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ABSTRACT On-street parking information (OSPI) systems help reduce congestion in the city by lessening
parking search time. However, current systems use features mainly relying on costly manual observations
to maintain a high quality. In this paper, on top of traditional location-based features based on spatial,
temporal and capacity attributes, vehicle parked-in and parked-out events are employed to fill the quality
assurance gap. The parking events (PEs) are used to develop dynamic features to make the system
adaptive to changes that impact on-street parking availability. Additionally, a parking behavior change
detection (PBCD) model is developed as an OSPI supplementary component to trigger potential parking
map updates. The evaluation shows that the developed OSPI availability prediction model is on par with
state-of-the-art models, despite having simpler but more enhanced and adaptive features. The foundational
temporal and aggregated spatial parking capacity features help the most, while the PE-based features
capture variances better and enable adaptivity to disruptions. The PE-based features are advantageous
as data are automatically gathered daily. For the PBCD model, impacts by construction events can be
detected as validation. The methodology proves that it is possible to create a reliable OSPI system with
predominantly PE-based features and aggregated parking capacity features.

INDEX TERMS Change detection, connected vehicles, geospatial analysis, intelligent transportation
systems, machine learning, parking, vehicle navigation.

I. INTRODUCTION
A. BACKGROUND
EHICLES cruising for parking are estimated to
contribute to 30% congestion within a transport
network [1]. This causes noise, air pollution, and travel
time delays. As a parking management measure, cities have
invested in parking guidance signs to direct cars to pri-
marily off-street parking lots and multi-story car parks.
Comparable systems have also recently been developed for
finding parking spots on the streets, denoted as on-street
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parking information (OSPI). One of the benefits of such
services is reduction of traffic congestion caused by cruising
for a parking space [2], [3], [4], [5].

Connected intelligent transport systems (C-ITS), such as
OSPI, have the potential to efficiently and better distribute
vehicles within a transport network as they search for park-
ing. Reliability and quality of such information systems must
be ensured to offer dependable services that contribute to
helping people make better decisions on how to navigate
inside the city or whether to even use a car or not.

The content of state-of-the-art OSPI systems are mostly
developed using complex engineered features and machine
learning techniques [2], [3], [5], [6], [7], [8], [9]. The main
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difference between the models available are the data gathered
for training the models and the incorporated features in the
models. The differences in input data play a major role
in the reliability and quality. The quality of the information
provided by such systems are validated by the comparison of
observed on-site data against the prediction model estimates.

B. PROBLEM STATEMENT WITH THE CURRENT
SYSTEMS

Continuous manual ground truth collection for parking
information systems is costly. The level-of-service and relia-
bility remains an on-going challenge within the industry. This
is attributed to difficulties in gathering accurate yet scalable
data with adequate spatial and temporal coverage relative
to the localized information needed. Many researches have
used sensor data to develop models, but as stated in [6],
these incur high costs of installation. Further, maps are usu-
ally only updated every quarter [10] as it is likewise a costly
process to do so. This can be problematic when there are
mid- to long-term changes that last from a few weeks to
permanently. This is especially true for the case of on-street
parking, since searching in an area that has obstructed park-
ing could considerably increase the parking search time. For
a parking service the sooner the changes are known, the
better a service can be and parking availability models can
be updated as well. As such, the goal is to provide the same
quality of a prediction model with a scalable set of features
based on sound domain knowledge to engineer features that
rely on smart systems and less on-site surveyors.

This issue is partially tackled in this study with the use
of real-time and readily available parking events data, which
can be used to engineer added-value features to an OSPI
service. Additionally, the same dataset could be used to
specifically help parking maps be adaptive with the use of
parking behavior change detection trigger.

C. CONTRIBUTIONS AND MAIN OBJECTIVE
The contributions of this research are as follows:

o The value discovery in vehicle parking events as a
source to extract a wide range of features to enhance
an on-street parking information system. These fea-
tures include variations of hourly to weekly moving
averages of time-series parked-in and parked-out data.
The proposed OSPI system also has a parking events-
based adaptive feature with a supplementary parking
behavior change detection (PBCD) feature that is more
dynamic as it can detect mid- to long-term (i.e., more
than 10 days) static anomalies, closures, and disrup-
tions signaled by the drop of parking events caused by
construction obstructions, rule changes, or significant
infrastructural changes, among others. These detec-
tions, essentially, convert predictions to zero to indicate
unavailability of parking on top of an alert trigger to
drivers to flag and confirm potential changes relating to
on-street parking provisions and as an alert for the eval-
vation of the OSPI system. To the best knowledge of
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the authors, currently, there are no systems in practice
or in research that updates their maps and predictions
using such a dataset.

o The domain knowledge of the authors enhanced engi-
neering of parking features from the parking events data
and spatial parking capacity data previously unknown.
Engineered valuable features from simple spatial capac-
ity features that are easy to collect and prepare as input
for an on-street parking availability model. Simple spa-
tial on-street parking capacity features become more
valuable when aggregated on a higher neighborhood
(i.e., quadkey) level. Rather than just having the capac-
ity information on a street-level, aggregation on a
higher level can capture variances that supplements
the variances captured through the street-level capacity
feature.

o This proposed OSPI system can replace a system which
solely relies on a prediction model that depends on con-
tinuous expensive parking availability features to keep
the information system up-to-date. Shifting away from
such a system lessens the cost associated with manual
ground truth collection and allows faster scaling.

As opposed to many researches that have been done
using complex models to create parking prediction models,
this study aims to use less time-intensive machine learn-
ing algorithms that are easier to comprehend, interpret, and
implement. Thus, the focus is on utilizing domain knowledge
to engineer features to improve an OSPI system while using a
readily available machine learning algorithm that only needs
to be trained and hyperparameters-tuned. Developing a new
machine learning algorithm is out of scope.

The paper is organized as follows. Related literature is
described in Section II. Section III covers the main discus-
sions of this paper. The data and study area are introduced in
Section III-A. The elaboration of the development method-
ology of the OSPI system is presented in Section III-Al.
Section IV presents the supplemental OSPI feature developed
with the parking behavior change detection methodology
that represent the dynamicity of the proposed OSPI system.
The specifics regarding the features, algorithm hyperparam-
eters, and the evaluation of the models are described in
Section V. Section VI gives concluding remarks and some
recommendations.

Il. RELATED LITERATURE

The proposed approach in this study focuses on developing
a data-driven OSPI system focused on valuation generation
from different data sources while using prominent machine
learning algorithms as the different baseline models. The
logic behind this is that domain knowledge in parking can
enhance the model developed. The literature review in this
section is subdivided to the ground truth data used for val-
idation in parking studies, the supplementary data used to
engineer features that are not dependent on ground truth data,
the popular parking prediction machine learning models that
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have been used in research, and the usage of parking behav-
ior change detection models in OSPI systems. The review
here mainly focuses on on-street parking.

A. GROUND TRUTH DATA USED FOR VALIDATION OF
PARKING STUDIES

Most state-of-the-art on-street parking availability models
developed today use a diverse range of data sources. This
can be classified to two: data only used for feature engi-
neering and ground truth data primarily used for training,
testing, and validating. The latter can also be used for feature
engineering.

Different types of ground truth data exist for validation
of on-street parking prediction models. Some have used
parking sensors in researches [8], [9], [11], [12], [13],
[14], [15]. Some [9], [16], [17] have also used parking
meter payments or mobile payments [3], [18] as a type
of sensor to infer parking availability. A study also used
costly labor-based manual observations for validation [19].
Another line of research [2], [20] have used images and
videos from the camera of a moving vehicle to iden-
tify on-street parking spaces by processing these through
some machine learning image recognition algorithm. Some
researchers also employed crowd-sensing information by
equipping probe vehicles with on-board sensors, cameras,
or ultrasonic sensors [20], [21]. There are also studies
who have explored the usage of crowd-sourcing data from
smartphones or Global Positioning System (GPS) devices
[18], [20], [22], [23].

Most of the ground truth data sources abovementioned
have been studied to replace the longstanding industry prac-
tice that is still primarily based on manual ground truth
collection to the best knowledge of the authors. The main
reason is, each alternative ground truth is either limited
in scope in different cities, such as street parking sen-
sors and meters, and/or is unscalable. If different ground
truth sources are used for each model in each city, this
can be problematic as it will increase development costs
of a system. Hence, the dependence on reliable manual
observation.

An apparent gap that exists in all studies is that they
have not tested these other ground truth sources to instead
support manual ground truth to reduce frequency of manual
observations required in practice. That is, the training of
a model can be based on the manual observations, and the
coverage-limited data gathered can be used as updates to the
system since it is automatically collected albeit being sparse
in space and time. The focus of the studies has been to
completely replace them without direct comparisons against
models that rely completely on manually gathered ground
truth data.

In this study, the authors propose to use the cheaply and
automatically collected sparse parking events data as a source
to support manual ground truth collection and reduce the
frequency of collection.
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B. FEATURES IN PARKING BEHAVIOR AND PARKING
PREDICTION STUDIES

On-street parking behavior and prediction studies have used
a variety of features for their models. Common practice
is to use the data as is as a feature and do feature engi-
neering in this data to possibly capture different variances
to better predict the target value. Two common features in
research are temporal and spatial features mainly taken from
the ground truth parking availability data that inherently has
a location and time component. This typically is the com-
position of a baseline model’s feature set. A few studies
incorporated traffic data in their parking prediction mod-
els [6], [15], [24], [25] — this can be in the form of speed
or their own engineered features to get traffic congestion
indices. Some studies also have used parking-specific influ-
encing factors such as parking pricing to understand changes
in parking occupancy [26], [27]. Such factors can be used
on street-level features. Another study used on-street parked
out events to classify legal and illegal parking spots in the
city [28]. Floating car data is another indirect source to infer
parking behavior [1], [29]. Weather data has been proven by
many studies to either help make prediction models or under-
stand parking behavior [6], [9], [25]. Some other features
that are also incorporated include map-related features such
as street length, landuse, and points-of-interest (POI) data
regarding shops, parking facilities, [1], [5], [7], [15], [19].
A few studies also included special events [5], [6]. A par-
ticularly interesting approach was done using survey data
by studies like that done by Google’s research team, where
they asked about the subjective difficulty of parking in one’s
search area [30].

All studies besides a few do not give details regarding
the features engineered. Particularly, a gap was observed in
further aggregating simple features such as street capacity.
This is typically done on temporal features, where moving
averages or aggregation on various intervals are incorporated,
but spatial aggregation has not been explored much according
based on the literature reviewed. Studies also primarily focus
on developing better algorithms than focusing on the usage
of domain knowledge for feature engineering to improve
their parking prediction models.

C. POPULAR PARKING PREDICTION MODELS

Parking prediction modelling studies have become popular
in the last years since the hype of big data. There is a wide
range of machine learning models that have been employed
by researchers in the last few years. The following models
have been tested in the reviewed studies: clustering [15],
[21], [31], different linear regression algorithm like Lasso,
Ridge, or basic linear regression [32], vector spatio-temporal
autoregression [13], ARIMA [25], Support Vector Machine
classifier [33], decision tree [15], [28], random forest [7],
Support Vector Regression [14], [25], and tree-based algo-
rithms like Gradient Boosting Regression Tree (GBRT) [15],
[34] among others. Despite longer run times and in the
hopes that unsupervised learning can enhance models, many
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studies have utilized deep learning approaches using neural
networks like multi-layer perceptron [15], [35], CNN, Hybrid
CNN, Graph CNN, RNN, LSTM, [2], [3], [6], [8], [9], [25].
Another one used logistic probability distribution and aggre-
gating over all the observations [16]. XGBoost [36], one
of the currently popular algorithms in various fields that
uses a type of gradient tree boosting system that resembles
an ensemble tree model, was employed by several stud-
ies [3], [7], [24] that showed the most promise in the use
case of our proposed system as well. Google’s research team
used a single layer regression and feed forward deep neural
network [30] for estimating difficult of parking using mainly
Google maps travel data.

D. PARKING BEHAVIOR CHANGE DETECTION MODELS
There are no known studies that specifically use parking
events to determine potential changes in parking behavior
associated with longer term static changes like in rules and
restrictions, constructions, or infrastructural changes. There
was one study by [37] that used sensor data as well for
detection of unusual patterns and infer it to any possible
disturbances to parking location or sensors. Reference [28]
used park-out events to detect anomalies with regards to
classifying legal and illegal parking spots in relation to their
map.

Majority of the studies have relied on explicit usage data
input from on-street parking sensors or apps, while implicit
recognition of parking occupancy has not be widely used [6].
In our study, we employ user data from parked-in and
parked-out events to partly infer parking availability in con-
junction with other features. The aim is to combine these
data with readily available machine learning algorithms that
could compete on the same level as commercial OSPI mod-
els. Although we aim to provide real-time updates to the
model through introducing parking events-based features,
parking events cannot be used for validation as half of the
picture is missing. Fully occupied streets (true negatives)
and streets that were predicted to have parking but did not
(false positives) also cannot be validated with parking events,
hence, it was used primarily as a source to engineer features.
Nonetheless, as an added component to an OSPI system, the
parking events data is also utilized to provide map triggers
about potential on-street parking behavior changes that are
caused by long term external factors such as construction.

lll. DEVELOPMENT METHODOLOGY OF A DATA-DRIVEN
ON-STREET PARKING INFORMATION (OSPI) SYSTEM
A. DESCRIPTION OF DATA USED
This section describes the data that were used in this study
for training and evaluation of the model. The data that were
used to extract features from are also presented. BMW’s
OSPI service area for the city of Munich, Germany was the
chosen city use case for this paper.

The data sources are only described on a high-level to not
violate BMW data confidentiality policies. Absolute num-
bers and descriptive statistics cannot be elaborated upon.
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Nonetheless, details relevant for the development of an OSPI
system are described here.

1) PARKING EVENTS

Feature extraction from parking events (PEs) is one of the
main contributions of this paper. Parking events (PEs) data
are gathered from the fleet of BMW vehicles and are col-
lected at BMW’s backend data center. Hence, there existence
of the bias towards these users. All parking events adhere to
anonymization according to EU defined data privacy stan-
dards. A PE is generated when a car engine switches off
or on, corresponding to a parked-in event or parked-out
event, respectively (see Fig. 2). The PE event was also post
processed to contain only events within the proximity of a
street. Further details about the nature of the parking events
dataset are discussed in [38] and [39]. As opposed to studies
reliant on ground [7], [8] which cover only certain parts of
a city, this research aims to utilize parking events as floating
Sensors.

Hundreds of thousands of parking events data used was
gathered between May 2019 and October 2020 with a gap
between October 2019 and February 2020.

2) GROUND TRUTH OBSERVATIONS

The ground truth (GT) data used was collected between May
2019 and October 2020. The GT observations were used for
training and testing the models developed. For this dataset,
the sparse data collection strategy (i.e., where, when, and
how much data) was beyond the control of the authors. In the
validation phase and the final scoring phase, a prioritization-
based quality assessment [42] is used to adjust the scores
depending on the amount of parking events that occurred in
each spatio-temporal cell. This helps eliminate unimportant
hours. In this study, more than 10000 random walk observa-
tions were made within the central area of Munich, Germany.
Each recorded observation was made on a street block (i.e.,
intersection to intersection) at the time of collection. When
at least one legal parking spot is observed on a block, this
was recorded as available. Regardless of the number of open
spots, the observations were recorded as a binary outcome —
available (1) or not (0). Most foundational and important fea-
tures are extracted from these observations. Among others,
this includes spatial and temporal features further described
in Table 1. In Fig. 1, the average parking availability aggre-
gated on quadkey level 14 over a period of 168 week-hours
is illustrated. Since observations were mostly random, there
is an uneven distribution of collection throughout the city.
Fig. 3 represents the spatial distribution of each observation.
The average parking availability in the entire study area is
0.56. Central busy areas such as neighborhoods 6, 8, 14, and
16 (see Fig. 1) are more difficult to predict compared to the
periphery.

A time series split (i.e., temporally sorted) cross valida-
tion was implemented for training and testing. In this case,
testing sets here are considered the evaluation sets as well.
The data is split into three equal partitions to conduct two
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FIGURE 2. Paired parking events in Munich for one day. Green is for parked-out
events and red is for parked-in events.

Ground Truth
48.18 1.0
0.8
48.16
0.6
48.14
0.4
48.12 0.2
0.0

11.55 11.60

FIGURE 3. Spatial distribution of ground truth observations.

cross validation iterations. In the first iteration, the first 33%
of the ground truth observations are used for training the
model, and the next 33% used for evaluation. The second
iteration takes the first 66% for training and the last 33% for
evaluation.
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FIGURE 4. Time series split cross-validation (CV) train and test sets.

3) TRANSPORT NETWORK FOR ON-STREET PARKING

BMW:’s transport network consists of on-street blocks as
defined above. The main feature used from here is the num-
ber of legal parking spots or on-street parking capacity of
each block.

4) OTHER MAP DATA AND WEATHER DATA

To further enhance the features of the model, map data
regarding construction were requested from HERE maps
(2021). Furthermore, open weather data were downloaded
from Deutscher Wetterdienst (2021). Only temperature and
rainfall data were used in the models.

B. METHODOLOGICAL FRAMEWORK FOR OSPI
DEVELOPMENT

The core feature of an OSPI system is the provision of
an availability prediction to show the users the chances or
difficulty of finding a parking spot in certain areas at given
time periods. Particularly, the availability model that was
developed in this study, as part of its novel contribution, uses
mainly parking events-based features, which are dynamic in
nature and uphold or improve the performance of a model.
Despite the unbalanced nature of the PE dataset, the goal
was to develop a model that is up to the level of commercial
models. The PE dataset is unbalanced as it only provides
information about open spots and occupied parking spots
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FIGURE 5. Development methodology workflow for an OSPI system.

cannot be directly inferred. Additionally, further aggregate
features from basic attributes such as parking capacity were
developed as described in Section V.

The OSPI availability prediction models were developed
in four main steps (see Fig. 5). The overview of each step
is described below. All machine learning implementation
besides Xgboost was done using scikit learn [40] in Python.

1) IDENTIFICATION AND SELECTION OF FEATURES

The pre-requisite to start the development was raw data
acquisition as described in Section III-A. As the first step,
these datasets were used to engineer relevant on-street park-
ing features that are identified based on related literature
and domain knowledge. The descriptions of feature content
are explained later in Table 1. The features were categorized
as follows: temporal, spatial, weather, ground truth historic
availability, fleet (parking events) data-based, and other map
data.

2) SELECTION OF ALGORITHMS AND ENSEMBLE
MODELS

There is a wide range of machine learning models that could
be used for parking prediction. The most promising libraries
shown in literature are: gradient boosting decision trees like
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XgBoost [36], Random Forest, and Decision Tree. Deep
learning approaches with neural networks have also recently
become widely popular butgiven similar performance scores
in comparison with the increase in training and processing
time [41] it did not seem to be promising. Furthermore, [8]
mentions that neural networks perform well with high num-
ber of samples to train with like their 12 million records
from Melbourne, but with smaller sizes, it may not be fea-
sible. Also, [6] describes that neural networks are suitable
when relationships are unknown and high volume of data
is available. In this case, since many studies have explored
which features could possibly influence the model, unknown
relationships are not a big concern. Nonetheless, two neural
network models namely Feed Forward Multilayer Perceptron
(MLP) and Long Short-Term Memory (LSTM) were imple-
mented for baseline comparisons of all popular models used
for parking studies. This is on top of the following four most
popular models that were selected and tested amongst each
other: Xgboost, Random Forest, Decision Tree, and LassoCV
as the baseline linear regression model. Moreover, to get the
best of all models, as done in [35], 3 ensemble models were
created using RidgeCV as the final estimator that combines
the four models (i.e., excluding neural networks) to avoid
overfitting on one model.
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TABLE 1. Defined feature categories.

Feature Description of feature content Sample values
category
Temporal Only time-related features Months: 1-12
considering aggregations into time ~ Weeks: 1-52
intervals in different time scales Days: 1-31
and categorization of special days: ~ Seconds in a day: 1-
months, weeks, days, hours, 86400
minutes, seconds, weekdays, Holidays: 0 or 1
weekends, holidays, etc.
Spatial GPS location, on-street parking Latitude: 48.138393
and capacity features divided or Longitude:
Transport  aggregated on different spatial 11.570882
Network levels Capacity per street
segment: 20
Capacity aggregated
on level 14: 74
Weather Rain and temperature open data Rainfall: 11.3mm
Temperature: 13
deg Celsius
Historic Aggregation of historic parking Auvailable: 1
parking availability on different tile levels ~ Occupied: 0
availability  and time intervals (e.g. moving Moving average of
averages) in the past. availability on level
14: 0.61
Parking Automated aggregation in various  Parked-in volume
events- time intervals of TTPD [38] that aggregated on level
based describe on-street parking activity 14 on 15-minute

intervals: 13
Parked-out volume
aggregated on level
14 on 15-minute
intervals: 12

on tile zoom level 14, and
aggregation in various time
intervals (e.g. real-time and
moving averages) and tile levels
of parked-in and parked-out
events; anomalies detected based
on the developed behavior change
detection (see Section V)

3) DEFINITION OF THE EXPERIMENTAL DESIGN (ED)
SETUP

An experimental design setup was created to organize the
process of evaluating the performance of each model by
gradually adding feature categories and changing to different
types of machine learning algorithms. The aim of the ED
setup is to recreate and identify the best combination across
algorithms and data types to allow comparison between the
different setups that normally exist in the industry given the
available dataset in this study. The industry replica model
is developed to the best knowledge of the authors since the
actual models cannot be used in publications. This ED also
allows to identify if a certain setup mainly reliant on parking
events-based features can be on par with an industry model
and replace it or outperform the industry-level model. In
total 54 ED setups were created as displayed and discussed
later in Table 3. Further combinations of features for the
experimental design were not necessary since even if more
features are added to a prediction model, these are reduced
in the feature selection step in the pipeline implementation
described next.

4) MODEL PIPELINE IMPLEMENTATION

After setting up the input needed into each model, the
next step was to create a pipeline implementation to main-
tain consistency from data transformation to evaluation. The
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implementation was done through the following pipeline
(see Fig. 5): (1) defined the train and test strategy using
the time series split cross-validation (see Fig. 4); (2) fea-
tures were independently normalized using standard scaler
from scikit learn; (3) since a large number of features were
created, feature selection was employed using recursive fea-
ture elimination (RFE) to recursively reduce the number
of features used in a model and eliminate irrelevant input
features that either do not help the prediction or are redun-
dant; (4) once the optimal features are selected to make the
best predictions, these are passed on to a selected model
algorithm, and the hyperparameters are tuned. The parking
availability predictions are made to the resolution of a second
based on the time of request. When the results are integrated
into a system, they conform to the user interface (UI), e.g.,
to be stable, not change frequently, and update every 5 min-
utes for example, similar to traffic variable message signs
(VMS). (5) The last step is to do the evaluation using a met-
ric. Hours that have no ground truth data are excluded from
evaluation and are a limitation of this study. Nonetheless,
these hours are also considered unimportant hours in Munich
based on the study of Gomari et al. [42]. The selected met-
ric for analysis in this study was the Mean Squared Error
(MSE) as described below, which is also called the Brier
Loss for cases with binary outcomes:

1 N
MSE = = ;j(p, —0,)? (1)

where p is the predicted probability outcome, o is the obser-
vation at instance t (0 means there was no available parking
spot, 1 means there was at least one available spot), and N
is the total number of instances.

MSE is used here as it can punish probability predictions
that are farther away from the binary observed ground truth.
For further insights, additional metric scores are calculated
using the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE) which can be found in the Appendix.
Additionally, given the BMW user-centric system in this
study, the proposed prioritization-based quality assessment
of [42] is implemented. This method essentially adjusts the
scores by taking the weighted sum of the scores of each
quadkey at zoom level 14, denoted as KPI,. The importance
weights are based on the total volume of parking events
recorded per quadkey over last 3 months of the study period.

N
KPIp = ZKPIq X Wy )

s=1

PEVolume,
Z{,V: | PEVolume,

Wy = 3)
where KPI, is the KPI of a quadkey, w is the importance
weight assigned to a quadkey, and PEVolume, is the parking
events volume in a quadkey.

All data science tasks carried out in this paper were per-
formed in the Python scripting language. The main packages
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used were as follows: ADTK, xgboost, Pandas, GeoPandas,
Numpy, OSMnx, Matplotlib, Seaborn, Statsmodel, PySal,
Scikit-learn, and PyTorch.

IV. SUPPLEMENTAL DYNAMIC OSPI SYSTEM FEATURE:

PARKING BEHAVIOR CHANGE DETECTION (PBCD)

An on-street parking availability prediction model is the
core component of an OSPI system. This section presents
an added-value component and feature to an OSPI system
(see Fig. 5) that provides additional dynamicity external of
a prediction algorithm, but still part of the OSPI system.
The availability of parking events data provided the opportu-
nity to develop a parking behavior change detection (PBCD)
model to enhance a user’s experience. The PBCD model
described here was mainly developed to detect static longer-
term changes. Long term is defined as changes that remain
in place for at least some defined duration of days rang-
ing from 3 days to 2 weeks. The idea is that the detector
allows flagging of potential anomalies due to parking behav-
ioral changes in a city’s neighborhood. This then allows
an update in the availability predictions made and change
the values to zero to represent unavailable spots. Mainly
detected are street parking capacity changes or parking rule
changes that impact an OSPI system’s performance. Such an
automatic fleet-based change detection system aims to keep
on-street parking maps up-to-date. Early detection of impact-
ful changes helps keep the parking map reliable, accurate,
and reduce costs. Furthermore, a PBCD system can alert
evaluators to assess the quality of their OSPI models in
identified areas by the detector.

The following sections describe the development process
and the evaluation carried out for partial validation of the
detector. An extensive analysis of the PBCD model is not
within the scope of this study. In this paper, only the current
status and potential of a PBCD model as an added component
within an OSPI system is discussed.

A. METHODOLOGICAL FRAMEWORK FOR THE
PARKING BEHAVIOR CHANGE DETECTION (PBCD)
MODEL DEVELOPMENT

The complete workflow for the PBCD is illustrated in Fig. 6.
The first step after importing parking events fleet data and the
on-street parking network was to filter out and process the
data. Minimum spatial level and data volume requirements
were set to enable behavior change detection. Initially, the
spatial requirement heuristically was set to a sub-street quad-
key level 17 (approximately 306m x 306m). Each sub-street
could contain more than one street block (i.e., intersection to
intersection). A sub-street level analysis was chosen instead
of street or block level since it was observed that disruptions
only occur in small portions of a street affecting only a few
parking spots. To minimize noise in the change detection,
only sub-street quadkeys at level 17 with parking events
greater than 100 for the whole duration of study are cho-
sen for analysis to lessen ambiguity in results. Next, after
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FIGURE 6. Methodology workflow for developing a parking behavior change
detection model.

processing the data is converted into a time series for each
sub-street.

The rule-based anomaly detection model developed was
executed as a two-level model shown in Fig. 6 below. A
rule-based approach was chosen heuristically based on the
known disruptions in the city. For level 1, a threshold was
set, and each day with a daily on-street parking volume
below this was considered as anomaly and labelled as 1
(with anomaly) or 0 (no anomaly). For an anomaly to be
qualified, it must satisfy the level 2 condition, which was
done using a rolling aggregator that sums up anomalies and
behaves consistently over a defined window number of days
based on an experimental design.

The level 1 detection: a moving average with a window
size of 7 days was chosen heuristically for smoothing and
transforming the time series. This transformed time series
was then used to identify the first level behavioral anomalies.
To further eliminate ambiguity, the removal of holidays and
weekends before level 1 detection was done, to remove drops
on these days, but nonetheless, nothing changed in terms of
anomaly detection, indicating that these days do not impact
the model. The main factor in the level 1 detection is the
testing of different threshold values as cut off values. All the
days in the time series which had fewer parking events than
the respective threshold value were considered as anomalies.
For instance, given the set threshold at 10%, all the days in
the time series with parking events less than 10% quantile
value are anomalies. This method ensures that all the days
with comparatively fewer activities reported are identified
as potential longer-term anomalies and can be marked for
further analysis.
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FIGURE 7. Anomaly detection model instance for time window of 3 days.

As an input to level 2 after the threshold detector, each
day in the generated anomalies time series was classified as
either having a value of 0 (not an anomaly) or 1 (anomaly).
Thereafter, the level 2 detector transformed the time series
by performing a rolling aggregate to identify the number
of non-zero values, i.e., number of anomalies of level 1
for a defined window size in days. If all the values in the
considered window are 1, then all are considered as second
level anomalies. Even if one of the values in the window
is 0, which is not an anomaly, all the remaining values are
also considered as 0. For instance, when a window of 5 days
is considered, if all the days in that window are first stage
anomalies, then all of them are also second stage anomalies;
however, if even one day of the 5-day window is not a first
stage anomaly, then all the 5 days are dropped as potential
anomalous behavior. If both levels are satisfied, a warning
can be triggered to change the availability status after 5
days regarding drop in the parking activity of the sub-street,
which can be flagged due to a disruptive activity, such as
construction, rule change, or some special event.

Fig. 7 illustrates an abstract example of the level 1 and
level 2 detections from the PBCD model. The solid line rep-
resents the imaginary sample of parking events time series
data after performing a 7-day moving average. Now, consid-
ering 10 parking events counts as the threshold value (dotted
black line), all the days with park event values less than 10
are anomalies after level 1. This new time series with values
0 or 1 is plotted as the dashed blue line. Considering a time
window of 3 days for level 2, the green squares show the
values (count of number of 1’s in the 3 days window) after
level 2, which can be 0 or 1 or 2 or 3 and the red circles
are the final anomalies after level 2, which are considered as
final potential parking behavior changes. These are obtained
by considering the green circles with count equal to 3 and
two respective previous days as final anomalies.

The percent anomalies omitted after level 2, left-over
anomalies, i.e., the days which turned out to be anomalies
after level 1 but are rejected in level 2 (the day 2019-05-09
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FIGURE 8. Evaluation precision scores (left y-axis) of each experimental design
setup for the parking behavior change detection model including the percentage of
anomalies filtered after level 1 detection (on the right y-axis).

in the Fig. 7) are considered as omitted anomalies and these
could also be due to construction (see Fig. 8). For instance,
if the considered window in the level 2 is 15 days and all the
14 days in a window are anomalies after level 1. After level
2, none of the dates in that window are considered as anoma-
lies as they do not satisfy the criteria of level 2. But still,
they could be due to construction and therefore it is impor-
tant to capture the percent of omitted anomalies which could
be potential anomalies. Percent omitted anomalies within the
days where there is a construction event reported could have
more chances of becoming an anomaly and therefore these
are also evaluated separately.

B. EVALUATION EXPERIMENTAL DESIGN OF PBCD
MODEL

To evaluate the capabilities of the defined PBCD model,
the following experimental design was defined: basically,
there were 5 threshold values from below 10% to 30% at
5% intervals, and 6 minimum duration values namely 1, 3,
5, 7, 10, 14, resulting to 30 experimental design setups to
check the precision scores. The calculated precision score is
a partial validation that presents the percentage of detected
parking behavior anomalies that coincide with construction
activities, although there may be other reasons for anomalies.
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Construction events dataset from HERE Maps was used
for the partial cross-validation of the PBCD model. It must
be noted that the construction dataset may have a few
shortcomings as well, such as: latency in updates and lack
of information on impact on parking. The only construc-
tion information used were the period of construction and
the location or street, where the construction works were
observed. Each on-street parking behavior change detected
by the model on quadkey level 17 was validated against
the existence of construction on street level. If there is a
construction on a particular day, then that day is consid-
ered as an anomaly. These days with construction events are
considered as known anomalies. The precision is defined as:

TP

TP + FP
“4)

where the observed value is the construction report by
HERE maps and detected is an on-street parking behav-
ior change detection. True Positive (TP) is any day which
is a model anomaly and a known construction anomaly, and
False Positive (FP) is defined as any day which is a detected
anomaly but an unknown anomaly.

Based on field inspection, a construction observation does
not necessarily mean the on-street parking segment was
closed, thus, not all days with construction coincides with an
anomaly. It was more often the case that when the road was
open, then a parking lane was taken for this, hence, the park-
ing segment was obstructed. Based on the sanity check of
construction precision score, which means detecting that for
at least one day, an anomaly is recorded within the construc-
tion period, we were able to detect at least one disruption
in on-street parking for each construction event. The con-
struction sanity precision score of 1.0 for all construction
events means that all were detected at some point during
their reported period of construction on a specific street.
However, the overall anomaly precision scores are lower
(see Fig. 8) given that there were identified changes that
were not within any construction period. Hence, an anomaly
detected by the model is not always caused by construction.
Other detections could be other longer-term changes due to
parking rules changes, an event occurring at that place for
a certain period, or other potential unknown anomalies. It is
also possible that, the model anomalies estimated are false
change detections. This means not all model anomalies are
actual changes but could be because of model inaccuracies.

precision = % anomalies within construction =

C. MAIN FINDINGS FROM THE PBCD MODEL

The precision scores corresponding to the various combi-
nations of threshold values for level 1 and the minimum
window duration in days for level 2 are presented in Fig. 8.
Both the scores for the 2019 and 2020 parking events data
are presented. In most cases, it is observed that, higher min-
imum window duration values for level 2 correlates with a
higher precision score. Concurrently, many level 1 anomalies
are filtered out as seen with the green lines in the figure.
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The scores for the 2019 experimental design range from
0.55 to 0.79, while the spread is from 0.39 to 0.46 for the
year 2020. The reason for the big difference in precision
scores between 2019 and 2020 is the range of data used. In
2019 only 5 months of data from May to September was
available, while for 2020 it was 9 months from February
until October. Henceforth, the possibilities of detecting more
anomalies throughout the year. Another reason for the dif-
ference is that anomalies detected in 2020 may not be due to
construction; an example could be anomalies from varying
restrictions due to the COVID-19 pandemic that started in
March 2020 - although this is not tackled here. For both
2019 and 2020, it can also be observed from Fig. 8, that
the percent proportion of anomalies omitted after level 1
increases as the minimum window duration is increased. For
2019, the precision improves as more level 1 anomalies are
omitted, meaning they are unlikely to be an actual anomaly.
However, for 2020, the precision score remained on the same
level throughout the different experimental designs as seen
in the graph. Similarly, this is attributed to other possible
anomalies not related to construction.

Nonetheless, these precision scores are acceptable as it
can detect some behavioral changes for which more than
55% and 40% precisions were achieved that are attributed
to construction for 2019 and 2020, respectively. This is suf-
ficient as far as the goal to use the PBCD model only as
an additive component on top of the availability prediction
model (see Section III-A).

Considering all the setups, the most optimal parameters
are 0.20 as the threshold for the level 1 detector and the min-
imum window of 10 days for the rolling aggregator at level
2. With this setup, the parking behavior change detection
(PBCD) model developed can detect long term disruptions
which last for at least 10 days - anything below this period
is neglected. The aim of the developed model was to detect
long term static anomalies signaled by the drop of parking
events caused by construction, rule change, or a significant
infrastructural change, among others. Anomalous activities
that increase the number of parking events were not part of
this study. In summary, the developed model is valuable and
can be used as a trigger functionality in a navigation app
to flag potential changes to on-street parking provisions and
as an alert for the evaluation of OSPI systems. Furthermore,
the feature can be incorporated in the proposed OSPI system
described in the next chapter by changing predictions to 0
for unavailability of on-street parking spots.

V. DEVELOPMENT OF A DATA-DRIVEN OSPI SYSTEM
This section presents a comprehensive comparison of dif-
ferent OSPI availability models based on the pipeline
implementation discussed in Section III-B4) that can be
used as part of the proposed OSPI system. The specific
features engineered, elaboration on the usage of each fea-
ture category, and the model evaluation are discussed here
as well.
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A. FEATURES ENGINEERED

A relevant parking prediction study in Munich was car-
ried out by [6] in 2016, wherein they discovered that
weekday, location, temperature, and time of the day signifi-
cantly improve their model performance, while information
regarding traffic, holidays and rainfall only had a sec-
ondary influence. Hence, apart from traffic information,
all the other features were also created and enhanced in
this study. In total 102 features were extracted from the
raw data available. The breakdown is as follows: 15 time-
related, 7 space and location-related, 2 weather-related, 9
based on historic parking availability, 54 features related
to parked-in and parked-out events, 12 related to aggre-
gated parking events data called temporal trend of parking
dynamics (TTPD) as defined in [38], and 3 related to parking
behavior change detection (see Section IV). The description
in Table 1 provides more information.

In summary, to create more generalized features, all the
data except weather, were aggregated on different quadkey
zoom levels; this is a standardized partitioning of the world
map into tiles provided by Microsoft’s Azure Maps [43].
Aggregation was done from zoom levels 14 corresponding
to a tile size of 2446m x 2446m to smaller sizes up to
level 17 of 306m x 306m. For the parking events-related
and historic parking availability features, different horizons
of moving averages slices were tested. A slice is a spatio-
temporal boundary consisting of a specific quadkey and hour
within the 168 hours of the week. These moving averages
include taking the average value over the last 2, 4, 6, 8 hours
or looking at the same week-hour and quadkey (i.e., slice)
over the last 2, 4, 6, 8 calendar weeks. Another averaged
value was, for example, taking the average number of parking
events at each slice from the last month.

B. MODELS AND TUNED HYPER-PARAMETERS

The optimal hyperparameters of the models change depend-
ing on the feature and the nature of the problem tackled. It
was observed within all the experimental design setups, the
tuned hyperparameters only marginally helped to improve
the models relative to the improvements brought by features
included in a model. The tuned values displayed in Table 2
are those of experimental design setup 6, which is chosen
as the sample setup of the analysis.

The optimal parameters were determined using exhaus-
tive grid search (i.e., GridSearchCV), when it was
feasible, and randomized parameter optimization (i.e.,
RandomizedSearchCV) [40] when model runs take much
more time, like in the case of the Random Forest models.
For model parameters not listed in Table 2, the default val-
ues were taken [36], [40]. The 3 ensemble models created
within this paper combines the different standalone mod-
els using RidgeCV, which is a linear regression model. The
default alpha parameter was taken for the ensemble models.

On average, Xgboost [36] was the best standalone machine
learning algorithm tested in this paper. Xgboost is a type
of gradient tree boosting system, which is a tree ensemble
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TABLE 2. Models and tuned hyperparameters.

Xgboost Random Forest
Parameter Value Parameter Value
learning_rate 0.04 n_estimators 800
n_estimators 135 min_samples_split 10
max_depth 7 max_depth 110
min_child weight 5 min_samples_leaf 4
gamma 0 max features sqrt’
subsample 0.45 _Decision Tree
colsample_bytree 0.65 max_depth 4
objective: ‘binary:logistic’ _min samples leaf 57
scale pos_weight | LassoCV
reg alpha 0 alpha 0.022
Multilayer Perceptron (MLP) Long Short-Term
Feed Forward Neural Network Memory (LSTM)
hidden layer sizes (21,) n epochs 50
activation ‘logistic’ _num_layers 1
number
of input
random state 1 _input size features
early stopping True _hidden size 21
learning rate ‘adaptive’  learning rate 0.001

model on its own, wherein the final prediction is based on the
prediction values calculated from an aggregation of each tree.
The objective function to minimize was set to binary logistic,
since the problem dealt with is a logistic regression for binary
classification that gives a probability output between 0 and 1.
The most important parameter to tune was learning rate; the
lower value, the better the predictions had become. After
setting a learning rate, the number of trees (n_estimators)
is determined. After a certain number of trees, the score
does not improve anymore, and it plateaus. For Random
Forest, the number of estimators made the most difference,
but the scores did not change much in comparison with
the default hyperparameters. The biggest difference observed
in tuning parameters was with the Decision Tree model.
After changing the minimum number of samples to be at
a leaf node (min_samples_leaf) from default of 1 to 57,
and updating the maximum depth from none to 4, the MSE
score improved by 31%. As a baseline example for a linear
regression model, LassoCV was used. LassoCV is usually
used in regularization in machine learning to avoid overfitting
and for feature selection. The only relevant factor to tune
here was the complexity parameter alpha which was set to
0.022. For the Multilayer Perceptron (MLP) the hidden layer
size was the most relevant. The optimum value for this was
the desired number of selected input features after feature
selection in the pipeline. For the Long Short-Term Memory
baseline model, the number of epochs was the most crucial
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TABLE 3. Experimental design and Prioritization-based scores for prediction models.

Experimental design setup

Feature category 1 2 3 4 5 6
1 _Temporal X X X X X X
2 Spatial X X X X X
3 Weather X X X X
4 _ Historic parking availability X X
5 _ Parking events-based X X
Model (M) Model Mean Squared Error (MSE) Scores A::;‘:ege
1 Xgboost 0.2160 0.2161 02166  0.2168 0.2159 0.2214
2 Random Forest 0.2170 0.2161 0.2174 0.2152 0.2165 0.2215
3 Decision Tree 0.2398 0.2412 0.2400 0.2418 0.2354 0.2352 0.2389
4  LassoCV 0.2408 0.2316 0.2291 0.2251 0.2294 0.2253 0.2302
5 Ensemble 1 = M1+M2+M3+M4 0.2387 0.2154 02144  0.2152  0.2148 0.2157
6 Ensemble 2 = M1+M2+M3 0.2423 0.2163 02150 0.2174  0.2148 0.2165 0.2204
7 Ensemble 3 = M1+M2 0.2447 0.2154 02148  0.2167  0.2146 0.2162 0.2204
8 MLP Neural Network 0.2330 0.2245 0.2239 02288  0.2288 0.2245 0.2273
9 LSTM RNN 0.2385 02392 02402 02448 02422 02437 | 0.2414 _
Average score [ 02413 1 02241 70223371 02249 | 02236 1022330

Legend for each MSE score
Legend for average MSE score
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FIGURE 9. Ground truth observations (left), test set predicted probability maps of the best

to optimize training time. After 50 epochs, the score was
not improving anymore.

The main finding in the hyperparameter tuning task for
the prediction model of the OSPI system is that the fea-
tures selected and passed on to a model are more important
compared to hyperparameter optimization unless a new algo-
rithm is to be developed. However, for a simpler model like
Decision Tree, the parameter values have a larger impact
on the evaluation score. Nonetheless, tuning is vital in
maximizing the performance of prediction algorithms used.

C. EXPERIMENTAL DESIGN AND EVALUATION OF OSPI
AVAILABILITY MODELS

The comparative analysis of the various models based on
the experimental designs is discussed in this section: the
mean MSE scores, the features that help a model, the fea-
tures that can replace other ones, geographical analysis, and
the performance of different algorithms. The systematic pro-
cess of evaluation was defined through several experimental
design (ED) setups as described in Table 3. Different feature
categories were gradually added as part of the experiment.
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lone model (mi ) and the best overall model (right).

For each of the 6 EDs, 9 models were used, totaling to
54 setups.

The calculated prioritization-based MSE scores [42] are
illustrated in Table 3. The worst performing model scores
are achieved at ED1 when only temporal features are con-
sidered. In this scenario, it can be observed that the neural
network models outperform the other models as they are
more capable of finding latent variances that the other algo-
rithms cannot determine without more features. The best
performing model among the 54 setups was Ensemble 3
at ED5 with a 0.2146 score, which combines Xgboost and
Random Forest while taking all features except historic park-
ing availability-based features. The best standalone model is
also at EDS5: Random Forest with a score of 0.2152. Each
predicted probability from the test set of around 7000 obser-
vations is mapped in Fig. 9. To demonstrate the sensitivity
to time in terms of average parking availability, see Fig. 10.
This is the average parking availability versus the average
parking probability prediction based on the best model per
week-hour. And as seen, the model can predict in line with
the availability patterns. If there are discrepancies, these are
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FIGURE 11. The stages of comparison evaluation and the differences between a nonadaptive (top) and an adaptive (bottom) OSPI system.

considered in the prioritization-based scores, which adjusts
in accordance with spatio-temporal importance [42].

Fig. 9 illustrates the difference between the predictions
made between the two models. ED5: Ensemble 3 has a wider
spread of prediction, meaning the spread is farther from the
mean. This can be observed in the maps by the larger contrast
in color in the best model’s predicted probability map. This
translates to the model making more confident prediction.

An objective of this study was to reduce reliability on
ground truth data collection and have a more dynamic data-
driven OSPI that does not rely on continuous ground truth
collection to reduce costs. There are two main stages to
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assess this: (1) see if an alternative model, in this case, the
parking events-based model (ED5) is on par with existing
industry-level models as represented by ED4; and (2) illus-
trate the dynamicity and advantage of the alternative model.
The stages of comparison are demonstrated in Fig. 11.
Stage 1: In Table 3, it is shown that the performance of
EDS5 across the different algorithms implemented is in most
cases outperforming the ED4 models. This makes it clear
that EDS can be a feasible alternative to an industry model
that focuses on historic parking availability features for its
dynamicity (see Fig. 11). To compare features, specifically,
the industry-level model at ED4 using Random Forest can
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TABLE 4. Prioritization-based scores after introducing disruption/closure in 5 out of 772 street segments.

Model (M) Model Mean Squared Error (MSE) Scores A::J:ége
Experimental design (ED) setup 1 2 3 4 5 6
1 _Xgboost 0.2483 0.2172 0.2170 0.2180 0.2120 0.2107 0.2205
2 _Random Forest 0.2480. 0.2181 0.2168 0.2187 0.2103 0.2116 0.2206
3 Decision Tree 0.2418 0.2425 0.2415 0.2431 0.2301 0.2299 0.2382
4 _LassoCV 0.2410 0.2302 0.2277 0.2244 0.2242 0.2201 0.2279
5 _Ensemble 1 =M1+M2+M3+M4 0.2395 0.2163 0.2150 0.2160 0.2099 0.2106
6 _Ensemble 2 = M1+M2+M3 0.2426 0.2173 0.2157 0.2184 0.2099 0.2114 0.2192
7 _Ensemble 3 = M1+M2 0.2448 0.2164 0.2155 0.2177 0.2097 0.2112 0.2192
8 MLP Neural Network 0.2349 0.2232 0.2227 0.2295 0.2237 0.2195 0.2256
9 LSTM RNN 0.2408 0.2411 0.2421 0.2466 0.2366 0.2382 0.2409
Average score 0.2424 0.2247 0.2238 0.2258

Legend for each MSE score
Legend for average MSE score

be compared to the best standalone model EDS: Random
Forest. The reason standalone models are compared is that
feature importance can be directly extracted as opposed to
an Ensemble model. This is obtained from the built-in fea-
ture importance attribute, determined by the proportion of the
number of times a feature appeared in a tree by a model. The
optimal number of features selected through various trials
was 21. Thus, whenever more features were available, the 21
best features that best generalize the parking prediction were
selected. The differences in features used and the respective
importance factors are shown in Fig. 11. The most impor-
tant features are the primary spatial and temporal features:
parking spaces or capacity, time of day in seconds, and GPS
location. Looking at Table 3, the primary features support
each other. There are variances only captured by spatial fea-
tures, that significantly improve the performance that are not
captured by temporal features as seen in scores of ED1. In
the ED5: Random Forest feature importance graph (lower
left in Fig. 11), it can be seen that 11 out of 21 features
are parking event-based. Looking at Table 3, ED5: Random
Forest attains a score of 0.2152, while ED4: Random Forest
attains 0.2174. This presents a 1% difference in score and
can be concluded that ED5: Random Forest after replac-
ing historic parking availability-based features with parking
events-based features does not impact the performance. Thus,
for stage 1 of the assessment, it can be an alternative to an
industry model.

Furthermore, from the comparison of features it was dis-
covered that aggregated spatial features appear to capture
variances previously unknown. This is beneficial to further
reduce reliance on historic parking availability features. On
top of on-street parking capacity on a street-level, denoted
as i_spaces in Fig. 11, aggregation of capacity on level
14, 16, and 17, labelled as i_spaces_14, i_spaces_16, and
i_spaces_17, respectively, are capable of capturing variances
and better generalize. To the best knowledge of the authors,
this is a new finding that has not been discussed in research,
as majority focus on directly using street parking capacity on
a street-level, when this data is available. This static feature
can also be updated with a dynamic feature such as PBCD
that detected disruptions as discussed next.
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Stage 2: For the next stage, the dynamicity is impor-
tant, hence, as shown in Fig. 11, the best models are used
for score comparison, and these are ED4: Ensemble 1 and
ED5: Ensemble 3, respectively. To explicitly demonstrate
the dynamicity of the parking events-based models at EDS5
with the integration of a PBCD, on-street parking disruption
or closures were artificially introduced to 5 of 772 street
segments in the study area. For the entire study period, the
ground truth availability is then changed to zero. This was
to illustrate the difference in the performance scores for
models that detect these anomalies and adapt. As seen in
Fig. 11 in the two predicted probability maps, the adaptive
OSPI system using parking events features and PBCD can
detect the closures that are denoted with the boxes. This
is visibly not detected in the nonadaptive model of ED4:
Ensemble 1. Before disruption, the scores are quite similar
with the nonadaptive model scoring 0.2152, and the adap-
tive model scoring 0.2146. However, after the closure, only
the adaptive one improves its score as it is able to change
its predictions based on a trigger from its PBCD. In large
cities, these disruptions are difficult to detect. And often in
a city like Munich, a parking closure that is left unnoticed
and not updated in the system causes a compounding effect
on parking search that can lead to a worsened experience
of the OSPI system. Thus, a system that relies on parking
events and its added PBCD feature does not only lessen the
dependence on manual ground truth observations to check for
disruptions, it also automatically improves user experience
of the proposed OSPI system.

The complete changes in scores are shown in Table 4
with the updated scores after the introduction of disruption
and Table 5 Shows the percentage difference in compari-
son with the prioritization-based MSE scores in Table 3.
To summarize, the spread of scores based on feature cate-
gory experimental design and by model used is shown in
Fig. 12 Based on the average scores per feature category
ED, ED 6 scores the best with an average MSE of 0.2181
after introduction of disruption, followed by ED 5, 3, 2, 4,
and 1 (see Fig. 12). It is also apparent that the adaptive mod-
els in ED5 and ED6 outperform the other 4 EDs proving
their advantage over models that need manual ground truth

43



GOMARI et al.: DEVELOPMENT OF A DATA-DRIVEN OSPI SYSTEM USING ENHANCED PARKING FEATURES

TABLE 5. Score percentage difference between after and before disruption per model and experimental design.

Model (M) Model Mean Squared Error (MSE) Scores A::Jffe
1 _Xgboost -0.6% -0.6% -0.4% -0.6% 2.2% 2.4% 0.4%
2 Random Forest -0.5% -0.5% -0.3% -0.6% 2.3% 2.3% 0.4%
3 Decision Tree -0.8% -0.5% -0.6% -0.5% 2.3% 2.3% 0.3%
4  LassoCV -0.1% 0.6% 0.6% 0.3% 2.3% 2.3%
5 Ensemble 1 = M1+M2+M3+M4 -0.3% -0.4% -0.3% -0.4% 2.3% 2.4% 0.5%
6 Ensemble 2 = M1+M2+M3 -0.1% -0.5% -0.3% -0.5% 2.3% 2.4% 0.5%
7 _Ensemble 3 = M1+M2 0.0% -0.5% -0.3% -0.5% 2.3% 2.3% 0.6%
8  MLP Neural Network -0.8% 0.6% 0.5% -0.3% 2.2% 2.2% 0.7%
9 LSTM RNN -1.0% -0.8% -0.8% -0.7% 2.3% 2.3% 0.2%
Average score -0.4% -0.3% 02% | 04% 1 23% 03% 0 @00
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FIGURE 12. Spread of scores after disruption. Average cross-validation MSE score box plot by feature category experimental design (ED) and average cross-validation MSE

score box plot by machine learning algorithm/model.

observations to identify disruptions. Meanwhile, the worst
score is recorded when using Random Forest with only
temporal features (ED 1). However, when spatial features
are added, the Random Forest model significantly improves
its performance. The same is also observed with Xgboost
and the ensemble models. The Decision Tree and LassoCV
models only improve with the gradual increase in features.
For MLP the trend is unclear as a decline in performance
was observed at ED4. For LSTM, since it is a model that
primarily relies on organized time-series data, there is no sig-
nificant improvements after the temporal features introduced
at ED1. This proves that a domain knowledge driven mod-
els that rely on feature engineering can outperform baseline
neural networks as those presented here.

ED4 includes historic parking availability features, but
comparatively, it performed worse than the previous step
on average. This changes at ED6 when parking events-
based features are added, resulting to the best average MSE.
Comparing EDS against ED4, it can be concluded that in
most models, the parking events-based features help more
than the historic parking availability features. The more
features provided, on average, models can capture more vari-
ances to make adjustments necessary to improve predictions
— this is even more apparent with LassoCV, a simple linear
model. The boxplot for the average MSE for LassoCV in
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Fig. 12 shows the shift from 0.2410 at ED 1 to 0.2201 at
ED6 that is tabulated in Table 3.

D. DISCUSSION ON THE LATENCY OF THE PROPOSED
OSPI SYSTEM

Fig. 4 shows that training only needs to take place every
three months as conducted in this study. This means, the esti-
mator factors in the machine learning algorithms employed
remain the same. These factors are calibrated and adjusted
based on the input values in the training sets. Table 2 presents
the feature categories that contain different engineered fea-
tures for each. Each feature takes a different value input.
The temporal features get input in relation to a timestamp
of a request. The spatial features are static based on the
parking map but can be updated when the parking behavior
change detection (PBCD) feature detects long-term closures
or disruptions in capacity. However, for dynamic feature
categories such as weather, historic parking availability and
parking events-based features the system relies on ingested
data. The feed or ingestion rate is different for each. For
weather, hourly temperature and rainfall data can be cap-
tured. For ground truth historic parking availability data,
this can only be fed into the system at random intervals
depending on when data collection is scheduled with on-
site observers. Thus, the system takes the historic averages
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TABLE 6. Experimental design and prioritization-based root mean squared error scores for prediction models.

Experimental design setup

Feature category 3 4 5 6
1 _Temporal X X X X X
2 _ Spatial X X X X
3 Weather X X X X
4 Historic parking availability X X
5 _ Parking events-based X X
Model (M) Model Root Mean Squared Error (RMSE) Scores A:;J?fe
1 _Xgboost 0.4965 0.4640 0.4642 0.4649 0.4649 0.4639 0.4697
2 Random Forest 0.4964 0.4654 0.4644 0.4660 0.4634 0.4648 0.4701
3 Decision Tree 0.4894 0.4905 0.4894 0.4913 0.4847 0.4845 0.4883
4 LassoCV 0.4907 0.4811 0.4785 0.4742 0.4789 0.4744 0.4796
5 _Ensemble 1 =M1+M2+M3+M4 0.4885 0.4635 0.4624 0.4635 0.4626 0.4637
6 _Ensemble 2 = M1+M2+M3 0.4922 0.4644 0.4631 0.4658 0.4627 0.4646 0.4688
7 _Ensemble 3 = M1+M2 0.4946 0.4635 0.4629 0.4652 0.4624 0.4643 0.4688
8 MLP Neural Network 0.4826 0.4734 0.4727 0.4776 0.4779 0.4735 0.4763
9 LSTM RNN 0.4879 0.4887 0.4898 0.4945 0.4919 0.4935 0.4911
Average score 0.4910 0.4727 0.4737 0.4722

available from the last collection period. This is also the rea-
son that manual collection is not deemed feasible. Parking
events-based features are engineered to aggregate values for
several intervals with the shortest being 15 minutes. This
means, the OSPI system predicts parking with a 15-minute
latency or 15 minutes into the future. Thus, if information
is requested now, the parking events-based features feed the
aggregated value in the last 15-minute interval.

In the occurrence of feed failure errors, the system reverts
to the last historic averages to fill in the missing data.
Detailed feed failures with regards to parking events can-
not be covered in this study due to the lack of access to
relevant data at the point of collection.

E. MAIN FINDINGS AND DEPLOYMENT OF A
DATA-DRIVEN OSPI SYSTEM

The best model based on the analysis is ED5: Ensemble 3
using temporal, spatial, weather, and parking events-based
features. The ensemble model is a combination of Random
Forest and Xgboost. The ED5: Random Forest standalone
model was the best performing. Once combined with
Xgboost, the resulting model was able to take the best of
the two algorithms by learning from the weak predictions
and replacing them with the advantages of the other. This is
illustrated by the starker difference in predicted probabilities
of the ED5: Ensemble 3 model as shown in Fig. 9. This is
also interpreted as a more confident prediction model since
the values are closer to a binary outcome, while improving
the prioritization-based MSE score performance.

Even though an industrially accepted model such as ED4:
Ensemble 1, which mainly relies on manual ground truth for
updates and disruption information, model EDS5: Ensemble 3
is a better model of choice for companies or institutions that
have direct access to reliable incoming fleet data. This is
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Legend for each MSE score t
Legend for average MSE score

because the best model employs features that rely on con-
tinuously available parking events data capable of capturing
real-time and up-to-date variances that are needed to adjust
the parking availability model. Furthermore, a parking behav-
ior change detection (PBCD) feature based on the parking
events improves the performance of the system by detecting
disruptions and closures of on-street parking spaces. Such a
system reduces the need to send manual observers to collect
data to update the system and its relevant associated parking
maps.

VI. CONCLUSION AND RECOMMENDATIONS

In the industry, manual data collection is still prevalent to
ensure quality. The authors have proposed an on-street park-
ing information system with a parking availability prediction
model and a supplementary additive component that provides
on-street parking behavior change detection (PBCD) using
the parking events dataset. The parking availability prediction
model utilizes parking events-based features and enhanced
spatial features that have a better capability to generalize
on-street parking capacity on different spatial aggregation
quadkey zoom levels. The developed parking availability
prediction model and methodology can be a competitive
alternative to existing models which mainly rely on historic
ground truth observations converting it to parking availability
features and do not have many adaptive and dynamic fea-
tures such as the parking events-based ones introduced in this
paper. A wide range of feature categories and machine learn-
ing algorithms were tested as part of an experimental design
to identify the best configuration of features engineered
based on domain knowledge and existing algorithms.

One main advantage of the presented approach for a city
like Munich, where there is abundant parking events data, is
the opportunity to reduce the frequency of ground truth col-
lection since the model can rely on incoming parking events
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TABLE 7. Experimental design and prioritization-based mean absolute error scores for prediction models.

Experimental design setup

Feature category 3 4 5 6
1 _Temporal X X X X X
2 _Spatial X X X X
3 Weather X X X X
4 Historic parking availability X X
5 _ Parking events-based X X
Model (M) Model Absolute Error (MAE) Scores A::J:ége
1 _Xgboost 0.4740 0.4243 0.4283 0.4288  0.4257 0.4248
2 _Random Forest 0.4723 0.4414 0.4437 0.4472 0.4424 0.4436 0.4484
3 Decision Tree 0.4653 0.4584 0.4602 0.4610 0.4567 0.4558 0.4596
4 LassoCV 0.4862 0.4707 0.4687 0.4607 0.4690 0.4613 0.4694
5 _Ensemble 1 = M1+M2+M3+M4 0.4799 0.4308 0.4296 0.4359 0.4242 0.4274 0.4380
6 _Ensemble 2 = M1+M2+M3 0.4872 0.4308 0.4299  0.4389 | 0.4242 0.4284 0.4399
7 _Ensemble 3 = M1+M2 0.4900 0.4306 0.4304  0.4388 | 0.4240 0.4285 0.4404
8 _ MLP Neural Network 0.4689 0.4494 0.4476 0.4365 0.4376 0.4310 0.4452
9 LSTM RNN 0.4703 0.4759 0.4756 04785  0.4817 0.4884 0.4784
‘Average score 04771 04458 04460 04474 |N0A4280 04432
Legend for each MSE score _
Legend for average MSE score
data from vehicles. This was proven by the performance volume of parking events is much smaller, and it
ED 5: Ensemble 3 model. Although the model performs will remain as a possible source for validating future
well and adapts to disruptions and closures, normal routine researches.
ground truth checks are still necessary at intermittent periods.
The introduced methodology in this paper however is also
APPENDIX

limited based on the accessibility of institutions to reliable
fleet data that can be used.

It is known that many special events, construction activ-
ities, rule changes occur unannounced and undocumented
for, hence, the PBCD model presented in this paper can
be recommended as an automated flagging component in
future OSPI services, that would request for user feed-
back and confirmation on parking availability. This in return
enables faster update of parking maps, while enhancing user
experience. It would be interesting to further validate the
parking behavior change detection with other data sources
such as special events, and rule and infrastructure change
data, among others.

The model of interest parking availability prediction model
developed in this paper used the following features: tempo-
ral, spatial (location and parking capacity spatial aggregates),
weather, and parking events-based. Reference [5] demon-
strated the value of using their Baidu maps with refined
POI data for example. However, in this research it was
difficult to obtain reliable POI data without much catego-
rization. Existing open-source POI data are unbalanced and
skewed towards restaurants. Future researchers can work on
OpenStreetMap POI data with an extensive category defini-
tion and cleansing that could be useful for comprehensive
development of models in specific cities. The level of OSM
POI data coverage is different for each city. Another recom-
mendation is to investigate and evaluate the scores based on
priority or important areas in a city [42].

In the future fast processing of videos and images
will change the game, but for the meantime, the data
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See Tables 6 and 7.
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