expected object attributes like size, color, and shape.
With Adversarial Monitor category, we cover robustness
limitations of the DNN with respect to small adversarial
perturbations by using methods from the adversarial detec-
tion literature field to calculate an adversarial score Sadv.
Finally, we cover insufficiencies regarding DNN uncertainty
representation with Uncertainty Monitor category, which
can be implemented with well-known predictive uncertainty
methods to estimate an uncertainty score Sunc.

C. RUNTIME DETECTION OF TRIGGERING CONDITIONS
WITH A COMBINING META MODEL APPROACH
To consider the DNN insufficiencies during runtime, we
combine the results of the individual monitor categories from

62 VOLUME 4, 2023

Open Loop Simulation
(MATLAB Simulink)

3D Driving Scenario
(MATLAB RoadRunner)

Traffic Sign
Detection

Traffic Sign
Classification

DNN

Insufficiency-Driven
DNN Error Detector

Scenario
Simulation

clipped
bounding box

confidence
score

✔✔ ✖

ID
OOD

Adv.

FIGURE 6. Experimental set-up in MATLAB Simulink and MATLAB RoadRunner
environment for training and testing of the insufficiency-driven DNN error detector.

Section III-B, as shown in the lower part of Fig. 5. In doing
so, we introduce a meta model M to estimate the probabil-
ity of a triggering condition PTC depending on the monitor
category outputs Si, according to (5).

PTC = M(
SOOD, Ssal, Splau, Sadv, Sunc

)
(5)

We propose to optimize the meta model with stack learn-
ing technique on the monitor category outputs by using a
training dataset that contains all types of triggering condi-
tions (i.e., in distribution, out of distribution, and adversarial
inputs). This enables the meta model to exploit the different
strengths of the individual monitor categories and to cover
the problem space of DNN insufficiencies and triggering
conditions. Afterwards, the optimized meta model can be
used for runtime detection of triggering conditions.
Various machine learning architectures are applicable for

implementation of the meta model M, like logistic regres-
sion (LR), naive Bayes (NB), k-nearest neighbors (KNN),
random forest (RF), gradient-boosted trees (GBT), support
vector machines (SVM), and feed forward neural networks
(FFNN). We implement these architectures in Section IV
on TSR use case and compare them in Section V by con-
sidering the trade-off between interpretability and detection
performance. For example, a highly interpretable meta model
approach, based on logistic regression, can be implemented
according to (6) and (7).

PTC,LR = 1

1 + e−z
(6)

z = β0 + β1 · SOOD + β2 · Ssal
+ β3 · Splau + β4 · Sadv + β5 · Sunc (7)

However, to utilize stack learning for training of the meta
model M, the monitor categories have to be sufficiently
uncorrelated in their predictions, which has to be veri-
fied with appropriate metrics like variance inflation factor
(VIF) [40].

IV. EXPERIMENTAL SET-UP AND IMPLEMENTATION ON
AUTOMATED DRIVING USE CASE OF TRAFFIC SIGN
RECOGNITION
In this section, we implement the proposed error detection
method from Section III on the safety-related automated driv-
ing use case of traffic sign recognition by using MATLAB
Simulink and MATLAB RoadRunner toolset, as shown in

FIGURE 7. Images of the 8 speed sign classes in GTSRB dataset [43].

Fig. 6. Therefore, we adapt the general monitor categories
and the meta model on the TSR use case and implement
them in model-based MATLAB Simulink language. The
overall model is then embedded in a MATLAB Simulink
open loop simulation, which contains a self-developed TSR
function consisting of DNN-based traffic sign detection and
classification components. We create diverse 3D traffic sign
scenarios with MATLAB RoadRunner and feed the simu-
lated camera data into the open loop simulation. Our error
detection approach is implemented to supervise the baseline
DNN for the traffic sign classification task. In doing so, we
treat the DNN as a black box with a non-modifiable archi-
tecture and inaccessible inner states to increase flexibility in
application. Therefore, we focus on the DNN input (clipped
bounding box with traffic sign image from traffic sign detec-
tion) and the DNN output (confidence scores for traffic sign
classes) as input data for the error detector.

A. TRAFFIC SIGN DETECTION
For the traffic sign detection task, we train a YOLO v2 [41]
object detection algorithm on the German Traffic Sign
Detection Benchmark (GTSDB) dataset [10]. The dataset
comprises 900 images with a resolution of 1360×1024 pix-
els in RGB format and contains 1206 German traffic signs
with corresponding class and bounding box labels. Training,
validation, and test dataset (300 images per dataset) are taken
from the full dataset. The feature extraction network of the
YOLO v2 algorithm is based on a MobileNetV2 [42] archi-
tecture with input size 700×700×3 for RGB images. After
100 epochs of training with Adam optimization algorithm
(learning rate = 0.001, mini batch size = 2) a mean average
precision of 91% (intersection over union = 0.5) on the test
dataset is reached.

B. TRAFFIC SIGN CLASSIFICATION (BASELINE DNN)
For the classification task, we train a DNN with 5-layer
convolutional neural network (CNN) architecture (3 con-
volutional layers, 2 fully connected layers, softmax out-
put) on the speed signs within the German Traffic Sign
Recognition Benchmark (GTSRB) [43]. Therefore, 16.946
images with 8 classes of speed signs are extracted of the full
GTSRB dataset (51.840 images), as shown in Fig. 7. The

VOLUME 4, 2023 63

HACKER AND SEEWIG: INSUFFICIENCY-DRIVEN DNN ERROR DETECTION IN THE CONTEXT OF SOTIF

extracted speed sign dataset is then divided into an approx-
imately 50%/25%/25% training, validation, and test split.
Afterwards, we resize the images to 32×32 RGB resolution
and feed them into the CNN, whereas features within the
convolutional layers are extracted by 3×3 VGG-like (Visual
Geometry Group) [44] kernels. Each convolutional layer is
followed by ReLU activation, batch normalization, and max
pooling (2 × 2) layers. After 50 epochs training with Adam
optimization algorithm (learning rate = 0.005, mini batch
size = 128) an accuracy of 95% is reached on the test
dataset. Depending on the maximum softmax output fθ,max

of the baseline DNN, we calculate the triggering condition
probability PTC,DNN on input data x according to (8).

PTC,DNN = 1 − fθ,max(x) (8)

C. 3D TRAINING AND TEST SCENARIOS
To simulate entire prediction tracks of various triggering
conditions, we create diverse 3D scenarios for TSR use
case in MATLAB RoadRunner environment. In doing so,
we design a straight street with different traffic signs, which
are separated in a difference of 100m to each other. The tra-
jectory of the ego vehicle with a mounted camera in the front
grill (height relative to road level: 0.3m) is defined with a
constant speed of 80 km/h by using MATLAB Automated
Driving Toolbox. To generate the camera data, we simulate
the 3D scenario with the ego vehicle trajectory. Afterwards,
we export the simulated camera data with resolution of
1024 × 900 in RGB format in the MATLAB Simulink
open loop simulation. The camera data are then resized to
700×700 RGB resolution and fed into the traffic sign detec-
tion algorithm. For training and testing of the meta model,
we compile two independent camera simulations based on
the described core scenario. To produce the required dissim-
ilarity between training and test data, the core scenario is
slightly modified with respect to traffic signs, weather, and
background features (e.g., trees).
We model Out of Distribution Inputs with traffic sign

classes of the GTSRB dataset that are not in the training
data distribution of the baseline DNN (i.e., no speed signs).
We consider these classes as out of distribution due to the
fact, that they have never been seen during training time. To
generate Adversarial Inputs, we apply Projected Gradient
Descent (PGD) [45] method, which is an iterative variant of
Fast Gradient Sign Method (FGSM) [24], on in distribution
traffic sign data (i.e., speed signs in GTSRB). According
to (9), we calculate a FGSM perturbation �(x, xadv) by using
the gradient of the training loss function L of the DNN
model fθ and ground truth y. We perform 100 FGSM steps
with step size α = 1 (random initialization) and limit the
maximal �∞-perturbation to ε = 0.2 (51/255) by clipping
values outside the perturbation range, according to (10).

xadv = x+ α · sign
(
∇xL

(
fθ (x), y

))
(9)

xt+1
adv = Clipε

{
FGSM

(
xtadv

)}
(10)

Algorithm 1 Occlusion Sensitivity
Input:
x: original input image
fθ : DNN
N: number of samples
Output:
Smap: saliency map
1: for n = 1 : N
2: Mrand = CreateRandomMask(x)
3: xperturbated = x�Mrand

4: ypred = fθ (xperturbated)
5: Smap = Smap +Mrand · ypred
6: end
7: Smap = Smap

N
8: Return Smap

In contrast to out of distribution and adversarial inputs, erro-
neous In Distribution Inputs do not have to be modeled
explicitly. They are already included in the simulation data
and are indicated by false DNN predictions on in distribution
traffic signs.

D. IMPLEMENTATION OF THE MONITOR CATEGORIES
For implementation of some monitor categories, different
runtime monitoring methods from the literature fields in
Section II-C have to be chosen. Note that the decision cri-
terion for these methods is based on popularity and citation
frequency. A complete benchmark on the use case would
go beyond the scope of this work. Rather, the benefit of
their combination within the meta model approach, which
address different DNN insufficiencies simultaneously during
runtime, should be shown.
We treat the baseline DNN as a black box and consider

this boundary condition in the following specification of the
monitor categories. We implement the Out of Distribution
Monitor with an Outlier Exposure [29] approach. In doing
so, we train a similar DNN architecture on ID data (i.e., speed
signs in GTSRB dataset) as well as on OOD data with the
help of the modified loss function described in (2) by using a
penalty parameter of λ = 0.5. For OOD data, 50.000 entities
are randomly sampled from the 80 Million Tiny Images [30]
dataset, which contains 80 million diverse color images in
32 × 32 resolution. We implement the Saliency Monitor
with Occlusion Sensitivity [21] according to Algorithm 1
to calculate saliency maps during runtime. We estimate the
saliency maps by taking n = 500 samples per input image
with a saliency map resolution of 8 × 8 pixels. Next, we
interpret the saliency maps by checking if the DNN is cur-
rently focusing on relevant features within the detected traffic
sign. Therefore, we average saliency maps for each traf-
fic sign class on the GTSRB dataset (only true positive
predictions) for runtime comparison to the online saliency
map estimation by Euclidean distance, as shown in Fig. 8.
For the Plausibility Monitor, we define a color- and shape-
based plausibility check, which is implemented with a red

64 VOLUME 4, 2023

Input Image

Saliency Monitor

Plausibility Monitor

-
Saliency
Score

Plausibility
Scoreo

o
o

o

o
o

xx
x

xx

HSV-Filter for
Color

HOG-Feature
Extraction for Shape

SVM-based
Classification

Comparison to Offline Saliency
Map by Euclidean Distance

Occlusion-based Saliency
Map Calculation

2

FIGURE 8. Saliency monitor calculates saliency maps for current DNN prediction
and interprets the results, whereas plausibility monitor performs color- and
shape-based plausibility checks.

color detection in hue-saturation-value (HSV) color space
and a circular shape detection with Histogram of Oriented
Gradients (HOG) method. We fine-tune the HSV interval
for red color detection on GTSRB dataset. The HOG fea-
tures are classified with a support vector machine [39],
as shown in Fig. 8. Training of the HOG model and the
SVM is performed on the GTSRB dataset, whereas training
images are labeled with circular shape vs. no circular shape.
The Adversarial Monitor is implemented with Feature
Squeezing [34], whereas reducing color depth of the input
image from original 8-bit (per RGB channel) to 5-bit and
performing spatial smoothing with a median filter (2 × 2
sliding window). To estimate the difference between DNN
prediction on original and squeezed images, we apply the
�1-norm on the DNN predictions, as shown in (4). We imple-
ment the Uncertainty Monitor with a Deep Ensembles
approach [26]. In doing so, ten identical DNN classifica-
tion architectures (Section IV-B) are trained on the GTSRB
dataset with different initial weights. During runtime, the
uncertainty is estimated by calculating the variance of the
ten DNN predictions, according to (1).

E. IMPLEMENTATION OF THE META MODELS
Finally, we implement different meta model architectures for
triggering condition detection. We optimize the meta models
on training data (from training scenario in Section IV-C) to
classify the results of the implemented monitor categories.
For optimization of the LR meta model, we use a max-
imum likelihood estimation with an iteratively reweighted
least squares algorithm. The optimized LR meta model is
then used for detection of triggering conditions on test data
(from test scenario in Section IV-C) by estimating triggering
condition probability PTC. In addition to logistic regression,
we optimize further classification methods, like naive Bayes
(Gaussian kernel), k-nearest neighbors (50 neighbors), ran-
dom forest (100 trees), gradient-boosted trees with XGBoost
algorithm [46] (100 trees, max. tree depth: 9, learning rate:
0.15), support vector machine (linear kernel), and feed for-
ward neural network (2 layers with 15 neuron each) on
training data.

TABLE 2. Confusion matrix for detection of triggering conditions.

V. RESULTS AND DISCUSSION
In this section, we present and discuss our results related
to the error detection performance of baseline DNN, moni-
tor categories, and meta models. Table 2 shows our adapted
confusion matrix for the task of triggering condition detec-
tion. The diagonal entries (TP, TN) indicate that a prediction
of the DNN error detector (i.e., triggering condition vs. safe
input) fits to the ground truth, whereas entries on the side
diagonal indicate misclassification (FP, FN). We label our
training and test data from Section IV-C according to the
baseline DNN prediction: False DNN predictions are labeled
as triggering conditions, whereas correct DNN predictions
are labeled as safe inputs.
First, we analyze the baseline DNN and the individ-

ual monitor categories with respect to their detection
performance on different triggering condition types in
Section V-A. Finally, we compare the different meta model
architectures in Section V-B under consideration of the
trade-off between interpretability and detection performance.

A. RESULTS AND DISCUSSION FOR MONITOR
CATEGORIES
We analyze the performance of the baseline DNN and the
monitor categories on the test data from test scenario. The
test dataset consists of 72 traffic sign tracks (number of
test images N = 1758) with equally distributed in distribu-
tion, out of distribution, and adversarial inputs (∼ 24 traffic
sign images per track). Fig. 9(a) shows a receiver operating
characteristic (ROC) diagram, which indicates the detection
performance of the baseline DNN (bold red line) and the
individual monitor categories (dashed lines). The illustrated
ROC curves arise by applying true positive rate over false
positive rate with variable detection threshold t ∈ [0, 1] over
the whole test dataset. ROC curves at the top left demonstrate
strong detection performance, whereas random classification
is characterized by a straight line with a slope of 1. It is
shown that every monitor category indicates triggering con-
ditions due to the fact that all ROC curves lie above the
random classifier baseline (dotted black line). The baseline
DNN’s detection performance lies in the lower range of
the implemented monitor categories. Highest ROC curves
are achieved by out of distribution and uncertainty mon-
itor. Table 3 shows a more detailed view on the detection
performance. We analyze each monitor category with respect
to the different triggering condition types by taking AUC
(area under ROC curve) and TPRi (true positive rate at i per-
cent false positive rate) as performance metrics, according

VOLUME 4, 2023 65

HACKER AND SEEWIG: INSUFFICIENCY-DRIVEN DNN ERROR DETECTION IN THE CONTEXT OF SOTIF

FIGURE 9. Triggering condition detection performance on test dataset, shown by ROC diagram. (a) Overall performance of monitor categories, LR & GBT meta model, and
baseline DNN. (b) Performance of LR meta model and baseline DNN on different triggering condition types (ID, OOD, Adversarial).

TABLE 3. Performance evaluation of baseline DNN and monitor categories on test
dataset.

to (11) and (12).

TPR = TP

TP + FN
; FPR = FP

FP + TN
(11)

AUC =
∫ 1

0
ROC(x) dx (12)

As expected, each monitor category has different strengths
and weaknesses with respect to in distribution, out of

distribution, and adversarial inputs. Whereas the Deep
Ensembles approach of uncertainty monitor performs best
on in distribution data, the Outlier Exposure approach of
OOD monitor has the highest AUC value and TP rates
on input data that lie outside the training data distribution.
However, it can be seen that the Deep Ensemble approach
improve uncertainty quantification in general due to its high
AUC values and TP rates for in distribution, out of distribu-
tion, and adversarial data (highest overall AUC). In contrast,
OOD monitor achieves good generalization behavior for in
distribution and out of distribution inputs, whereas adversar-
ial detection performance is proportionally low. This can be
explained by the training process of Outlier Exposure, which
only covers OOD inputs instead of both, OOD and adver-
sarial input data. As expected, adversarial monitor, based
on Feature Squeezing, achieves good performance on adver-
sarial attacks, especially at low false positive rates (highest
TPR5). Nevertheless, uncertainty monitor has the highest
AUC value (also highest TPR10 and TPR20) for intention-
ally modified inputs. Plausibility monitor achieves a high
AUC value and high TP rates on out of distribution data.
Traffic signs that lie outside the training data distribution
can be detected with low false positive rates due to color
and shape anomalies. However, these plausibility checks are
not suitable to detect adversarial attacks, which is shown by
the low TP rates and the AUC value close to the random
classifier baseline (AUC ≈ 0.5). The intentional modifica-
tions within the adversarial attacks are too small for a simple
color-based detection approach. Furthermore, the plausibil-
ity checks achieve good performance above the random
classifier baseline for in distribution data, despite correct
shape and color features of in distribution traffic signs. This
can be explained by poorly clipped bounding boxes (i.e.,
shape anomalies due to insufficiencies of the object detec-
tion algorithm), which lead to errors of the baseline DNN.
These anomalies are detected by the shape-based plausibility

66 VOLUME 4, 2023

TABLE 4. Logistic regression analysis on training dataset.

checks accordingly. The implemented saliency checks, based
on Occlusion Sensitivity, provide indications for all types
of triggering conditions (AUC > 0.5). However, the AUC
values and TP rates of saliency monitor are in the lower
range compared to the other monitor categories. This can be
explained by the similarity of the saliency maps for different
traffic sign classes, which makes metric-based differentiation
difficult.

B. RESULTS AND DISCUSSION FOR META MODELS
We optimize the meta models (LR, NB, KNN, RF, GBT,
SVM, FFNN) on training data from training scenario. The
training dataset consists of 144 traffic sign tracks (number of
training images N = 3643) with equally distributed in dis-
tribution, out of distribution, and adversarial inputs (∼ 25
traffic sign images per track). Since all variance inflation
factors (VIF) on training data are lower than 10, we assume
that the monitor categories are sufficiently uncorrelated in
their predictions to utilize stack learning for meta model
training [40]. Table 4 shows the parameters of the LR meta
model, which we optimized on the training dataset. All
predictor variables are significant (pi < 0.05). The high-
est coefficients βi and z-values are given for uncertainty
score Sunc, OOD score SOOD, and adversarial score Sadv.
Furthermore, the highest VIFs are related to OOD score and
plausibility score Splau, which can be explained by the fact
that both monitor categories mainly address out of distri-
bution errors. In Table 5, all meta model architectures are
summarized with respect to their detection performance on
in distribution, out of distribution, and adversarial test data
by using AUC and TPR metrics. It can be seen that the
AUC values and true positive rates of all meta models are
significantly higher than those of the baseline DNN and
the individual monitor categories from Table 3. The GBT
meta model, which we optimized with XGBoost algorithm,
achieves the highest AUC value on the overall test dataset.
However, Fig. 9(a) shows that the ROC curve of the inter-
pretable LR meta model (bold blue line) is close to the ROC
curve of the more complex GBT meta model (bold yellow
line), which can be explained by the linear relationship of
monitor scores Si and logit transformation of triggering con-
dition probability PTC. The AUC value of GBT meta model is
approximately 1% higher than the AUC value of the LR meta
model on the overall test dataset. However, both meta model
ROC curves lie significantly above the baseline DNN ROC

TABLE 5. Performance evaluation of meta models on test dataset.

curve (bold red line), as shown in Fig. 9(a). Thus, the meta
model approach, based on stack learning, covers for every
detection threshold t ∈ [0, 1] more triggering conditions than
the baseline DNN. Table 5 shows that the performance of
the other meta model architectures are also within the range
of LR and GBT meta model with respect to their TPR and
AUC values. For example, RF meta model achieves simi-
lar performance as the GBT meta model on in distribution
and out of distribution data and exceeds GBT performance
on adversarial input data at low false positive rates (highest
TPR5). FFNN meta model achieves highest TPR20 rates on
the overall test dataset. Its lower AUC value can be explained
by a flatter rising ROC curve compared to RF and GBT
meta model (lower TPR5 and TPR10). Whereas KNN meta
model performs better than the LR meta model (overall AUC
value 0.4% higher), the SVM meta model with linear kernel
achieves as expected approximately the same performance
as logistic regression for all triggering condition types. The
NB meta model has the lowest AUC values of the tested
meta model architectures for all triggering condition types,
which can be attributed to a stagnation of the ROC curve for
in distribution and out of distribution inputs at higher false
positive rates (TPR10 = TPR20). Fig. 9(b) shows the ROC
curves of LR meta model and baseline DNN with respect

VOLUME 4, 2023 67

HACKER AND SEEWIG: INSUFFICIENCY-DRIVEN DNN ERROR DETECTION IN THE CONTEXT OF SOTIF

FIGURE 10. Separation ability between safe inputs and triggering conditions on overall test dataset, shown by histogram. (a) Baseline DNN and uncertainty monitor (Deep
Ensembles). (b) LR and GBT meta model.

to in distribution, out of distribution and adversarial data.
The error detection rates of our approach are for all trigger-
ing condition types above the baseline DNN performance. It
can be seen that adversarial errors are the most difficult to
detect for both, LR meta model and baseline DNN. However,
the AUC value of the LR meta model is 20.5% higher on
adversarial test data compared to the baseline DNN. In and
out of distribution errors are easier to detect than adversarial
attacks: At a fixed FP rate of 20%, all DNN errors on in and
out of distribution inputs are covered by the LR meta model.
In contrast to the baseline DNN, the LR meta model detects
out of distribution errors proportionately better than in dis-
tribution errors (AUCOOD > AUCID). This can be ascribed
to the high AUC values of the OOD detection methods on
out of distribution data, which we implemented with Outlier
Exposure and color- as well as shape-based plausibility
checks. Furthermore, the relation between triggering condi-
tion types in training data determines detection performance
for in distribution, out of distribution, and adversarial errors,
which has to be considered in training data collection. Most
DNN errors on training data are related to out of distribution
inputs, thus the meta model is optimized more in direction
of out of distribution detection performance. Fig. 10 shows
the separation ability between safe inputs and triggering con-
ditions of baseline DNN, uncertainty monitor category, and
meta models (LR and GBT) on the overall test dataset. In the
context of deep learning, triggering conditions are usually
hard to distinguish from safe input data. The baseline DNN
fails at the prediction of reliable probability scores for trig-
gering conditions, as shown in the upper part of Fig. 10(a).
Many triggering conditions (≈ 50%) are wrongly assigned
with a low error score (PTC,DNN < 0.1) by the baseline DNN.
The uncertainty monitor based on Deep Ensembles (monitor
category, which achieves highest overall AUC), in the lower
part of Figure 10(a), achieves better separation between safe
inputs and triggering conditions than the baseline DNN.

However, the Deep Ensembles method predicts most trig-
gering conditions (≈ 82%) within a wide probability range
between 0.2 and 0.8. In contrast, Fig. 10(b) shows that
the meta models are able to clearly distinguish between
safe inputs and triggering conditions. Both meta models
predict high error scores (PTC,LR > 0.9, PTC,GBT > 0.9)

for most triggering conditions (LR: ≈ 59%, GBT: ≈ 71%)

and predict low error scores (PTC,LR < 0.1, PTC,GBT < 0.1)

for most safe inputs (LR: ≈ 75%, GBT: ≈ 85%). This can
be explained by the fact that the insufficiency-related mon-
itor categories are not highly correlated in their predictions
(VIFi < 10). Thus, stack learning combines their different
strengths and increases performance in the context of trigger-
ing condition detection. However, the increase in detection
performance compared to the baseline DNN and to state of
the art monitoring methods, like Deep Ensembles, is asso-
ciated with an increase in runtime computing effort due
to the usage of multiple monitoring methods in parallel.
Taking into account the low complexity and the comparable
performance of the LR meta model approach (AUCLR is 1%
lower than AUCGBT), logistic regression represents a good
trade-off between performance and interpretability for our
implemented safety-related use case. Due to the fact that
the meta model performance depends on the use case and
the implemented monitor categories, an application-specific
assessment is required in the context of method adaption.

VI. CONCLUSION
Reliable detection of environmental error root causes (i.e.,
triggering conditions) and related DNN errors is a crucial part
of automated driving systems. In this work, we proposed a
general error detection approach for DNNs, which addresses
various safety-related DNN insufficiencies simultaneously
during runtime. We developed our approach, taking into
account concepts of the automotive safety standard ISO
21448 (SOTIF). Therefore, we created an error root cause

68 VOLUME 4, 2023

model with DNN-specific insufficiencies and triggering con-
ditions. Afterwards, we derived general monitor categories
to address the identified DNN insufficiencies during run-
time. In doing so, we considered the main literature fields
of DNN runtime monitoring. Finally, we introduced a meta
model, based on stack learning, that combines the results of
the individual monitor categories for an insufficiency-driven
error detection. We applied our error detection approach on
traffic sign recognition use case in MATLAB Simulink sim-
ulation by using self-created 3D scenarios with MATLAB
RoadRunner. Our simulation covered all types of trigger-
ing conditions, like in distribution inputs, out of distribution
inputs, and adversarial attacks. In performance evaluation,
we showed that each monitor category has different strengths
and weaknesses with respect to the different triggering con-
dition types. Furthermore, we optimized various meta model
architectures like logistic regression, naive Bayes, k-nearest
neighbors, random forest, support vector machine, gradient
boosted trees (XGBoost), and feed forward neural network
to predict an error probability based on the monitor cat-
egory outputs. We showed that the meta models are able
to clearly distinguish between safe input data and all types
of triggering conditions in contrast to a baseline DNN and
to state of the art DNN monitoring methods. Furthermore,
the interpretable meta model architecture, based on logistic
regression, achieves similar error detection performance as
more complex models like gradient boosted trees and feed
forward neural network due to linear relationship between
the monitor category predictions and the logit transfor-
mation of triggering condition probability. However, the
performance of the meta models is influenced by the use case
and the implemented monitor categories, which requires an
application-specific assessment of meta model architectures.
Furthermore, care must be taken that the implemented moni-
tor categories are not highly correlated in their predictions to
utilize stack learning. Additionally, data balance in training
data is important to achieve optimal detection performance
with respect to different triggering condition types. Finally,
the available computing capacity on target hardware has to
be taken into account due to the usage of multiple monitoring
methods in parallel. In the future work, we plan to reduce
the needed computing effort by minimizing the amount of
sample-based approaches. Furthermore, an extension of the
3D driving scenarios with further OOD data (e.g., U.S. and
Chinese traffic signs) and adversarial data (e.g., sticker-based
adversarial attacks) is planned. We also plan field studies on
automated driving target hardware for traffic sign recogni-
tion use case to evaluate the runtime performance of our
approach on live data.

ACKNOWLEDGMENT
Thanks to Heiko Möckel, Nico Kem, Markus Baumeister,
and Marek Kowalczyk for inspiring discussions during the
research activities.

REFERENCES
[1] Road Vehicles—Safety and Cybersecurity for Automated Driving

Systems—Design, Verification and Validation, Standard ISO/TR 4804,
2020.

[2] S. Mohseni, M. Pitale, V. Singh, and Z. Wang, “Practical solutions
for machine learning safety in autonomous vehicles,” Dec. 2019,
arXiv:1912.09630.

[3] Road Vehicles—Safety of the Intended Functionality, Standard ISO
21448, 2022.

[4] Road Vehicles—Functional Safety, Standard ISO 26262, 2018.
[5] O. Willers, S. Sudholt, S. Raafatnia, and S. Abrecht, “Safety concerns

and mitigation approaches regarding the use of deep learning in safety-
critical perception tasks,” Jan. 2020. arXiv:2001.08001.

[6] S. Burton, L. Gauerhof, B. B. Sethy, I. Habli, and R. Hawkins,
“Confidence arguments for evidence of performance in machine learn-
ing for highly automated driving functions,” in Computer Safety,
Reliability, and Security, vol. 11699, 2019, pp. 365–377.

[7] P. Ji, L. Ruan, Y. Xue, L. Xiao, and Q. Dong, “Perspective, survey
and trends: Public driving datasets and toolsets for autonomous driving
virtual test,” Jun. 2021, arXiv:2104.00273.

[8] R. Dona and B. Ciuffo, “Virtual testing of automated driving
systems. A survey on validation methods,” IEEE Access, vol. 10,
pp. 24349–24367, 2022.

[9] Y. Kang, H. Yin, and C. Berger, “Test your self-driving algorithm:
An overview of publicly available driving datasets and virtual testing
environments,” IEEE Trans. Intell. Veh., vol. 4, no. 2, pp. 171–185,
Jun. 2019.

[10] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German traf-
fic sign detection benchmark,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Dallas, TX, USA, Aug. 2013, pp. 1–8.

[11] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, “Vision-based traf-
fic sign detection and analysis for intelligent driver assistance systems:
Perspectives and survey,” IEEE Trans. Intell. Transp. Syst., vol. 13,
no. 4, pp. 1484–1497, Dec. 2012.

[12] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-sign
detection and classification in the wild,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 2110–2118.

[13] Z. Ghodsi et al., “Generating and characterizing scenarios for safety
testing of autonomous vehicles,” Mar. 2021, arXiv:2103.07403.

[14] J. Wang et al., “AdvSim: Generating safety-critical scenarios for self-
driving vehicles,” Jan. 2022, arXiv:2101.06549.

[15] J. Sekhon and C. Fleming, “Towards improved testing for deep learn-
ing,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. New Ideas Emerg.
Results (ICSE-NIER). Montreal, QC, Canada, May 2019, pp. 85–88.

[16] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Trans. Softw. Eng.,
vol. 48, no. 1, pp. 1–36, Jan. 2022.

[17] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated white-
box testing of deep learning systems,” in Proc. 26th Symp. Oper. Syst.
Principles, Oct. 2017, pp. 1–18.

[18] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated test-
ing of deep-neural-network-driven autonomous cars,” Mar. 2018,
arXiv:1708.08559.

[19] M. Henne, A. Schwaiger, K. Roscher, and G. Weiss, “Benchmarking
uncertainty estimation methods for deep learning with safety-related
metrics,” in Proc. SafeAI AAAI, New York, NY, USA, 2020, pp. 83–90.

[20] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Venice, Italy, Oct. 2017, pp. 618–626.

[21] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” Nov. 2013, arXiv:1311.2901.

[22] J. Lust and A. P. Condurache, “A survey on assessing the generaliza-
tion envelope of deep neural networks: Predictive uncertainty, out-of-
distribution and adversarial samples,” Sep. 2021, arXiv:2008.09381.

[23] S. Luan, Z. Gu, L. B. Freidovich, L. Jiang, and Q. Zhao, “Out-of-
distribution detection for deep neural networks with isolation forest
and local outlier factor,” IEEE Access, vol. 9, pp. 132980–132989,
2021.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” Mar. 2015, arXiv:1412.6572.

VOLUME 4, 2023 69

HACKER AND SEEWIG: INSUFFICIENCY-DRIVEN DNN ERROR DETECTION IN THE CONTEXT OF SOTIF

[25] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approxima-
tion: Representing model uncertainty in deep learning,” Oct. 2016,
arXiv:1506.02142.

[26] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,”
Nov. 2017, arXiv:1612.01474.

[27] C.-H. Cheng, G. Nührenberg, and H. Yasuoka, “Runtime monitoring
neuron activation patterns,” Sep. 2018, arXiv:1809.06573.

[28] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
Sep. 1992.

[29] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly
detection with outlier exposure,” Jan. 2019, arXiv:1812.04606.

[30] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958–1970,
Nov. 2008.

[31] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” Feb. 2018,
arXiv:1711.09325.

[32] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Stat., vol. 22, no. 1, pp. 79–86, Mar. 1951.

[33] D. Meng and H. Chen, “MagNet: A two-pronged defense against
adversarial examples,” Sep. 2017, arXiv:1705.09064.

[34] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversar-
ial examples in deep neural networks,” in Proc. Netw. Distrib. Syst.
Security Symp., San Diego, CA, USA, 2018, pp. 1–16.

[35] C.-H. Cheng, G. Nührenberg, C.-H. Huang, H. Ruess, and H. Yasuoka,
“Towards dependability metrics for neural networks,” Jun. 2018,
arXiv:1806.02338.

[36] S. Houben et al., “Inspect, understand, overcome: A survey of practical
methods for AI safety,” Apr. 2021, arXiv:2104.14235.

[37] V. Chen, M.-K. Yoon, and Z. Shao, “Novelty detection via network
saliency in visual-based deep learning,” in Proc. 49th Annu. IEEE/IFIP
Int. Conf. Depend. Syst. Netw. Workshops (DSN-W), Portland, OR,
USA, Jun. 2019, pp. 52–57.

[38] R. McConnell, “Method of and apparatus for pattern recognition,”
U.S. Patent 4 567 610, 1986.

[39] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1, San Diego, CA, USA, 2005, pp. 886–893.

[40] D. W. Marquardt, “Generalized inverses, ridge regression, biased linear
estimation, and nonlinear estimation,” Technometrics, vol. 12, no. 3,
pp. 591–612, Aug. 1970.

[41] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
Dec. 2016, arXiv:1612.08242.

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” Mar. 2019,
arXiv:1801.04381.

[43] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign
recognition,” Neural Netw., vol. 32, pp. 323–332, Aug. 2012.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” Apr. 2015, arXiv:1409.1556.

[45] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
Sep. 2019, arXiv:1706.06083.

[46] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
Aug. 2016, pp. 785–794.

LUKAS HACKER received the B.Sc. and M.Sc.
degrees from the Technical University of
Kaiserslautern in 2017 and 2020, respectively.
During the bachelor and master thesis with
the Research Departments of Opel Automobile
GmbH, Rüsselsheim and Mercedes Benz AG,
Sindelfingen, he specialized in control theory and
artificial intelligence. Since 2020, he takes part in
a Ph.D. (Dr.-Ing.) Program with Mercedes-Benz
AG, Sindelfingen, in cooperation with the Institute
of Measurement and Sensor Technology, Technical

University of Kaiserslautern. His research focuses on SOTIF and safe AI
in the context of automated driving. For his research activities, he received
the Ferchau Young Talents Award in 2017. Furthermore, he is a member
of the DIN Mirror Committee “Artificial Intelligence for Automotive” for
ISO/TC 22/SC 32/WG 14 “Safety and Artificial Intelligence” and works
on standardization of safe AI.

JÖRG SEEWIG received the electrical engineer-
ing degree from the University of Hanover and
the Ph.D. degree (Dr.-Ing.) in 2000. From 1995
to 1999, he was a Scientific Assistant in the
field of Production Measurement Technology
with the Institute for Measurement and Control
Technology, University of Hanover. In 2000, he
co-founded an engineering office with focus on
software development for production measurement
technology. From 2003 to 2008, he also took over
the management of the area of production mea-

surement and testing technology with the Institute for Measurement and
Control Technology, University of Hanover. Since 2008, he has been a
Full Professor and the Chairman of the Institute of Measurement and
Sensor Technology with the Technical University of Kaiserslautern within
the Department of Mechanical and Process Engineering. Furthermore, he
is the German delegate in the ISO/TC 213, WG 15 “Filtration” and WG
16 “Surface Texture” and the Chairman of the Mirror Committee in DIN.
He is the author of various international and national standards in the field
“Geometric Product Specification”. Beyond that, he has been a Partner in
Opti-Cal GmbH, since 2018.

70 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

