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ABSTRACT Failures of the vehicle camera may compromise the correct acquisition of frames, that are
subsequently used by autonomous driving tasks. A clear understanding of the behavior of the autonomous
driving tasks under such failure conditions, together with strategies to avoid safety is jeopardized, are
indeed necessary. This study analyses and improve the performance of Traffic Sign Recognition (TSR)
systems for road vehicles under the possible occurrence of camera failures. Our experimental assessment
relies on three public datasets, which are commonly used for benchmarking TSR systems. We artificially
inject 13 different types of camera failures into the three datasets. Then, we exploit three deep neural
networks (DNNs) to classify either a single frame of a traffic sign or a sequence (i.e., a sliding window)
of frames. We show that sliding windows significantly improves the robustness of the classifier against
altered frames. We confirm our observations through explainable AI, which allows understanding why
different classifiers have different performance in case of camera failures.

INDEX TERMS Traffic sign recognition, camera failures, deep learning, sliding windows, meta learning,
robustness.

I. INTRODUCTION

TRAFFIC Sign Detection and Recognition (TSDR)
allows Advanced Driver Assistance Systems (ADAS)

[1], [2], [3] to safely operate (semi-) autonomous vehi-
cles on roads. TSDR is generally split into two stages:
detection and recognition of traffic signs. Detection [4], [5]
means locating traffic sign in an input scene image, while
recognition [6], [7] is concerned about identifying the type
of traffic sign. The detection and recognition of traffic signs
are treated as completely separate tasks [8], [9]. There are
many state of the art approaches adopted for traffic sign
detection [10], [11], [12]. This study focus is on the later
part of the TSDR system, which is recognition of traffic
signs. Particularly, Traffic Sign Recognition (TSR) assists the
driver by automatically providing information about traffic
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signs to improve driving and road safety. Due to distraction,
fatigue, or adverse operating conditions, human drivers can
miss or misinterpret an important traffic sign [13], [14]
potentially leading to dangerous situations.
Automatic TSR systems embed Machine Learning (ML),

and especially Deep Neural Network (DNN) classi-
fiers which process image frames captured by cameras
installed on the vehicle. Those TSR systems are known
to accurately classify traffic signs, even reaching per-
fect classification performance under nominal operating
conditions [15], [16], [17]. Unfortunately, the adverse envi-
ronmental conditions, or the malfunctions of the camera,
may produce low-quality frames that may negatively impact
the performance of classifiers. Examples include, but are
not limited to: occlusions, shadows, defects of the cam-
era lens, changes in environmental light, raindrops on the
camera lens, out-of-focus, flare [18], [19]. Therefore, to guar-
antee safety of the driving task, it is necessary to study
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the robustness of TSR systems against the aforementioned
threats, and develop solutions to tolerate them [20], [21].
This paper accomplishes this tasks, first reviewing the chal-
lenges and the state of the art, and then proposing and
evaluating alternative solutions.
The paper proceeds as follow. First, we review related

works on TSR and we describe our two main strategies to
classification: single-frame and sliding window. The former
strategy feeds a single frame into a classifier, which makes
its prediction on the type of traffic sign contained in the
frame. The latter strategy exploits the natural progression of
a vehicle on the road, which gets gradually close to a traffic
sign. This way, the classifier is fed with a sliding window of
many frames, and it builds its prediction on the traffic sign
using more knowledge. This last strategy requires a meta-
learner [22] which summarizes the information achieved
from the sliding window.
Then, in our study we corrupt frames by applying

camera failures that are successively fed to single-frame
classifiers and sliding windows classifiers. Frames are
taken from three publicly available benchmark datasets:
German Traffic Sign Dataset (GTSRB) [23], Dataset of
Italian Traffic Signs (DITS) [24], and Belgium Traffic
Sign Dataset (BelgiumTSC) [25]. These datasets include
sequences of frames and consequently allow applying both
classification strategies. We simulated 13 camera failures,
each one actionable with different parameters, obtaining
a total of 103 failures configuration to be individually
injected into each frame of the three datasets.
The produced data allows examining the robustness

of three DNNs: AlexNet [26], InceptionV3 [27], and
MobileNetV2 [28]. We apply them independently to perform
classification, and we also run them in parallel; in this second
case, classification is performed by a stacking meta-learner
which is fed with the outputs of the classifiers. Further,
we apply two different classification strategies: single frame
classification and sliding window classification.
Our results indicate that the occurrence of camera failures

degrades classification performance, especially for single-
frame classifiers. Instead, approaches based on the sliding
window are significantly more robust.
Further, we dig into the results using LIME [29], a tool-

box for explainable Artificial Intelligence (AI). Explainable
AI allows understanding how a classifier uses the input
frame to derive its output: we use LIME to explain why
the injection of the camera failures alters the behavior of
the classifiers, and why certain classifiers are more robust
than others against camera failures.
The rest of the paper is organized as follows. Section II

provides background on TSR systems and camera failures.
Section III expands the TSR strategies we apply in this paper
to classify traffic sign, while Section IV provides details on
the methodology, selected classifiers, datasets, failure injec-
tion strategies, and performance metrics. Section V reports
on experimental results achieved using the different TSR
strategies, and Section VI verifies the result using explainable

AI. Finally, Section VII concludes the paper with the main
findings and our ongoing works, that aim to increase the
robustness of TSR through data augmentation (i.e., frames
with injected failures are added in the training phase of the
model) and by creating a failure detector to alert the TSR
system about imperfect frames.

II. BACKGROUND AND RELATED WORKS
This section provides background and related works on ML
classifiers for TSR and on the analysis of frames that are
corrupted because of camera failures.

A. TRAFFIC SIGN RECOGNITION
In the last decade, researchers and practitioners used non-
deep ML classifiers for single-frame TSR [30], [31], [32].
Supervised classifiers such as Support Vector Machines
(SVMs, [33]), Decision Trees (and ensembles, [34], [35])
or Nearest Neighbors (KNN, [36]) cannot directly pro-
cess frames. Therefore, those frames are first pre-processed
to extract numerical features according to specific feature
descriptors as Histogram of Oriented Gradients (HOG, [37])
or Local Binary Patterns (LBP, [38]). Then, those fea-
tures are provided to the abovementioned classifiers. Many
non-deep ML classifiers are already available for auto-
matic TSR systems. In [39], the authors extract HOG
features for the GTSDB dataset to train different classi-
fiers. Similarly, in [40], HOG features are fed to Support
Vector Machines (SVMs) to identify the boundary separa-
tion of six groups of traffic signs, which are then classified
using a DNN. Yang et al. [41] compare different super-
vised classifiers trained with color fused features; they
achieve the highest accuracy with Gentle Adaboost. Authors
of [70] proposed a novel feature descriptor that combine
multiple features using fusion technique to improve the
performance of human action recognition system. In one
another study [69], authors present six different fusion mod-
els to improve the performance of human action recognition
system. Agrawal and Chaurasiya [42] apply principal com-
ponent analysis (PCA) to reduce the dimensions of HOG
feature descriptors for the classification of the GTSRB
dataset into 3 subcategories, i.e., danger, mandatory, and
denial. Stallkamp et al. [43] extract HOG features to be fed
into Random Forest and LDA. In [44], the authors perform
TSR using semi-supervised learning to utilize a large amount
of unlabeled data and a small amount of labeled data to train
a classifier which is more robust to data imbalance. In [23],
the authors report on a competition where both humans
and ML classifiers targeted frames of the GTSRB dataset:
ML algorithms achieve an accuracy of 98.98%, which is
comparable to the accuracy of humans on such dataset.
Additionally, many studies explore the application of

DNNs to TSR. Classifiers for TSR exploited DNNs such
as AlexNet [26], InceptionV3 [27], MobileNetV2 [28],
googLeNet [45]. DNNs do not require any explicit fea-
ture extraction: features are extracted through convolutional
layers during the training process. In [46], the authors use
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InceptionV3 [27] with transfer learning to obtain an accu-
racy of 99.18% on the BelgiumTSC dataset, while in [47],
the VGG-16 DNN model is specialized for TSR by adding
Batch Normalization and global average pooling layer, and
removing few superfluous convolutional layers. The authors
of [15] compare the performance of supervised classifiers
including DNNs. In their experiments, three datasets, i.e.,
GTSRB, BelgiumTSC, and DITS are considered to classify
traffic signs into three broad categories, i.e., red triangular,
blue circular, and red circular. In [48], the authors develop
a real-time DNN-based TSR system and they deploy it on
the embedded system. The developed Convolutional Neural
Network (CNN) architecture achieves 99.71% accuracy.
In [2], a fifteen-layers DNN is utilized to achieve a detection
accuracy of 96.5% on the GTSRB dataset. In the study [49],
ensembles of Convolutional Neural networks are utilized on
GTSRB and on BelgiumTSC to achieve accuracy higher
than 99% on the circular traffic signs. Lastly, the authors
of [50] compare 5 DNNs i.e., Xception, EfficientNetB0,
ResNet50, VGG16, and InceptionV3 trained with transfer
learning, achieving the highest accuracy (95.04%) on the
GTSRB dataset.
Feature extraction and neural networks can even be com-

bined: Jose et al. [51] combine DNN and Viola-Jones
framework for feature extraction. Abizada [52] uses two
feature sets, i.e., HOG and features extracted through con-
volutional layers of a DNN, to classify the GTSRB dataset
and achieved a test accuracy of 98.20%. In [53], the authors
propose an approach for traffic sign detection and recogni-
tion based on two stages: first, they identify the shape using
HOG features and linear SVM, then they use a CNN to
recognize the specific traffic sign.
The majority of works in the literature processes a frame

using a unique classifier, except few studies [17], [54], [55]
which process sequences of frames.

B. CAMERA FAILURES
Autonomous vehicles contain visual cameras that observe
the environment and capture sequences of frames. Several
studies in the literature utilize a visual camera for
autonomous driving tasks, such as obstacle detection, pedes-
trian detection and lane detection, and obviously traffic sign
recognition [1], [13], [56], [57].
If the camera has a malfunction, the quality of the captured

frames is degraded, and this may result in a critical situation
and possible serious consequences. The possible occurrence
of camera failures must be considered to guarantee the safe
operation of autonomous vehicles [18]. These failures may
occur in any component of the camera, and especially they
may be malfunctions of the lens, the image sensor, or the ISP
(Image Signal Processor): all these components cooperate to
create every frame produced by the camera.
Only few works focused specifically on the effect that

camera failures may have on the produced frames. In [19],
the authors adopted a CNN to deal with different harsh
conditions such as out-of-focus, illumination, and missing

information applied on the GTSRB dataset. Authors apply
an attention mechanism to build a convolutional pooling for
performance improvement. In [18], authors systematically
define different failure modes of a vehicular camera, and
they discuss the visible effects on the captured frames. Also,
they propose a Python library to inject failures into frames.
Lastly, Morozov et al. [58], while not strictly considering
the image acquisition, simulate hardware failures: they used
three CNNs for classification and a Bayesian Network for
the analysis of the trustworthiness of results.
In this work, we use the failure categorization of [18]

as reference, because we believe it is the most complete
representation of camera failures available in the state of
the art, and it is supported by a software library that allows
reproducing the failure effects on target images.

III. TSR STRATEGIES UNDER CONSIDERATION
This section explains in detail the TSR classification strate-
gies we consider: single-frame classification and sliding
windows classification.

A. SINGLE-FRAME CLASSIFICATION
A single frame is usually classified using one classifier. In
addition, it is possible to combine multiple classifiers in
a two-step process, relying on a stacking meta-learner to
decide on the class [22] (Fig. 1). In stacking, first, the frame
is fed to multiple base-level classifiers, then the individual
predictions from the classifiers are processed by a classifier
at a meta-level; in other words, the predictions of parallel
classifiers are input meta-features to a meta-level classifier
that provides the final prediction.
Fig. 1 exemplifies this process considering as input

a frame of a STOP traffic sign and three base-level clas-
sifiers: AlexNet, InceptionV3, and MobileNetV2. Each of
the three classifiers outputs an array of probabilities PTSk
= {ptsik, 1 ≤ i ≤ n} where n is the number of possible
classes, and k is the k-th base-level classifier (in Fig. 1, we
use 1 ≤ k ≤ 3). Each ptsik describes the probability that the
input frame contains a traffic sign of the i-th class, accord-
ing to the k-th base-level classifier. All ptsik ε PTSk sum up
to 1. The three classifiers process the input frame indepen-
dently and provide their own probabilities PTS1, PTS2, and
PTS3 for that input. These probabilities are then aggregated
into a unique meta-feature set of 3n features and delivered
as input to the meta-level classifier, which provides its own
PTSfinal probabilities that are used for TSR. Noticeably, the
meta-level classifier plays the role of an adjudicator rather
than working as a classifier itself.
In this paper, we consider the following three classification

strategies:

• Single-frame classifier on a single frame (1SFC, One
Single Frame Classifier). In this case, we are using just
one classifier to perform classification.

• Two single-frame classifiers on a single frame (2SFC,
Two Single Frame Classifiers). This approach relies on
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FIGURE 1. A TSR system which uses multiple (three) single-frame classifiers with stacking.

FIGURE 2. A TSR which uses sliding windows of three frames (on the left) with two base-classifiers (AlexNet, InceptionV3) and a meta-level classifier that produces the final
classification result PTSfinal.

stacking the predictions of the two base-level classifiers,
relying on a stacking meta-level classifier.

• Three single-frame classifiers on a single frame (3SFC,
Three Single Frame Classifiers). This approach corre-
sponds to Fig. 1. It relies on stacking the predictions
of the three base-level classifiers, using the stacking
meta-level classifier.

B. CLASSIFICATION WITH A SLIDING WINDOW
In addition, we build classifiers that can process multiple
frames in a sliding window [17]. The structure of this classi-
fier is described in Fig. 2. Sliding windows contain multiple
frames captured at different time instants or from multiple
cameras at the same time. Therefore, we need to slightly
adapt the classifier from Section III-A to process multiple
frames in parallel.
For example, Fig. 2 shows a TSR system that uses a slid-

ing window of three frames and that is composed of two

single-frame classifiers. First, each of the two single-frame
classifiers processes each of the three frames individually,
building six PTSk arrays of probabilities 1 ≤ k ≤ 6. These
arrays constitute the meta-feature set that is provided to the
stacking classifier. Finally, the stacking classifier produces
the classification result PTSfinal, which is the output of the
TSR system.
In this paper, we consider the following classification

strategies based on a sliding window:
• Sliding window is applied using only one classifier
(W1C, Sliding Window with One Classifier).

• Sliding window is applied using two classifiers (W2C,
Sliding Window with Two Classifiers). This cor-
responds to Fig. 2. In this case, all frames in
the sliding window are individually classified by
two base-level classifiers; the predictions of each
frame are input meta-features to the meta-level
classifier.
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• Sliding window is applied using three classifiers (W3C,
Sliding Window with Three Classifiers). All frames in
the sliding window are individually classified by three
base-level classifiers; the predictions of each frame are
input meta-features to the meta-level classifier.

IV. APPROACH TO ROBUSTNESS EVALUATION
We detail the methodology we used to evaluate the robust-
ness of the TSR strategies previously described, when
camera failures occur. We describe the datasets of traffic
signs, the failure injection strategies, and the single-frame
and sliding-window classifiers that perform TSR on clean
and injected frames.

A. METHODOLOGY
First, all classifiers described in Section IV-B, organized in
groups 1SFC, 2SFC, 3SFC, W1C, W2C, W3C, are trained
using the traffic sign datasets BelgiumTSC, GTSRB, and
DITS described in Section IV-D. Then, the stacking meta-
learners of Section IV-C are trained as well. This creates all
the classification strategies 1SFC, 2SFC, 3SFC, W1C, W2C,
W3C trained on the traffic sign datasets.
In the next phase, the camera failures described in

Section IV-E are injected into each dataset individually,
to create datasets of altered frames. We will call these
datasets as injected datasets, opposed to the clean datasets,
and the altered frames as injected frames, opposed to
the clean frames. This creates a set of injected datasets,
each with different failures. Noteworthy, some failures have
multiple possible configuration (e.g., the amount of blur
that is applied on the frames): we create injected datasets
of GTSRB, BelgiumTSC and DITS for each configura-
tion. This leads to a total of 103 configurations, each one
repeated on the three datasets. These datasets are pro-
vided as test inputs to the 1SFC, 2SFC, 3SFC, W1C,
W2C, W3C.
Finally, we measure the robustness of different TSR

approaches against each camera failure. The robustness is
described using the metrics discussed in Section IV-F.

B. BASE-LEVEL CLASSIFIERS
This study utilizes the following three DNN classifiers. We
adapt them for TSR using transfer learning from models
trained on ImageNet.
MobileNetV2 (MN2) [28] is a 53 layers DNN which con-

sists of two main blocks, namely: downsizing, and residual
blocks. Compared to other DNNs, MN2 is an efficient
and lightweight network with fewer parameters that need
fine-tuning.
AlexNet (AN) [26] is a convolutional neural network that

consists of five convolutional layers and 3 fully connected
layers, trained on ImageNet [59].
InceptionV3 (IC3) [27] is a 48 layers DNN trained using

the ImageNet dataset [59]. IC3 consists of three main blocks:

the convolutional block, the inception module, and a classi-
fier. IC3 uses a convolutional kernel to decrease the number
of feature channels and speed up the training process.
Combination of classifiers (2SFC, 3SFC, W2C, W3C)

includes all the possible pairs and triples from the three
classifiers above.

C. META-LEVEL CLASSIFIERS
This section presents six supervised classifiers that suit the
role of meta-level classifiers for stacking.
k-Nearest Neighbors (KNN) [36] assigns a label to a new

data point based on how its “nearest neighbors” are labeled.
Neighbors of a data point are calculated according to
Euclidean distance; they contribute to derive the label for
the new data point based on the majority. We used many
different odd values of k = {1, 3, 5, 7, 11, 13, 15, 17,
19, 21}, which avoid ties when performing 8-class classifica-
tion (for BelgiumTSC and GTSRB) and 9-class classification
for DITS.
Support Vector Machines (SVM) [33] breaks down a multi

class task into many smaller binary classification problems.
SVMs learn hyper-planes that are then used to separate input
space: the shape of those hyper-planes is defined by different
kernels. In this study, we consider the simplest available
kernel, building a Linear SVM.
Decision Tree (DT) builds a tree-like structure [60]. In the

tree, rules applied to features are used to create new branches,
down to leaf nodes, which contain the final output. A final
pruning step usually helps to limit overfitting to the training
set. In our experiments, we used the default tree depth of
MATLAB, which assigns MaxNumSplits = n – 1, where n
represents the size of the training sample, and no limit on
the depth of the decision tree [61].
Linear Discriminant Analysis (LDA) relies on a gener-

alization of Fisher’s linear discriminant. Such discriminant
derives a vector that can be used to separate classes by build-
ing a linear combination between features [62]. As usual, we
train LDA with a pseudo-linear discriminant.
AdaBoostM2 (ABM2) [34] combines multiple weak learn-

ers into a unique strong learner to improve classification
performance through boosting meta-learning. Weak learn-
ers, often called decision stumps, are usually decision trees
with very limited depth; in our experiments, we exercised
ABM2 as an ensemble of 100 (weak) decision trees, with
MaxNumSplits = training sample size – 1, with no depth
limits on decision trees.
Random Forests (RF) [35] embed multiple decision trees

using Bagging: therefore, each decision tree is trained on
a subset of the training set which is obtained by random
sampling with replacement. This study builds random forests
composed of 100 decision trees.

D. TRAFFIC SIGN DATASETS
This study builds upon three datasets containing sequences
of traffic signs: i) the BelgiumTSC dataset [25], ii) the
GTSRB dataset [23], and iii) the Dataset of Italian Traffic
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FIGURE 3. Injection of 13 different visual camera failures to a sample traffic sign. (best viewed in color).

TABLE 1. Details of the traffic signs datasets.

Signs (DITS) [24]. GTSRB and DITS contain time-
ordered sequences of frames related to the same traffic
sign, whereas BelgiumTSC contains three frames for each
traffic sign captured at the same time from indepen-
dent cameras from different viewpoints. Table 1 highlights
the characteristics of the datasets used in this study:
GTSRB contains more than 50.000 frames, structured in
1726 sequences of 30 traffic signs. DITS has a similar orga-
nization with sequences of 2 to 15 frames, whereas traffic
signs in BelgiumTSC are organized in sequences of three
frames.
Each dataset has its own categorization of traffic signs,

which we homogenize into 9 classes that overlap across
all three datasets, reported in Table 2. DITS contains
frames for all 9 categories of traffic signs, GTSRB dataset
misses category 8, i.e., Blue Rectangular traffic signs, while
BelgiumTSC does not contain circular traffic signs, i.e.,
category 9.

E. STRATEGIES TO INJECT CAMERA FAILURES
This section provides a brief overview of the potential fail-
ures of a camera installed on vehicles. We considered a total
of 13 failures, described in what follows. Failures may have
multiple configurations; each failure and its configurations
are applied on the three datasets. In total, this leads to
103 copies of each dataset, where all frames are modi-
fied according to the specified configuration. The source

code to reproduce the injection of failures is based on
the library available at [63], which was customized where
needed.
Banding. A frame with banding has many horizontal

and/or vertical lines in the background. Fig. 3a shows the
clean frame, while Fig. 3b shows the effect of applying
banding failures on the frame.
Blurred. Blurred occurs when the captured frame is not

properly focused by the camera lens (see Fig. 3c). Overall,
we used 11 different configurations to produce blurred
frames with different amounts of blurriness.
Brightness. This failure alters the brightness of the pro-

duced frame (Fig. 3d), ranging from no brightness (black
frame) to full brightness (white frame) depending on mal-
functions of the lens shutter, diaphragm, or iris. The same
visual effect on the output frame can happen when the light
enters the camera with a narrow angle (e.g., in case the sun
is in front). We simulated 8 levels of brightness from a very
dark frame to an almost white one.
No Chromatic Aberration Correction. This type of failure

occurs when the ISP fails: halos appear on the edges and
corners of the frame. The resulting frame (Fig. 3e) shows
the blurred effect on the outer edges.
Condensation. Condensation on the lens happens when

humidity levels are high, or because of rapid temperature
changes. To inject a condensation failure, we overlapped
condensation images of [64] to each of the frames in all
datasets, as in Fig. 3f. We utilized 3 different overlaying
images to produce three different effects of condensation
failures.
No Bayer Filter. Should the Bayer filter [65] do not work

properly, the acquired frame will result in a colorless frame
as in Fig. 3g. In our experiments, we replicated this effect by
changing the RGB (Red, Green, Blue) channels to convert
a frame to grayscale.
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TABLE 2. Categorization of traffic signs based on their shape, content, and color.

Dirt. This camera failure occurs when there is dirt on
the internal or external lens. Fig. 3h shows a dirty frame
generated after overlapping the dirt images of [64] to a traffic
sign frame. This study uses 36 different dirt images.
Ice. This type of failure occurs when the temperature of the

environment drops below freezing, affecting frame quality.
Fig. 3i shows the ice effect on an acquired frame by using
one out of the four different ice images of [64] that we
overlapped to traffic sign frames.
No Demosaicing. The raw frame may be not processed

by ISP for demosaicing: this creates the output frames by
interpolating the mosaic of RGB colors produced by the
image sensors. As a result, the frame remains pixelated (i.e.,
each pixel contains either red, green, or blue color channel
values) as shown in Fig. 3j.
No Noise Reduction. When frames are captured by a cam-

era, the ISP is responsible for removing noise. However, this
process may fail: to simulate this event, we used 10 differ-
ent configurations of speckle noise: an example is shown in
Fig. 3k.
Rain. During rainy weather, the external lens of the cam-

era may have small drops of water that degrade the quality
of the acquired frame. We simulate this event by overlapping
5 different rain images from [64] to traffic sign frames; an
example is in Fig. 3l.
Dead Pixels. Certain failures of the image sensor may

produce an output frame with dark spots; visually, the effect
is analogous to visualizing dead pixels. In this study we sim-
ulate different configurations, namely i) an array of vertical
pixels is set to black, ii) horizontal and vertical arrays are set
to black, or iii) sets of [50, 200, 500, 1000] pixels, randomly
selected, are turned black. Fig. 3m shows different failure
effects when they are applied on the clean frame.
Broken Lens. This failure occurs when one or more lenses

of the camera break because of many reasons, e.g., debris
that crashes against the lens. This may make scratches visible
in the produced frame. We simulated a broken lens with
15 different overlaying images from [64]. An example is
in Fig. 3n.

F. PERFORMANCE METRICS
To evaluate results, we rely on accuracy [66], [67], which
consider each misclassification as equally harmful. Further,

we elaborate on accuracy by defining a metrics that mea-
sures the accuracy reduction. We define accuracy drop the
difference between the accuracy obtained on the injected
datasets and on the clean datasets. The accuracy drop is com-
puted for each failure. Some of the failures have multiple
configurations: in this case, for such failures we compute
the minimum accuracy drop and the maximum accuracy
drop.

V. EXPERIMENTAL RESULTS
We organize results as follows. Section V-A discusses
the results achieved using the clean datasets GTSRB,
BelgiumTSC, and DITS for single frame classifiers (1SFC,
2SFC, and 3SFC) and sliding window classifiers (W1C,
W2C, and W3C). The successive sections instead consider
the injected datasets: Section V-B describes the results of
1SFC, Section V-C of 2SFC and 3SFC, Section V-D of
W1C, and Section V-E of W2C and W3C.

A. RESULTS ON THE CLEAN DATASETS
Fig. 4 highlights the accuracy achieved on three clean
datasets, using the different classification strategies. With
1SFC, we reach 99.35%, 99.72%, and 96.03% accuracy
on GTSRB, BelgiumTSC, and DITS, respectively. The
usage of 2SFC improved the classification accuracy to
100%, 99.88%, and 99.48% on GTSRB, BelgiumTSC, and
DITS, respectively. Classification of traffic signs based on
sliding windows approach achieves an accuracy of 100%
across GTSRB and DITS for W1C, W2C, and W3C, while
100% accuracy is achieved on BelgiumTSC using W1C
and W2C.
W1C, W2C, or W3C achieves 100% accuracy on the

GTSRB dataset. On DITS, strategies W1C, W2C and W3C
achieves 100% accuracy, with the exception of W1C with
AN. On BelgiumTSC, we get 100% classification accu-
racy using AN (W1C) and AN + MN2 classifiers (W2C).
Fig. 4 shows that 2SFC and 3SFC significantly reduce the
misclassification across all datasets with respect to 1SFC,
while W1C, W2C, or W3C achieves 100% classification
accuracy across all three datasets. This proves and quantifies
the efficacy of the sliding window approach for classification
in nominal operating conditions (clean frames).
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FIGURE 4. Highest accuracy achieved on the clean datasets GTSRB, BelgiumTSC, DITS.

TABLE 3. Minimum and maximum accuracy drop of 1SFC when it is exercised on the injected datasets and the clean datasets.

B. 1SFC ON THE INJECTED DATASETS
We analyze the accuracy drop obtained by 1SFC on the clean
datasets and the injected datasets (Table 3). The 1SFC that
obtains the best accuracy is reported: for such classifier, we
report the maximum and minimum difference in accuracy
(accuracy drop) with respect to the case on the clean datasets.
Experimental results show that there is a significant rise

in misclassifications. For example, with banding, under dif-
ferent configurations the maximum and minimum accuracy
drop on GTSRB is [−3.09, −4.69], where AN performs
better than MN2 and IC3.
Experimental results indicate that 1SFC MN2 on GTSRB,

and IC3 on DITS and BelgiumTSC, are overall robust
against chromatic aberration failure; all the other failures
have a more relevant impact on the accuracy of 1SFC. The
accuracy drop is more relevant for some failures, which are
highlighted in bold in Table 3; these are broken lens, ice,
brightness, and noise. In particular, there are specific cases

of brightness failure that lead to a significant accuracy drop.
For example, when brightness is very low (frames are very
dark) or very high (frames are almost white), even humans
may not recognize traffic signs. Another important observa-
tion is that for brightness, broken lens, ice, noise, or rain
failures, AN always achieves the best accuracy. IC3 per-
forms worse compared to the other 1SFC, i.e., AN and
MN2 on GTSRB. Overall, MN2 and AN perform better
on GTSRB, while AN and IC3 performance are better on
the other two datasets (but still, the performance of 1SFC is
far from perfect).

C. 2SFC AND 3SFC ON THE INJECTED DATASETS
Table 4 discusses the accuracy drop achieved by 2SFC
and 3SFC on the clean dataset and the injected datasets.
Experimental results show that 2SFC and 3SFC reduce
misclassifications against each failure except few cases,
where accuracy is less than in the 1SFC cases. These last
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TABLE 4. Minimum and maximum accuracy drop of 2SFC and 3SFC on the injected datasets with respect to the clean datasets.

TABLE 5. Minimum and maximum accuracy drop of W1C on the injected datasets with respect to the original datasets.

ones are in bold in Table 4, and they are brightness, broken
lens, noise, and ice failures.
With respect to 1SFC and 2SFC, on GTSRB and DITS,

3SFC achieved better accuracy on the majority of fail-
ures. Instead, on BelgiumTSC, the 2SFC AN + IC3 is
the most robust against the majority of failures. Overall,
utilizing 2SFC and 3SFC improves the accuracy. The
meta-level classifier KNN performs better on all three
datasets.
However, the effect of failures is still not fully mitigated

with the 2SFC and 3SFC: there is no case that achieves
100% accuracy against any failure, and in some cases the

combination of classifiers is worse than using just a single
classifier.

D. W1C ON THE INJECTED DATASETS
Table 5 reports the accuracy drop achieved by W1C on the
clean datasets versus the injected datasets. Classification
performed on subsequent frames within a sliding win-
dow of size 3 improves the classification performance
with respect to 1SFC. For example, W1C achieved 100%
accuracy for all three datasets under the chromatic aberra-
tion failure, where the accuracy difference is zero; this is
marked in bold in Table 5. Furthermore, on the GTSRB
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TABLE 6. Minimum and maximum accuracy drop of W2C and W3C on the injected datasets with respect to the clean datasets.

dataset we achieved 100% accuracy against blurred, chro-
matic aberration, condensation, dead pixels, dirt and no
demosaicing.
Another important observation is that, for the majority of

failures, W1C (with AN as base classifier and KNN meta-
level classifier) achieves the highest accuracy. W1C improves
accuracy with respect to 1SFC, 2SFC, and 3SFC, with few
exceptions, such as broken lens failure on DITS and no
demosaicing failure on BelgiumTSC. The reason behind the
inferior performance of W1C in this case is most likely due
to a frame which is misclassified by the single classifier:
2SFC and 3SFC may classify the frame correctly, because
there is more than one base classifier executing in parallel.
Similarly, to the previous cases, there is no significant

improvement against some failures such as broken lens,
brightness, ice, and noise failures.

E. W2C AND W3C ON THE INJECTED DATASETS
Table 6 highlights the degradation intervals of accuracy
achieved by W2C and W3C on the clean dataset versus
the injected datasets.
Accuracy against failures blurred, chromatic aberration,

condensation, dead pixels, dirt, and no demosaicing is 100%
as already achieved for W1C, and it is not further reported
in Table 6. The bold values in Table 6 represent the fail-
ures where the performance of W2C and W3C improves
with respect to W1C. For the remaining failures, W1C per-
forms better. The possible reason is that a frame is classified
correctly by a base classifier, but when the same frame is
classified by multiple base classifiers, there are chances that
some misclassify the frame. This way, when the various
meta-features for W2C and W3C are provided to meta-level
classifiers, this may result in a misclassification.

Overall, few failures such as ice, broken lens, brightness,
and noise are still very hard to be classified accurately.
Overall, the meta-level classifier KNN is the one that
performs better in the majority of cases.

VI. EXPLANATION OF DNNS ROBUSTNESS
The LIME [29] tool aims to explain the predictions of
a DNN. It shows how different models select the frame’s
influential features that contribute the most to the final clas-
sification. We explore some frames with the LIME toolbox
to investigate the reason behind the prediction of the mod-
els, especially to understand the difference identified in our
experiments between AN, IC3, and MN2.
Fig. 5 shows the LIME output for various frames that are

classified by the three DNNs. Coloring shows which areas of
the frame contribute the most to the classification. The LIME
output shows that AN selects stronger features compared to
the other classifiers: this is particularly evident in the second
and fourth rows. The LIME output of IC3 shows that its
strongest features are mostly congested in an area. Instead,
AN decides using features that are scattered through the
frame. This is most likely the reason IC3 is the less robust in
our experiments: when a failure is injected in a frame, as for
example a scratch of the broken lens failure, it may overlap
the areas that are relevant for feature classification. As shown
in Fig. 5, for the blue circular traffic sign, AN highlight many
features, and the strongest features are located in various
parts of the traffic sign; on the other hand, IC3 and MN2 have
very few strong features and mostly in adjacent positions.
Summarizing, the main hurdle for classifiers robustness

against different camera failures may depend on the DNNs:
if the frame alteration due to failure is on the frame por-
tion which plays the key role in classification, that failure

718 VOLUME 3, 2022



FIGURE 5. Explanation of AN, IC3, and MN2 models through LIME, highlighting the influential features of selected traffic sign frames. (best viewed in color).

will misguide the TSR to output an incorrect label for the
traffic sign.

VII. CONCLUDING REMARKS
To conclude this paper, we summarize in this section the
findings and lessons learned, and we discuss on increasing
the robustness of TSR and future directions.

A. LESSONS LEARNED
This study considers different strategies for TSR, i.e., single-
frame and sliding window, to understand their robustness
against camera failures. As reference, we use the datasets
GTSRB, DITS, and BelgiumTSC, where no single-frame
classifier achieves 100% accuracy. Instead, stacking meta-
level classifiers that work on sliding windows (W1C, W2C,
W3C) significantly improve the accuracy of TSR: they
achieve 100% accuracy on all three datasets.
Concerning instead the presence of camera failures, we

observed that the implemented failures generally lead to
a drop in accuracy. For example, Fig. 6 highlights the highest
accuracy achieved against each camera failure on the three
datasets separately, i.e., GTSRB, DITS, and BelgiumTSC,
considering the failures configurations which has the highest
accuracy drop.
However, we also noticed that some TSR strategies are

significantly more robust than others and are able to tolerate
the majority of failures. While there is no individual TSR
strategy that performs better than the other either against
each failure or on all three datasets, the takeaway message
of this study is that meta-level classifiers in conjunction
with sliding windows of subsequent frames improve the TSR
performance and robustness. More concretely, we report the
following considerations on robustness:

FIGURE 6. Accuracy achieved for each failure on the three datasets, when we
consider the failure configurations which lead to the highest accuracy drop.

• The 1SFC strategy proved insufficiently robust against
camera failures, with a severe degradation of accuracy
with respect to the clean datasets.

• Instead, 2SFC and 3SFC strategies are more robust,
and present a lower performance degradation; the most
critical cases are highlighted in bold in Table 4.

• One important observation is that IC3 never achieves
the highest accuracy on GTSRB in presence of cam-
era failures. This is motivated through Explainable AI
in Section VI.

• Sliding windows strategies W1C, W2C, and W3C
improve the robustness of TSR with respect to 1SFC,
2SFC, and 3SFC as shown in Table 5. Especially,
we achieve 100% accuracy against 6 failures on the
GTSRB dataset, while for DITS and BelgiumTSC 100%
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accuracy is achieved for chromatic aberration failure
only. DITS achieved 100% accuracy for condensation
failure using W2C (MN2 + IC3).

• Further, some failures such as noise, ice, brightness,
broken lens, and no bayer filter have a bad impact on
the robustness of the TSR.

B. INCREASING THE ROBUSTNESS OF TSR
Our experimental results indicate that camera failures
degrade the TSR performance. Despite the different clas-
sification strategies, we are unable to minimize the drop in
accuracy under all conditions and datasets, exceptions made
for chromatic aberration. This brings the necessity of possi-
ble strategies to overcome the effect of camera failures on the
performance of a TSR classifier. This constitute our ongoing
work, and it can be organized in two different strategies.
First, to increase the robustness of classifiers against dif-

ferent camera failures, we can use data augmentation [68]
in which the failed frames are added to the training dataset
to make the classifier more robust.
Second, a detector can analyze each frame to understand if

the frame is of acceptable quality or is degraded. If the frame
contains defects, an alarm can be raised, and the accuracy of
the prediction can be suspected at system level. The detector
can be created by training deep classifiers on the injected
datasets.

C. CONCLUSION
The objective of this study is to analyze the effect of
camera failures on the robustness of different Traffic Sign
Recognition (TSR) strategies. This study performs extensive
experiments on three traffic sign datasets that are perturbated
with 13 camera failures. Different classifiers are proposed,
that are composed either to process a single frame or a slid-
ing window of frames. We observe that approaches based
on sliding windows perform better compared to approaches
based on single frames, both on the clean datasets, and when
failures are considered.
Furthermore, some failures impacted the TSR performance

severely so that several misclassifications are measured.
Overall, there is no TSR strategy that is more robust than
the others on all datasets and camera failures.
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