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ABSTRACT Vehicular Crowd-Sensing (VCS) is a well-known data collection approach leveraging sensors
of connected vehicles to efficiently gather contextual information in urban environments. High-mileage
vehicles such as taxis are often regarded as effective VCS platforms, due to their pervasiveness in modern
cities, even though the road network coverage achievable by these vehicles is still an open issue. Indeed,
their drivers generally follow the most-efficient route to destination, leading to major roads being frequently
visited, while others are often neglected. To address this issue, many centralized incentivization solutions
have been proposed to recruit/reward drivers accepting minor detours towards roads with higher sensing
demand. However, these works mostly focus on assigning specific sensing tasks to drivers, rather than
achieving an overall better-balanced urban sensing coverage, which is nonetheless required for many use
cases, such as air quality monitoring. To fill this gap, we present ROUTR, an incentivization budget-aware
routing solution designed to achieve more uniform coverage in VCS without requiring central coordination,
thus significantly reducing back-end infrastructure costs. We empirically evaluated the proposal using taxi
traces collected in the City of San Francisco. Results highlighted that, even with small incentivization
budgets, our proposal leads to significantly more uniform urban road network coverage.

INDEX TERMS Internet of Vehicles, vehicular crowd-sensing, routing, smart cities, intelligent transporta-
tion systems.

I. INTRODUCTION

IN THE era of the Internet of Things (IoT), a sig-
nificant fraction of devices is expected to consist of

connected vehicles, giving rise to the concept of the Internet
of Vehicles (IoV). In the IoV, each vehicle is considered
as a moving sensing entity, equipped with on-board envi-
ronmental sensors (e.g., radars, cameras, accelerometers,
sun/rain intensity, air quality monitoring) and computing
facilities/storage, and connected to a remote back-end by
means of mobile communication technologies [38]. Many
new solutions can be developed on top of the IoV paradigm,
including Vehicular Crowd-Sensing (VCS), a special case of
Mobile Crowd-Sensing, in which the data collection is per-
formed by vehicles acting as probes, sensing information
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from the environment around them in an opportunistic fash-
ion, i.e., without requiring the driver to explicitly trigger
the sensing [12], [48]. When data sensed from swarms
of vehicles is aggregated on a back-end, it can be used
to generate an unprecedented amount of spatio-temporal
information/knowledge, which could be used to enable many
new exciting and valuable use cases, such as more accurate
traffic predictions [40] and real-time on-street parking avail-
ability [5], air quality [11] or weather monitoring [33], better
surveillance of urban scenarios [27], and so on. Hence, it is
not surprising that the value of IoV data is estimated to be
worth between US$11.6 billion and US$92.6 billion for the
US market alone [39].
Most of the VCS-related investigations in the litera-

ture suggest to exploit high-mileage vehicles fleets, such
as ridesharing vehicles operating for taxi services or
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Transportation Network Companies (TNCs) like Uber or
Lyft, to crowd-sense data, due to their long operational times
and pervasive presence in modern cities [9]. However, since
the priority of the drivers of ridesharing vehicles is to find
customers and deliver them to their destination as efficiently
as possible, the resulting collected data might be insufficient
in some parts of the urban road network [44]. To clarify,
if all the drivers were routed by a shortest-path algorithm,
each trajectory going, for example, from the train station to
the business district in a modern city, would mostly cover
the same major thoroughfares, possibly neglecting minor,
adjacent roads.
Many prior works (e.g., [7], [10], [16], [44], [49]) have

proposed suitable incentive mechanisms to re-route these
vehicles towards areas/streets in which there is a sens-
ing need, offering some sort of monetary and/or social
incentivization to compensate drivers willing to accept the
re-routing. Nevertheless, to the best of our knowledge, most
of these works focus on an ad-hoc sensing scenario, in which
a central system, aware of sensing demands over the entire
map, assigns incentivized tasks (e.g., monitoring traffic con-
gestion around a stadium before an event) to a group of
potential contributors, trying to satisfy the sensing demands
under budgetary constraints. On the other hand, very lit-
tle research has been aimed at obtaining, in a cost-effective
way, an overall broader and more uniform sensing coverage
(e.g., [1], [24]), even if this is required for a multitude of
use cases, such as air quality monitoring in a urban sce-
nario. Moreover, most incentivization mechanisms presented
in the literature require a centralized, sensing demand-aware
computing infrastructure to decide which vehicles should be
recruited for sensing [47], to compute their new trajectories
and to allocate the given incentivization budget. A major
drawback of these architectures is that such a centralized,
mission-critical computing infrastructure can be very costly
to deploy and operate, especially at a nation- or region-wide
scale, limiting the budget available for incentivization [2].
In this paper we propose a VCS incentivization solution

geared towards achieving a more uniform urban road network
coverage, while reducing the overall infrastructural and oper-
ational costs. The rationale behind the proposal is that each
vehicle computes its own trajectories by randomly generating
a possibly sub-optimal route compatible with a given incen-
tivization budget. This way, when different vehicles compute
a route from the same given origin to the same given desti-
nation, each of them is likely to generate a slightly different
route, thus achieving an overall more uniform distribution
over the urban road network.
More in detail, the core of the proposal is ROUTR, a

specifically-designed routing algorithm, intended a semi-
admissible evolution of A∗ [19], capable of taking into
account incentivization budget constraints. With ROUTR, the
burden of computing routes is shifted from the centralized
back-end towards the ‘edges’ of the sensing architec-
ture, intended as either on-board navigation devices, or

tablet/smartphones. Such a distributed computing architec-
ture, consisting of ubiquitously connected heterogeneous
devices at the edge of the network can be considered an
instance of the fog computing paradigm [46]. To obtain a
more uniform urban sensing distribution without a central
coordination, the algorithm leverages a random factor to
compute routes in a probabilistic way, guaranteeing that a
given per-ride incentivization budget constraint is satisfied.
We formalize the set of admissible routes satisfying the

incentivization budget constraint by leveraging the concept of
Potential Path Area (PPA) [31], often applied in many fields
to quantitatively analyze and describe the spatial behaviour
of people. Let us note that the proposed solution is based
on some intuitions presented in [2]. That work, however,
only reported the feasibility of a decentralized, randomized
approach to improve the spatio-temporal sensing coverage
of probe vehicles, not taking into account the key issues of
incentivization and budgetary constraints, which are crucial
to deploy VCS solutions.
We performed an empirical evaluation of the effectiveness

of the proposed approach on a publicly available massive
dataset of more than 400 000 real taxi trajectories, collected
in San Francisco (USA). In particular we computed, at a fine-
grained street-segment level, the potential spatio-temporal
coverage improvements achievable by using our solution,
with eight different incentivization budgets, w.r.t. to a short-
est path algorithm, such as A∗ [19]. The results highlight
that, even with an incentivization budget of just $ 500 per
three-weeks for a fleet of hundreds of taxis, the proposed
solution can lead to higher spatio-temporal coverage, with
significant improvements especially for minor roads.
The main contributions of this paper can be summarized

as follows:
1) A novel decentralized solution is presented, specifi-

cally designed to incentivize a more uniform urban
road network coverage for VCS leveraging high-
mileage vehicles.

2) An empirical evaluation of the achievable spatio-
temporal sensing coverage has been conducted, lever-
aging real-world trajectory data, with 8 different budget
constraints, at a road segment granularity.

3) Valuable insights on the achievable road-network cov-
erage and incentivization costs (and their trade-offs)
are provided to Decision Makers investigating the fea-
sibility of leveraging high-mileage vehicle fleets to
crowd-sense information in urban environments.

The remainder of the paper is organized as follows. In
Section II the key concepts of IoV and VCS are described
and an overview on the state-of-the-art on incentivization
approaches is given. Section III presents the proposed solu-
tion, while Section IV describes the empirical study that was
put in place to assess its effectiveness. In Section V, the
results of this empirical analysis are reported and discussed.
Conclusions and final remarks are given in Section VI.
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II. RELATED WORKS
VCS aims at exploiting on-board sensors installed in modern
connected vehicles to opportunistically crowd-sense contex-
tual information (e.g., [5], [13], [15], [29]). Such pervasive,
real-time data gathered through VCS enables many novel
and interesting use cases, ranging from the monitoring of
spatio-temporal phenomena of interest to the creation of
smarter Intelligent Transportation Systems [41]. In practice,
however, vehicles are not uniformly distributed over the road-
network [4], limiting the feasibility of many VCS-based use
cases [49]. To overcome this limitation, many researchers
have proposed ad-hoc solutions to help achieve an adequate
distribution of the collected data to support VCS use cases.
Broadly speaking, two main categories of solutions have

been proposed in the literature to support different VCS sce-
narios: those designed to efficiently assign ad-hoc sensing
tasks to selected vehicles, and those aiming at achieving
an overall broader and/or more uniform sensing distribution
over the entire road-network. Solutions belonging to the for-
mer category typically focus on selecting which vehicles
should participate in the crowd-sensing activity (e.g., [42])
and/or on reassigning vehicles to urban areas in which
there is a sensing need (e.g., [44]), offering some form of
monetary or social reward to drivers willing to accept the
re-assignment.
Solutions belonging to the latter category, on the other

hand, typically involve custom routing algorithms that aim
at distributing vehicles more uniformly on the road network,
and do not consider the problem of incentivizing drivers
to accept possibly sub-optimal routes (e.g., [2], [23], [24]).
Thus, the solution we propose is not directly comparable
with any of the above-mentioned approaches, as it combines
the idea of a custom routing algorithm designed to achieve
a more uniform sensing coverage with the key concepts of
incentivization and budgetary constraints that are typically
used only in solutions supporting ad-hoc sensing tasks. In
the following we summarize the state of the art for both the
above-mentioned categories.

A. SOLUTIONS SUPPORTING AD-HOC SENSING TASKS
This class of incentive systems deal with scenarios in which
a number of specific sensing tasks (e.g., visiting a particular
street at a given time) need to be carried out, often fram-
ing the challenge of finding the most cost-effective budget
allocation as an optimization problem. In [42], for exam-
ple, the authors focus on deciding which vehicles to recruit
to fulfill minimum coverage requirements while minimizing
the incentivization costs, by leveraging the predictability of
vehicular traffic. Similarly, in [20] the problem of participant
selection leveraging trajectory prediction is addressed, but
with the goal of maximizing coverage under some budgetary
constraints. In that work, two solutions, based on a greedy
and a genetic algorithm, respectively, are proposed to solve
the participant recruitment problem, and their performance
is evaluated using real traffic trace datasets. Reference [48]

considers a more general scenario with two kinds of sens-
ing tasks: general sensing (e.g., the need to cover a given
area as much as possible) and location-based query tasks
(e.g., the need to specifically cover a given road segment).
The authors define a multi-objective optimization approach
that tries to maximize the utility of each recruited sensing
vehicle by making it simultaneously complete both kind of
tasks. In [44], the authors propose an incentivization under
budgetary-constraints approach in which a sensing vehicle
(e.g., a taxi waiting for a client) is incentivized to move to a
different zone of the city to carry out a sensing task. To make
a better use of the available budget, the authors devised a new
way of computing rewards for drivers, offering a combina-
tion of monetary incentives with an increased probability of
potential taxi riding requests at the destination. Reference
[16] investigates a different formulation of the problem,
contemplating the possibility that a vehicle might fail in
performing a sensing task, for example due to sensor errors.
In this non-deterministic VCS context, a sensing task might
be performed by multiple vehicles in order to maximize the
probability of success. In that work, the authors propose a
reverse-auction-based incentive mechanism that includes an
approximation algorithm to select winning bids and a pay-
ment algorithm to determine payments for all participants.
Reference [21] addresses the problem of recruiting sensing
vehicles in a way that satisfies given sensing quality, redun-
dancy and quality requirements. That approach is based on a
distributed vehicle-ranking scheme, in which each connected
vehicle classifies itself as relevant w.r.t. a certain sensing
task, and on a centralized recruitment back-end which uses
a game-theoretical approach to select the best vehicles to
recruit. In [49], the authors investigate the impact of includ-
ing vehicular social networks effect and intrinsic rewards into
incentive mechanisms design. In that work, the authors envi-
sion that vehicles benefiting from the data sensed by other
participants (e.g., in real-time traffic information use cases),
will be more willing to participate in the crowd-sensing due
to such an intrinsic reward, even without explicit monetary
payoff. The authors then propose a social-aware incentive
mechanism by deep reinforcement learning to derive the
optimal long term sensing strategy for all vehicles.
Even though these ad-hoc sensing solutions could be used

to support VCS-based use cases requiring an overall broader
and more uniform distribution, for example by uniformly
generating sensing tasks, all of these related works suffer
from two major limitations. Firstly, they consider sensing
coverage at a very coarse-grained scale of city areas, with
each of such areas being usually much bigger than one city
block. Our work, on the other hand, considers sensing cover-
age at road segment-level, relying on the real topology of the
road network, achieving a detail that is crucial when dealing
with VCS-based use cases such as on-street parking avail-
ability or pothole monitoring. Secondly, all these approaches
(e.g., [44], [48]) require, to some extent, a centralized com-
ponent which might be difficult to deploy and expensive to
operate at metropolis or region-level scale. Asprone et al.,
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in [2], quantified these costs: in the Municipality of San
Francisco (USA) the Transportation Network Companies
(TNCs), like Uber or Lyft, served on average 170 000 trips
per day [36]. Having their routes calculated in the cloud
with Amazon Web Services would cost roughly 72 000$ per
year, just for the computational resources, without consider-
ing other costs such as data access, load balancing, network
transfers, etc., and other factors, such as the need of guaran-
teeing short response times and high reliability. When scaled
on a nation-wide level, these costs might rise to millions of
dollars per year, which might significantly reduce the amount
of economic resources available for the incentivization [2].

B. SOLUTIONS AIMING AT UNIFORM SENSING
DISTRIBUTION
To date, less work (e.g., [2], [23], [24]) has been directed
towards incentive systems specifically geared towards
achieving a more uniform sensing distribution in urban sce-
narios. In [23], [24], for example, Masutani investigates the
adoption of suitably-designed centralized routing strategies
to achieve a more uniform sensing coverage and reduce
traffic congestion. In those works, the routes for the probe
vehicles are computed by a centralized system, which contin-
uously updates the costs associated with the traversal of each
road segment by lowering the costs for segments for which
there is a sensing need, and increasing the costs for segments
that have been recently visited by a probe vehicle. Thanks to
such dynamic weighting of the road segments, the central-
ized system can achieve a more uniform sensing distribution
by simply computing routes for the probe vehicles using
shortest-path algorithms. Although being among the first
works to investigate routing solutions to achieve a generally
broader sensing distribution in VCS, the approach presented
in those works does not consider the key issues of incen-
tivization and budget constraints and is affected by the same
limitations as ones supporting ad-hoc sensing tasks. They
rely on a centralized component, which might be expen-
sive to operate when deployed at large scale. Moreover, the
empirical evaluation of those solutions is based on traffic
simulations and not on real-world data, and considers cover-
age at a very coarse-grained scale of city areas, not providing
useful insights for many VCS-based applications.
The first decentralized approach to achieve a broader and

more uniform sensing coverage was presented in [2]. In
that work, the authors describe RA∗ε , a probabilistic routing
algorithm designed to increase spatio-temporal road-network
coverage by computing slightly sub-optimal routes, featur-
ing small detours from the shortest route to destination. The
solution has been evaluated using real-world taxi trajecto-
ries, and a fine-grained analysis of the achieved coverage
conducted at road-segment level highlighted that decentral-
ized approaches could achieve promising results. However,
that work does not take into consideration two key fac-
tors: (I) incentivization, which is necessary for drivers to
accept the proposed sub-optimal routes, and (II) budgetary

constraints, which are crucial to Decision Makers aiming at
deploying VCS-based solutions.

III. THE PROPOSED VCS INCENTIVIZATION SOLUTION
This section is aimed at presenting the decentralized, incen-
tivization budget-aware routing solution we propose. Firstly,
we describe the rationale behind the proposed approach, and
its novelty w.r.t. other incentivization mechanisms. Then, we
provide some preliminary notions and definitions for routing
algorithms and VCS incentivization, necessary to formalize
the proposed routing solution. Finally, we describe in detail
the proposed solution.

A. RATIONALE AND NOVELTY
When dealing with VCS in urban environments, privately-
owned vehicles are generally not considered an effective
solution, since they are parked most of the time and are
active mostly at rush hours [22]. Ride-sharing vehicles fleets
(e.g., taxis and vehicles operating for Transportation Network
Companies such as Uber or Lyft), on the other hand, are
often considered as a most effective platform, due to the
long operational times and pervasiveness of their vehicles
in modern urban environments [9]. Drivers of ridesharing
vehicles, however, typically choose the most efficient route
from their origin to destination, to save money and time. As
a consequence, without any incentivization mechanism in
place, drivers potentially involved in a VCS activity would
mostly drive through the main city thoroughfares, which
as a result will be sensed very frequently, whereas minor,
adjacent streets would be rarely (if at all) visited.
For a Smart City willing to implement use cases requir-

ing a more pervasive sensing distribution, it is necessary
to re-route the vehicles out of these main thoroughfares, in
exchange for an explicit reward for the driver/passengers
willing to accept the re-routing towards a potentially less
efficient route (e.g., [20], [42]).
Most of the related works on VCS incentivization are

based on a centralized, sensing demand-aware back-end,
which knows the position of the involved vehicles and of
the sensing demands. Using this knowledge, the back-end
can compute paths in such a way that vehicles are routed
through areas that require a higher sensing level (e.g., [10],
[44]).
The downsides of this strategy are related to the provision-

ing and operation costs for such a complex, mission-critical
and centralized back-end infrastructure. In [2], a quantifica-
tion of these costs is provided: for the San Francisco (USA)
urban area, it would cost roughly $ 72 000 per year, just
for the computing needs, to compute routes for ride-sharing
vehicles in the cloud with Amazon Web Services. When
scaled on a nation-wide level, these costs might rise to mil-
lions of dollars per year, significantly reducing the potential
monetary resources available for the incentivization itself [2].

Thus, in [2], the authors proposed a first decentral-
ized approach, computing the routes on-board, in a edge
computing fashion [28], without the need for any central
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coordination among vehicles. In that work, which did not
take into account incentivization and budget constraints, the
authors showed that the introduction of a probabilistic com-
ponent in the route calculation, and the selection of slightly
sub-optimal routes in place of the optimal ones, could help
achieve a significantly more uniform sensing distribution at
the cost of slightly increasing the overall distance travelled
by vehicles.
In this paper, an evolution of the prototype by

Asprone et al. [2] is presented, by introducing the cru-
cial concepts of incentivization and budgetary constraints.
In particular, the proposed algorithm, rather than computing
the most efficient path between a given origin and destina-
tion, returns a slightly sub-optimal route, randomly selected
among all the routes whose incentivization cost does not
exceed a given, per-ride allocated budget. This way, when
computing multiple routes between the same given origin
and destination, potentially different routes are produced
each time, resulting in an overall more uniform road-network
coverage.
More in detail, in our vision, drivers of high-mileage

vehicles that are willing to participate in the crowd-sensing
activity can negotiate a per-kilometer reimbursement rate
with the entity collecting data (e.g., a Smart City, or the
TNC itself), and accept to use the ROUTR algorithm, for
example with a custom routing app. Then, every time the
need arises, the driver uses ROUTR to compute a pos-
sibly sub-optimal route between its current position and
the destination, and receives a monetary reimbursement
based on the additional distance travelled because of the
sub-optimal route, covering for its expenses and efforts.
Upon verifying that the driver actually followed the route
produced by the algorithm, the data-collecting entity reim-
burses the driver. Since ROUTR allows for the definition
of a maximum per-ride reimbursement amount, the data-
collecting entity can control the total budget allocated for
reimbursements.

B. PRELIMINARY DEFINITIONS
A road network can intuitively be represented as a directed
graph in which each edge can be mapped to a road segment.
In such a representation, each road segment is typically
characterized by some non-negative associated cost, e.g.,
length or travel time. Formally, we introduce the graph
representation of a road network as follows.
Definition 1 (Road network graph): A road network graph

is an ordered tuple M = 〈N, S, c〉, where N is a set of
nodes, S is a set of directed road segments defined as S ⊆
{(x, y) | x, y ∈ N and x �= y}, and c : S→ R

≥0 is a function
associating to each road segment a non-negative cost.
A route from an origin node o to a destination node d

in M is a sequence of road segments joining a sequence
of nodes starting at o and ending in d. More in detail, we
define a route as follows.
Definition 2 (Route): Given a road network graph M =
〈N, S, c〉, an origin node o and a destination node d, with

o, d ∈ N, a sequence of segments ρ = (s1, s2, . . . , sk−1) is a
route from o to d in M if there exists a sequence of vertices
(v1, v2, . . . , vk) such that si = (vi, vi+1), for all i ∈ [1, k−1],
and v1 = o and vk = d.
Definition 3 (Cost of a route): We define the cost associ-

ated with a route as the sum of the costs of its segments.
Formally, the cost of a route ρ = (s1, . . . , sk) in a road
network graph M = 〈N, S, c〉 is defined as cost(ρ) =∑k

i=1 c(si).
A route ρ from o to d is said to be optimal if there exists

no other route π from o to d such that cost(π) < cost(ρ).
For the sake of clarity, in the following we will consider the
length in kilometers of the route as its cost. Nevertheless,
all the considerations in the remainder of the paper can be
also applied to other types of costs, such as for example the
travel time.
On-board and hand-held navigation systems help drivers

reach their destination efficiently by using specialized algo-
rithms, such as A* [19] or the well-known Dijkstra’s
one [14], to compute an optimal route, i.e., a route min-
imizing the considered associated cost. In VCS scenarios
involving ride-sharing fleets, however, if all the drivers
always follow the optimal route for their rides, the main
city thoroughfares, usually included in the most efficient
routes, would be sensed very frequently, whereas minor,
adjacent streets would be rarely (if at all) visited. Thus,
some incentivization mechanism should be put in place to
reward a ridesharing vehicle driver to accept a sub-optimal
route, for the sake of increasing the sensing coverage. The
incentivization strategy we considered consists in rewarding
drivers based on the additional cost (e.g., travelled distance
or time) the sub-optimal routes require, paying a given reim-
bursement rate per additional cost unit. More formally, the
incentivization cost associated with a route ρ going from o
to d is defined as follows.
Definition 4 (Incentivization cost): Let M = 〈N, S, c〉 be a

road network graph and let ρ be a route in M going from the
origin node o to the destination node d. The incentivization
cost of ρ is defined as IncCost(ρ) = (cost(ρ)−cost(opt)) ·r,
where opt is the optimal route from o to d and r is a given
reimbursement rate.
Note that, from Definition 4, it follows that a route is

optimal if and only if its incentivization cost is zero. In
real-world applications, systems designed to improve VCS
coverage by re-routing vehicles are typically subject to incen-
tivization budget constraints [10], [43], [44]. Indeed, for any
VCS-based system to be profitable, it is crucial for a decision
maker to make sure that the incentivization budget does not
exceed the value of the collected data. In our decentralized
scenario, we assume that a per-ride incentivization budget
is given. Moreover, we formalize the concept of admissible
(i.e., incentivization budget compatible) routes by leveraging
the notion of Potential Path Area (PPA), which refers to the
spatial extent of where individuals can participate in activ-
ities subject to time and other (e.g., travelled distance, or
incentivization) constraints [31]. In particular, we formalize
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Algorithm 1: ROUTR
1 ROUTR(Origin,Destination,PerRideIncentBudget,ReimburseRate):
2 optimalRoute← findOptimalRoute(Origin,Destination);
3 if (optimalRoute = nil) then
4 return nil ;

5 MaxRouteCostIncr← PerRideIncentBudget / ReimburseRate ;
6 MaxRouteCost← cost(optimalRoute)+MaxRouteCostIncr ;
7 return

RandomizedPpaRouting(optimalRoute,maxRouteCost);

the idea of Incentivization Potential Path Area (iPPA) as
follows.
Definition 5 [Incentivization Potential Path Area (iPPA)]:

Given an origin o and a destination d in M, and a non-
negative per-ride incentivization budget B ∈ R

≥0, the
Incentivization Potential Path Area (iPPA) is the set of all
routes ρ from o to d in M whose incentivization cost is not
greater than B, i.e., IncCost(ρ) ≤ B.

Notice that the iPPA from o to d induced by a per-ride
budget B is empty when o and d are disconnected, i.e., when
there is no route going from o to d. Otherwise, if there exists
at least one route from o to d, the iPPA is guarateed to contain
at least the optimal route.

C. THE ROUTR ALGORITHM
The algorithm we propose is detailed in Algorithm 1 and
described as follows.
ROUTR takes as inputs an Origin and a Destination node

in the current road-network M, which we assume to be
globally defined for the sake of simplicity, as well as a per-
ride incentivization budget and a reimbursement rate, and
returns a randomly-generated admissible route from Origin
to Destination belonging to the iPPA induced by the given
incentivization budget and reimbursement rate. Notice that
both the per-ride budget and the reimbursement rate are
parameters for the ROUTR algorithm, meaning that each
vehicle/driver willing to participate in the crowd-sensing
could negotiate their own budget and rates with the entity
collecting data (e.g., a Smart City).
Firstly (see Line 2), ROUTR computes (by means of any

optimal routing algorithm, such as Dijkstra’s one [14]), the
optimal route between Origin and Destination inM. If Origin
and Destination are disconnected, the algorithm returns nil
(see Lines 3-4). Otherwise, ROUTR computes, based on the
given reimbursement rate, the maximum admissible route
cost compatible with the per-ride incentivization budget (see
Lines 5-6).
Lastly, the actual route to be returned is generated by

the helper function RandomizedPpaRouting, that we
devised as an ad-hoc variant of a semi-admissible ver-
sion [32] of the well-known A* algorithm [19]. This helper
function, which is detailed in Algorithm 2, takes as input
the optimalRoute between the current Origin and Destination
points and the maximum admissible route cost compatible
with the per-ride incentivization budget, and returns a route

Algorithm 2: randomizedPpaRouting
1 RandomizedPpaRouting(optimalRoute,MaxRouteCost):

� Initializations
2 toleranceThreshold← MaxRouteCost / cost(optimalRoute);
3 Origin← optimalRoute.Origin;
4 Destination← optimalRoute.Destination;
5 forall (v ∈ Map.Nodes) do
6 v.Predecessor← nil;
7 v.RouteCost←+∞;

8 Origin.Predecessor← Origin;
9 Origin.RouteCost← 0;
10 OpenList← {Origin};

� Main loop

11 while (OpenList �= ∅) do
12 m← estimateMinRouteCostToDestination(OpenList);
13 nextNodeToVisit← selectRandomly({n ∈ OpenList |

(n.RouteCost + h(n)) ≤ m · toleranceThreshold});
14 expandNode(nextNodeToVisit);
15 if (Destination.RouteCost ≤ maxRouteCost) then
16 return buildPath(Destination);

17 expandNode(node):
18 forall (s ∈ node.OutgoingSegments) do
19 tentativeRouteCost← node.RouteCost+ s.RouteCost;
20 if (tentativeCost < s.Target.RouteCost) then
21 s.Target.RouteCost← tentativeRouteCost;
22 s.Target.Predecessor← node;
23 if tentativeRouteCost ≤ maxRouteCost then
24 OpenList.addIfNotExists(s.Target);

25 OpenList.remove(node);

between Origin and Destination, randomly-selected among
those that have a cost not exceeding that upper thresh-
old, i.e., that belong to the iPPA induced by the per-ride
incentivization budget and reimbursement rate.
RandomizedPpaRouting firstly determines a toler-

ance threshold (see Line 2), computed as the ratio between
the maximum admissible route cost in the iPPA, and the
cost of the optimal path. Such a tolerance threshold will
necessarily be greater than or equal to 1. Then, in lines
3 to 10, the necessary data structures are initialized. In
particular, the procedure maintains, for each node in the
road network graph, information about its predecessor in
the graph exploration, and a tentative route cost for reach-
ing that node from the Origin. Initially, all the nodes in
Map except Origin are assigned no predecessor and infi-
nite cost, as no route from Origin reaching them has yet
been found. As for Origin, its predecessor is set by con-
vention to the node itself, and the cost to reach itself is set
to zero. RandomizedPpaRouting also maintains a list
(OpenList) of nodes to be explored. Initially, this list con-
tains only the Origin node, as it will be the starting point
of the road-network exploration.
The main loop of RandomizedPpaRouting, in lines

11 to 16, iterates until the OpenList is empty. At each
iteration, the procedure selects the next node to visit among
the candidates that are currently in the OpenList. To do so,
a first step consists in computing the minimum estimated
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route cost to reach Destination passing from one of the nodes
in the OpenList. Such an estimated minimum cost is com-
puted by the estimateMinRouteCostToDestination procedure,
which takes as input the current OpenList and proceeds as
follows. For each node n in the OpenList, the procedure com-
putes an estimate cost for a path from Origin to Destination
passing through n by adding the minimum known cost
for reaching node n, which is stored in n.RouteCost, with
an estimated distance from n to Destination computed
by a monotone heuristic distance-estimation function h.
In our experiments, we used the widely-adopted Great
Circle Distance [35] as heuristic function h, which pro-
duces accurate distance estimation between two points on
the earth surface [17, Ch. 1]. More formally, the estimateM-
inRouteCostToDestination procedure returns a cost m defined
as

m � min
n∈OpenList(n.RouteCost + h(n)).

Subsequently, the next node to visit (see Line 13) is selected
by randomly choosing a candidate in the OpenList among
those whose minimum estimated route cost to destination
does not exceed m · toleranceThreshold. Selecting the next
node to visit in this way guarantees that, as proved by Pearl
and Kim [32], the cost of the final route will not exceed that
of the optimal one multiplied by the tolerance threshold, and
so that RandomizedPpaRouting returns a route in the
considered iPPA, satisfying the budget constraint.
After selecting the next node to visit, the algorithm pro-

ceeds as other standard routing algorithms by expanding the
selected node, i.e., by removing the node from the OpenList
and by updating the predecessor and tentative route cost
information of the adjacent nodes, possibly discovering new
nodes that will be added to the OpenList to be explored in
the next iterations. This is done by the expandNode pro-
cedure, detailed in lines 17 to 25. The procedure to expand
a given node consists in iterating over all of its outgoing
segments. For each of these segments s, a tentative cost to
reach the target node s.Target passing through s is computed
as the sum of the cost of reaching node from the Origin and
the cost of traversing s (see Line 19). If such a tentative
cost is smaller than the best currently known one, stored in
s.Target.RouteCost, then the best known cost for s.Target is
updated accordingly, and the predecessor for s.Target is set
to node, since the best known path to s.Target from Origin
passes through node. Moreover, if the tentative cost does
not exceed the maximum admissible cost, s.Target is added
to the OpenList. After the expansion of the current node,
RandomizedPpaRouting checks whether an admissible
path to Destination has been found (see Line 15). If that is
the case, i.e., if Destination.RouteCost is set to an admissible
value smaller than the maximum admissible cost, the pro-
cedure returns the current path from Origin to Destination
obtained by starting at the latter and navigating the prede-
cessors until Origin is reached. Otherwise, the procedure
continues with the next iteration. Notice that the stopping

FIGURE 1. The simple road-network graph Map, annotated with a heuristic
function h, estimating the route cost from any node to node T.

condition described above is guaranteed to be eventually sat-
isfied, since, for the RandomizedPpaRouting procedure
to be invoked, there exists at least one route (the optimal
one) from Origin to Destination.

D. EXAMPLES
To better explain how ROUTR operates, in this section
its application on a small example road-network graph is
described in a step-by-step fashion. Then, to contextualize
the intuitions behind ROUTR on a real, complex, urban
road-network, an additional example based on the City of
San Francisco is provided.
Consider the road-network graph Map depicted in

Figure 1. In the figure, each node is decorated with its name
and a consistent distance-estimation heuristic h, representing
an estimation of the cost to reach T from said node. Each
edge, representing a road segment connecting two nodes, is
decorated with its corresponding traversal cost. Suppose to
run ROUTR to find a path from node S to T, with an incen-
tivization budget of 20 and a unitary reimbursement rate.
This means that a driver receives a reimbursement of 1 for
each additional unit of cost in the sub-optimal route w.r.t.
the optimal one, and that all routes with an incentivization
cost not exceeding 20 are admissible.
Notice that the step-by-step example described hereafter

is also available as a short video animation at the doi:
https://doi.org/10.5281/zenodo.5171686. Firstly, (see Line 2
in Algorithm 1), ROUTR computes the optimal route from
S to T in Map. Such a route is π = S � A � B � T ,
and it is easy to see that cost(π) = 30 + 40 + 30 = 100.
Then, the maximum admissible route cost increment with
the given incentivization budget of 20 is computed (see
Line 5) as 20/1 = 20, inducing a maximum admis-
sible route cost (see Line 6) of 120, and the helper
function RandomizedPpaRouting is called (Line 8).
After the initialization (lines 2 to 10 in Algorithm 2),
toleranceThreshold is computed as 120/100 = 1.2.

At the beginning of the first iteration of the main loop
(lines 11 to 16 in Algorithm 2, OpenList contains only S.
The minimum estimated cost to destination for S is computed
as m = S.RouteCost + h(S) = 0 + 90 = 90. S is trivially a
candidate node for expansion, since S.RouteCost+h(S) ≤ m·
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toleranceThreshold = 90·1.2 = 108. Hence, S is selected for
expansion and the expandNode procedure is called. During
the expansion of S, a tentative cost to reach node A from
node S is computed as S.RouteCost + cost(S → A) = 30.
Since such a tentative cost is smaller than the currently
known cost to reach A (which, after the initialization, is∞),
A.RouteCost is updated and set to 30, and A.Predecessor is
set to S. S is then removed from the OpenList and, since
A.RouteCost is smaller than the maximum admissible route
cost, A is added to the OpenList.
At the beginning of the second iteration of the main

loop, OpenList contains only A, which is selected for expan-
sion. During its expansion, three adjacent nodes B, C, and
E need to be analyzed. The tentative cost to reach node
B from node S is computed as A.RouteCost + cost(A →
B) = 30+ 40 = 70. Since such a tentative cost is smaller
than the currently known cost to reach B (which is ∞),
B.RouteCost is set to 70, and B.Predecessor is set to A.
Since B.RouteCost is smaller than the maximum admis-
sible cost, B is added to OpenList. Continuing with the
expansion of A, the next node to analyze is C. The
tentative cost to reach C from node S is computed as
A.RouteCost + cost(A → C) = 30 + 5 = 35. Similarly to
node B, C.RouteCost is set to 35, and C.Predecessor is set
to A, and C is added to OpenList as well. The last adjacent
node to analyze is E, whose tentative cost is computed as
A.RouteCost+cost(A→ E) = 30+30 = 60. As with B and
C, E.RouteCost and E.Predecessor are updated accordingly,
and E is added to the OpenList. A is then removed from the
OpenList, completing its expansion.
At the beginning of the third iteration, OpenList contains

nodes B, C, and E. To select the next node to expand, the
minimum estimated cost to destination is computed for the
nodes in the OpenList. In particular: B.RouteCost+ h(B) =
70 + 20 = 90; C.RouteCost + h(C) = 35 + 70 = 105;
E.RouteCost+h(E) = 60+100 = 160. Hence, the minimum
of the estimated costs to destination for the nodes in OpenList
is m = 90. Of the three nodes in OpenList, only B and
C are candidate to be randomly selected for expansion, as
E.RouteCost+h(E) = 160 which is greater than the tolerance
threshold, which is 108. In this example, C is selected for
expansion in the third iteration. During its expansion, D.Cost
is set to C.RouteCost + cost(C → D) = 35 + 40 = 75,
D.Predecessor is set to C, D is added to the OpenList and
C is removed from it.
At the beginning of the fourth iteration, OpenList con-

tains B, E, and D. As during the previous iteration, the
minimum estimated cost to destination is computed for the
nodes in OpenList. In particular: B.RouteCost + h(B) =
70 + 20 = 90; E.RouteCost + h(E) = 60 + 100 = 160;
D.RouteCost + h(D) = 75 + 25 = 100. Again, the mini-
mum of the estimated costs to destination is m = 90, and
only B and D are candidates for selection. In this example,
node D is randomly selected for expansion in the fourth
iteration. To complete the expansion of D, two adjacent
nodes B and T need to be analyzed. The tentative cost for

FIGURE 2. Representation of the shortest route (trajectory in red) between origin
(blue marker) and destination (red marker), and cumulative representation
(trajectories in blue) of 64 routes from the iPPA induced by a $ 0.05 incentivization
budget and $ 0.01 reimbursement rate.

reaching node B from S passing through node D is computed
as D.RouteCost+ cost(D→ B) = 75+ 5 = 80. Since such
a tentative cost is greater than the best currently known cost
to reach B (which is 70), B.RouteCost and B.Predecessor
remain unchanged. As for T, its tentative cost is computed as
D.RouteCost+cost(D→ T) = 75+35 = 110, that is smaller
than the best currently known cost to reach T (∞). Thus
T.RouteCost is updated and set to 110, and T.Predecessor
is set to D. Since T.RouteCost is smaller than the maxi-
mum admissible cost, T is added to OpenList. Lastly, D is
removed from the OpenList, and its expansion is completed.
After the expansion of node D, the stopping condition (see

Line 15 in Algorithm 2) is satisfied, as a path from S to T
with an admissible cost has been found (T.RouteCost = 110
which is smaller than 120, the maximum admissible cost).
At this point, the buildPath procedure can build the path
to return by recursively navigating the stored predecessors
from T to S, resulting in the path S � A � C � D � T ,
whose incentivization cost is 10. In this example, ROUTR
computed a route which is slightly longer than the shortest
one, using part of the allowed incentivization budget. Notice
that, had node B been selected for expansion in the third
or fourth iteration, the algorithm would have returned the
shortest path.
To better highlight the potential of ROUTR on a real road-

network, in which the iPPA induced by a given budget is
likely to contain many routes, a preliminary analysis on the
road network of the City of San Francisco was conducted. In
this analysis, a per-ride incentivization budget of just $ 0.05
was selected, along with a $ 0.1 per km reimbursement rate,
thus allowing detours up to 0.5 km. The results are shown
in Figure 2. After selecting a pair of origin and destination
points on the San Francisco map, the shortest route between
them (in red) was computed, as well as 64 routes (in blue)
belonging to the iPPA induced by the considered budget
and incentivization rates. Intuitively, if many vehicles runs
from the given origin and destination were routed using
a shortest-path algorithm, all the trajectories would cover
the same road segments (in red). On the other hand, if the
same vehicles would have been routed using ROUTR, each
run would randomly compute a route among those in the
iPPA (trajectories in blue), resulting in a higher road-network
coverage.
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IV. EMPIRICAL EVALUATION
The goal of the empirical evaluation is to understand whether
the use of ROUTR can lead to a more uniform urban road
network coverage w.r.t. a shortest path algorithm. To this end,
we aim at quantifying how many additional road segments
are traversed by the involved vehicle fleet using ROUTR, as
well as the consequent implications on the visit frequencies
for the entire urban map. More precisely, we experimentally
assessed the spatio-temporal road-network coverage achiev-
able by a swarm of vehicles if they were routed by ROUTR,
under different incentivization budgets, with respect to the
coverage achievable by the same vehicles if their routes
were computed by a shortest path algorithm. To this end,
we employed a massive dataset of real-world taxi trajectories,
recorded over a three-weeks period in the San Francisco Bay
Area. For each of these taxi runs between an Origin O and a
Destination D, we computed the shortest path from O to D
using the A∗ shortest-path algorithm. We then computed a
route from the same O and D using ROUTR, with different
incentivization budgets. On top of these routes, we computed
some standard road network coverage metrics, widely used
in similar works.
In what follows, the experimental protocol is presented

by describing in detail the employed dataset and data
preparation steps, the considered reimbursement rate and
incentivization budgets, and the employed road-network
coverage metrics.

A. THE DATASET
The empirical evaluation is based on a publicly-available
dataset of real taxi trajectories collected within the
Cabspotting project [34]. This dataset consists in 11,219,955
timestamped GPS coordinates, collected in the San Francisco
Bay Area from more than 500 vehicles of the Yellow Cab
company, over 25 days, from 2008/05/17 to 2008/06/10.
As for the logical representation of the road network on

which the routes and the achieved spatio-temporal coverage
are computed, as done in other similar works (e.g., [2]), we
leveraged open data from the OpenStreetMap (OSM) project,
whose quality is generally considered to be comparable to
the one of authoritative datasets in urbanized areas [18], [26].
The taxi dataset required some pre-processing tasks before

being in a state useful for the experiments. More in
details, the original dataset contains, for each taxi, a sin-
gle sequence of timestamped GPS positions spanning over
25-days, enriched with information on the vehicle occupa-
tion status (i.e., whether there are passengers on board or
not). A first data preparation step for the empirical evalua-
tion consisted in splitting this single stream of data into a
set of independent trajectories, where each of them repre-
sents an independent taxi movement from a given origin to
a destination.
Firstly, we split each taxi’s data stream whenever there was

a change in the occupancy status. It is worth noting that,
differently from similar works (e.g., [8]), we also considered
taxi trajectories in which the vehicle is not occupied, since

FIGURE 3. The considered urban area of San Francisco.

it can act as a probe in these cases as well. Furthermore,
we also split the sequence every time there was a time
gap between subsequent GPS points greater than 3 min-
utes, assuming that the taxi was not operating in that time
frame [5].

For each of the resulting trajectories, the GPS coordi-
nates for the origin and destination points, and the initial
timestamp were extracted. These pairs of points were then
map-matched to the respective OSM maps, by selecting the
closest routable, non-highway, OSM road segment within
a 30 meters radius, under the assumption that taxi cannot
start a run on a highway. All the trajectories for which
this map-matching step failed were discarded. Similarly, all
the trajectories for which there was no vehicle-routable path
between the map-matched source and destination in the con-
sidered OSM map were removed. Furthermore, since most of
the potential use cases employing VCS involve urban envi-
ronments, we restricted our analysis to the urban area of San
Francisco, whose boundaries, according to the Nominatim
OSM service,1 are shown in Figure 3.

Lastly, to avoid the introduction of biases due to weekly
fluctuations in traffic dynamics, we temporally restricted our
analysis by considering trajectories recorded over a three
weeks period. In particular, the three contiguous weeks from
2008/05/18 to 2008/06/07 were considered. After these fil-
tering steps, we retained 405 599 trajectories from 534 taxis,
accounting for a total of about 1.1 million kilometers over
the three weeks.

B. REIMBURSEMENT RATES AND INCENTIVIZATION
BUDGETS
An accepted rule of the thumb for incentive design is to
ensure that the value of the incentive is not less than the cost
that the driver has to face to fulfill a sensing assignment [44].
Thus, the vehicle operating costs per kilometer, including
fuel costs, maintenance, repair and tires consumption, can
be considered as a lower bound reimbursement rate. In San
Francisco, most of the taxis are hybrid vehicles [37], [45].
As indicated by the American Automobile Association [3],
the operating cost for this kind of vehicles in 2019 amounts
to $ 0.082 per kilometer, as detailed in Table 1. Hence,
in our experiments, we considered this operating cost as a
reimbursement rate for all the taxis.

1. https://nominatim.openstreetmap.org/
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TABLE 1. Considered taxi operating costs in San Francisco.

As for the incentivization budgets, we considered eight
values, which we believe can adequately represent different
VCS scenarios, given the value of the collected data. In
particular, we considered the values $ 500, $ 1000, $ 1500,
$ 2000, $ 2500, $ 5000, $ 7500, and $ 10 000, intended as
the overall incentivization budget that a Smart City would
allocate for the whole fleet of 534 taxis, during the three-
weeks timespan.

C. PERFORMANCE METRICS
To assess the effectiveness of our proposal, we computed, for
both the shortest path algorithm and ROUTR, and for each
considered incentivitazion budget, the following metrics:

1) The number of road segments visited at least once
by a vehicle in considered three weeks period. This
metric is a key spatial-coverage indicator for decision
makers;

2) The total travelled distance (in kilometers) for the
entire fleet of vehicles. This metric is an indicator
of the efficiency of a coverage-improving solution:
techniques that achieve improvements in spatial cov-
erage with limited increases in travelled distance are
more cost-effective. Moreover, this metric also gives
insights on the additional vehicular traffic generated
by a vehicular crowd-sensing solution;

3) The average timegap between subsequent visits in a
road-segment. This metric (also used in other works,
such as [6], [25]) is a key temporal coverage quality
indicator, showing how frequently a road-segment is
sensed by a vehicle. In particular, if a road segments is
visited by n vehicles at times t1, . . . , tn, with ti ≤ ti+1
for all i ∈ [1, . . . , n− 1], the average timegap for that
segment is defined as

∑n
i=2(tn − tn−1)

n− 1
.

To gain additional insight on the coverage dynamics at
road segment granularity level, these metrics were com-
puted both for the entire considered map, and for each
of the main road types defined in the OSM standard (see
Table 2). Let us note that OSM defines also additional types
of roads [30], but they were excluded from the analysis,
as they are either not routable by public vehicles, or their
presence in the considered part of the map is negligible.
Table 2 reports, for the considered road segment types, also
the corresponding number in the employed OSM map of San
Francisco.

Finally, to account for statistical fluctuations due to the
randomness in the proposed solution, the experiments were
repeated 10 times for each configuration. In Section V we
report the average and the standard deviation of these results.

V. RESULTS AND DISCUSSION
In Table 3, the spatial coverage results, computed over the
entire road-network of San Francisco, for both the shortest-
path algorithm and ROUTR, with the considered eight
incentivization budgets, are reported. In particular, for each
algorithm/budget configuration, the corresponding per-ride
incentivization budget is reported, as well as the number of
distinct segments visited at least once during the three-weeks
period, and the cumulative distance in kilometers travelled
by the taxis during the considered timespan.
These results show that, even with an incentivization bud-

get for the entire fleet as low as $ 500 (i.e., less than $1 per
driver over the three-weeks), ROUTR can achieve a signif-
icant 8% improvement in the number of covered segments,
with an overall increase in the travelled distance of just 0.6%.
Notice that, even though $ 1 per driver for three weeks may
seem unrealistic, in this configuration each driver drove on
average less than 20 additional meters for each trajectory.
Increasing the budget up to $ 10 000 leads to a 22% rise
in the number of distinct covered segments, managing to
visit more than 86% of the road segments of the considered
urban map at least once over the three-weeks timespan. This
improvement in coverage comes at the cost of an increment
of 11% in the travelled distance. These trends are graph-
ically reported in Figure 4, which shows the changes in
distinct covered segments (red line) and travelled distance
(blue line) w.r.t. the considered ROUTR incentivization bud-
get, as well as error bars indicating the variability of the
results over the 10 repetitions of the experiments. From the
figure we can notice that, while the overall travelled distance
increases more or less linearly w.r.t. the budget, the same
does not hold for the number of distinct covered segments.
Indeed, the latter increases way more rapidly in the initial
part of the plot, going from 8% to 20% when increasing the
budget from $ 500 to $ 5000, and more slowly thereafter,
going from 20% to 22% when increasing the budget from
$ 5000 to $ 10 000, with an almost flat trend at higher bud-
gets. This evidence suggests that, when using decentralized,
random-based routing approaches to improve road-network
coverage, increasing the budget above certain levels might
not be cost-effective w.r.t. the achieved spatial coverage. In
particular, in the considered scenario of about 500 taxis in
San Francisco, the best trade-off between spatial coverage
improvement and costs seems to fall between $ 2500 and
$ 5000. As for the fluctuations due to the randomness in
ROUTR, the results show that there is very little variability
among the different repetitions of the experiments, especially
for the overall travelled distance, for which the standard devi-
ation was always smaller than 0.1%. The number of covered
segments exhibited a slightly higher variability, especially
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TABLE 2. Considered types of roads, and number of respective road segments in the considered part of the San Francisco OSM map.

TABLE 3. Spatial coverage results for both A* and ROUTR, with the considered three-weeks incentivization budgets.

FIGURE 4. Relative increments in the number of covered segments and overall
travelled distance achieved by ROUTR with the considered incentivization budgets
w.r.t. A*.

with greater budgets. Still, the standard deviation remained
always smaller than 0.3%.
Table 4 presents the details of the spatial coverage

results by road segment type. In particular, for each of
the considered OSM road classes and for each algo-
rithm/incentivization budget combination, the table reports

the percentage of segments of the given type that were visited
at least once during the considered three-weeks timespan.
These results show that, in the scenario where vehicles are
routed by the A∗ algorithm, the swarm of taxis can cover the
97-99% of the segments belonging to the main types, namely
motorways, primary, secondary, and tertiary segments, dur-
ing the three weeks. On the other hand, minor road segments
such as residential, unclassified and service ones, are not as
thoroughly sensed, achieving only 78.4%, 64.3% and 23.8%
coverage. This is the type of unevenness that can compro-
mise many VCS use cases requiring a uniform road-network
coverage. In the scenario where the ROUTR algorithm is
used, a more uniform road-network coverage is obtained,
as highlighted also by Figure 5. Indeed, without sacrific-
ing the coverage rates for the main road segments, ROUTR
significantly improves the coverage rates for minor seg-
ments. With an incentivization budget of just $ 500, ROUTR
achieves a 4% coverage rate improvement for residential
segments, a 3% improvement for unclassified ones, and a
65% improvement for service ones. This means ∼1700 new
residential road segments, ∼65 new unclassified segments,
and ∼5000 new service segments would have been visited,
if the taxis routes were computed by our proposal. When
increasing the incentivization budget up to $ 10 000, ROUTR
achieves a 13% coverage rate improvement for residential
segments, a 20% improvement for unclassified ones, and a
160% improvement for service ones. These improvements
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TABLE 4. Percentage of covered segments by type, for both A* and ROUTR, with the considered three-weeks incentivization budgets.

FIGURE 5. Coverage increments by segment type, w.r.t. A*, achieved by ROUTR
with the considered incentivization budgets.

correspond to ∼5700 new residential segments, ∼450 new
unclassified segments, and ∼12 400 new service segments
being visited during the considered three-weeks timespan.
As for the fluctuations of these coverage results among the
10 repetitions of the experiment, also in this case there was
very little variability (less than 0.1% standard deviation), so
we omitted the error bars in Figure 5 for the sake of clarity.

As for the temporal coverage results, Table 5 reports, for
each considered road segment type, the median timegap (in
hours) between subsequent visits of a probe vehicle dur-
ing the three-weeks timespan. These data show that, as for
the spatial coverage, in the scenario in which all the vehi-
cles are routed by A*, there are significant differences in
the visit frequency between main and minor road segment
types. Indeed, segments belonging to motorway, primary,
secondary and tertiary classes are visited way more fre-
quently (with median timegaps ranging from less than an
hour for primary segments, to six hours for tertiary ones).
On the other hand, minor road segment such as residential,
unclassified, and service ones are visited more rarely, with
median timegaps ranging from about one day for residential
segments, to about two and a half days for service ones.

TABLE 5. Median timegaps between subsequent visits in the three-weeks period per
segment type (in hours), for both the A* and ROUTR, with the considered
incentivization budgets.

Just like with the spatial coverage results, these figures show
that ROUTR helps achieve a more uniform temporal cover-
age among road classes, as well. Indeed, by re-routing taxis
from major city thoroughfares towards minor roads, ROUTR
reduces the timegap between subsequent visits for the latter,
at the cost of slightly increasing timegaps for the main road
segment types. These trends are visible in Figure 6, which
shows the relative change in median timegaps achieved by
ROUTR with the considered incentivization budgets, w.r.t.
the shortest-path algorithm. As for the fluctuations among
the 10 repetitions of the experiments, also in this case there
was a standard deviation smaller than 0.1%, so the error bars
in Figure 6 have been omitted. The figure also shows that,
at higher budgets, the median timegaps generally increase
w.r.t. medium-low budgets. This is probably due to the fact
that, as previously discussed, higher budgets are associated
with a higher number of sensed segments, but the number
of vehicles and trajectories remains the same, thus leading
to less frequent visits for each of the covered road segments.
Another interesting insight emerging from Figure 6 is that,
in the considered case study, a budget of $ 2500 seems
to be the most cost-effective in terms of temporal cover-
age. Increasing the budget over that threshold helps achieve
greater spatial coverage, but at the cost of generally decreas-
ing the frequency of visits. This findings show that, for a
Decision Maker of a Smart City investigating the feasibility
of using a swarm of vehicles to crowd-sense information, it is
crucial to carry-out preliminary studies and simulations, such
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FIGURE 6. Relative change in median timegaps by segment type, w.r.t. A*, achieved
by ROUTR with the considered incentivization budgets.

as the case study we conducted, to determine these dynamics
and select the best trade-off between incentivization budget
and coverage.

VI. CONCLUSION
Leveraging swarms of ridesharing vehicles for crowd-sensing
is considered a promising and cost-effective solution, espe-
cially in urban scenarios [10]. Still, the achievable sensing
coverage of a fleet of vehicles can be inadequate to support
use cases requiring a more uniform and pervasive sensing on
the urban road network [15], as the drivers typically prefer
more efficient routes passing through the main urban arterial
roads.
Many solutions have been proposed in the literature to

obtain aimed sensing distributions in VCS, but most of these
approaches rely on centralized components that might be
expensive to operate at large scale, and based their coverage
analyses at a coarse-grained scale of city areas, which can
hardly provide sufficient insights for many use cases.
To address this issue, we have presented ROUTR, to the

best of our knowledge the first decentralized, incentiviza-
tion budget-aware routing solution, specifically designed to
support VCS in achieving a broader and more-uniform road-
network coverage in a fog computing fashion, without the
need for any costly central coordination components. More
in detail, given an origin, a destination, and an allowed bud-
get, ROUTR generates a route whose incentivization cost is
guaranteed not to exceed the budget. Thanks to the introduc-
tion of a random component, each sensing vehicle, given the
same origin and destination, might compute a different route,
thus increasing the overall number of monitored streets.
The proposed solution has been empirically evaluated by

simulating its application in a real-world scenario, with dif-
ferent incentivization budgets. In particular, the assessment
is based on a real-world mobility dataset of trajectories from
about 400 taxis in the City of San Francisco (USA), and on
open data from the OpenStreetMap project. The results of

this empirical assessment have highlighted that, even with
incentivization budgets below $2500 per three-weeks for the
considered fleet of taxis, ROUTR can achieve significantly
more uniform urban road network coverage w.r.t. a shortest-
path algorithm, possibly enabling many additional VCS use
cases. Moreover, our investigation also provided valuable
insights on the achievable map coverage (measured at a
fine-grained scale of single road-segment) and incentiviza-
tion costs, as well as the existing trade-offs between these
two factors, which are crucial to Decision Makers investigat-
ing the feasibility of leveraging high-mileage vehicle fleets
to crowd-sense information in urban environments.
In future research, we aim at replicating this study in dif-

ferent cities, featuring possibly different traffic dynamics and
road-network topologies to better evaluate the generalizabil-
ity of these results. Moreover, in future works, we also plan
on releasing an open source tool, based on the well-known
open source KNIME Analytics Platform,2 to allow Decision
Makers to effortlessly carry out simulations like the one we
described in this study. Such a tool could prove to be very
valuable to Decision Makers investigating the feasibility of
a VCS use case, as it would allow them to derive useful
insights on the case at hand.
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