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ABSTRACT Modeling the relationship between vehicle speed and density on the road is a fundamental
problem in traffic flow theory. Recent research found that using the least-squares (LS) method to calibrate
single-regime speed-density models is biased because of the uneven distribution of samples. This paper
explains the issue of the LS method from a statistical perspective: the biased calibration is caused by the
correlations/dependencies in regression residuals. Based on this explanation, we propose a new calibration
method for single-regime speed-density models by modeling the covariance of residuals via a zero-mean
Gaussian Process (GP). Our approach can be viewed as a generalized least-squares (GLS) method with
a specific covariance structure (i.e., kernel function) and is a generalization of the existing LS and the
weighted least-squares (WLS) methods. Next, we use a sparse approximation to address the scalability
issue of GPs and apply a Markov chain Monte Carlo (MCMC) sampling scheme to obtain the posterior
distributions of the parameters for speed-density models and the hyperparameters (i.e., length scale and
variance) of the GP kernel. Finally, we calibrate six well-known single-regime speed-density models with
the proposed method. Results show that the proposed GP-based methods (1) significantly reduce the biases
in the LS calibration, (2) achieve a similar effect as the WLS method, (3) can be used as a non-parametric
speed-density model, and (4) provide a Bayesian solution to estimate posterior distributions of parameters
and speed-density functions.

INDEX TERMS Fundamental diagram, Gaussian processes, generalized least-squares, traffic flow theory.

I. INTRODUCTION

HE FUNDAMENTAL diagram is a mathematical repre-

sentation of speed-density or flow-density relationships,
which is one of the underpinnings of traffic flow theory.
Numerous works have been dedicated to modeling the rela-
tionships since the first fundamental diagram Greenshields
model [1] was proposed. Thanks to the simple but efficient
formulas, the single-regime speed-density models with a few
meaningful parameters [e.g., [2], [3], [4], [5], [6]] have been
widely used in various applications, such as determining the

The review of this article was arranged by Associate Editor Meng Li.

road capacity [7] and modeling traffic control strategies [8].
However, as discussed in Drake et al. [4], Edie [9], single-
regime models usually cannot perfectly fit the empirical data
ranging from the light-traffic/free-flow regime to the con-
gested/jam regime. Although multi-regime models (piecewise
functions consisting of multiple single-regime models) can
better fit empirical data, they lack the simplicity and the nice
mathematical properties of single regime models (e.g., hard
to determine the breakpoints [10] and not differentiable at
breakpoints).

Fundamental diagrams are often calibrated by the data
from loop detectors. Recent methods also tried to calibrate
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FIGURE 1. (a) Speed-density data and the least-squares fit of the Greenshields
model; (b) Regression residuals and the data histogram in terms of density.

fundamental diagrams by floating vehicle data [11], [12];
this paper pertains to the more common approach that uses
detector data. Qu et al. [13] pointed out that the calibration
method, e.g., the least-squares (LS) method, can cause inac-
curate/biased parameter estimations for single-regime models
due to the uneven distribution of speed-density observations.
We illustrate this issue using a dataset collected by loop
detectors from 76 stations on the Georgia State Route 400
(referred to as the GA400 dataset). The average speed, flow,
and occupancy are collected for each station with a 20-
second sampling interval and aggregated every 5 minutes.
The GA400 dataset contains 47,815 observations and has
been widely used in studying fundamental diagrams [6],
[13], [14], [15], [16]. Figure 1 (a) shows the speed-density
observations of the GA400 dataset and a Greenshields model
calibrated by the LS method; Figure 1 (b) shows the regres-
sion residuals and the data histogram in terms of density.
Several issues can be found from the figure. (1) Skewed data:
the distribution of the data is highly screwed (this is a general
issue to most speed-density datasets); most observations have
a small density (the densities of 86.8% of the observations are
in the range of being less than 20 veh/km). (2) Biased calibra-
tion: the Greenshields model calibrated by the LS method
has much smaller absolute values of residuals for regions
with more observations than regions with fewer observations.
(3) Correlated residuals: there are strong correlations in the
residuals.

To address the biased calibration issue, Qu et al. [13]
proposed to calibrate single-regime speed-density models
by a weighted least-squares (WLS) method. The weights
in the WLS are determined by the distance in density
between adjacent observations. Therefore, data from regions
with fewer observations have larger weights to balance the
biases. In a closely related work by Zhang et al. [15], the
authors developed a method to generate uniformly distributed
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samples from non-uniformly distributed observations and
then calibrated the fundamental diagram by the LS method.
This method has a similar performance to the WLS method.
The above two works both attribute the biased calibra-
tion problem to the unevenly distributed data. However, we
explain this issue from a statistical perspective and claim that
the biased calibration of the LS is caused by the correlations
in residuals. The LS method can be derived from the max-
imum likelihood estimation (MLE), where a fundamental
assumption is that residuals are independent and identically
distributed (i.i.d.) Gaussian noise. The LS method becomes
biased when there are strong correlations in the residuals,
such as in Figure 1 (b).

Based on our new explanation, first, this paper proposes
a new calibration method for single-regime speed-density
models, which reduces the biases by modeling the covari-
ance of residuals using a zero-mean Gaussian Process (GP).
Our approach can be viewed as a generalized least-squares
(GLS) method with a specific covariance structure and is a
generalization of the existing LS and WLS methods. Next,
we use a sparse approximation to address the scalability
issue in estimating GPs and apply a Markov chain Monte
Carlo (MCMC) sampling scheme to obtain the posterior dis-
tributions of parameters for speed-density models. Finally,
we test our GP-based method by calibrating six well-known
single-regime speed-density models on the GA400 dataset.
Results show that the proposed methods (1) significantly
reduce the biases in the LS calibration, (2) achieve a similar
effect as the WLS method, (3) can be used as a non-
parametric speed-density model, and (4) provide a Bayesian
solution to estimate posterior distributions of parameters and
speed-density functions. It is necessary to clarify that the
posterior distribution of parameters/speed-density functions
in this paper is different from the stochastic fundamental
diagram models [14], [16], [17], [18]. The stochastic funda-
mental diagram aims to use a set of speed-density functions
to capture the distribution (uncertainty) of data, while the
posterior distribution in this paper captures the distribu-
tion (uncertainty) of the estimation for the speed-density
function.

Non-i.i.d. noise is a general problem in model calibration.
Back in 2001, Kennedy and O’Hagan [19] have proposed
to use GP to model the correlations in residuals. Later, sim-
ilar ideas were used in various fields [20], [21], [22]. In
the transportation domain, a recent closely related work by
Wiirth et al. [23] also introduced a GP bias term in calibrat-
ing traffic flow models. Wiirth et al. [23] focus on calibrating
second-order traffic flow models, while this paper estimate
model parameters for speed-density functions and adopt a
scalable algorithm using sparse GP.

There are four major contributions of this paper. First,
we provide a statistical explanation for the biases of the LS
method in calibrating speed-density models. Second, we pro-
pose to use a GP to resolve the biased calibration problem,
and our method unites the existing LS and WLS methods into
a generalized framework. Third, we introduce two solutions

VOLUME 3, 2022



IEEE Open Journal of
Intelligent Transportation
Systems

(sparse GP and MCMC sampling) to estimate the proposed
GP-based model, making our method is scalable to large
datasets and providing posterior distributions for the estima-
tion. Lastly, the proposed GP regression can be used as a
new non-parametric speed-density model.

The remainder of the papers is organized as follows.
Section II is the methodology part for the GP-based cal-
ibration method for speed-density models; the theory, the
connections with existing models, and two solutions for
the GP will be introduced in this section. Section III is
about experiments, where we will calibrate six single-regime
speed-density models by the GP-based methods and compare
the results with the LS and the WLS methods. Section IV
is left for conclusions and discussions.

Il. METHODOLOGY

Consider a list of n observations for speed v =
[vi,v2,...,v,]" and density k = [ki, k2, ..., ko]T. We
assume these paired observations can be explained by an
unknown function f and a random noise term

vi =f(ki) + €. (D

Conventional approaches directly replace the unknown func-
tion with a given-form single-regime speed-density model
m(k) and calibrate model parameters by the LS method.
However, most single-regime speed-density models are not a
perfect fit for the speed-density relationship, and the residuals
(v — m(k)) are, therefore, not independent. The correlations
in regression residuals violate a fundamental assumption—
independent noise—in the LS estimation,! which causes
biases in parameter calibrations, particularly in the case of
unevenly distributed observations [13]. Although the gener-
alized least-squares (GLS) method [25] can overcome the
biases of the LS method, the estimation for the GLS in
our case is difficult because of the unknown residual covari-
ance matrix, non-linear speed-density function, and the large
number of observations.

We propose a new calibration method by Gaussian Process
(GP) regression to resolve the above issue. Section II-A
elaborates on the foundation of the GP-based method and
its connections with the existing WLS and LS methods.
We further introduce a sparse GP method in Section II-B
to resolve the scalability issue in the GP regression. Finally,
Section II-C introduces an MCMC sampling method for vari-
ational sparse GP [26] to obtain parameters’ posteriors in
speed-density models.

A. GAUSSIAN PROCESS REGRESSION
We impose a GP prior to the unknown function f:

FK) ~ GP(m(k), (k. K)), )

The LS method can be derived from a maximum likelihood estimation
when assuming i.i.d. Gaussian noise [24, Ch. 3]. Although, when the func-
tion is linear, according to the Gauss-Markov theorem, the LS estimation is
unbiased when the noise is independent, zero-mean, and homoscedastic with
finite variance (could be non-Gaussian). The noise should be independent
in either case.
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c(k.k)=0 exp( TP , 3)
where the mean function m(k) is a speed-density model;
the covariance function (a.k.a. kernel function) c(k, k') cap-
tures the covariance of the residuals. The function value at
observed points follows a multivariate Gaussian distribution
p(®) = N(mn(k), C,,), where C,,;, is a covariance matrix with
elements Cy,[i, j1 = c(k;, kj). The squared exponential (SE)
kernel in Eq. (3) is one of the most commonly used kernels
in GP (although using other kernels is possible), character-
ized by smooth function values; the variance o2 and the
length scale ¢ are hyperparameters that should be estimated
from data. To better understand our method, an equivalent
form for Eq. (1)-Eq. (2) is

v=mk) + gk) + ¢, (C))]
gk) ~ GP(0, c(k, k'), 5)

where g(k) can be regarded as a systematic error component
that cannot be modeled by the speed-density function m(k),
and we model the systematic error component by a zero-
mean GP. To avoid ambiguity, we refer to (v — m(k)) the
regression residual and the ¢ the noise thereafter.
Assuming an i.i.d. Gaussian noise term of ¢ brings great
convenience to calibrating a GP. In this case, the joint
distribution of n speed observations follows a multivariate
Gaussian distribution p(v) = N(m(K), Cyy + 021), where

o2 is the variance of &, and I is an identity matrix. We

€

denote by B the parameters in the mean function and by
0 ={B.¢ o2 %2} the parameters of the GP. We can esti-
mate model parameters by Maximum marginal Likelihood
Estimation (MLE), which is equivalent to minimizing the

following negative log marginal likelihood with respect to 6:
—logp(v]f) = —log NV (v|m(k), Cy + ogl)
1 -1
= S (v—m(k)" (Con+021) (v = m(k)

+ 5 tog(1Cu +0711) + & Inar). ©)
This minimization can be solved numerically by gradient-
based methods.

Indeed, the above GP-based calibration can be viewed
as a generalized least-squares (GLS) method with a struc-
tured residual covariance matrix ¥ = (Cp,, + 0’821). The
quadratic term %(V—m)TE_1 (v—m) in Eq. (6) plays arole of
minimizing the regression residuals in squared Mahalanobis
length [27]. When C,;,, = 0 and o, = 1, minimizing Eq. (6)
becomes an LS estimation. When C,, = 0 and allowing
different o, along the diagonal of X (i.e., heteroscedastic-
ity), Eq. (6) is equivalent to the WLS method adopted by
Qu et al. [13]. In this paper, we use the SE kernel in Eq. (3)
to construct C,,, accounting for the dependencies in the
residuals. Meanwhile, the second term %log(|2|) in Eq. (6)
penalizes the complexity of the covariance matrix, leaving
spaces for the mean function to explain more variance of
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the data. Therefore, the GP-based calibration is a general-
ization of a wide range of calibration methods with different
covariance structures. Besides, although the main purpose
of this paper is to calibrate a speed-density model, the GP
itself can function as a non-parametric model for data-driven
fundamental diagrams.

B. SPARSE GP

The GP regression introduced in Section II-A does not scale
to large datasets because of the O(n?) time complexity and
the O(n*) storage complexity. Fortunately, various scalable
GP methods have been developed to overcome this diffi-
culty [28]. We applied a sparse GP method using inducing
points to address the computational issue.

The computational bottleneck of a GP is calculating the
inverse and the determinant of the covariance matrix X. The
idea of the sparse GP is to approximate the covariance matrix
using a small set of u auxiliary inducing points at k,. The
function values at these inducing points follow the same GP
prior p(f,) = N (m(k,), C.,), and it assumes that the function
values f at observed points and f, at new locations are condi-
tionally independent givenf,, i.e., p(f,|f, £,) = p(f,|f,). Using
inducing points, the function covariance matrix is approx-
imated with a low-rank representation C,, ~ C,,C;!C,
where C,;,, € R"* is the covariance matrix between f and
f,. Next, the inverse and the determinant in Eq. (6) can be
simplified by the matrix inversion lemma (also known as
the Sherman-Morrison-Woodbury formula) and the matrix
determinant lemma, respectively; it follows

-1
(C’Wc;ul C;zru + 0821)
-1
= 0'6—21 — o'€_4Cm, <0'€_2C;ucnu + Cuu) C;lru, @)
|CouCoul Cy + 1]
= |0, 2Cyp,Cou + Cuudl I, 102" (8)

With Eq. (7)-Eq. (8), the time and storage complexity of
estimating a sparse GP using the MLE reduces to O(nu?).

Although there are methods for choosing the number and
the locations for inducing points, we use evenly spaced
twenty points between the minimum and the maximum
observed density as inducing points. This simple choice for
inducing points will suffice for our problem since the shape
of the speed-density relationship is pretty simple. Besides,
because this paper focuses on the mean function m(k) rater
than the function value f(k), many other sparse GP methods
in the literature will have the same estimation results for
our problem. For example, the Nystrom GP [29], the subset
of regressors [30], and the deterministic training conditional
approximation [31], [32]. Interested readers are referred to
an article by Quinonero-Candela and Rasmussen [33] for the
details of these sparse GP models.

C. MCMC FOR VARIATIONAL SPARSE GP
The estimation methods in Section II-A and Section II-B
only works when the noise term ¢ follows a Gaussian
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distribution. However, as we can see from Figure 1 (a),
there are a fair amount of outliers in the data and using
a long-tailed distribution (e.g., Student-7 distribution) for the
noise term is more robust in such a case. Moreover, traf-
fic practitioners often have prior knowledge about model
parameters (e.g., free flow speed and jam density); know-
ing the uncertainty (posterior distribution) of parameters is
much more interesting than a point estimation. Therefore, a
Bayesian estimation based on an MCMC sampling method
developed by Hensman et al. [26] for variational sparse GP
is introduced in this section to resolve the above issues.

The sparse GP in Section II-B uses approximate GP
prior (in the covariance matrix) but exact inference. In con-
trast, the variational sparse GP [26], [34] uses exact GP
prior but approximate inference. Following the notations in
Section II-B, unknown values in a sparse GP include f,
f,, f., and 6. The idea of the variational sparse GP by
Hensman et al. [26] is to approximate the intractable true
posterior p(f, f,, £, #]v) by another distribution ¢(f, f,,, f,, )
by minimizing their Kullback-Leibler (KL) divergence
KL(g(f, £, £, 0)||p, £,, £, 6]v)). Hensman et al. [26] found
that the minimum KL divergence is reached with an optimal
variational distribution:

log g(fy, 0) = Epir,.0)[logp(y | )]
+logp(f, | 0) +logp(@) —logC, (9)

where p(@) is the prior distribution of parameters, C is a nor-
malizing constant. The first term on the right side of Eq. (9)
is the expected log-likelihood for noise €. This expectation
can be factorized across data when assuming i.i.d. noise;
next, this term can be analytically solved for Gaussian or
Poisson noise, and can be approximated by Gauss-Hermite
quadrature for other types of noise. The time complexity for
computing Eq. (9) is O(nu?).

Direct sampling from Eq. (9) using the MCMC is inef-
ficient because the function value f, and GP parameters
0 are usually strongly coupled [35]. Therefore, the follow-
ing reparameterization (known as whitening the prior) is
introduced to improve the sampling efficiency. Define an
ancillary random variable v ~ A/(0, I), such that f, = Rv
with RRT = C,,,. The optimal log probability density for v
and @ is thus

log G(v, 0) = Epgg,—rw)[logp(y | D]

+ logp(v) +logp(@) —logC. (10)

We apply No-U-Turn sampler [36], a type of Hamiltonian
MCMC [37] method that automatically tunes step size, to
efficiently draw samples from Eq. (10). Next, parameters’
posterior distributions can be obtained from the samples.

lll. TESTS

This section tests the effect of using the GP in calibrating
single regime speed-density models. Section III-A introduces
the settings of the experiment and models. The calibration
results of different models are compared in Section III-B.
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TABLE 1. Single-regime speed-density models.

Model Function Parameters
Greenshields [1] | v =v;(1— %) vy, k;
Greenberg [2] v =g ln (%) vo, kj
Underwood [3] v = vy exp (—%) vy, ko
Northwestern [4] | v = vf exp (—%(%)2 vy, ko
Newell [5] v =vy (17cxp (7$(%7 i))) v, ki, A
Three-parameter v = m vy, ke, 0
logistic (3PL) [6]

Section III-C will show the posterior distributions obtained
by the MCMC solution for our GP method. Section III-D dis-
cusses how prior knowledge improves the model calibration
under a different sample size.

A. EXPERIMENT SETTINGS

We calibrate the six speed-density models in Table 1 on the
GA400 dataset using the GP regression. The GA400 dataset
is a representative dataset that encompasses a wide range of
traffic flow characteristics (e.g., skewed-distributed samples,
outliers, traffic hysteresis, and sufficient sample points) and
has been extensively used in previous research [13], [14],
[15], [16]. The calibration results of the proposed method
are compared with the WLS [13] and the LS methods. We
use the sparse approximation for the MLE because of the
large number of observations (47,581 points). As mentioned
in Section II-B, twenty inducing points are evenly spaced
from minimum to maximum observed densities.

We also test using the MCMC sampling for variational
sparse GP to obtain the posterior distributions of model
parameters. To make the estimation more robust to the out-
liers in the data, we assume the noise term & follows an
ii.d. zero-mean Student-¢ distribution. The choice of priors
in the MCMC sampling are as follows:

o Gaussian priors are used for all parameters regarding
the speed-density functions. For a parameter x, its prior
mean is set as the WLS estimation xwrs, and the
standard deviation is set by max(x“gLS, 10).

« Other hyperparameters are positive values, including o2
and ¢ in the kernel functions and scale and degree
of freedom for the Student-t noise. Therefore, we set
their prior by Half-Cauchy distribution p(x) =
x € [0, +00).

We use a Python package named GPflow [38] to set up
the variational sparse GP introduced in Section II-C. Next,
the No-U-Turn sampling routine implemented in TensorFlow
Probability [39] is used to draw samples from Eq. (10). The
first 2,000 steps are taken as the “burn-in” period to tune
the step size and converge the sequence; we collect the next
3,000 steps to calculate posterior distributions.

_2
w(14x2)’

B. COMPARISON WITH OTHER MODELS
The six speed-density models calibrated by the four methods
are compared in Figure 2, where the result of the GP-MCMC
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FIGURE 2. Speed-density models calibrated by LS, WLS, sparse GP by MLE, and
the mean of MCMC sampling for variational sparse GP.

is the average of posterior samples. We can see that the
LS method results in speed-density models that fit the low-
density region (< 50 veh/km) well but are inappropriate for
the high-density region (> 50 veh/km). In contrast, the WLS
and the two GP methods generally produce more “unbiased”
speed-density models in the entire density range. Two GP
methods have very similar calibration results to the WLS
method for the Underwood, the Newell, and the 3PL speed-
density models. For the Greenshields and the Northwestern
speed-density model, the free flow speed (v at k = 0) esti-
mated by GP methods is higher than which estimated by the
WLS method.

An exception for the GP method is the Greenberg speed-
density model, where the mean function does not fit the
data well. This is caused by a limitation of the Greenberg
model: v — +o0o0 when £k — +0. A Greenberg model that
fits most observations well (e.g., the WLS estimation) has
a significantly higher estimation for speed at the near zero-
density area; this “abrupt surge in the regression residual”
is very unlikely to happen in the GPs because the SE kernel
that we use favors a smooth function. Therefore, a GP-
based estimation produces a flat mean function m(k) and a
significant systematic error component g(k) in the Greenberg
model. The GP essentially uses a different way than the other
methods to reveal the inappropriateness of the Greenberg
model. Many measures can be taken to improve the GP
estimation for the Greenberg model, inducing (1) adding a
small positive shift parameter kg so lim;_, o+ vo ln(ﬁf)(s) is not
infinity, (2) fitting the inverse function k = £~ (v), (3) using
other kernels in the GP (e.g., non-stationary kernels), and
(4) discarding data with small densities.
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TABLE 2. Kernel hyperparameters estimated by the MLE and the MCMC methods.

Method  Hyperparameters Greenshields  Greenberg  Underwood  Northwestern — Newell 3PL
Kernel length scale ¢ 11.27 11.16 9.42 10.36 10.31 10.12
MLE " Kernel variance o2 84.26 89.32 24.62 34.01 2411 38.06
Kernel length scale ¢ 12.23 12.97 10.37 10.85 10.75 9.91
MCMC  Kernel variance o2 188.54 363.03 33.72 34.90 2014 19.27
Greenshields Greenberg
,ﬁ.,..\' —~— LS 100 —— Greenshields
ol | WLS Greenberg
% —e— GP-MLE
S e GP-MCMC —~ 80 —— Underwood
R <
= —— Northwestern
= 60} —— Newell
§ 3PL
o 40
(7p]
20
O 1 1 1

Newell

//\ N

P S SR i wh
0 15 30 45 60 75 90 105 120 135 150
Density (veh/km)

o

P s
0 15 30 45 60 75 90 105 120 135 150
Density (veh/km)

FIGURE 3. The RMSE of the four calibration methods on the six single-regime
models at different density groups.

In Figure 3, we divide data into ten groups by density from
k=0 to k =150 at an interval of 15 to better understand
the fitting performance. We calculate the root-mean-square
error (RMSE) for each density group between speed-density
models and data. We can find from Figure 3 that the WLS
and the two GP methods alleviate the biased calibration of
the LS method and greatly reduce the RMSE for high-density
(around k > 75) groups. Except for the Greenberg model,
it is hard to conclude which one between the GP and WLS
method has a better calibration result. Besides, the RMSE of
the GP using the MCMC sampling is a little lower than the
MLE methods for the Newell and the 3PL models, which
could be a benefit from assuming the Student-¢ noise and
using the priors.

The main purpose of this paper is to calibrate parame-
ters in speed-density models, but it is also interesting to see
how well a GP can fit the data. Figure 4 shows the func-
tion values (f(k), or equivalently m(k) + g(k)) fitted by the
MLE of GPs under different speed-density mean functions.
We can see the function values are almost identical under
different mean functions (except for the two edge parts).
More importantly, GPs fit the empirical data much better
than their mean functions, which means we can use the GP
as a non-parametric fundamental diagram. Although it lacks
the simplicity and the mathematical properties of single-
regime models, the non-parametric fundamental diagram is
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FIGURE 4. The function values f(k) fitted by the MLE of sparse GP under different
speed-density mean functions.

more close to empirical data. Moreover, we can use the GP
confidence intervals to screen outliers and use the remaining
observations to better calibrate speed-density models.

Moreover, hyperparameters in the SE kernel have practical
implications and can assist in diagnosing the goodness of fit
of a mean function. The length scale £ determines the length
of the “waves” in the residuals; a large ¢ indicates long-
distance correlations in the residuals, and a small £ means
locally correlated residuals. The kernel variance o2 deter-
mines the average distance of the function f away from its
mean; a smaller o2 indicates better goodness of fit. Table 2
shows the hyperparameters estimated by the MLE and the
MCMC method, where the values of the MCMC method are
sample means. The Greenshields and the Greenberg model
have the largest kernel variance and length scale, indicating
poor fitness. In contrast, the 3PL model estimated by the
MCMC has the smallest kernel length scale and variance,
meaning the best fitting result. The conclusions drawn from
the hyperparameters are consistent with the observations in
Figure 2 and Figure 3.

C. POSTERIORS OF ESTIMATIONS

We use the Underwood model as an example to show sam-
ples drawn by the MCMC. The steady traces in Figure 5
(a) and (b) indicate the MCMC sampling has converged. The
top and right panel in Figure 5 are empirical distributions of
vr and ko, respectively. The gray dots in Figure 5 (c) are sam-
ples and the contour is the joint distribution of vy and ko. We
can find that samples of vy and ko are negatively correlated.
We can also obtain the credible intervals for each parameter
using the samples’ distribution. The MCMC sampling helps
to understand the uncertainty of the estimation.
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FIGURE 5. MCMC sampling traces and the posterior distributions of parameters for
the Underwood model.
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FIGURE 6. Posterior distributions of speed-density functions.

A more intuitive way to examine the uncertainty in
the calibration is to visualize the posterior distributions of
speed-density functions. Figure 6 shows the posterior distri-
butions of speed-density functions by different equal-tailed
intervals [40, ETI]. For example, a 95% ETI has 2.5% of the
samples on either side of this interval. We can see the poste-
rior of the Greenshields models has the widest ETI, meaning
a large uncertainty. In contrast, the Newell and the 3PL. mod-
els, both with three parameters, have relatively narrow ETIs.
The ETI of a model has varying widths at different density
levels, such as the free flow region of the Newell model has a
larger ETI than the other part of the curve. In addition to the
speed-density function, we can also examine the posterior
distribution of the flow-density function (obtained by k x v).
From Figure 7, we can find that the estimation of 3PL flow-
density function has relatively good fitness and narrow ETI.
Overall, examining posterior distributions in Figure 6 and
Figure 7 helps understand the calibration uncertainty and
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FIGURE 7. Posterior distributions of flow-density functions.

choose among different speed-density models, particularly
when there are insufficient observations.

D. IMPACTS OF PRIORS AND SAMPLE SIZE
Transportation practitioners usually have strong prior knowl-
edge of traffic flow parameters, such as the range of free flow
speed and jam density. In a Bayesian setting, prior knowl-
edge plays an essential role in improving model calibration,
especially in the case of small sample size and skewed sam-
ple distribution. In fact, data points with jam density are
very rare in the GA400 dataset, and it is, therefore, diffi-
cult to quantify the goodness of jam density estimation with
limited observations. Using an appropriate prior distribution
can alleviate this problem.

We randomly sample 100, 500, and 5000 data points
from the GA400 dataset to test how the model calibra-
tion changes with different sample sizes. Assume the prior
distributions for the free flow speed and the jam density
are vy ~ N(100, 15%) and k; ~ N(120, 15%); these are
very broad ranges for parameters. The parameter calibration
results for the Greenshields model are shown in Figure 8.

From Figure 8, we can see the WLS and the GP-MLE
are likely to produce similar estimations as the LS method
when the sample size is small (e.g., 100). The estimations
of the WLS and the GP-MLE methods vary significantly
with the increase of the sample size, and relative change
in k; even surpasses 50% of its value; this is because there
are few data points with a high density and the parameter
estimation is very sensitive to these observations. In contrast,
the GP-MCMC using the prior distribution produces more
consistent posterior estimations of vy and k; over different
sample sizes. Interestingly, the posterior distribution of vy
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FIGURE 8. Parameters of the Greenshields model calibrated by the four methods
under different sample sizes.

does not change much from small to large sample size,
meaning even 100 data points already give a reasonably
good estimation of the free flow speed. The peak of the
posterior k; becomes significantly higher with the increase
of the sample size, indicating a good estimation for the jam
density requires a large sample size. Overall, the example
in Figure 8 demonstrate the importance of prior knowledge
and posterior uncertainty quantification, especially when the
sample size is small.

IV. CONCLUSION AND DISCUSSIONS
The speed-density relationship is an essential concept in
traffic flow theory. This article proposes a new low-
biased calibration method for single-regime speed-density
functions by modeling the residual dependencies using a
zero-mean GP. Our approach based on GP has a solid sta-
tistical explanation and is a generalization of the existing
WLS and LS methods. Experiments show that GP-based
methods significantly reduce the biases in the LS calibration
and achieve a similar effect as the WLS method. The GP
can also be used as a non-parametric way to model speed-
density relationships. Moreover, we put the GP regression
in a Bayesian setting, leveraging different prior distributions
and noise assumptions, and using an MCMC sampling algo-
rithm to get the posterior distributions of parameters. Besides
the problem in this paper, the GP-based method can also
be used to calibrate other more general problems, such as
macroscopic fundamental diagrams [41], [42] and speed-
crash severity relationship [43]. Particularly, our method is
beneficial for calibration problems with correlated residuals,
biased sample distributions, and when knowing parameters’
uncertainties is essential (e.g., too few samples).

This research has some limitations and spaces for improve-
ment. First, this paper only considers single-regime fun-
damental diagrams. Multi-regime models are usually not

770

differentiable at the breakpoints, which would be inappro-
priate to use a GP with the SE kernel to model its residual
correlations. Second, we assume i.i.d. noise but the data
could be heteroscedastic. An improvement can be made
by using GP with heteroscedastic noise [e.g., [44], [45]].
Lastly, we can use GP with non-stationary kernels [46] to
better model the residuals in some extreme cases (e.g., the
Greenberg model).
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