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ABSTRACT While traffic volume data from loop detectors have been the common data source for link
flow estimation, the detectors only cover a subset of links. These days, other data sources such as vehicle
trajectory data collected from vehicle tracking sensors are also incorporated. However, trajectory data
are often sparse in that the observed trajectories only represent a small subset of the whole population,
where the exact route sampling rate is unknown and may vary over space and time. In this paper, we
develop a method that leverage these two limited data sources to enhance link flow estimation. This study
proposes a novel generative modelling framework, where we formulate a vehicle’s link-to-link movements
as a sequential decision-making problem using the Markov Decision Process framework. We propose an
Inverse Reinforcement Learning-based method, based on which synthetic population vehicle trajectories
can be generated to estimate link flows across the whole network. The proposed method ensures the
generated population vehicle trajectories are consistent with the observed traffic volume and trajectory
data. The proposed generative modelling framework is compared to two existing methods in a synthetic
road network and validated in a real road network.

INDEX TERMS Link flow estimation, trajectory data, synthetic trajectory generation, inverse reinforcement
learning.

I. INTRODUCTION

THE ACCURATE estimation of traffic flows (or vol-
umes) on road links is critical in managing a road

network and evaluating its performance. While loop detec-
tors are installed to collect link flow data, the observation
points are often limited to a subset of links and there are
still a significant proportion of links that do not have direct
observations. Unobserved link flows need to be estimated
based on available data and this is referred to as the link
flow estimation problem in the transportation literature [1],
[2], [3], [4].
If historical traffic volume data collected on the target link

are available, link flows may be estimated based on such
data, using various data-driven methods [5], [6]. When there
are no historical data (or not sufficient historical data), link
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flows on the target links may still be estimated using flow
information from other links in the same road network. In the
literature, the sensor location and flow observability models
have been extensively studied [7]. These studies aim to find
the smallest subset and/or optimal placement of sensors on a
network that enables the accurate estimation of traffic flows
on all links across the network [8], [9], [10]. However, it is
of great interest to solve the link flow estimation problem
with a fixed set of sensors that are already installed in
the road network with a non-optimal layout. In this case,
it may still be possible to solve the link flow estimation
problem using available traffic volume data on surrounding
locations. Many previous studies focused on applying inter-
polation algorithms for missing data imputation. Generally,
these studies proposed probabilistic models to retrieve traffic
flow features under assumptions on the statistical properties
of the traffic data [11], [12]. It is common among these
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studies to assume the existence of spatial autocorrelation
among traffic data [13]. However, these interpolation mod-
els might be vulnerable under complex traffic patterns and
extreme outliers. Their performance also depends greatly on
the missing ratio. Some recent studies also proposed network
tomography models which explore the structure and char-
acteristics of the road network [14], [15]. Overall, many
previous missing data interpolation/imputation studies use
only one data source (i.e., the observed traffic volume data).
An alternative approach is to incorporate other traffic

data available in the same road network. Recent years have
witnessed an increasing application of vehicle detection tech-
nologies on the road network. A vehicle trajectory is a
time-ordered sequence of locations visited by the vehicle
(in latitudes and longitudes). A collection of vehicle trajec-
tories usually offers deep insights into vehicle propagation
information. Since the entire travel paths of vehicles are cap-
tured, trajectory data have better spatial coverage than traffic
volume data from loop detectors. It is thus desirable to com-
bine these two data sources to improve link flow estimation,
which has received great interest in recent years [16], [17],
[18], [23], [24], [25]. However, considering the limited mar-
ket penetration rate of vehicle detection technologies and the
data collection errors, the observed vehicle trajectory data
may not reflect the true population trajectory distribution.
Therefore, link flows estimated from these trajectory data
may deviate from those estimated from the traffic volume
data. Thus, the key question becomes how to combine these
two limited data sources to enable the estimation of traffic
flows on all links.
Many previous studies that attempted to incorporate tra-

jectory data in link flow estimation make strong assumptions
that observed trajectory data have high market penetration
rates, route sampling rates and/or local capture rates [16],
[17], [18]. It is also common among some studies to make
assumptions on traveller’s route choice behaviours and/or
the availability of prior information origin-destination (OD)
trip matrices or route flows [3], [19], [20]. However, these
assumptions are often violated in real-world situations. In
this paper, we aim to address more realistic scenarios, where
observed trajectory data are sparse, that is, they only repre-
sent a limited sample of the whole population. Specifically,
we use the term ‘route sampling rate’ to describe the level
of sparsity that a given trajectory dataset has. For a given
route between an OD pair in the studied network, the route
sampling rate is defined as the ratio of probe vehicle route
flow (i.e., the number of observed trajectories on this route)
to the full route flow (i.e., the total number of population
vehicle trajectories on this route). The lower the route sample
rate, the sparser the trajectory data.
Problem Definition: This paper considers the problem of

estimating traffic flows on all links in a network, where only
a subset of links is observed and the traffic volume data from
those observed links are not sufficient to estimate all other
link flows. In this case, vehicle trajectory data are used to
provide information relevant to unobserved link flows. We

FIGURE 1. An illustrative example of the link flow estimation problem.

propose a method to combine such limited traffic volume
data with sparse trajectory data to estimate all link flows
with minimal assumptions and requirements on the available
data. In particular, these two data sources are assumed to
have the following characteristics:

• Traffic volume data capture the traffic flow of the
whole population at observation points. However, the
spatial coverage of the available volume data is lim-
ited because only a small subset of links has detectors
installed.

• Trajectory data capture the vehicles’ route prefer-
ences and movement patterns across the network.
Each observed trajectory is translated into a time-
ordered sequence of links (only the spatial aspect
is considered). We assume that route sampling rates
(hereafter referred to as sampling rates) are unknown
and the distribution of such sampling rates across
the network is not uniform. Some paths and links
on the network may not be covered by the observed
trajectories. While sparse, the trajectory data still pro-
vide information on the route distribution that does
not deviate dramatically from the population route
distribution.

It is noted that we focus on estimating the ‘aggregate’
link flows over any given time interval for which data are
provided. For example, our model produces link flows over
an hour, a day, or a week if traffic volume and trajectory
data are prepared to cover a specific 1-hr interval, the whole
day, or the whole week, respectively.
Figure 1 shows an illustrative example of the proposed

research problem. A road network is represented as a directed
graph, where edges are road links and nodes are intersections.
The top two figures show the true trajectory set and true
traffic volumes that are unknown to a modeller. Consider
the scenario where the modeller can observe a portion of
trajectory data (with sampling rates of 0%, 20%, 50%, and
30% for black, red, green, and blue routes, respectively) and
a subset of traffic volume data, as shown in the first two
figures at the bottom. The modeller’s goal is to estimate link
flows across the whole network, as shown in the bottom-right
figure.
This problem can be formulated as a route flow estima-

tion problem, which aims to recover true vehicle trajectories
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(that immediately leads to the knowledge of link flows) by
using the observed link traffic volumes as constraints to
satisfy conservation laws (conservation equations). The crit-
ical difficulty of this research problem, however, lies in its
underdetermined nature because there are more ‘unknowns’
(route flows) than ‘equations’ (link observations). Instead
of finding the optimal solution for route flows (true vehi-
cle trajectories), this paper proposes a generative modelling
approach, where the vehicle trajectory data are viewed as
data samples from the true population trajectory distribution.
The proposed generative modelling framework aims to learn
a population trajectory distribution from the observed data
and generate synthetic trajectories that mimic the true pop-
ulation trajectories, which can later be used for estimating
unobserved link flows.
We formulate the trajectory data generation procedure as a

Markov Decision Process (MDP), which we refer to as road-
network MDP. The goal of our study is to first find a policy
in the road-network MDP and then use this policy to gen-
erate synthetic vehicle trajectories for link flow estimation.
Reinforcement Learning (RL) is a powerful way to learn
policies for sequential decision-making tasks in MDPs [21].
Standard RL models aim to find a policy that maximizes
the cumulative rewards of an agent’s decisions. However, in
our case, the reward function is not known, and the con-
straints (i.e., the generated trajectories should be consistent
with the link traffic volume data) cannot be expressed as
standard reward functions. Inverse Reinforcement Learning
(IRL) aims at constructing a reward function given observed
expert behaviours, which is suitable for solving the proposed
problem. Ziebart et al. (2008a) developed a method called
Maximum Entropy IRL (MaxEnt IRL), where the route
choice decisions of drivers are modelled in an MDP [22].
The goal is to recover a reward function by viewing the
available vehicle trajectory data as expert’s demonstrations.
The principle of maximum entropy is employed to resolve
the ambiguity issue, which is, many different path distri-
butions match the expert’s demonstrations. Motivated by
MaxEnt IRL [22], this paper proposes a method that can
be implemented within the proposed generative modelling
framework, namely Inverse Reinforcement Learning for link
Flow estimation (IRL-F). IRL-F aims to find a policy in the
road-network MDP that allows the generated vehicle trajec-
tories to be consistent with the observed data. Once this
policy is found, a simple technique is proposed to determine
the optimal size of the synthetic trajectory set for solving
the link flow estimation problem. The main contributions of
this paper are as follows:

• The proposed framework makes it possible to esti-
mate link flows across the network without relying on
expensive infrastructures such as loop detectors cover-
ing every link in the road network. Unlike the existing
methods, IRL-F does not require the optimal placement
of sensors on the network or specific network structures.
In addition, compared to existing interpolation methods,

most common assumptions on traffic data statistical
properties and/or spatial dependencies are relaxed.

• The proposed framework allows the incorporation of
trajectory data in the link flow estimation problem,
where the assumptions that the observed trajectories
have known and uniform sampling rates and/or cover
most link-to-link transitions in the road network are all
relaxed. It makes no assumption about and the market
penetration rates of the observed trajectory data and the
traveller’s route choice behaviours. This enables IRL-F
to be applied to more realistic scenarios, which are
challenging to the existing link flow estimation methods.

• The proposed framework provides a data-driven solution
where the observed traffic data are used to recreate the
underlying vehicle movement scenarios and generate
synthetic trajectories. To the best of our knowledge,
this is the first work to solve the link flow estimation
problem using the concept of synthetic trajectory data
generation.

II. LITERATURE REVIEW
A. LINK FLOW ESTIMATION WITH DATA FUSION
In addition to traffic volume data collected by sensors
installed in the road network, a variety of other traffic
data have been considered for link flow estimation prob-
lems. Zhang et al. (2020) proposed to solve the traffic
flow estimation problem using both traffic volume data
and crowdsourcing floating car data, which can be used to
infer network-wide traffic speed information. Both data are
used as input to a quadratic programming framework [23].
Ma et al. (2022) developed a route choice estimation frame-
work considering both the probe vehicle trajectory and
automated vehicle identification data as input, where route
penetration rates are considered constraints. This framework
is solved under the entropy maximization principle [24].
Brunauer et al. proposed to solve a local network propagation
problem between observed links based on propagation rules
indicated by the probe vehicle trajectories [2]. Such trajecto-
ries are assumed to cover most of the link-to-link transitions
in the road network. Michau et al. proposed an estimation
method for the link-based OD matrix using vehicle trajectory
data, with sampling rates assumed to be a single numerical
value for each OD pair in the road network [16]. Vogt et al.
(2019) proposed an OD demand estimation model where the
observed trajectory data are used to calculate the number of
turns at each intersection in the road network [25]. Parry
and Hazelton (2012) proposed a likelihood-based inference
model based on traffic volume data and sporadic vehicle
routing data, assuming the vehicle tracking probability is
a fixed number across the network [18]. Lederman and
Wynter (2011) proposed a two-phase solution framework. In
the offline phase, the link-to-link splitting probabilities are
determined according to traffic equilibrium principles. These
probabilities are used in the online phase to propagate the
observed link flows to unobserved links [3].
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Another relevant study to the proposed link flow estima-
tion problem is the link utilization method discussed in [4].
The authors proposed to first estimate the parameters for the
recursive logit model using routing data collected from a set
of fixed proximity sensors, which is then used to provide
link utilization information on networks. This model shares
some similarities with the generative model discussed in this
paper, as both models aim to learn the sequential decision
rules underlying the observed data. However, there are clear
differences as follows: (1) The recursive logit model requires
a utility function described using road characteristics cho-
sen by domain experts. In contrast, the path probabilities
in the proposed generative model are determined to satisfy
the constraints imposed by the observed data. (2) Only one
type of observed data is discussed in the recursive model,
while the proposed generative method considers two types
of observed data.
Overall, vehicle trajectory data are popular among

previous studies when data fusion is considered for link flow
estimation. However, they often require restrictive assump-
tions on sampling rates, prior traffic flow information and/or
traveller’s route choice behaviours, which we aim to relax
in our proposed method.

B. GENERATIVE MODELS AND INVERSE
REINFORCEMENT LEARNING
Generative models focus on finding the underlying dis-
tribution given some observed data samples and utilize
this distribution to generate new data points. Recent years
have seen many applications of such models in synthesiz-
ing mobility sequences [26] and generating human travel
itineraries [27]. There are several recent studies that propose
to use synthetic data generation approaches for traffic flow
estimation problems. Dey et al. (2020) proposed a statisti-
cal method (the network tomography model) for OD flow
estimation only using vehicle volumes observed by count-
ing sensors [15]. Zhang et al. (2019) developed a traffic
prediction model using Generative Adversarial Nets (GAN),
in which historical traffic flow data are used as input for
training such a model [28]. Chen et al. (2021) used a convo-
lutional neural network (CNN) model to learn the traffic flow
pattern from probe vehicle trajectories and automatic vehicle
identification [29]. However, there is a lack of research in
generative modelling approaches that consider both vehicle
trajectory data and traffic volume data collected by fixed sen-
sors on the road network while making minimal assumptions
on the available data.
The applications of RL methods in the transportation liter-

ature depend on the availability of reward functions. Standard
RL methods require reward functions to be known. A typ-
ical application of such methods is to solve traffic control
problems [30]. For situations where it is challenging to man-
ually determine reward functions, IRL has been applied. For
example, Ziebart et al. proposed Maximum Entropy IRL,
where the route choice decisions of drivers are modelled
in an MDP [22]. The goal is to recover a reward function

FIGURE 2. The proposed MDP-based generative modelling framework.

by viewing the available vehicle trajectory data as expert’s
demonstrations. Several extensions of MaxtEnt IRL have
been proposed later with applications in learning route choice
patterns from GPS trajectory data [31], [32]. However, few
previous studies attempted to learn driving patterns from
multiple data sources.

III. METHODOLOGY
A. THE MODELLING FRAMEWORK BASED ON MDP
A generative modelling framework is proposed to gener-
ate synthetic population trajectories, which are then used to
estimate unobserved link flows in a road network. Figure 2
shows the overall concept of the proposed framework. Given
link flow data from a subset of links and vehicle trajectory
data from a subset of vehicles, the proposed IRL-F model
learns a policy of a road-network MDP that mimics the true
population trajectory distribution underlying the observed
traffic data (process 1 in Figure 2). The most straightfor-
ward approach to estimating link flows using the learned
policy is to generate synthetic vehicle trajectories for the
whole population by sampling from the policy and counting
the number of trajectories passing each link (process 2’).
This approach is, however, computationally expensive due
to the large number of trajectories that need to be gener-
ated until a proper population size is found. Instead, a simple
approach is proposed to use state visitation frequencies mea-
suring how often each link is visited by trajectories, which
can be calculated as a by-product of the training process of
the IRL-F (process 2). The link flows for all links can be
estimated based on the state visitation frequencies from the
road-network MDP and the link flows for the observed links
can be validated against the actual volume data (process 3).
The detailed methodologies for each process implemented
in this generative modelling framework are discussed in the
rest of this section.
Vehicles’ sequential decision-making to perform link-to-

link transitions in a road network can be modelled using
a finite-horizon episodic MDP with absorbing states. In
an episodic MDP, the agent-environment interaction breaks
down into a series of separate episodes (episodic tasks),
each of which consists of a finite sequence of time steps,
rather than one long sequence of time steps (continuing
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tasks). Vehicle trajectories are naturally expressed as episodic
tasks, where each trajectory represents one episode in the
MDP. This paper proposes to formulate the link flow esti-
mation problem based on a road-network MDP, which can
be described by a tuple M = (S,A, μ0,PT , r, γ,H).

• S is the set of states, which includes all links in the
road network as well as an additional set of virtual links
representing absorbing states corresponding to the end
of an episode. First, possible destination locations in the
network are identified by extracting a subset of links
where the observed vehicle trajectories ended. Then, a
virtual link is added to each of these identified links
to allow an action to terminate trips on those possible
destination locations. The subset Sv is defined as the
subset of states that correspond to the links that have
loop detectors installed (i.e., links that have available
traffic volume count data).

• A is the set of actions, which are possible transitions
from one link to the next link.

• μ0 is the initial state distribution, which is a probability
distribution over the set of links to start with. The initial
state distribution is assumed to be equal to the distri-
bution of initial links visited by the observed vehicle
trajectories.

• PT : S×S×A → [0, 1] is the state transition probability.
PT(st+1|st, at) represents a probability of visiting st+1
in the next time-step by choosing action at in state st
at the current time-step t. The transition probability is
known and deterministic in that choosing an action to
move to a specific downstream link would indeed lead
to that link with the probability of 1 and the probability
of ending up in other links is zero.

• r : S × A × S→ R is the reward function, where
rt = r(st, at, st+1) is the reward associated with the
transitioning to state st+1 in the next time step by choos-
ing action at in state st at the current time step t. Such
a reward function is not known.

• γ ∈ [0, 1] is the discount factor, which shows how
much future reward should be discounted when the
agent is making decisions. It is assumed to be 0.99.

• H is the horizon, which is the maximum num-
ber of steps in each episode. It is assumed to be
equal to the maximum length of the observed vehicle
trajectories.

A policy π : S → A is a function that maps a state to an
action to take in that state, where π(a|s) is the probability
of selecting action a in state s under policy π . In the road-
network MDP, this function represents the probability of
a decision-making agent (vehicle) choosing the next link
among a set of downstream links on the current link. For
each episode, the agent starts from an initial state s0. At
each step t = 0, 1, 2, . . . ,H, the agent chooses an action
at given the current state st based on the policy π , which
results in transitioning to the next state st+1 and receiving a
reward rt. The sequence of states and actions visited by the

RL agent during an episode is normally called a trajectory
in the RL literature, but we will refer to it as a state-action
path τ = (s0, a0, s1, a1, . . . , aH−1, sH) to distinguish it
from a vehicle trajectory in a road network. This state-action
path can be translated into a spatial vehicle trajectory in the
road network as the sequence of states visited by the agent
represents the time-ordered sequence of road links travelled
by a vehicle. In this paper, only the spatial aspect of vehicle
trajectories (location sequences) will be considered, without
the temporal aspect (travel time between locations).
Each episode is associated with a return, which is defined

as the sum of the discounted rewards the agent received
over the episode’s state-action path. To learn the population
trajectory distribution given the observed data samples (i.e.,
vehicle trajectory data and traffic volume data), we aim to
find a policy in the road-network MDP that allows the agent
to generate state-action paths that can be viewed as synthetic
population vehicle trajectories which are consistent with the
observed data samples. It is difficult to manually specify
reward functions in the road-network MDP to achieve this
goal. Instead, the observed traffic data offer information on
the road-network MDP from a different aspect.

• The vehicle trajectory data consist of time-ordered
sequences of links visited by the detected vehicles,
which can be translated into sequences of states vis-
ited by the agent ordered by time-steps. By associating
an action to each state, each vehicle trajectory can be
translated into a state-action path in the road-network
MDP. Let Tobs denote the set of state-action paths trans-
lated from the observed trajectory data. We can obtain
a set of state visitation frequencies over the state set
(S), Dobs = {DTobss |∀s ∈ S}, where DTobss is the visita-
tion count on state s based on trajectory set Tobs, i.e.,
DTobss = ∑

τ∈Tobs
∑

s′∈τ 1s(s
′) and 1s(s′) is the indicator

function that returns 1 if s′ = s and 0 if s′ �= s. The
observed trajectories only account for a subset of the
population trajectories with non-uniform sampling rates
(which are unknown). Thus, state visitation counts from
the observed trajectories might have a different distri-
bution from the state visitation counts calculated from
the true population trajectories, the relationship between
these two distributions is unknown.

• The traffic volume data are available each link that has
a loop detector installed, which can be translated into
the number of times each state is visited by the agent.
We can obtain a set of state visitation counts over the
detector links (Sv) from these volume data, Qobs =
{vs|∀s ∈ Sv}, where vs represents the traffic volume on
state s. Note that visitation counts on these states are
equal to the counts derived from the true population
trajectories because loop detectors installed on these
links are assumed to be able to capture all vehicles
passing the links. However, since traffic volumes are
only observed on a subset of links (states), visitation
counts on states outside Sv are not available.
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Based on the above-mentioned conditions, the proposed
research objectives can be expressed as finding a policy
in the road-network MDP that generates state-action paths
whose state visitation count distribution mimics the true
state visitation count distribution implied by both types
of observed data. These generated state-action paths rep-
resent synthetic population vehicle trajectories that can
be used to estimate unobserved link flows by estimating
the state visitation counts for the states that do not have
detectors.

B. LINK FLOW ESTIMATION WITH IRL-F
In the road-network MDP, the agent needs to be trained to
generate state-action paths that are consistent with the state
visitation count distributions implied by the observed traffic
data. MaxEnt IRL is adopted to train the agent to gener-
ate state-action paths that mimic a set of state-action paths
demonstrated by an expert. However, the original MaxEnt
IRL cannot be directly applied to solve the road-network
MDP because it assumes that the expert’s demonstrations
are in the form of state-action paths, whereas in our case
we need to represent the expert’s demonstrations not only
in terms of state-action paths (to account for trajectory
data) but also in terms of state visit counts for a subset
of states (to account for traffic volume data). As such, we
propose a method called IRL-F that modifies MaxEnt IRL
to solve the road-network MDP and further propose a sim-
ple link flow estimation method based on the policy found
by IRL-F.
MaxEnt IRL: In this sub-section, we briefly introduce the

MaxEnt IRL algorithm [22].
Environment definition: Given an MDP, MaxEnt IRL

assumes that each state s ∈ S is characterized by a fea-
ture vector fs ∈ R

k, where k is the feature dimension. A
state-action path τ is a sequence of all states and actions
encountered by this agent, which is characterized by a path
feature vector fτ ∈ R

k that is defined as the sum of all state
feature vectors in this path.

fτ =
∑

s∈τ

fs (1)

The agent makes sequential decisions based on some
unknown reward values. It is assumed that visiting any
state s ∈ S incurs a state reward value that is linear to
the state feature vector, parametrized by unknown reward
weights θ ∈ R

k. The reward value Rθ (τ ) for a given path
τ can be represented as the sum of state rewards along that
path.

Rθ (τ ) =
∑

s∈τ

θT fs (2)

MaxEnt IRL considers the distribution over the set of paths
that this agent can take, aiming to find the path distribution
that mimics the distribution indicated by the expert’s demon-
strations. For deterministic MDPs, the path distribution is

parameterized by the reward weights θ . Let P(τ |θ) denote
the probability of taking path τ given reward parameter θ ,
which can be expressed as follows.

P(τ |θ) = eRθ (τ )

∑
τ ′ eRθ (τ ′) (3)

IRL objective: The expert’s behaviour is represented by a
set of demonstrated paths (Te). To train the agent to behave
following such demonstrations, MaxEnt IRL aims to find the
optimal reward weight (θ∗) that maximizes the likelihood of
the expert’s demonstrated paths under the maximum entropy
distribution, which is expressed as follows.

θ∗ = argmax
θ

L = argmax
θ

∑

τ∈Te
logP(τ |θ) (4)

The optimal reward weight is obtained using a gradient
descend method. To calculate the gradient, where M repre-
sents the number of demonstrated paths and Ds represents
the expected state visitation frequency on state s.

∇θL = 1

M

∑

τ∈Te
fτ −

∑

s∈S
Dsfs

= fexpert − fpolicy (5)

The first part can be viewed as the expectation of path
feature vectors over the expert’s demonstrated paths, denoted
by the expert’s feature expectation fexpert ∈ R

k. The second
part, denoted by the policy feature expectation fpolicy ∈ R

k,
can be viewed as the expectation of path feature vectors over
a set of paths generated under the current policy, which is
determined by the current reward weight θ . In this way, the
gradient represents the difference between fexpert and fpolicy.
The objective of MaxEnt IRL is thus to find the policy
that matches the policy feature expectation with the expert’s
feature expectation.
Solution process: MaxEnt IRL can be solved using a

gradient-based method. Generally, the reward weight θ can
be randomly initialized, and then updated iteratively based on
the gradient calculated using Eq. (5) Expert’s feature expec-
tation and policy feature expectation are needed to calculate
such a gradient. The solution process will stop when the
optimal value is found. The output of MaxEnt IRL is the
optimal reward weight, based on which the reward function
in the MDP can be recovered. Following the policy implied
by this reward function, the agent generates the state-action
paths that closely mimic the expert’s demonstrations.
IRL-F: To solve the proposed link flow estimation

problem, we propose a new method, IRL-F, which is adapted
from the MaxEnt IRL method. Specifically, instead of
observing the ground truth population trajectory set, we are
given two types of observed data, each of which only reflects
part of the true network flows. IRL-F is proposed to train the
agent using these observed data so that the optimal policy
generates a trajectory distribution that mimics the popula-
tion trajectory distribution. To achieve this goal, we introduce
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adaptations to the MaxEnt IRL method in the environment
definition (i.e., new state feature definition) as well as the
solution process (i.e., new gradient calculation process).
Environment definition: In the road-network MDP, each

state s ∈ S is characterized by a feature vector fs ∈ R
k1+k2 ,

which is a concatenation of two feature vectors f(1)
s and f(2)

s .
The objective is to match the policy feature expectation
to the expert’s feature expectation. Both observed data
are expert demonstrations. Therefore, the first part of the
state feature vector, f(1)

s , is designed to facilitate feature
expectation matching regarding the observed trajectory data,
while the second part of the state feature vector, f(2)

s , is
designed to facilitate feature expectation matching regarding
the observed traffic volume data.

fs =
[
f(1)
s

T
, f(2)

s
T
]T

, f(1)
s ∈ R

k1 , f(2)
s ∈ R

k2 (6)

In the road-network MDP, each link is represented by
a state. We proposed a new state feature definition that is
different from the definition in MaxEnt IRL. The original
MaxEnt IRL method [22] was applied in the task of learn-
ing drivers’ route choice behaviours from GPS trajectory
data, where road segments are modelled as states and the
state feature vector is defined in terms of four different road
characteristics that describe each road segment: namely, road
type, speed, lanes, and transitions. While using such general
road features is useful in learning and interpreting the agent’
route choice behaviour as a function of road characteristics,
since our primary goal is to solve the link flow estima-
tion problem rather than to learn accurate driver behaviours,
using a unique feature associated with each link can better
suit our purposes. For instance, with a unique link identifica-
tion (link ID) as a feature, the feature expectation matching
between the agent’ and expert’s trajectories can directly lead
to the matching of the state visitation frequency for an indi-
vidual link, which helps the agent replicate the link visitation
patterns in observed trajectory and traffic volume data. As
such, we propose the use of unique link IDs as feature
vectors for f(1)

s and f(2)
s as follows:

• The state feature vector f(1)
s ∈ R

k1 is designed to convey
information from the vehicle trajectory data (the distri-
bution of state visitation counts over the state set, S).
We define f(1)

s as a k1-dimensional binary vector, where
k1 represents the number of links in the road network,
i.e., the number of states in S.A one-hot encoding is
used to represent the k1 different links in the network,
where the ith element in f(1)

s is set to 1 and all other
elements are set to 0 to represent the ith link.

• The state feature vector, f(2)
s ∈ R

k2 , is designed to
convey information from the traffic volume data (the
distribution of state visitation counts over the detector
state subset, Sv). We define f(2)

s as a k2-dimensional
binary vector, where k2 represents the number of detec-
tor links in the road network, i.e., the number of states
in Sv. For a detector link (s ∈ Sv), a one-hot encoding
is used, where the ith element in f(2)

s is set to 1 and all

other elements are set to 0 to represent the ith detector
link among the k2 detectors. For a non-detector link
(s ∈ S\Sv), we simply assign a k2-dimensional zero
vector, where all elements in f(2)

s are 0.

Based on the state feature vectors defined above, a state-
action path τ is characterized by a path feature vector fτ ∈ R

k

(k = k1 + k2) by concatenating the following two path
feature vectors:

fτ =
[
f(1)
τ

T
, f(2)

τ

T
]T

(7)

where f(1)
τ = ∑

s∈τ f
(1)
s becomes a k1-dimensional binary

vector indicating which links τ (or its corresponding vehicle
trajectory) passes through and f(2)

τ = ∑
s∈τ f

(2)
s becomes a

k2-dimensional binary vector indicating which detectors τ

passes through. If we calculate these path feature vectors
for all state-action paths in some demonstrated path set Te,
then total path feature vector

∑
τ∈Te f

(1)
τ tells us how many

times each link is visited by the trajectories in Te (i.e., the ith

element in
∑

τ∈Te f
(1)
τ corresponds to the number of vehicle

trajectories that pass the ith link). Similarly, total path feature
vector

∑
τ∈Te f

(2)
τ tells us how many times each detector

is visited by the trajectories in Te (i.e., the ith element in∑
τ∈Te f

(2)
τ corresponds to the number of vehicle trajectories

that pass the ith detector). It is important to note that the
latter leads us to obtain the following relationship:

∑

τ∈Te
f(2)
τ =

∑

s∈Sv
vsf(2)

s (8)

where vs is the traffic volume on detector link s produced by
the trajectories in Te, indicating that the sum of path feature
vectors can be expressed in terms of link traffic volume
observations. This relationship plays a key role in allowing
traffic volume data to be used as expert demonstrations to
guide the learning of a policy in the proposed IRL-F.
In the road-network MDP, the path reward is calculated

the same way as in MaxEnt IRL (see Eq. (2)), where the
state reward value that is linear to the state feature vector,
parametrized by unknown reward weights θ ∈ R

k1+ k2 . The
path probabilities are defined the same way as in MaxEnt
IRL (see Eq. (3)).
IRL objective: In the road-network MDP, let TP denote the

ground-truth population trajectory set and M denote the num-
ber of trajectories in TP. To solve the link flow estimation
problem, the goal is to find a policy (vehicles’ link-to-link
transition decisions) that produces the population trajectory
distribution by finding the optimal reward weights θ∗ that
maximize the likelihood of population trajectories, as shown
in Eq. (9). The gradient can be computed the same way as
in MaxEnt IRL, as shown in Eq. (10), where the first part
can be viewed as expert feature expectations and the second
part can be viewed as policy feature expectation.

θ∗ = argmax
θ

L = argmax
θ

∑

τ∈TP
logP(τ ) (9)
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∇θL = 1

M

∑

τ∈TP
fτ −

∑

s∈S
Dsfs

= fexpert − fpolicy (10)

However, TP and M are unknown to traffic modellers and,
thus, we cannot directly calculate fexpert. Instead, only the
observed traffic volume data from a subset of links and
the observed trajectory data from a subset of vehicles are
available. Both types of observed data provide information
about the population trajectory distribution to some extent.
Based on our newly proposed state feature definitions, we
express fexpert as the concatenation of two feature expec-
tations, f(1)

expert and f(2)
expert, to describe the expert’s desired

behaviour by leveraging the available trajectory and traffic
volume data, respectively. The gradient can then be rewritten
as follows:

∇θL =
⎡

⎣

∑
τ∈TP f

(1)
τ

T

M
,

∑
τ∈TP f

(2)
τ

T

M

⎤

⎦

T

−
[
∑

s∈S
Dsf(1)

s
T
,

∑

s∈S
Dsf(2)

s
T

]T

=
[
f(1)
expert

T
, f(2)

expert
T]T −

[
f(1)
policy

T
, f(2)

policy

T]T
(11)

We propose to use the observed vehicle trajectory data to
approximate f(1)

expert and use the observed traffic volume data

to approximate f(2)
expert. Similarly, the policy feature expec-

tation fpolicy is represented as the concatenation of f(1)
policy

and f(2)
policy. The goal of the proposed IRL-F is to match these

two policy feature expectations with those two approximated
expert feature expectations.
Solution process: The optimal reward weights (θ∗) in

IRL-F can be found using gradient-based optimization meth-
ods. The challenge is how to determine the gradient using
only the observed traffic data and, specifically, how to
approximate expert’s feature expectations using the observed
vehicle trajectories and traffic volume data.
Let Tobs denote the set of observed vehicle trajectories.

Since the population trajectory set is not available, we
propose to approximate f(1)

expert using the expected feature
expectation over the observed trajectories in Tobs as follows:

f(1)
expert =

∑
τ∈TP f

(1)
τ

M
≈

∑
τ∈Tobs f

(1)
τ

|Tobs| (12)

If the observed vehicle trajectories are representative of
the population (i.e., the sampling rate is the same across the
network and all paths with non-zero true flow has at least
one observed trajectories), this approximation gives the true
feature expectation f(1)

expert. Otherwise, they may deviate from
the ground truth. In this paper, it is assumed that the observed
vehicle trajectory distribution does not deviate dramatically
from the population trajectory distribution. Therefore, such
approximated feature expectations can still guide the agent
to find a realistic policy in the road-network MDP, which

produces the state visitation count distribution that is close
to the distribution from the population trajectory set.
The second feature expectation f(2)

expert is designed to use
the information from link traffic volume data. Based on
feature definition for f(2)

s and Eq. (8), we obtain the rela-
tionship

∑
τ∈TP f

(2)
τ = ∑

s∈Sv vsf
(2)
s , where vs is the traffic

volume observed on detector link s under the population
trajectories in TP. f

(2)
expert is expressed using this relationship

and further approximate f(2)
expert by using an estimated number

of the population trajectories (M̂) as follows:

f(2)
expert =

∑
τ∈TP f

(2)
τ

M
=

∑
s∈Sv vsf

(2)
s

M
≈

∑
s∈Sv vsf

(2)
s

M̂
(13)

It is noted that the traffic volume data from loop detectors
(vs) capture all the vehicles passing the detectors (i.e., reflect
the population trajectories) and, therefore, we only need to
find a substitute for M to obtain f(2)

expert. Different methods
have been introduced to infer population traffic flows from
the observed data that capture a proportion of the popula-
tion traffic. In our study, to facilitate the implementation of
the IRL-F model, the controlled Least Absolute Deviation
(cLAD) method [33] is chosen to find an estimated size of
population trajectories (M̂) based on the observed data. Let
P denote a set of origin-destination pairs indexed with p
and Sv be a set of observed links indexed with s. In the
cLAD method, two terms ‘local capture rate’ and ‘system
capture rate’ are defined, where the local capture rate is
the ratio of the observed number of trajectories ts to the
observed traffic volume vs for each detector link s ∈ Sv
and the system capture rate, denoted by r, is the median
of all local capture rates among the observed links (i.e.,
r = median

{
t1
v1

, t2
v2

, . . . ,
t|Sv|
v|Sv|

}
). Note that in this paper, it

is assumed that the difference in local capture rate is small
so that the local capture rates do not deviate much from the
median. The cLAD method determines the optimal scaling
factors as follows:

minimize
xp

∑

s∈Sv
|es − vs| + γ

∑

p∈P

(
xp

)2 (14)

s.t. es =
∑

p∈P
ts,pαp ∀s ∈ Sv (15)

αp = 1

r
+ xp ∀p ∈ P (16)

where es and vs are the estimated and observed traffic volume
on detector link s ∈ Sv, respectively; αp is the scaling fac-
tor for the observed trajectories between origin-destination
pair p ∈ P; and ts, p is the number of observed trajectories
between origin-destination pair p while crossing detector
link s. Constraint (16) shows that the scaling factor (αp)

is determined based on the system capture rate r and a
free parameter xp, which is used to penalize large devia-
tions of such factor from 1/r. Constraint (15) shows that the
estimated traffic volume (es) is determined by multiplying
the number of observed trajectories on detector link s with
the scaling factor. The objective function (14) then aims to
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TABLE 1. Algorithm I: Solving IRL-F.

find the optimal parameter xp that minimizes the difference
between the traffic volume estimated based on the scaled tra-
jectories (es) and the ground-truth traffic volume (vs) over
all detector links s ∈ Sv. The second term of Eq. (14) is
added to minimize the statistical variance of scaling factors,
where a hyperparameter γ is used to control the statistical
bias. Higher values of γ can be used prevent overfitting.

The result from the optimization model above is the
optimal parameter (̃xp) that determines the trajectory scal-
ing factors for each OD pair. Let tp denote the number of
observed trajectories between OD pair p. The estimated num-
ber of the population trajectories (M̂) can then be obtained
as follows:

M̂ =
∑

p∈P

(
1

r
+ x̃p

)

tp (17)

With this estimated M̂, the expert feature expectation
f(2)
expert can be approximated using Eq. (13). The policy fea-
ture expectation fpolicy can be obtained by concatenating
f(1)
policy and f(2)

policy defined as follows:

f(1)
policy =

∑

s∈S
Dsf(1)

s (18)

f(2)
policy =

∑

s∈S
Dsf(2)

s (19)

where the state visitation frequency, Ds, for a given policy
is estimated the same way as in MaxEnt IRL.
Finally, Table 1 shows the algorithm to solve IRL-F to

find the optimal reward weights θ that produce the agent’s
policy feature expectation that best matches the expert’s fea-
ture expectation using a gradient-based method, where the
gradient is computed as the difference between the expert’s
and policy feature expectations obtained from Eqs. (11)–(19).
Link Flow Estimation: The output of IRL-F is a reward

function in the road-network MDP parameterized by the

optimal reward weights. With this reward function, an
optimal policy can be recovered using any RL method
(e.g., dynamic programming method). Once the policy is
found, state-action paths can be sampled on the road-network
MDP. Each path generated by the agent can be viewed as a
synthetic vehicle trajectory in the road network. A set of gen-
erated synthetic trajectories from this optimal policy reflect
possible underlying population trajectories that produce the
observed traffic patterns and, thus, can be used to obtain
the traffic volume on each link to solve the link estimation
problem in the road network.
With this ability to generate synthetic population trajec-

tories, the goal of the proposed generative framework is
to find the optimal set of synthetic vehicle trajectories that
produce the best link flow estimates. The quality of a gener-
ated synthetic trajectory set can be evaluated by comparing
the estimated link flows to the observed volume data for
the detector links. To find the optimal size of the synthetic
trajectory set, the most straightforward way is to keep gen-
erating trajectory sets with different scales until the one that
minimises the difference between the estimated and observed
volumes for the detector links is found. However, this method
is computationally expensive due to the large number of can-
didate synthetic trajectory sets that need to be generated and
evaluated.
In this paper, we propose an alternative method that utilises

the state visitation frequencies, Ds, ∀s ∈ S, calculated during
the process of solving IRL-F (see Algorithm I). Let D̃s denote
an estimate for Ds obtained from the IRL-F model. Since D̃s
represents the probability of the agent visiting each state s
based on the policy learned by IRL-F, by assuming a uniform
scaling factor β∈ R across the states, we can translate D̃s
into the estimated traffic volume on each link s, denoted by
ṽs, through ṽs = βD̃s. We use the following simple equation
to calculate the optimal scaling factor, β∗:

β∗ = 1

|Sv|
∑

s∈Sv

vs
D̃s

(20)

which is the average scaling factor across the detector links
obtained by first computing the ratio of the actual observed
traffic volume (vs) to the estimated state visit frequency (D̃s)
for each detector link s ∈ Sv and taking the mean over the
detector link set (Sv). The traffic volume on an unobserved
link (̃vs, ∀s ∈ S\Sv) are estimated with this scaling factor.

ṽs = β∗ × D̃s, ∀s ∈ S\Sv (21)

IV. EXPERIMENTS
The proposed generative modelling framework has been
applied to solve the link flow estimation problem in differ-
ent test networks. The performance of the proposed model
under each test scenario is measured and compared using
the Weighted Absolute Percentage Error (WAPE) and Mean
Absolute Percentage Error (MAPE). For the set of unob-
served links, denoted by Su, i.e., Su = {s|s ∈ S\Sv}, the value
of WAPE and MAPE can be calculated as follows, where
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FIGURE 3. The Berlin-Friedrichshain network.

ṽs is the estimated link flow on link s, vs is its ground-truth
link flow, and N is the number of states in set Su.

WAPE =
∑

s∈Su |̃vs − vs|
∑

s∈Su vs
(22)

MAPE = 1

N

∑

s∈Su

∣
∣
∣
∣
vs − ṽs
ṽs

∣
∣
∣
∣ (23)

Model Validation (Study network and data): To validate
the proposed framework, we used the Berlin-Friedrichshain
network, which is a road network data in Berlin avail-
able in a public repository [34], which include 224 nodes
and 523 links, as shown in Figure 3. The dataset includes
origin-destination trip matrices (hereafter referred to as OD
demand) as well as the parameters of link performance func-
tions. To obtain ground-truth link flows and trajectory data,
we conducted User Equilibrium traffic assignment using the
given OD demand and link performance functions using
the Method of Successive Average. The traffic assignment
results produced population trajectories covering a total of
1616 paths.
Traffic volume data input: Once the ground-truth link

flows and population trajectories (path flows) are obtained,
the set of links in the network is divided into two subsets:
observed links (Sv) and unobserved links (S\Sv). Among
the total set of links, 157 links (about 30%) are selected
as observed links, where sensors such as loop detectors are
installed to collect traffic volume data. Note that the problem
of selecting sensor locations is out of the research scope of
this paper and, therefore, we consider one specific set of
157 links which, on its own, do not allow the full link
flow estimation and therefore require additional sources of
information such as trajectory data.
Trajectory data input and sampling rates: It is assumed

that each of the 1616 paths has a sampling rate that is
uniformly distributed within a specific range. In this exper-
iment, we consider two sampling rate ranges: the range of
20 - 40% and the range of 10 - 30%, which are selected
to reflect sparse trajectory datasets in real-world situations.
The number of observed trajectories for each path is then

TABLE 2. Features describing general road characteristics.

calculated by multiplying the original path flow by the sam-
pling rate drawn from a uniform distribution for that path. To
create test scenarios where some paths in the road network
are not covered by observed trajectories, 81 paths with non-
zero true path flows (5% of the total path set) are selected
to have zero observed trajectory. Additionally, some paths
may have no observed trajectories if the computed number
of trajectories after applying the sampling rate is less than 1.
The observed trajectories sampled this way form the sample
trajectory data input to our framework.
Feature definition: this paper proposes to use unique link

IDs to define two state feature vectors, f(1)
s and f(2)

s , associ-
ated with trajectory data and traffic volume data, respectively.
For instance, consider a network with seven links. There are
three observed trajectories: τ1 traverses the 1st, 3rd, and 7th
links; τ2 traverses the 2nd, 3rd, and 5th links; τ3 traverses
the 2nd and 7th links. Then f(1)

τ becomes:

f(1)
τ = [1, 2, 2, 0, 1, 0, 2]

Furthermore, in the network, loop detectors are installed
in the 1st, 3rd and 5th links, then f(2)

τ becomes:

f(2)
τ = [1, 2, 1]

However, in the original MaxEnt IRL, state feature vector
is defined in terms of general characteristics describing each
road segment. The MaxEnt IRL method was applied in the
task of learning drivers’ route choice behaviours from GPS
trajectory data. While using such general road features is
useful in learning and interpreting the agent’ route choice
behaviour as a function of road characteristics, it is not
guaranteed that the feature expectation matching between
the agent’ and expert’s trajectories will directly lead to the
matching of the state visitation frequency for an individual
link (e.g., there may exist two or more states share the
same state feature vector). To evaluate the usefulness of the
proposed feature definition over such a conventional feature
definition, we test a scenario where f(1)

s is defined in terms of
general road characteristics such as road type, road length,
and maximum travel speed for comparison. Table 2 shows
the three features and their definitions considered in this
study. All features are represented as categorical variables
and the categories of each variable are defined based on the
road segment data for the studied network obtained from the
OpenStreetMap, which provides the link information based
on real road networks. To construct f(1)

s , we express each
feature as a binary vector using a one-hot encoding and
concatenate the three binary vectors from the three features
to form one state feature vector. For instance, f(1)

s for a link
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TABLE 3. Performance of the proposed model in test scenario set A.

with a road type of freeway, a road length of 300 m, and a
maximum travel speed of 60 km/h is specified as:

f(1)
s =

⎡

⎢
⎣1, 0, 0, 0

︸ ︷︷ ︸
type

, 0, 1, 0, 0
︸ ︷︷ ︸

length

, 0, 0, 1, 0
︸ ︷︷ ︸
max. speed

⎤

⎥
⎦

For the example discussed above, the state feature vectors
based on road characteristics are expressed as follows:

f(1)
s1 = [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]

f(1)
s2 = [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]

f(1)
s3 = [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]

f(1)
s4 = [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]

f(1)
s5 = [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]

f(1)
s6 = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0]

f(1)
s7 = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0]

With observed trajectory set [τ1, τ2, τ3], f
(1)
τ becomes:

f(1)
τ = [0, 6, 2, 0, 5, 3, 0, 0, 2, 0, 3, 3]

It is noted that f(2)
s is defined using unique link IDs for all

test scenarios because f(2)
s is specifically designed to capture

traffic volume data from detector links, which is unique to
our link flow estimation problem.
Test Scenarios: The goal of this validation study is to eval-

uate how closely the estimated link flows on the unobserved
links agree with the ground-truth link flows. We consider
the following four scenarios:

• Scenario-A1: the trajectory sampling rates range
between 20% and 40%; state feature vector is defined
using unique link IDs (proposed method).

• Scenario-A2: the trajectory sampling rates range
between 20% and 40%; state feature vector is defined
using the general road characteristics in Table 2.

• Scenario-A3: the trajectory sampling rates range
between 10% and 30%; state feature vector is defined
using unique link IDs (proposed method).

• Scenario-A4: the trajectory sampling rates range
between 10% and 30%; state feature vector is defined
using the general road characteristics in Table 2.

Results: The performance comparison is shown in Table 3,
where the WAPE are much smaller in Scenarios A1 & A3
when compared to the results in Scenarios A2 & A4. In terms

FIGURE 4. Link flow estimation results in the Berlin-Friedrichshain network.

of trajectory sampling rate, we observe that the decrease in
the sampling rate from [20%, 40%) to [10%, 30%) tends
to decrease the estimation accuracy. This indicates that the
lower the sampling rate of the available trajectory data is, the
less likely the data are to be representative of the population
and, thus, the more challenging it is to recover the population
link flow patterns from data. Figure 4 shows the graphical
comparison of the estimated link flows and ground-truth link
flows for the tested scenarios where the x-axis represents
the IDs of the unobserved links sorted in ascending order
by the ground-truth link flow values. The major finding
based on the visual inspection is that the use of the unique
link ID features (Scenarios A1 & A3) produces a much
better agreement between the estimated and ground-truth link
flows than the use of the general road characteristic features
(Scenarios A2 & A4). This demonstrates the effectiveness
of our proposed feature definition method in the context
of the link flow estimation problem as it allows the feature
expectation matching, which is the mechanism used in IRL-F,
to directly learn the link flow patterns in trajectory data.
Model Comparison (Benchmark models): In this section,

we compare the proposed generative modelling framework to
two of the existing methods in the literature as benchmarks.
The first method is proposed by Zhou and Mahmassani [35],
referred to as ZM hereafter, which solves the OD demand
estimation problem using traffic volume data and Automatic
Vehicle Identification (AVI) data. The second method is
proposed by Brunauer et al. [2], referred to as BHR here-
after, which solves link flow estimation using traffic volume
data and probe vehicle trajectories.
Study network and parameter settings: The comparison

analysis is conducted using the Nguyen-Dupuis network,
which consists of 13 nodes and 38 links, as shown in
Figure 5. We chose the Nguyen-Dupuis network for the
comparison analysis, instead of the Berlin-Friedrichshain
network, because the coverage of the ground-truth path
flows in the Berlin-Friedrichshain network is relatively small
thereby making it unsuitable for implementing the BHR
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FIGURE 5. The Nguyen-Dupuis network.

model, which requires trajectory data with high spatial cov-
erage. For the Nguyen-Dupuis network, we used the network
descriptions and OD and flow data provided in [36]. Among
38 links, 11 links are selected as observed links with detec-
tors (Sv) as shown in Figure 5, which is 29% of the links in
the network. The ground-truth link flows from these observed
links are used as traffic volume data input to the link esti-
mation problem. For the trajectory data input, we apply
the same sampling procedure used in the validation study
above to sample observed trajectories from the ground-truth
path flows. Among all paths with non-zero ground-truth path
flows, we select 5% of the paths and assume that they have
zero observed trajectory, in order to create situations where
not all paths are covered by the observed trajectory data.
For the rest of the paths, considering that nowadays there
are multiple vehicle-tracking technologies that can achieve
different trajectory sampling rates, it is assumed that the sam-
pling rates fall between 5% and 50%. To simulate different
scenarios where the observed trajectories have different lev-
els of representativeness of the population trajectory set (i.e.,
the observed trajectory distributions have different levels of
deviations from the true trajectory distribution), nine sam-
pling rates intervals are designed: [5%, 15%), [5%, 25%),
[5%, 35%), [15%, 25%), [15%, 35%), [15%, 45%), [25%,
35%), [25%, 45%), [25%, 55%). For the feature definition
for the IRL-F, we use our proposed method based on the
unique link IDs.
Test scenarios and performance measure: The ZM model

assumes that the traffic simulator successfully captures the
true traffic flow patterns so the observed traffic data (e.g.,
link count data and AVI data) are not too much deviated
from the estimated traffic flows generated by the simulator.
The BHR model assumes that the observed trajectories cover
most of the link-to-link transitions in the study network. To
allow fair comparisons, we design two sets of scenarios for
each benchmark model:

• The first scenario set provides the conditions required
by a given benchmark model (i.e., scenario set B for
comparing to ZM model; scenario set C for comparing
to BHR model).

• The second scenario set lifts these requirements to test
the model performances in a more flexible and realistic

TABLE 4. Performance comparison (MAPE) scenario set B.

environment (i.e., scenario set D for comparing to ZM
model; scenario set E for comparing to BHR model).

Comparison with the ZM (Zhou-Mahmassani) model: Two
sets of test scenarios are designed to compare our proposed
model to the ZM model: Scenario set B, which assumes
the traffic simulator used in the ZM model captures the
true flow patterns, and scenario set C, which relaxes this
assumption. Note that, besides the traffic volume data and
the vehicle trajectory data, the ZM model further requires his-
torical observations on OD trip matrices (hereafter referred
to as prior knowledge of the OD demand). To investigate
the performance of the models concerning different levels of
prior knowledge, three different prior OD demand settings
are designed as follows:

• P1: the prior demand for each OD pair equals its true
demand value with small disturbances by adding an
error sampled from a normal distribution with zero mean
and a standard deviation of 20% of true demand value.

• P2: the prior demand for each OD pair equals its true
demand value with moderate disturbances by adding an
error sampled from a normal distribution zero mean and
a standard deviation of 40% of true demand value.

• P3: the same prior demand is used for all OD pairs,
where the common prior demand value is obtained by
taking the average of true demands over all OD pairs.

Among the three settings, P1 reflects the most accurate
prior knowledge of the OD demand, whereas P3 reflects the
least accurate prior knowledge.
Scenario set B: It is assumed that the traffic simulator

used to implement the ZM model conducts traffic assign-
ment under static user equilibrium conditions. Meanwhile,
the ground-truth traffic observations on the Nguyen-Dupuis
network are obtained by conducting traffic assignment under
the same user equilibrium conditions. By doing this, the traf-
fic simulator can be considered to capture the true traffic
flow pattern as the simulated traffic flow patterns would be
consistent with the ground-truth traffic flow patterns.
Figure 6 and Table 4 show the comparison results between

the proposed generative modelling framework and the ZM
model tested under the nine trajectory sampling rates, in
WAPE and MAPE respectively. When comparing across
different scenarios, the estimation errors are smaller when
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FIGURE 6. Performance comparison with ZM model for scenario set B.

trajectory sampling rates are higher (e.g., the errors are
smaller in Scenario B7 than in Scenario B1) or have a smaller
range (e.g., the errors are smaller in Scenario B7 than in
Scenario B9), meaning that the observed data provides bet-
ter distribution information about the population trajectories
when sampling rates are higher and less heterogeneous. The
ZM model shows a similar level of error across different tra-
jectory sampling rates, indicating that it is less sensitive to the
trajectory sampling rate. This is because the multi-objective
optimisation technique used in the ZM model, which adjusts
the objective function weights associated with different input
sources, gives less weight to the trajectory data while giv-
ing more weight to other data sources such as link counts
and prior OD demand in this particular experiment. Overall,
in scenario set B where the conditions required by the ZM
model is met, the ZM model achieves better performance
when the prior knowledge on OD demand is assumed to be
very accurate (i.e., demand setting P1) or when the trajec-
tory sampling rate is low (i.e., minimum 5%). However, such
advantage does not exist in all other scenarios, where IRL-F
can achieve similar or better performance when compared
to ZM model.
Scenario set C: The assumption that a traffic simulator can

capture the true traffic flow pattern is relaxed. To create this
test environment, we use two different path cost functions
to perform traffic assignment in generating the ground-truth
traffic flow and in implementing the ZM model, respectively,
so that the simulator used in implementing the ZM model
cannot accurately replicate the ground-truth traffic flow pat-
tern. Specifically, we assume that the true traffic flows on
the Nguyen-Dupuis network are from the traffic assignment
results based on a path cost function, while a simulator used
to implement the ZM model performs traffic assignment
based on another slightly different path cost function. Using
these settings, the performance of our model and the ZM
model are again compared under the nine trajectory sampling
rates (Scenarios C1–C9) and the resulting WAPE and MAPE

FIGURE 7. Performance comparison with ZM model for scenario set C.

TABLE 5. Performance comparison (MAPE) scenario set C.

are shown in Figure 7 and Table 5 respectively. The ZM
model produces much higher estimation errors compared to
the results in scenario set B regardless of the changes of val-
ues in sampling rates. Our models outperform the ZM model
in all scenarios with different trajectory sampling rates and
prior OD demands. Specifically, the proposed method shows
great advantage in scenario C4, C7 and C8, while in scenario
C3 the proposed method performs similarly to the ZM model.
It is rather difficult to achieve accurate estimates in link flows
when the sampling rates of the observed trajectories have
higher heterogeneity. Note that it is common that certain
behavioural assumptions used in traffic assignment and sim-
ulation models may not fully reflect real-world behaviours.
This highlights the advantage of the proposed data-driven
approach over traditional simulation-based approaches in
inferring the population travel patterns by effectively
leveraging the information embedded in the available
data without relying on prior knowledge or behavioural
assumptions.
Comparison with the BHR (Brunauer-Henneberger-Rehrl)

model: Two sets of test scenarios are designed to compare our
proposed model to the BHR model. Scenario set D satisfies
the trajectory data coverage assumed by the BHR model,
while scenario set E relaxes this assumption.
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FIGURE 8. Performance comparison with BHR model for scenario set D.

Scenario set D: It is assumed that the observed vehi-
cle trajectories cover most link-to-link transitions in the
road network so that the propagation rules defined in the
BHR model are valid. Traffic assignment is first conducted
under user equilibrium conditions to generate the ground-
truth path set. Initially, the set of paths assigned non-zero
flows does not reach a high enough coverage of the link-to-
link transitions, as suggested by BHR method. To ensure fair
comparisons, some unused paths are selected to be assigned
with non-zero path flows. The adjusted observed trajectories
set covers about 80% of the link transitions on the network.
The link flow estimation is performed under the nine differ-
ent trajectory sampling rates. The comparison between our
model and the BHR model is shown in WAPE values in
Figure 8 and MAPE values in Table 6. The performance of
IRL-F varies with the trajectory sampling rate, especially
with the width of its range. The proposed method shows
similar performance when compared to other scenario sets –
with much lower error values in scenario D4, D7 and D8. By
contrast, the BHR model shows fewer variations across dif-
ferent trajectory sampling rates. Overall, in scenario set D
where the conditions required by the BHR model is met,
IRL-F shows similar performance with the BHR model.
Specifically, the differences in MAPE are less than 3%.
when the trajectory sampling rate is low (i.e., minimum 5%).
However, with higher trajectory sampling rate, IRL-F per-
forms better than the BHR model, with a difference in MAPE
up to 11% when the trajectory sampling rate is between
25% and 45%.
Scenario set E: We now relax the assumption on a high

coverage of observed trajectory data to evaluate the models in
more realistic conditions as the penetration rates of available
vehicle trajectory data are still quite low in many cities. To
create such test environments, we only use the paths obtained
by solving the traffic assignment problem on the Nguyen-
Dupuis network as the ground-truth path set without further
adjustment applied in scenario set D. This path set covers
about 60% of the link-to-link transitions on the network,

FIGURE 9. Performance comparison with BHR model for scenario set E.

TABLE 6. Performance comparison (MAPE) scenario set D and set E.

which is lower than the level of coverage used for scenario
set D (i.e., 80%). The performance comparison under the
nine trajectory sampling rates (Scenarios E1–E9) is shown
in Figure 9 in WAPE and Table 6 in MAPE.

The estimation errors have significantly increased in
the BHR model compared to scenario set D, suggesting that
the propagation rules used in this method depend heavily
on the coverage of observed trajectories and fail to estimate
the true link flows when many of the link-to-link transi-
tions have no observed trajectories. On the other hand, our
models produce similar performance to scenario set D, indi-
cating a high level of robustness of the proposed generative
approaches against the sparsity and low coverage of real-
world trajectory data. Note that it is not guaranteed that
higher sampling rates in the observed trajectories will neces-
sarily lead to better estimation results. For example, the error
value in Scenario-E6 is larger than that in Scenario-E3. The
main reason is that a higher sampling rate does not guar-
antee that observed vehicle trajectory distribution is more
similar to the population trajectory distribution, although it
is true in most cases. Given two test scenarios with the same
set of observed traffic volume data, the scenario where the
observed vehicle trajectory distribution deviates less from the
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population trajectory distribution is more likely to perform
better than the other test scenario. In sum, in scenario set E
where the requirements by the BHR model is lifted, IRL-F
achieves better performance with difference in MAPE up to
28% when the trajectory sampling rate is between 25% and
55%. This highlights the advantage of the proposed method
over the existing spatial imputation method when modellers
only have access to sparse observed trajectory data. Missing
link flows can be estimated with the proposed method with-
out strong assumptions on the coverage and sampling rate
of the trajectory data.

V. CONCLUSION
This paper proposes a novel data-driven approach to solve
the link flow estimation problem with limited traffic vol-
ume data and sparse vehicle trajectory data. The main idea
is to learn vehicle movement patterns from the available
data and generate synthetic population vehicle trajectories
to estimate link flows on unobserved links. We develop
a formal mathematical framework based on MDP and
RL-based solution approach, namely IRL-F. Our genera-
tive modelling framework was validated using a real road
network in Berlin, producing reasonable estimation results on
test scenarios with different data availability settings. When
compared to the two benchmark methods from the litera-
ture, the proposed method shows a considerable advantage
under more realistic scenarios, where behavioural assump-
tions about drivers are not met or the network coverage
of the trajectory data are low. This highlights our contri-
bution to the link flow estimation literature: the proposed
IRL-F method can be used to specifically deal with chal-
lenging scenarios where the modellers only have limited
traffic volume data and sparse vehicle trajectory data, but no
prior knowledge about the travellers’ demand or route choice
behaviours.
While this study focuses on the link flow estimation

problem, the application of our framework is not limited to
this problem. Our framework can be viewed as an attempt to
develop a more general synthetic trajectory generator using
inverse reinforcement learning methods, which is capable of
generating realistic trajectories that would have caused the
observed traffic counts and sample trajectory data. In the
future, more efforts can be made to improve the accuracy
of generated trajectory dataset. Such a trajectory generator
would have many applications in broader urban mobility
studies including data augmentation, privacy protection, and
mobility prediction.
In future work, we plan to consider a more sophis-

ticated method to determine the scaling factor to scale
up generated trajectories to obtain the population trajec-
tories. The computational efficiency is also an important
issue, which we plan to improve by adopting more effi-
cient RL algorithms or advanced deep RL/IRL architec-
tures. For applications beyond the link flow estimation
problem, the model evaluation should consider more diverse

metrics to assess the quality of individual-generated trajec-
tories and their representativeness of the true population
trajectories.
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