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ABSTRACT The personal mobility of the future will be changed significantly by autonomous driving.
To realize this vision, the complex task of trajectory planning needs to be solved. In this article, a novel
planning concept, CarPre trajectory planning, based on Monte-Carlo tree search, is presented. Using
a speed-dependent steering angle transformation, the state space of a kinematic single track model is
discretized. The planner can then choose between different actions, each consisting of a discrete-value
pair of an acceleration and a steering rate. With this, an equitemporal search tree is created to compute the
future trajectory. Using Monte-Carlo simulations, the influence of short-term actions of the vehicle can
be evaluated over a longer planning horizon. Thus, the current best solution can be accessed at any point
during computation, enabling real-time applications. Furthermore, the discretized search tree enables easy
checking of complex constraints dependent on binary or continuous variables. The concept is verified on
a real test vehicle in a lane keeping maneuver. Through initial testing, a pleasant driving experience is
perceived, which indicates future acceptance of the real-time capable algorithm.

INDEX TERMS Anytime, automated vehicles, MCTS, motion planning, real-time, test vehicle, trajectory
planning, urban driving.

I. INTRODUCTION

AUTONOMOUS vehicles will substantially change the
personal mobility of the future. This is inter alia

because of the reduction of traffic accidents, savings in
energy, parking space as well as people’s time and the
increased access to mobility [1]. But until this vision comes
reality, first more research and development work needs to
be done in order to solve the most difficult traffic scenarios.
These challenging situations occur especially in urban areas
because of limited available space, area-specific traffic rules
and high density of other traffic participants.
To act autonomously, a vehicle needs three main capa-

bilities: perception, planning and control [2]. In perception,
the vehicle collects information about its environment and
localizes itself. In planning, the future movement of the vehi-
cle (i.e., trajectory) is determined to achieve a higher order
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goal such as reaching a specified target region without col-
liding with other obstacles. Finally, in the control task the
planned action is executed. Therefore, planning can be seen
as the core competency of the autonomous vehicle. Here, all
previously calculated information are combined to one future
plan of action. This plan of action needs to be executable by
the controller, comfortable, traffic rule compliant and risk-
minimizing. Furthermore, it is essential for the acceptance
of autonomous vehicles since its result is directly perceived
by its passengers. Here, “it should be borne in mind that
people are more likely to forgive mistakes made by other
people than mistakes made by machines” [1, p. 6].

Solving the complex planning problem in real-time is
challenging. To tackle this complex problem, a common
planning architecture is chosen as presented in [3] and shown
in Fig. 1. In the first layer, the route planning, waypoints
through a street network are planned, similar to a naviga-
tion systems in current vehicles. In the second layer, the
behavior planning, a high-level behavior (also: maneuver)
for the autonomous vehicle is planned. Such a maneuver
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FIGURE 1. Common planning architecture of autonomous vehicles. Figure adapted
from [3].

can be e. g. to follow/change the lane or to turn left/right
at intersections. In the third layer, the motion planning, the
high-level behavior will be transformed into a precise plan
of motion, the calculated trajectory. Finally, in the fourth
layer, the feedback control, the calculated trajectory will be
executed using a local feedback controller.
Therefore, trajectory planning can be seen as the com-

bination of maneuver and motion planning. This separation
brings the benefit of reducing the planning complexity, since
the motion planning can focus on a specific maneuver. But
it may lead to synchronization problems between those two
layers, it needs to be ensured that the trajectory reflects the
planned maneuver. Additionally, the question arises how the
discrete set of maneuvers needs to look like in order to cover
all possible scenarios. Especially, in urban driving with nar-
row roads, limited space and possibly endless maneuvers,
it is hard to find a complete set of maneuvers. Therefore,
solutions exists solving the planning task of both layers in
a single step [4], [5]. Because of the increased complexity,
efficient algorithms are needed for real-time execution.
Current planning algorithms all have different strengths

and weaknesses, so the search continues for new possible
solutions that may surpass existing algorithms. One promis-
ing approach is the Monte-Carlo tree search (MCTS) [6]. It
is used for solving discrete decision problems, especially

in complex combinatorial games. Here, the game Go is
considered the most challenging because of its high branch-
ing factor. By combining MCTS with reinforcement learning,
AlphaGo [7] succeeded in defeating a Go world champion,
a milestone for artificial intelligence.
MCTS has been used for behavior planning [8], [9], [10]

and end-to-end learning [11]. The idea of this paper is to
apply the algorithm to the problem of trajectory planning.
Therefore, in this paper we present the CarPre trajectory
planner (Monte-Carlo Model Predictive Trajectory Planner)
which is based on MCTS, uses a kinematic motion model,
and is real-time capable. Since this is an anytime algo-
rithm, it can be guaranteed that a solution is available within
the given calculation time. This is especially important for
safety-critical applications such as trajectory planning. With
possible options, such as e. g. the incorporation of explicit
behavioral rules [12], the incorporation of discrete variables
into the decision process as well as a variety of possible
adaptations, MCTS offers advantages for trajectory plan-
ning. Before presenting the novel CarPre trajectory planner,
a short overview over the related work is given.

A. RELATED WORK
For the motion planning, three major solution classes
exist [3]: optimization, graph-search, and incremental search
methods. In the first class, the planning problem is for-
mulated as continuous optimization as in model predictive
control (MPC). Using a motion model, the vehicle kinemat-
ics can be taken into account as optimization constraints.
Common examples are [13], [14], [15], [16]. The advantage
of these methods is the (mostly) fast solution in the con-
tinuous planning space. Disadvantages are that a solution is
only available when the optimization has converged. This
can be problematic, especially in complex, critical situa-
tions, when an individual optimization requires significantly
more computing time than expected (e. g. peaks in Fig. 12
from [15]). Another disadvantage is the convergence to a
local minimum. Thus, a higher planning level, such as behav-
ior planning, is mandatory for the optimization to converge
to the desired local minimum. Moreover, discrete states (e. g.
a traffic light that decides between stop and drive) cannot
be directly incorporated.
For the second class, a graph is generated by discretizing

the planning space into a finite number of states. Then, graph
search algorithms, like Dijkstra [17] or A* [18], can calculate
the optimal trajectory in the discretized graph. To generate
such a graph different methods exist. The most common
variant is to sample the planning space, resulting in a tree
structure [19], [20] or a lattice structure [5], [21]. The advan-
tage of graph-based approaches is that the discretization
allows global searching of the graph. By performing a global
search, the planning does not get stuck in local minima, but
the (discretized) global minimum is found. Moreover, no
explicit enumeration of planning constraints is needed as for
the continuous optimization methods. Instead, the discretiza-
tion allows checking of very complex constraints for possible
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trajectories or for each trajectory point [22]. The disadvan-
tage of this is the discretization: if it is chosen too large,
the smaller planning space simplifies the planning problem,
however, no solution may be found, although one exists in
the continuous space (e. g. a narrow passage which cannot
be passed due to a too coarse discretization). On the other
hand, if the discretization is chosen too small, the graph
explodes due to the curse of dimension [23].
The third class, the incremental search methods, tries to

circumvent the disadvantage of a fixed discretization as in
graph-based approaches. This is achieved by incrementally
sampling the planning space with finer and finer discretiza-
tion steps and simultaneously trying to find a solution [3].
Examples include RRT [24], RRT* [25], or CL-RRT [22].
The advantage of these approaches is that a solution is found
if it exists (cf. graph-based approaches). However, the com-
putation time required for finding a solution is unbounded,
i.e., it is possible that the solution will be found only after far
too much time. This usually excludes a real-time application.

B. CONTRIBUTION AND OVERVIEW
Our contribution in this article is two-folded. First, we derive
a discretization of possible vehicle movements. Second,
MCTS is adapted to the problem of trajectory planning.
The remainder of this paper is organized as follows: First,

the used motion model is introduced in Section II which
will be the basis for our further examinations. Then, MCTS
is introduced in Section III, before the CarPre trajectory
planner is presented in Section IV. For this, the state space
is first discretized before adapting the MCTS algorithm to the
problem of trajectory planning. Finally, the novel trajectory
planner is evaluated in Section V in a real test vehicle before
concluding the paper in Section VI.

II. MOTION MODEL
A basic requirement for the planning of motion sequences,
like a trajectory of car-like vehicles, is a motion model. This
motion model describes the relationship between a current
state and possible future states. With this, physical movement
restrictions can be taken into account in the planning task.
In the literature of trajectory planning, multiple motion

models exist. This can be e. g., a simple model of constant
turn rate [26], which considers the position and orienta-
tion of the vehicle or a single track model [14], [27], [28],
which represents the non-holonomic motion of the vehicle.
While the kinematic single track model assumes slip-free
driving, the dynamic single track model [29], [30] considers
the forces between the tires and the road surface. Therefore,
it is especially useful for driving at the vehicle’s limit.
To decide which motion model should be used, the specific

use cases have to be considered. The trajectory planning
of a vehicle, which is supposed to drift or to drive best
times on a race track, requires a different motion model
than e. g. an autonomous cab service. Since the focus of this
work is on trajectory planning in urban scenarios, a dynamic
vehicle model can be omitted. Instead, ease of use is needed.

FIGURE 2. Definition of states and parameters in the single track model.

Since the kinematic single track model is the most simple
model which considers the non-holonomic movement of a
car-like vehicle, it is chosen. In addition, Polack et al. [31]
proved that the kinematic single track model can be used
for consistent planning if limiting the lateral acceleration to
0.54μg.
As model inputs, the acceleration a as well as the

steering rate ω is chosen. With this, the state vector
x = [ Wxref, Wyref, ψ, v, δ ]�, consisting of the 2D posi-
tion Wpref in a world coordinate frame, the orientation ψ ,
the speed v and the steering angle δ, can be calculated using
the following ODE:

Wẋref = v cos(ψ + δ), (1)

Wẏref = v sin(ψ + δ), (2)

ψ̇ = v sin δ

l
, (3)

v̇ = a, (4)

δ̇ = ω. (5)

With this model, δ can change for a constant input
u = [ a, ω ]� which leads to trajectories with variable cur-
vature. The reference point of the motion model, i.e., the
origin of the vehicle-fixed coordinate frame, is chosen on
the front axle as discussed in [32]. Because of this, the only
parameter of the model is the wheelbase l, which defines
the length between the rear and the front axle. All states,
inputs and parameters are shown in Fig. 2.

III. MONTE CARLO TREE SEARCH
In this section, a short introduction to Monte Carlo Tree
Search (MCTS) is given. MCTS [6] is a search algorithm to
solve discrete decision problems. In discrete decision prob-
lems, one can choose between a finite number of actions.
Examples include board games such as tic-tac-toe, Go, or
chess. To solve such a problem, the algorithm builds a search
tree, which consists of nodes (states of the search space) and
edges (possible actions in a state). For each state, the num-
ber of previous visits nv is stored, as well as the sum of
its reward estimates Rs. By trying out different actions, the
most promising one is searched, i.e., for the action with the
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FIGURE 3. Overview of the four steps of one MCTS iteration [33].

highest mean reward estimate Rm = Rs/nv. An iteration of
the algorithm consists of four steps, which are shown in
Fig. 3:

I Selection: In this phase, a child node is selected to
be explored in this iteration. It is strategically cho-
sen between actions which are so far most promising
(exploitation) and between less promising but also
not often investigated actions (exploration). The latter
should also be investigated, as they may have given
poor results so far due to random evaluation, although
they are actually promising. To solve the exploita-
tion/exploration problem, the UCT formula (upper
confidence bound applied to trees) is often used:

UCT = Rs,j
nv,j

+ c ·
√
ln nv
nv,j

, (6)

where nv is the number of visits to the current node,
nv,j and Rs,j are the visits and the summed reward
estimate of the child node by selecting the jth action,
respectively. Changing the parameter c > 0, the focus
of the selection can be put more on exploitation or
more on exploration. Starting from the root node of
the tree, the subsequent state to the action with the
highest UCT value is selected. This scheme is itera-
tively executed through all levels of the tree until an
action is selected for which no child node yet exists.
This approach is called tree policy.

II Expansion: The matching child node is created for the
selected action from step I.

III Simulation: The reward of the selected action is esti-
mated by a simulation. According to a defined default
policy (e. g. a random selection of possible actions),
actions are selected and simulated until a state is
reached where no further actions are available (end
of game). This end state is evaluated and passed to
the next step.

IV Backpropagation: The estimated reward R of the sim-
ulation is fed back through the tree starting at the
selected node and ending at the root node. To do this,
at each of these nodes, the number of visits nv and the
sum of the reward estimates are updated as follows:

n′
v = nv + 1, (7)

R′
s = Rs + R. (8)

As soon as a defined time tcalc has elapsed or a certain
number of iterations has been executed, the algorithm ends.
Then, the most promising action of the root node is cho-
sen. For a summary of the properties as well as possible
modifications, please refer to [33].

In the following, the modifications of the CarPre-trajectory
planning are presented.

IV. CARPRE TRAJECTORY PLANNER
In this section, our novel planning approach, the CarPre tra-
jectory planning, is presented. Based on MCTS, a trajectory
is calculated using a discretized search tree. Each tree node
represents a vehicle state x in a given environment. Using
the kinematic single track model of Section II, a state xk can
be transformed into a new state xk+1 by applying a chosen
input uk for a sampling time Tin. Therefore, our approach can
be categorized as a graph search method (cf. Section I-A)
which creates an equitemporal graph, i.e., a graph with the
same time difference between two adjacent tree levels. In
the following, the MCTS adaptions for the CarPre planner
are presented.

A. DISCRETIZATION OF THE PLANNING SPACE
The trajectory planning problem is in general a continuous
planning problem. However, MCTS solves discrete decision
problems. Therefore, the action as well as the state space is
discretized in the following. To ensure that only physically
possible trajectories will be planned, the vehicle motion is
constrained by the kinematic single track model (cf. (1)–
(5)), so that an action consists of an acceleration value as
well as a steering rate. Building an equitemporal search tree,
the following discretization depends on the chosen sampling
time Tin. In the following, it is assumed that the vehicle can
only move forward (v ≥ 0).

First, the longitudinal states (i.e., acceleration and speed)
are discretized equidistantly. The discrete set of acceler-
ation values is calculated according to the discretization
distance �a as well as the minimum amin and the maximum
acceleration amax as

ad ∈ {amin ≤ p ·�a ≤ amax | p ∈ Z}. (9)

Because of the fixed sampling time Tin as well as ad as
multiples of �a, the set of equidistant speeds results in

vd ∈ {p ·�a Tin ≤ vmax | p ∈ N0}, (10)

until a maximum speed vmax is reached. By an appropriate
choice of �a, common behavioral patterns such as emer-
gency braking, comfort braking, coasting down, constant
speed, comfort acceleration, and emergency acceleration [34,
p. 116] can be represented.
For the lateral motion states (i.e., steering angle and steer-

ing rate), the speed-dependent steering angle transformation
from [35] is used:

|δmax(v)| = min

(
arcsin(κmax l), arcsin

(
alat,max l

v2

))
, (11)
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FIGURE 4. Discretization of the steering angle δ compared to the extracted human
driving data from [35]. The human driving data is displayed as 2D histogram of δk in
rad plotted against vk in m/s with a logarithmic scale. The boundaries extracted in [35]
with κmax = 0.15m−1 and alat,max = 2.96m/s2 (dotted red lines) are adapted for the
CarPre discretization (red lines) as the overall system should be more comfortable.
The resulting equidistant discrete steering angles δd(vd) are shown in orange for
nδ = 15, l = 2.79 m, κmax = 0.13m−1 and alat,max = 1.3m/s2.

where κmax is the maximum drivable path curvature, alat,max
is the maximum lateral acceleration, and l is the wheelbase
of the vehicle. This transformation was derived from human
driven trajectories, limits the steering angle with the help of
its two variable parameters and is shown in Fig. 4 as red
dotted lines. For low driving speeds, the maximum drivable
path curvature κmax of the vehicle limits the steering angle.
For higher speeds, the maximum lateral acceleration alat,max
takes over the limitation. This ensures that lateral accelera-
tions do not become too large and planned trajectories can be
executed by the feedback controller at all times. The speed-
dependent steering angle δd(vd) with nδ ∈ {2p − 1 | p ∈ N}
discretized states is set to

δd(vd) ∈
{
q ·�δ(vd)

∣∣∣ q ∈ Z ∧ |q| < nδ
2

}
, (12)

with �δ(vd) = 2 · |δmax(vd)|
nδ − 1

(13)

and |δmax(vd)| taken from (11). An example discretization is
shown in Fig. 4. The discrete steering rate ωd(δd,i(vd), ad)
with nω ∈ {2p− 1 | p ∈ N} discretized states is derived from
the current steering angle δd,i(vd):

ωd(δd,i(vd), ad) ∈
{
q · δd,i+q(vd + adTin)− δd,i(vd)

Tin

∣∣∣
q ∈ Z ∧ |q| < nω

2
∧ 0 ≤ i+ q < nδ

}
. (14)

With this, a state space symmetrical around zero is obtained
for the lateral motion. Furthermore, the discretization leads
to a state lattice, i.e., solving the equations of motion (4)
and (5) with the discretized inputs ad, ωd(δd,i(vd), ad) as
well as the sampling time Tin leads to the states vd, δd(vd)
without discretization errors. For the remaining states of
the kinematic vehicle model (position, orientation), this
is not possible due to the nonlinear functions in (1) to
(3). Therefore, a discretization of these states can only be

FIGURE 5. Discretization of the acceleration a compared to the extracted human
driving data from [35]. The human driving data is displayed as 2D histogram of the
acceleration ak in m/s2 plotted against the previous chosen acceleration ak−1 in m/s2

with a logarithmic scale. The equidistant discrete accelerations of (9) are combined
with the jerk limitation of (16) and are shown as orange crosses for �a = 1 m/s2,
amin = −3 m/s2 and amax = 1 m/s2.

performed with a discretization error. This error can only
be avoided if the respective states remain in the continuous
range of values. In general, this is possible because MCTS
needs only discrete actions and no discrete states.
Using the discretization described above, a search tree can

be constructed as described in Section III. When selecting
the discretization parameters, it should be noted that they
determine the complexity of the planning space. Especially
the number of inputs nin = nanω as well as the sampling
time Tin are crucial, since they determine the number of pos-
sible action combinations nin,total within a planning horizon
Thor ∈ {p ·Tin | p ∈ N}. The number of combinations increase
exponentially (cf. curse of dimension [23]):

nin,total = (nanω)
Thor
Tin . (15)

To mitigate this exponential growth, the number of
possible actions can be limited depending on the last
selected action. An example for this is the limitation of
the acceleration ak depending on the last acceleration ak−1:

ak ∈ {ak−1 −�a; ak−1; ak−1 +�a}, (16)

so that the number of possible acceleration actions na is
reduced to three. This restriction resembles a limitation of
the jerk, thus increasing the driving comfort and reducing the
planning complexity at the same time. A resulting example
discretization of the acceleration is presented in Fig. 5.

B. END OF GAME
The end of game specifies states at which no further action
can be selected. This applies to states in the decision tree as
well as states in the simulation for the reward estimation. In
board games, such an end of game is determined by the rules
of the game. In the case of trajectory planning, reaching a
goal state can be the end of game. However, this goal state
is usually farther away and therefore only tracked by route
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FIGURE 6. Selected paths (blue) of human drivers. Drivers keep the lane that takes
them to their destination according to route planning. Thus, the default behavior of
drivers is mostly to keep the lane. The paths as well as the background image are
taken from the inD dataset [37].

planning (cf. Fig. 1). Thus, additional end states must be
defined for the trajectory planner:
1) Reaching a defined time horizon t = Thor (also:

planning horizon).
2) Leaving the area for which environmental information

is available, so that no further planning is possible.
3) Causing a collision with other objects.
4) Stopping of the vehicle for t > 0.

The limitation of the planning horizon 1) is similar to the
principle of the receding horizon control [36], which is
used in MPC. Thus, planning considers only a limited time
window to determine the next trajectory. After a trajectory
is computed, the first part of it is executed before a new
schedule is started with a shifted time window.

C. DEFAULT POLICY
In order to evaluate a chosen action, a reward value is esti-
mated by means of simulation. To increase the algorithm’s
time of convergence, random combinations of acceleration
and steering rate values for the simulation are avoided.
Instead, a default policy is presented below, which is derived
from human behavior. This behavior is based on an analysis
of the inD dataset [37]. In general, two main behavior pat-
terns can be identified in the dataset. First, human drivers try
to follow their lane (cf. Fig. 6). Second, they usually accel-
erate only for a longer period of time (cf. Fig. 5). Therefore,
the default policy is defined as follows:

• Acceleration: The previous acceleration value is chosen
again for the next kacc time steps (constant acceleration
model). Subsequently, acceleration values around zero
(i.e., ad ∈ {−�a; �a}) are set to ad = 0.

• Steering rate: The steering rate is set to zero for the next
kω actions. Subsequently, the steering rate is selected
based on a direction map so that the vehicle follows the
course of the road as best as possible (lane keeping).
Such a direction map is shown in Fig. 7.

D. HEURISTIC FOR INITIAL NODE REWARD
According to the UCT formula (6), any action that has never
been selected is preferred over an already explored action
because of

lim
nv,j→0

UCT = lim
nv,j→0

(
Rs,j
nv,j

+ c ·
√
ln nv
nv,j

)
= ∞. (17)

FIGURE 7. Discretized direction map (black direction pointers) for selecting steering
rates for lane keeping. Such a vector field can be created using a road map or a
sensor-based environment model (black lines). The lane regions are divided into the
own lane (light gray) as well as the opposite lane (dark gray) and are reduced by the
space required by the ego vehicle. The required space is calculated as in the point
model of [32].

This means that all possible actions of a node are explored
first before a node of the next tree level can be explored.
With limited computational time, this can lead to the search
tree not reaching the required depth for planning a good
trajectory. To speed up the convergence of the algorithm, an
initialization of the node reward values Rs,j = Rini is done.
Similarly, the initial number of visits of the node is set to
nv,j = 1. Using the direction map, the best steering rate
ωbest for lane keeping is determined for the current state,
and accordingly the initialization Rini is set to

Rini =
⎧⎨
⎩
Rini,1 for ωk = ωbest and ak = ak−1;
Rini,2 for ωk 
= ωbest and ak = ak−1;
0 else,

(18)

where 0 ≤ Rini,2 < Rini,1 ≤ 1. With this choice, an ini-
tial preference of future actions is set, so that actions with
equal accelerations as well as steering rates to follow the
road are preferred during exploration. When selecting a par-
ticular action, the default policy is used to simulate to the
end of game and the reward estimate is backpropagated. By
averaging, the initial value loses influence with increasing
iterations and converges to the real reward value.

E. REWARD FUNCTION
If an end of game is reached, the planned trajectory must
be evaluated to get an estimation of the chosen action. In
order to establish a clear prioritization of the planning goals,
a reward function R(xk), which differs for each reward term
by one order of magnitude, is chosen for each state xk of
the trajectory:

R(xk) = 1∑m−1
i=0 biR

m−1∑
i=0

biRRi(xk) (19)

with the m reward terms Ri(xk) ∈ [0, 1] and the basis of
the order of magnitude bR. The overall reward value of
one trajectory Rtraj consists of the normalized sum of all
ntraj = Thor/Tin possible states:

Rtraj = 1

ntraj

( p∑
k=1

R(xk)+ (
ntraj − p

)
R(xp)

)
, (20)
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where p ≤ ntraj describes the number of trajectory points to
be evaluated. If the simulation is terminated early (p < ntraj)
by the end of game described in Section IV-B, the state
evaluation of the final state xp is repeated until ntraj points
have been incorporated into the trajectory evaluation. This is
important so that each state xk is weighted equally in each
trajectory evaluation.
An exemplary reward term is the term for reaching a target

speed vtarget. It can be chosen to

Rv(xk) =

⎧⎪⎨
⎪⎩

1 − |v|
vmax

if collision or outside
of drivable area;

1 − |vtarget−v|
vmax

else.
(21)

As seen in this example, the trajectory discretization allows
checking of complex constraints dependent on discrete
events. In this case, the target speed is changed to zero
if the vehicle collides or leaves the allowed drivable area,
since this is the desired behavior. These properties, i.e., the
evaluation of complex reward terms with discrete decision
variables combined with the weighting of different order of
magnitudes, lead to a flexible specification of the desired
behavior. Therefore, a behavior-semantic scenery descrip-
tion [12] can be integrated in the CarPre trajectory planner
to implement the behavioral rules of the road.

F. EXTRACTION OF THE PLANNED TRAJECTORY
After the defined calculation time tcalc has elapsed, the newly
planned trajectory �k can be extracted from the created
search tree. To avoid small variations between two succes-
sive trajectories, the actions of the last planned trajectory
�k−1 are used, if available. Starting at the root node of
the recomputed search tree, the jbest action is selected in
each node, which has the largest mean reward Rm,best. If
the trajectory extracted so far is still equal to the previous
one, the current reward value Rm,best,prev of the previous best
jbest,prev action is also evaluated. If these two reward values
are within a tolerable deviation εR, the previous best action
is preferred over the current best action. This results in

jbest =
⎧⎨
⎩
jbest,prev for |Rm,best − Rm,best,prev| < εR and so

far extracted �k equals �k−1;
jbest else.

(22)

This procedure is executed, starting at the root node, until
either ntraj trajectory points are extracted or a leaf node, i.e.,
a node without further child nodes, is reached.

V. EVALUATION
In order to evaluate the presented planning approach, a lane
following maneuver is chosen. Here, the planner’s goal is to
follow its own lane with (if possible) the target speed. For
this, the algorithm is implemented in C++ and executed on
an Intel Xeon E5-2698 v4 processor. To speed-up the explo-
ration progress, the algorithm is parallelized on 10 threads
using tree parallelization with local mutexes (cf. [38]). The
planning algorithm is then put into operation on a real test

TABLE 1. CarPre parameters.

FIGURE 8. PRORETA 5 test vehicle: Volkswagen Passat (B8).

FIGURE 9. Minimal software architecture for planner evaluation.

FIGURE 10. Available test track (orange) at the August-Euler airfield of the TU
Darmstadt (image taken from Google Earth Pro). The curves of the track are numbered
for evaluation.

vehicle which is shown in Fig. 8 using the minimal soft-
ware architecture presented in Fig. 9. In this architecture,
planning is only based on a road model calculated from an
HD map. The tests are executed on the available test-track,
the August-Euler airfield (cf. Fig. 10) with the used param-
eters listed in Table 1. The reward function of the algorithm
includes terms for avoiding collisions, reaching the target
speed, following the own lane and minimizing accelerations.
Because of safety reasons, the vehicle is only allowed to drive
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FIGURE 11. Exemplary CarPre trajectory planning of curve 1. The starting speed of
the vehicle is too high for the depicted curve (cf. red/orange nodes with high speeds
in the right area of (a)), so that the vehicle has to brake to avoid missing the turn. Due
to the kinematic single track model as well as the speed-dependent steering angle
discretization, only comfortable, controllable motions can be explored. Thus, in this
example, different braking maneuvers are explored before the trajectory shown in
(b) is extracted from the search tree.

8.4m/s = 30.24 km/h. Furthermore, a steering torque limi-
tation exists, so that a safety driver can overrule the planned
trajectory at all times.
First, a single planning step of a right turn is analyzed

(Fig. 11). Here, the vehicle has already reached the target
speed vtarget and is approaching the curve. However, the curve
is too tight so that the vehicle has to brake. Due to the speed-
dependent steering angle discretization, the vehicle can only
plan within the given physical constraints, i.e., if the vehicle
does not brake, it would miss the turn (cf. red/orange dots in
the right of Fig. 11a). Without reducing vtarget, the algorithm
searches for the fastest possible speed to safely drive through
the curve. Due to the initialization of the possible actions (cf.
Section IV-D) as well as the limited computation time, the
vehicle slows down more than necessary (cf. light blue dots
in the right of Fig. 11b). This is because of the exploration
characteristic of the algorithm, the actions in the near future
(i.e., directly in front of the vehicle) are well estimated by the
high number of simulations. As a result of the branching of
the tree, the behavior in the far future is largely determined
by the initialization of the action values and the default
strategy. However, using the receding horizon control, only
the first planned action is executed before the planning for
the next time step begins.
In order to analyze the planning over multiple planning

steps and the driving comfort, the test vehicle drives on
the test track for ∼45 minutes (one planning cycle every
0.2 s, in total 13513 cycles). The goal is to follow the route
shown in Fig. 10 with the given target speed of 8.4m/s =
30.24 km/h. During the measurements, the speed-dependent
steering torque limit of the vehicle is exceeded several times,

although the dynamics of the vehicle were not at the limit
(five times in curve 5, and once in curve 2). In this case,
the automation stops, the vehicle is brought to a standstill
by the safety driver and the automation is enabled again.
Such an overrun is not desirable, but a later fully automated
system will not include such a limit. Fig. 12 shows an almost
complete lap on the test track, only the long, straight part
between curves 1 and 5 (lower straight line in Fig. 10) is not
shown. In this example, the steering torque limit is exceeded
in curve 5, which is marked in red.
In general, the feedback controller, in combination with

the inertia of the actuators, smoothes the planned trajec-
tory consisting of the discrete-time inputs shown in blue.
Individual small outliers in the longitudinal acceleration a
of the scheduled trajectory such as between 30 and 40 s or
130 and 140 s are filtered out. Although such high-frequency
fluctuations are undesirable and should be avoided by further
adjustments, they are not noticed by the driver.
The lateral acceleration alat of the vehicle oscillates

slightly around zero when driving straight ahead, but this
is not perceived in the vehicle. In the curves, the steering
angle discretization limits the maximum lateral acceleration,
which is maintained by the vehicle. Additionally, the lat-
eral deviation dlat of the vehicle to a virtual center line is
shown. Since dlat is not part of the cost function, it will
not be optimized. The deviations in curve 2 and 5 are high,
because these curves are on intersections with wide lane
segments. Maximizing the speed with limited lateral accel-
erations results in driving along the inner edge of the curve
and thus, high deviations from the center line. The observed
behavior is similar to driving a racing line without leav-
ing the own lane. Furthermore, the vehicle already starts to
brake before a curve, comparable to human driving behavior.
The required speed is then reached within the curve before
accelerating again towards the end of the curve.
Fig. 13 shows the G-G diagram of the planned and driven

trajectory. Due to the physically constrained discretization,
only actions within the selected boundaries can be chosen.
Therefore, the circle, representing 1/3G, is not reached. All
in all, this creates a natural driving experience.

VI. CONCLUSION
In this article we present CarPre trajectory planning, a novel
planning algorithm based on MCTS. Using the kinematic
single track model in combination with a speed-dependent
steering angle transformation, possible movements of the
vehicle are described and limited by physical constraints.
With this, a discrete action space, consisting of discrete-
value pairs of accelerations and steering rates, is derived
which contains only drivable motions. This action space is
then used to create an equitemporal search tree. Monte-
Carlo simulations in combination with heuristics estimate the
long-term effect of each short-term action. Thus, high-level
maneuvers can be indirectly incorporated in the algorithm
and do not need to be calculated beforehand by a behavior
planning module. Furthermore, the algorithm offers great
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FIGURE 12. Planned trajectory (blue) vs. measured values of the driven trajectory (yellow). The curves marked in Fig. 10 are highlighted in gray and numbered accordingly.
Exceeding the steering torque limit in curve 5 is marked in red. The acceleration measurement values recorded at 50 Hz are smoothed by a low-pass filter (binomial filter of order
40, cutoff frequency: 120 Hz).

FIGURE 13. G-G diagram of the planned trajectory (blue) vs. the measured values of
the driven trajectory (yellow) of Fig. 12. Note the inverted x-axis, since positive lateral
accelerations represent left turns.

flexibility. Being able to limit and evaluate trajectories at
discrete time steps, complex cost functions or certain behav-
ioral constraints can be easily implemented. The practical
feasibility of the novel concept is demonstrated by running
the algorithm on a real test vehicle. Here, comfortable, fore-
sighted driving suggests future acceptance of the real-time
capable algorithm.
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