
Received 11 January 2022; revised 3 June 2022 and 17 August 2022; accepted 21 September 2022. Date of publication 28 September 2022;
date of current version 11 October 2022.

Digital Object Identifier 10.1109/OJITS.2022.3210301

Link Travel Time Estimation for Arterial Networks
Based on Sparse GPS Data and Considering

Progressive Correlations
ZAHRA GHANDEHARIOUN (Student Member, IEEE), AND

ANASTASIOS KOUVELAS (Senior Member, IEEE)

Institute for Transport Planning and Systems (IVT), Department of Civil, Environmental and Geomatic Engineering,
Eidgenössische Technische Hochschule Zürich (ETH), 8093 Zürich, Switzerland

CORRESPONDING AUTHOR: Z. GHANDEHARIOUN (e-mail: zahra.ghandeharioun@ivt.baug.ethz.ch)

ABSTRACT Understanding complicated city traffic patterns has been recognized as a critical goal by
twenty-first-century urban planners and traffic management systems, resulting in a significant rise in the
quantity and variety of traffic data gathered. For example, in a growing number of large cities, taxi firms
have begun collecting metadata for each vehicle trip, such as origin, destination, and travel duration. Taxi
data offer information on traffic patterns, allowing the study of urban flow—what will traffic look like
between two sites on a particular day and time in the future? This paper proposes a method based on
sparse GPS probe data, that focuses on allocating travel time data to the different links traveled between
GPS observations. This model incorporates the progressive spatial correlations between the links in a
network. The main goal of this work is to show how we can consider progressive spatial correlations
and improve our results more realistically with a simple adjustment in the previously known parametric
methods. For estimating arterial travel time, the methodology is applied to a case study for the partial
network of New York City-based on the data collected from the taxicabs in New York City, providing
the locations of origins, destinations, and travel times. The model estimates quarter-hourly averages of
urban link travel times using OD trip data. This study proposes a more accurate approach for estimating
link travel times, that fully utilizes the partial information received from taxi data in cities.

INDEX TERMS Correlation coefficient, iterative methods, iterative algorithms, maximum likelihood
estimation, parametric statistics.

I. INTRODUCTION

FOR THE purpose of optimizing urban traffic operations
and identifying major bottlenecks in the traffic network,

accurate estimates, and forecasts of urban link travel times
are critical. User advantage may also be gained by giving
precise travel time information, allowing for improved path
selection within the network, and reducing total trip traveling
time. The use of real-time information from either in-road
sensors such as loop detectors, microwave sensors, or road-
side cameras, or mobile sensors (e.g., floating vehicles), or
global positioning system (GPS) devices is required in order
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to estimate link travel times (e.g., cell phones) correctly.
While there is little information available about the speed
or the location of the connection in most of these instances,
it is necessary to establish suitable methods for correctly
estimating the performance measure of interest at the link,
path, or network level.
There has been an increasing trend for GPS-equipped

taxicabs in metropolitan regions in recent years. While GPS-
equipped cabs have many benefits, they also act as valuable
real-time probes for the traffic network. Taxis equipped with
a GPS device collect a large quantity of data over days and
months, offering a rich data supply for calculating network-
wide performance indicators. Within this context, we present
a technique based on sparse GPS probe data, and that is
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concerned with how to assign trip time data to the various
links traversed between GPS observations to improve accu-
racy. The spatial correlations between the connections in a
network are taken into account by this approach. Ultimately,
the purpose of this study is to demonstrate that by modifying
the previously established techniques, we may include spatial
correlations in our calculations and enhance our findings
more realistically.
The present paper is organized as follows: first, the

problem at hand is described briefly. In Section II, we review
related publications and briefly discuss several approaches
to similar problems. The subsequent section introduces the
detailed methodology of the current work. In Section IV
proposed modification is explained in details. The result of
applied methods on a case study is presented in Section V,
with more details on the initial assumption and estimation
results. The paper is then closed by conclusions and final
remarks in Section VI.

A. PROBLEM STATEMENT
Urban travel time estimation based on GPS probe data has
attracted many researchers recently [1], [2], [3], [4], [5]. The
goal is to determine the urban link travel time based on the
large amount of reported trip data for a network. Taxi trip
data consist of the following information: exact coordinates
of origin and destination with the trip distance and travel
time. In most of the available data sets, the precise trajectory
of the taxi trip is unknown, and different assumptions are
made to discover the most probable path for a given origin
and destination of trip data. In order to estimate the link
travel time, the following problems should be solved:
1) Represent the network in a digital form.
2) Match the recorded geographic coordinates of the trip

origin and destination on the produced digital network.
3) Discover the most probable path for the given trip.
4) Allocate the travel time to the links belonging to the

discovered path.
5) Estimate the travel time of the link based on the

observed travel times.
The first two steps are usually solved in similar ways

by different researchers [4], [6]. For the third step, most
researchers benefit from applying the k-shortest path algo-
rithms to minimize the difference between the observed path
and the assumed one [4], [6], [7], [8]. The methodologies
used in the fourth and fifth steps can be classified into three
categories:
a) Parametric approaches rely on statistical models and,

based on mathematical assumptions, estimate the travel
times. The majority of the parametric approaches
assume that the link travel time is spatially and tem-
porally independent of the rest of the network [7].
However, in reality, travel time on different road
segments and at other times of day are spatially and tem-
porally associated with one another [9]. Incorporating
information on the spatio-temporal correlations of trip
times may improve the estimation performance.

b) Non-parametric approaches are based on data-driven
methods such as machine learning and neural networks.
These approaches are free from assumptions and highly
dependent on the amount of input data. The fusion of
parametric and non-parametric approaches is classified
as a third category called:

c) Hybrid approaches, which utilize a combination of both
statistical models and data-driven methodologies. The
details of the relevant works regarding this classification
are presented in Section II.

Based on the classification mentioned above, in the current
work, we focus on extending a parametric approach, intro-
ducing static and progressive spatial correlations between the
links on the network, and modifying a statistically proven
method to have more realistic travel time estimations.

B. CONTRIBUTIONS
In the current work, the main contribution is as follows:

• We propose a method based on sparse GPS probe data
that focuses on allocating travel time data to the dif-
ferent links traveled between GPS observations. This
model incorporates the spatial correlations between the
links in a network.

• The main goal of this work is to show how we can
consider progressive spatial correlations and improve
our results more realistically with a simple adjustment
in the previously known parametric methods.

• The methodology is applied to a case study for the partial
network of New York City; based on the data collected
from the taxicabs in New York City. By estimating link
travel times with the proposed method, we show that
travel time estimation accuracy is improved compared
to the previously known parametric approaches.

II. RELATED WORKS
In this section, we investigate the related works focusing
on two topics. First, we review the works contributing to
different travel time estimation methods. Second, we explore
the literature considering the travel time correlation between
the links.

A. TRAVEL TIME ESTIMATION
Urban travel time estimation methods depend on the tech-
nologies deployed. The majority of the studies are based
on data from technologies requiring extensive investment
in sensor installation and maintenance, such as loop detec-
tors in the following works: [10], [11], [12]; Automated
Vehicle Identification (AVI) in [13], [14], [15]; video cameras
in [16]. Therefore, travel time estimation becomes expensive
depending on the network coverage and the accuracy of the
sensors.
An alternative approach is to develop methods of estimation

based on emerging large-scale data sources, such as GPS
devices in either a dedicated fleet of vehicles, available from
taxis, transit, commercial vehicles, and service vehicles or
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even users’ mobile phones. Reference [7] used GPS trace
data from a fleet of around 500 taxis in San Francisco, USA,
to estimate and predict traffic conditions. References [1], [8]
and [17] utilize methods that are based on OD data, such
as the New York City data set. Reference [4] proposed a
statistical approach for path and travel time inference using
GPS probe vehicle trajectory data. Furthermore, [18] states
that reliable traffic estimation based on taxi data is provided
when an adequate historical traffic database is available and
the data covers long road segments sufficiently. Nevertheless,
more complex approaches are needed to generate valuable
output compared to the methods for traditional sensors stated
in [19].
The methodologies based on GPS data introduced in

different approaches can be categorized as follows:
Parametric approaches rely on mathematical and statistical

equations. These approaches are limited by the assumptions
made in the analytical and statistical models. However, they
are proven mathematically correct and less computation-
ally expensive [4]. Yeon et al. in [16] developed a model
that can estimate travel time on a freeway using Discrete
Time Markov Chains (DTMC), where the states correspond
to whether or not the link is congested. Ramezani and
Geroliminis in [20] also used a Markov chain approach to
estimate arterial trip travel time distributions by capturing
the spatial correlations using a Transition Probability Matrix
(TPM) calibrated from historical data.
Most parametric estimations assume the spatially or

temporally independent link travel time [4], [7], [16].
Bertsimas et al. in [1] introduce the general approach for
travel time estimation based on OD data that can recover
interpretable city traffic and routing information from poten-
tially noisy and incomplete data. Zhan et al. in [17] combine
the statistical model with MNL for path selection and min-
imize the least square error between the observed and
expected path travel times.
Among the parametric approaches, only a few consider

spatial correlation; the model presented in [5] separates trip
travel times into link travel times and intersection delays
and allows the correlation between travel times on differ-
ent network links based on a spatial moving average (SMA)
structure. Tang et al. in [21] develop a tensor-based Bayesian
probabilistic model for citywide and personalized travel time
estimation, using the large-scale and sparse GPS trajectories
generated by taxicabs in Beijing. His model incorporates
both the spatial and temporal correlation between different
road segments and the person-specific variation between dif-
ferent drivers. Ma et al. in [22] propose a generalized Markov
chain approach for estimating the probability distribution of
trip travel times from link travel time distributions and take
into consideration correlations in time and space.
Non-parametric approaches rely on data-driven meth-

ods such as machine learning and neural network [23].
These methods are free of the assumptions but highly
dependent on the amount of input data and, therefore,
computationally expensive. Reference [8] introduces a

neighbor-based approach and considers a dynamic traffic
condition using temporal speed references. Furthermore, [11]
developed a method based on artificial neural networks to
estimate the complete link travel time for an individual probe
vehicle traversing the link, using the low frequency data
collected by probe vehicles.
Hybrid approaches utilize a combination of data driven

methods and statistical models. The fusion of parametric and
non-parametric methods is generally more precise than the
methods mentioned earlier. Reference [24] combines para-
metric and non-parametric traffic state prediction techniques
through assimilation in an ensemble Kalman filter. For a non-
parametric prediction, a neural network method is adopted;
the parametric prediction is carried out with a cell trans-
mission model with velocity as the state. In [25] similarly,
benefit from a hybrid approach and develop a model on
traffic flow through signalized intersections and combines
it with a machine learning framework to both learn static
parameters of the roadways as well as to estimate and predict
travel times through the arterial network.

B. TRAVEL TIME CORRELATION
Correlation between travel times of links in a network or
a path is empirically and theoretically discussed in many
previous studies [2], [9], [26], [27], [28], [29], [30]. The
problem of how to estimate the travel time correlation
between links on a corridor was also introduced by Sen et al.
in [9]. The theoretical analysis of this correlation is presented
in [26] and [31]. Rilett and Park in [27] developed a one-step
approach using artificial neural networks (ANN) to predict
corridor travel times directly and consider inter-correlation
between link travel times. The authors suggested that using a
separate model to predict the travel time on each link without
considering the covariance with other links can lead to sig-
nificant errors. Zeng et al. in [32] extended the Lagrangian
relaxation algorithm by representing travel time correlations
based on the Cholesky decomposition. Chen et al. [33] fur-
ther extended the multi-criteria A* algorithm to consider
travel time correlations among adjacent K links. In addition,
they show that adjacent link travel times are strongly corre-
lated. For example, traffic accidents on a link may also lead
to serious travel delays on its upstream links.
In his work [29], Gajewski and Rillet also estimate the

link travel time correlation in the range of −1 to +1 by using
a nonparametric regression technique based on Bayesian
natural cubic splines. Rachtan et al. [34] developed three
regression models to describe the correlation variation by
considering various combinations of variables such as spa-
tial distance, temporal distance, traffic state, and the number
of lanes. They found that the primary factor in the correlation
is spatial distance.
Based on the literature above and the logic presented as

Tobler’s first law of Geography, that ‘all things are related,
but nearby things are more related than distant things’
(Tobler, 1970 [35]), we introduce the spatial correlation for-
mulation to incorporate it with the previously proven historic
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model of traffic introduced by Herring [36]. Furthermore, El
Esawey and Sayed in [3], show that the correlation is usu-
ally very low for links that are spatially distant, even on the
same street. Also, they show, for the determination of the
correlation coefficient between the links, using the exponen-
tial model form outperformed the linear and power model
forms under the chosen acceptance limits for the goodness
of fit criteria.

III. METHODOLOGY – ESTIMATION WITHOUT SPATIAL
CORRELATIONS
In this section, we present the methodology based on the
steps introduced in Section I-A, and explain how we have
approached each problem. It is worth mentioning that, the
core of our methodology is built on the work presented
in [36]. However, our approach addresses the gap of consid-
ering spatial correlations between network links and modifies
the aforementioned work.

A. NETWORK MODEL
Basis of this work is a digital representation of a physical
network. A directed graph G(L,N) is generated utilizing
Open Street Map, where links (L) and nodes (N) represent
roads and intersections, respectively. For example, if a road is
a two-way street, two links will be defined for that segment.
The weight of the links in this graph is the length of the
link in the real network.

B. MAP MATCHING AND PATH INFERENCE
In this work, we benefit from the origin destination of trips
reported by a reliable source in [37], which has been used
in many previous works [1], [17], [38]. This type of data
is usually reported in GPS format. We know the exact geo-
graphical coordinates of the origin and destination of each
trip. If the origin or destination location of a trip is in the mid-
dle of a link, it is projected to the nearest node/intersection.
This step is a source of error at two levels. On the one hand,
GPS data are unavoidably inaccurate, and on the other hand,
it is neglected that trips generally do not start and end at
intersections. However, the consequences of the latter are
not significant, if the trips reported are sufficiently long.
Since we are not aware of the exact path that the taxi

has taken in this type of data, we apply the k-shortest path
algorithm based on Yen’s algorithm explained in [39] to
determine the inferred path as the one that minimizes the
difference between the inferred and observed path distance.
Since the k-shortest path is a computationally expensive task,
defining k depends on the available resources for each study.
After this step, the observations that violate the following
inequality are removed.

0.5 × observed distance < k shortest path distance

< 1.5 × observed distance (1)

After this step, the data are in the form of path observations.
The set of all available path observations for time interval
t, is denoted as Pt and a single path as p.

C. TRAVEL TIME ESTIMATION MODEL
The proposed travel time estimation methodology is built
on [36] methodology, and requires path observations as input
data. This work is based on the following assumptions:

• The travel time distribution for each network link is
independent of all other network links. Therefore, the
set of all network links, that we have observations for
is denoted as L.

• Any given moment in time belongs to exactly one his-
torical time period, during which, traffic conditions are
assumed to be constant.

• All travel time observations from a specific link l are
independent and identically distributed within a given
time period t.

• Sparse probe measurements are the only data available
to the model.

Admittedly, the first and second assumptions are very
strong and proven incorrect. Spatial correlations exist at
both the local and non-local levels. Temporal dependencies
exist in a short-term neighboring and long-term periodic
timescale [11]. While that might hold true, capturing these
spatial-temporal dependencies is challenging, independent of
whether you try to estimate them or incorporate literature
values into the model, given that they even exist. In this
approach, we explain the solution with independent vari-
ables and try to consider the dependencies of the link and
improve the Herring [36] approach to a more realistic one.

1) PROBABILISTIC SETTING

The random variable capturing the link travel time for link
l in time period t is denoted as Xl,t, where l can be any
element of L. The set of links lying on path p is denoted as
Lp, so let Yp,t be the random variable representing the path
travel time for path p in time period t. Then, the path travel
time Yp,t can be represented as follows

Yp,t =
∑

l∈Lp
Xl,t. (2)

It is assumed that all link travel times in the network follow
some probabilistic distribution. This generally can be any
probability distribution function for any link l. In the current
work, we assume that all link travel times follow Gaussian
distributions, and we define μl,t as mean value and σ 2

l,t as
variance, thus: Xl,t ∼ N(μl,t, σ

2
l,t), ∀l ∈ Lp.

The parameters describing the distribution for link l and
time period t are denoted as Ql,t. The link travel time prob-
ability density function for link l during time period t is
denoted as GQl,t(Xl,t). Path travel time probability density
function is denoted as GQLp,t (Yp,t), where the indices QLp,t
denote the parameters of the links along the path p in
time period t. The probability distribution of the sum of
two or more independent random variables is the convolu-
tion of their individual distributions. Therefore, GQLp,t (Yp,t)
is the convolution of the link travel time distributions
along the path p. In this case, all link travel times are
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assumed to be independent from one another and to fol-
low Gaussian distributions. Hence, for a path observation, it
holds, Yp,t ∼ N(�l∈Lpμl,t, �l∈Lpσ 2

l,t).
The goal is to find the parameter values Ql,t for each

link and time period, which make the observed data most
probable. This is achieved by maximizing the likelihood
function, which can be written in a general case as follows:

argmax
Qt

∏

p∈Pt
GQLp,t

(
Yp,t

)
. (3)

To transfer the product into a sum, the logarithm of the
function is calculated. The maximum still occurs at the same
parameter values since the logarithm is a monotonic function.

argmax
Qt

∑

p∈Pt
ln

(
GQLp,t

(
Yp,t

))
. (4)

Given the assumption that all link travel times follow
Gaussian distributions, problem (4) can be reformulated with
optimization problem (5).

argmax
Qt

∑
ln

⎛

⎝f

⎛

⎝
∑

l∈Lp
μl,t,

∑

l∈Lp
σ 2
l,t

⎞

⎠

⎞

⎠, p ∈ Pt, (5)

where f (
∑

l∈Lp μl,t,
∑

l∈Lp σ 2
l,t) denotes the Gaussian prob-

ability density function as a function of μl,t and σ 2
l,t for a

given Yp,t.
This optimization problem is challenging on two levels.

On the one hand, it simultaneously solves for the mean
and variance. On the other hand, the number of variables is
large, particularly in a network-wide study. The number of
variables can be calculated as the number of links multiplied
by the number of parameters per link.
Herring in [7] explained that the methodology can be

extended to cases beyond the Gaussian distribution but leads
to more complex optimization problems because it simulta-
neously solves for the mean and variance of every link in
the network. It is possible to solve this problem directly
if using a commercial-grade non-linear optimization engine
with a lot of computational power. However, it is assumed
that such resources may not be available, and an alternative
solution strategy is proposed. The Gaussian case is presented
here to show an example of the algorithm from start to finish
in complete detail.
Since we extend the Herring methodology to a correlated

version, we present the work by considering the Gaussian
distribution. In general, the choice of a Gaussian distri-
bution restricts the model’s flexibility to capture unique
traffic characteristics, but it is also far more tractable to
solve in practice [36]. When using this model with cer-
tain classes of link travel time distributions, the travel time
allocation problem is efficient, even for large amounts of
data (such distributions include the standard distributions
like Gaussian, Log-Normal, Gamma [40], and others). The
parameter estimation problem is also efficient for the same
set of distributions listed above [40].

Furthermore, recent empirical studies based on field obser-
vations show that the use of normal distributions appears
to reflect observed path travel time distributions [41]. In
addition, Chen et al. [33] found that the normal distribution
can reasonably approximate the path travel time distribution.
The normal distribution approximation can achieve 98.3%
and 94.9% accuracy at the 10th and 90th percentiles. Also,
Zeng et al., in their work [32], used the empirical link
and path travel time data from probe vehicles to charac-
terize travel time distributions at the link and path level.
Several typical distributions are tested, such as normal, log-
normal, truncated normal, and truncated lognormal. Further,
he explains the observed data distribution is approximated
by a normal distribution, which is more computationally
tractable and has an acceptable compromise on accuracy.
Herring in [36], suggests an intuitive decomposition

scheme reaches near-optimal solutions efficiently. Also, note
that for each time interval t, the problem can be solved
separately, given the assumption, each time interval is
independent.

2) DECOMPOSITION SCHEME

The core concept is to decouple the optimization problem
into two more manageable sub-problems and iterate between
these two until converging to an optimal solution. These
two sub-problems are travel time allocation and parameter
optimization. Herring’s explanation [36] of why his decom-
position scheme makes sense, though it cannot be derived
mathematically, goes as follows. It would be straightforward
to estimate the link parameters if it was known how much
time each probe vehicle spent on each link on its path.
However, in the case of sparsely sampled and OD data, this
information is not available. Instead, one could try to deter-
mine the most likely link travel times, which depend on the
link travel time parameters that in turn need to be estimated
with the most likely link travel times. This is a chicken-and-
egg type of problem. It is solved by assuming some initial
link parameters, which are then used to determine the most
likely link travel times. Following, the most likely link travel
times are used to update the link parameters, which then are
utilized to determine the most likely travel times again. This
iterative process is repeated until convergence is reached. By
reaching the convergence, the algorithm’s output is Xl,t vari-
able that contains all the individual travel times allocated in
an optimal manner to the links l ∈ L for time period t. This
Xl,t can be used to compute our final set of parameters Qt.

3) TRAVEL TIME ALLOCATION

The travel time allocation determines the most likely link
travel times corresponding to a path p. To solve this problem,
estimates of the link parameters must be available for all
links in time period t, l ∈ Lt. This means that all link param-
eters are fixed for this part of the algorithm. Furthermore, it
is essential to define lower bounds for the link travel times;
otherwise, the most likely travel time is smaller than the
free-flow travel time, or in extreme cases, even negative.
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The free-flow travel time is denoted as bl and is the time
needed to travel link l with the maximum allowed speed. It
is calculated by dividing the link length by the maximum
allowed speed. For example, despite the existence of some
highways and areas with narrower streets, the speed limit in
Manhattan is 25mph [37]. It is suggested by [7] to assume
that the taxi drivers will travel at 40 to 50 mph to compute
the minimum link travel time. However, in the case study
presented in Section V, we use 25mph as the free flow speed
to calculate the free flow travel time. This constraint implies
that path observations with an average speed greater than
25mph do not have a solution, and thus are removed from
the path set.
The goal of finding the most likely travel times is also

achieved by formulating a maximum likelihood function and
finding its maximum. Still assuming that, all link travel time
distributions are Gaussian, the problem can be formulated
as in problem (6), where f (Xl,t|μl,t, σ 2

l,t) denotes Gaussian
probability density function for a given mean μ and a given
variance σ 2 as a function of the link travel time Xl,t

argmax
X

∏

l∈Lp
f
(
Xl,t|μl,t, σ

2
l,t

)
. (6)

Again, to convert the product to a sum, the logarithm of the
function is computed. Moreover, two constraints are added.
The sum of the link travel times lying on a path must be
equal to the observed path travel time Yp,t, and the link travel
times Xl,t must be larger than the free-flow travel time.

argmax
X

∑

l∈Lp
ln

(
f
(
Xl,t | μl,t, σ

2
l,t

))

s.t.∑

l∈Lp
Xl,t = Yp,t

Xl,t ≥ bl, ∀l ∈ Lp. (7)

This problem needs to be solved for every observation
p ∈ Pt, and this is done by the following method. First, the
total expected path variance V and the difference between
expected and observed path travel time Z need to be
calculated

V =
∑

l∈Lp
σ 2
l,t, (8)

Z = Yp,t −
∑

l∈Lp
Xl,t. (9)

As the next step, the expected travel time, adjusted by some
proportion of Z, is allocated to each link. This proportion
is computed by dividing the link variance by the total path
variance

Xl,t = μl,t +
σ 2
l,t

V
Z. (10)

Links with high variance are the most likely source of dis-
crepancies between observed and expected path travel time.
The links with high variance get attributed to the largest part

of Z. After this attribution, some links may violate the free
flow constraint. These links are saved in the set J. After
identifying the violating links and saving them in the set J,
we calculate V and Z again. At this step, all the identified
violating links saved in J (l ∈ J) have an expected travel
time equal to the free-flow travel time, and these links do
not contribute to the calculation of the total path variance V

V =
∑

l∈Lp/J
σ 2
l,t, (11)

Z = Yp,t −
∑

l∈Lp/J
Xl,t −

∑

l∈J
bl. (12)

Then, the updated difference between the expected and
observed travel time Z is attributed again with Equation (10).
After this step, some links may still violate the constraint.
Thus, J is updated, V and Z are recalculated, and Z is
attributed to the links again. This procedure is repeated until
the free-flow travel time constraint is met. On average, 1 to
5 iterations were necessary to meet the constraint in the use
case at hand. Having solved the travel time allocation for
all path observations p ∈ Pt, the output of the algorithm Xl,t
contains all the individual travel times allocated to the links
l ∈ L and time period t.

IV. INTRODUCING SPATIAL CORRELATIONS
Considering the aforementioned theoretical backgrounds in
Section II and the criteria of spatial correlation they all
show in their works, we introduce our heuristic for both
progressive and static correlations as follows:
The Travel time allocation method presented in III can be

extended for correlated links if we assume that the travel time
on these links is jointly normally distributed. Based on the
multivariate central limit theorem [42], the summation of all
links’ travel times is still normally distributed; therefore, this
does not affect the maximum likelihood function formulation
in the historic traffic model.
For each link in the set of Lp, we define the correlation

between link li ∈ Lp and lj ∈ Lp in path p by ρ
p
ij the

Equations (8) and (10) will be updated as follows:

V =
∑

li∈Lp
σ 2
li,t + 2

∑

li,lj∈Lp,i �=j
σli,tσlj,tρ

p
ij,t (13)

Xli,t = μli,t +
σ 2
li,t

+ ∑
li,lj∈Lp,i �=j σli,tσlj,tρ

p
ij,t

V
Z. (14)

The correlation between the links can be considered both
static and progressive. In the static version, we allocate the
travel time in each iteration based on the same correlation
coefficient defined at the beginning. In the progressive ver-
sion, we update the correlation coefficient in each iteration
based on the changes in parameters (in here, the mean value)
in the last two iterations.
It is worth mentioning that the correlation coefficient here

focuses on spatial correlation, and the temporal correlation
is neglected in this study, and we assume that the travel time
estimation is independent between different time periods.

684 VOLUME 3, 2022



In the current work, the main contribution is to show
the effect of considering spatial correlations to understand
the model’s performance regardless of considering temporal
correlations. Also, since for every 15-minute time interval,
we have an extensive amount of taxi trip data, it can provide
us with enough input for that time interval reflecting the
conditions propagated from the previous time interval (e.g.,
spillback). However, one can include the temporal correlation
by incorporating the parameters about the travel time of
each link from the previous interval to the next interval. If
we include both correlations simultaneously, it is hard to
understand the effects separately.
In the following, we explain each version in more detail:

• Static Correlation
Defining a realistic spatial correlation matrix is a chal-
lenging task, and it is highly dependent on network
characteristics [9]. A basic rational approach for spatial
correlation coefficient can follow the logic of the fur-
ther you get from a link; the correlation coefficient will
decrease accordingly [35]. Following this logic and the
aforementioned background, the mathematical formula-
tion of the spatial correlation should meet the following
criterion: a) The correlation function should be descend-
ing by increasing the spatial distance b) The correlation
coefficients should be near zero for very distant links. In
our approach the static spatial correlation is calculated
as follows: In a path with k links, the path p is a set
of links: Lp = {l1, l2, l3, . . . , lk}, ρ

p
ij,t is the correlation

coefficient between link li and lj in time interval t in
path p, where i, j ∈ {1, k} and |i− j| is the rank order
distance of li to lj in the set of Lp

ρ
p
ij,t = 1

α · |i− j| + 1
,∀li, lj ∈ Lp,

where 0.1 ≤ α ≤ 0.9. (15)

The α value defines how quickly the correlation between
the links in a path can decrease by increasing the dis-
tance. The higher α value corresponds to the quicker
reduction in correlation coefficient between the links in
the path by increasing distance. The correlation coef-
ficient is calculated only on the basis of the paths, as
the path observations are the only input in the proposed
model. If two paths have mutual links, the spatial cor-
relation is calculated for each path separately, and the
correlation coefficient for the mutual link is calculated
in each path towards the other links in the path.
Remark 1: We note that the function in Equation (15)
is only a candidate function and does not necessarily
provide the best result among all the possible functions.
One can find a near optimal correlation function through
hybrid approaches [24]. However, the main focus of our
work is to show how we can consider static spatial cor-
relations and improve our results more realistically with
a simple adjustment in the previously known parametric
methods.

FIGURE 1. Static correlation coefficient example of a path with 98 links with
α = 0.125 (top: from the first link, bottom: from the middle link).

For example, the static correlation coefficient for the
first and the middle link in a path is depicted in
Figure 1. The profile definition in both diagrams in
Figure 1 follows the same Function (15); the only dif-
ference is the starting link. We calculate the correlation
coefficient between the first link and all other links in
the path in the top figure. The bottom figure shows the
correlation coefficient between the link in the middle
of the path and all other links in the path, the links
before the middle link and after the middle link. In
the static version, the value of ρ

p
ij,t remains the same

through iterations for the calculation of Equation (13)
and Equation (14).

• Progressive Correlation
In the progressive version, we start by defining the cor-
relation of the links in a path similar to Equation (15)
in the first iteration (n = 1) and increase or decrease
it based on the changes in the μli,t , and μlj,t in
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previous iterations. Iteration number is defined by
n. Suppose �μli,t,n and �μlj,t,n both are positive or
negative (λn > 0), meaning that both link trends are
following the same direction. Then, we increase the
correlation coefficient ρ

p
ij,t in the next iteration. If one

is positive and the other negative (λn < 0), we decrease
the correlation coefficient. We assume that the trend in
the changes in the mean travel time of a link through
iterations can reflect the correlation between the two
links. This can be seen in the travel time distribution
of the links and thus in the mean travel time changes
in the iterative approach. The amount that the correla-
tion coefficient is increased or decreased in iteration n
follows the function introduced in (16). The mathemat-
ical formulation of progressive approach needs to meet
the following criterion: a) the function should gradu-
ally increase to an upper bound or gradually decrease
to a lower bound, b) The changing increment should
be adjustable by defining a parameter. For example,
in Equation (16), we gradually increase the correlation
coefficient up to the upper bound of +0.8, and simi-
larly, we decrease it down to −0.8, that is the lower
bound [29].

ρ
p
ij,t,n = ρ

p
ij,t,n−1 + Cij,t,n ∀li, lj ∈ Lp

λn = �μli,t,n

�μli,t,n
= μli,t,n − μli,t,n−1

μlj,t,n − μli,t,n−1

Cij,t,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−aβ + a, a = |0.8 − ρ
p
ij,t,n−1|, if λn > 0

bβ − b, b = |−0.8 − ρ
p
ij,t,n−1|, if λn < 0

0, if ρ
p
ij,t,n−1 > 0.8

or ρ
p
ij,t,n−1 < −0.8

where 0.01 ≤ β ≤ 0.09. (16)

The β value corresponds to the increment that we
increase or decrease the correlation coefficient between
two links. The higher the β value, the faster we reach
the upper/lower bounds. As an example, the progressive
correlations for a link at the beginning of the path and a
link in the middle of the path are depicted in Figure 2.
In this figure, we present the changes in the correlation
coefficient through iterations. Each line in Figure 2 is
the correlation coefficient of the chosen link i to all the
other links j in the path. For instance, in Figure 2 on
top, we have the correlation coefficient of the first link
(i = 1) of a path with 98 links to all the other j = 1:98
links. The X axis is |i−j| and the Y axis is the correlation
coefficient ρpij for each iteration. Here we presented only
20 iterations, each with a distinct color and line pat-
tern, with the number of iterations and the line pattern
in the graph’s legend. The graph at the bottom presents
the correlation coefficient ρ

p
ij of the link in the middle

i = 50 to all other links j = 1:98 in the path p. As
we see, the first iteration starts with the same values
calculated for the static version and changes through
iterations based on Equation (16). Negative correla-
tions between the links can occur, for instance, due to

FIGURE 2. Progressive correlation coefficient example of a path with 98 links
through 20 iterations β = 0.05 (top: from the first link, bottom:from the middle link,
number on each line shows the iteration number).

having traffic signals in the path. If one link is highly
congested due to a red signal, having a longer travel
time, the others are empty and have free flow travel
time. A negative correlation in our study can explain
this situation. It means that an increase in travel time
in the link i can strongly reduce the travel time in link
j. We note that (16) may not provide us with the best
mathematical formulation for the optimal performance
indicator using in the progressive approach. However,
we show that the results improve by taking into account
the changes in distribution function parameters through
iterations for defining the correlation coefficient (see
Table 3).

1) PARAMETER OPTIMIZATION

Receiving Xl,t from the travel time allocation step, optimiz-
ing the parameters is straightforward. Mean and variance
are updated based on Equations (17) and (18), respectively.
Note that Xl,t(m) denotes the mth observation of Xl,t. Reliable
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estimates are not possible for links with less than ten obser-
vations available. Thus, the parameters are not updated, but
the initial ones are kept.

μl,t = 1

|Xl,t|
|Xl,t|∑

m=1

Xl,t(m), (17)

σ 2
l,t = 1

|Xl,t|
|Xl,t|∑

m=1

(
Xl,t(m) − μl,t

)2
. (18)

To solve the chicken-and-egg problem entirely, initial param-
eters for all links l ∈ L are still required. Herring [36]
suggests that these should be chosen according to literature
values, which are in keeping with the link characteristics
(number of lanes, traffic lights, etc.). For this work, the
initial parameters are based on assuming that all cabs had
a constant velocity along their path. This allows allocat-
ing the travel times based on the length of the links (see
Equation (19) below). Dl denotes the length of link l and
DLp the sum of all link lengths lying on path p.

Xl,t = Dl
DLp

Yp,t. (19)

The output of this initial travel time allocation is of the
same type as Xl,t. The initial parameters are therefore cal-
culated with Equations (17) and (18), having Xl,t based on
the constant velocity assumption as the input argument.

2) CONVERGENCE

With each iteration (going back and forth between travel
time allocation and parameter optimization), the parameter
values should become smaller until the parameter values no
longer change significantly. This is called convergence.. The
parameters are the near-optimal solution Qt for optimization
problem (4) by reaching convergence. Herring [36] suggests
that a global parameter nmax can define the criterion for con-
vergence that stipulates the number of maximum iterations.
In this work nmax = 100 is set, which led to a reason-
able convergence. In Table 2, the mean relative differences
for the mean travel time values for all links in all time
intervals in different models for the case study is presented
in Section V.
Alternatively, after each iteration, one could compute the

absolute difference between the individual link parameters of
the previous and the current iteration. These differences are
then divided by the parameter values of the previous iteration,
revealing the relative differences as well. We denote this dif-
ference as �Q. The convergence criterion itself is defined
as a maximum allowed relative difference of the parameters
between two iterations that we call �Q,max. For instance, an
appropriate value for �Q,max is 0.01, meaning that conver-
gence is reached as soon as none of the parameters change
by more than one percent between two subsequent iterations.
The downside of this type of convergence criterion is that a
single iteration needs more computing time. However, this

criterion is more general, and one can also avoid unneces-
sary iterations and therefore may save total computing time
for the algorithm as a whole. For the second proposed con-
vergence method, if we consider the relative difference in
mean values for all links to be less than 0.01, which means
1% on average. With the presented values in Table 2 for the
case study in Section V, it is obvious that we need less than
100 iterations.

V. TRAVEL TIME ESTIMATION IN MANHATTAN:
A CASE STUDY
In this section, the previously mentioned methodology is
applied to the NYC taxi trip data set provided by the
Taxi and Limousine Commission (TLC), available online
at [37]. In this case, the time periods of interest are quarter-
hourly intervals from 7 am until 9 am on Tuesday the 1st

of February 2011. According to [43], traffic in Manhattan
intensifies significantly between 7 am and 9 am and then
remains relatively constant until 7 pm. The area of interest
is limited to Manhattan; since it particularly suffers from
congestion and has a high number of taxi trip observations
available relative to its size (165737 on Tuesday the 1st of
February 2011 [37]).
The Manhattan network includes a grid road network con-

sisting of 228 numbered streets running in the East-West
direction and 11 avenues running in the South-North direc-
tion. The network presented as a directed graph is generated
using Open Street Map [44], with the nodes representing
intersections, and edges representing links. The weight of an
edge represents the road distance between two intersections,
and the direction of an edge represents the allowed driving
direction. Also, the geographical coordinates of the nodes
are known. However, other network information, such as
the number of lanes, bus stops, and traffic lights are not
considered.
The observed GPS coordinates of the starting and end

points need to be assigned to a specific point in the graph.
This can either be the points lying on an edge or a node.
For simplicity, we chose the starting and ending point as the
node that is closest to the observed GPS coordinate based on
Euclidean distance. After this step, the GPS coordinates are
no longer used. Instead, all the starting and ending points are
now represented by node IDs corresponding to the graph. As
explained in Section III, this step is a source of error on two
levels. On the one hand, GPS data is unavoidably noisy, and
on the other hand, it is neglected that trips generally do not
start and end at intersections. However, the consequences of
the latter are not grave, since the average taxi trip observation
from the NYC data set covered roughly 40 links (this number
is based on the applied path inference method).
The straightforward method explained in Section III is

used for the path inference problem. By applying Yen’s algo-
rithm [39], up to 20-shortest paths are calculated to find the
path with the least difference between the reported trip length
and generated trip length. In addition, all trips violating the
Inequality (1) are removed. The next step is to find out if the
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TABLE 1. Number of observations for different time intervals.

shortest path assumption suffices. For this, we calculate the
difference between the individual observed trip length and
the shortest distance relative to the observed distance. The
mean of this relative difference is 0.088, and the median is
0.052. Judging on behalf of this, the accuracy of the short-
est path assumption suffices. One could argue that multiple
paths corresponding to an OD pair can have a very similar
length but differ widely regarding the links they travel. A
large number of path observations compensates for this.
After this step, the data are in the form of path observa-

tions. The number of path observations and the number of
links with more than 10 data points are presented in Table 1.
The time interval a path observation belongs to is defined
by the pickup time.
In order to observe the effect of progressive spatial corre-

lation modification, we present the results by comparing the
outcomes of both static and dynamic correlated algorithms.
Moreover, we present the results of the historic traffic model
of Herring [36] in which the links’ travel time are assumed
to be independent and labeled as an uncorrelated model. The
comparison of the mean travel times of individual links is
understandable when they are normalized. This is achieved
by dividing the individual mean link travel times μl,t by
the link length. Hereby, we receive the travel time rates,
which can be considered as the inverse of the mean veloc-
ity. Here, we use the unit seconds per meter. The travel time
rate corresponding to the maximum allowed speed suggested
by [36] (25mph) is 0.0894 s/m. In Figure 3 and Figure 4,
the normalized mean travel time rates are depicted relative
to the free-flow travel time rate, where 1 is equal to the
free-flow travel time rate, and 5 is five times the free flow
travel time rate. In Figure 3, we show the distribution of the
link travel times in each time interval by box plots. The top
of the rectangle in the box plot indicates the third quartile
(75%), the horizontal line near the middle of the rectangle
indicates the median (50%), and the bottom of the rectangle
indicates the first quartile (25%). In Figure 4, we present the
normalized mean value of link travel time on each link on
Manhattan network. To highlight the links with particularly
high travel time rates, the line widths are adjusted according
to the mean link travel time rates.
Figure 3 supports the indication that the traffic overall

becomes slower from 7 am to 9 am, which is in line with
the earlier work conducted on the New York City taxi data
set [43]. It also shows that the difference in travel time

FIGURE 3. Normalized Mean Travel Time Rates (top: uncorrelated middle: static
correlated, bottom: progressive correlated).

rates increases among the links; this can be judged from the
widening of interquartile boxes over time. Comparing the
results of static correlated and progressive correlated, we can
observe that the median value rates in progressive correlated
box plots are slightly higher than the static correlated ones.
In Figure 4, there is a clear tendency in the depicted time

interval that streets converge toward much higher travel time
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TABLE 2. Convergence criteria results.

rates than avenues. This confirms the empirically known fact
that traffic on streets is slower than traffic on avenues [1].
These values are consistent with previous studies, which
have found that the average traffic speed during the day in
eastern Midtown is 6.3 mph [17]. This corresponds to the
values 3 to 4 in Figure 4. Similar to Figure 3, the mean
value rates depicted in the progressive correlated version are
slightly higher than the static correlated one.
Moreover, in Figure 5, we show the results in the form of

normalized relative differences. The relative differences are
calculated based on the order of the models written in the
title of each diagram. For instance, the relative difference
progressive - static is calculated as follows:

Normalized μprogressive model − Normalized μstatic model

Normalized μstatic model
· 100%

Figure 5 gives an instant overview of the changes in
mean travel time for each link; however, the best compari-
son between the performance of the models is presented in
Table 3, which is discussed later.

A. CONVERGENCE ANALYSIS
As explained in Section IV--2, the change in the param-
eter (mean and variance) values should become smaller
up to a point where the parameter values will no longer
change significantly through iterations. This is called con-
vergence. Table 2 presents the mean relative differences for
the mean travel time values associated with all links and all
time intervals in different models for the case study. The
result shows that all three models, after 100 iterations, have
converged to an acceptable mean relative difference.

B. COMPARING OUR RESULTS AGAINST OTHER
BENCHMARKS
In this section, we present the results of our exploration
through available benchmark data and compare our results
against them. For one of the benchmarks, we decided on
travel time data provided by the Google direction API [45].
Google historical data is used among other researchers as
a comparison benchmark [46]. Google historical travel time
data is fetched through third party website Outscraper [47] in
which we could extract the instantaneous travel time from
an origin to a destination exactly for the study time and
date. The complete manual of how to extract historical data
from google is explained in [47] for an interested reader.
First, we tried to fetch all the travel times for all links in
our network and produce travel times of the traveled paths
by taxis reported by TLC [37] by adding the travel time
of the links. Since TLC does not report the exact path, we

FIGURE 4. Normalized Mean Travel Time Rates on Manhattan network(top:
uncorrelated, middle: static correlated, bottom: progressive correlated).

used the 20-shortest path calculated based on Yen’s algo-
rithm [39] for each observation and chose the path with the
lowest length difference from TLC’s reported path’s length.
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FIGURE 5. Normalized relative differences of mean travel times in different models
on Manhattan network.

In this approach, we realized there is a large discrepancy
between the path travel time reported by TLC and the one
we calculated by adding up the google links travel times.

FIGURE 6. Normalized Mean Travel Time Rate Comparisons.

Therefore, we extracted the exact path travel times from
google data with the same origin and destination reported
by TLC. By this step, we tried to understand if the problem
was raised by summing up the link travel times or not.
Unfortunately, the same pattern was observed in the path
travel time difference. Considering this problem, we could
not directly consider the google data as a benchmark and
tried to use their data in the following way.
We assume that the ratio of a link travel time to the path

travel time is the only valuable data from google we can
benefit from. Since both summation of link travel time and
path travel time from google are very different from the
travel times reported by TLC, the only useful information
is the proportion of the link travel time over the path travel
time reported by Google. By obtaining all the link travel
data and path travel time data from google, we calculated
the ratios for each link and path. By multiplying this ratio by
the path travel time reported by TLC based on the following
equation:

Xl,google benchmark = Xl,google
Yp,google

× Yp,TLC,∀l ∈ Lp

Xl,google benchmark ∼ N
(
μl,google benchmark, σ

2
l,google benchmark

)
,

∀l ∈ Lp (20)

we get the distribution of google benchmark instantaneous
travel times for each link. The mean of this distribution is
considered as google benchmark data for each link in our
analysis.
Furthermore, to have another data set to compare our

results, we use the baseline model proposed by Herring [36]
and show the result against this benchmark. In Figure 6,
the histograms of normalized travel time rates are depicted
for progressive correlated, static correlated, uncorrelated,
and calculated google benchmark as explained previously.
Moreover, the comparison of RMSE is presented for all
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TABLE 3. Experimental results comparison between the proposed models and the
baseline model.

three methods in the following table. The metrics in Table 3
are calculated based on the following equations:

RMSE =
√

1

n
�n
i=1(x̂i − xi)2,

MPE = 100%

n

n∑

i=1

(
xi − x̂i
xi

),

MAPE = 100%

n

n∑

i=1

|xi − x̂i
xi

|,

where xi is the ith path observed value for travel time
reported by TLC [37] and x̂i is the estimated path observa-
tion achieved by summation of the link travel times in that
path. Negative values of MPE mean that the estimated value
is larger than the observed value.
The trend in Figure 6 shows that, in all normalized travel

time rates, the dynamic correlated model is closer to the
google benchmark data compared to the static correlated
model results. However, the result in Figure 6 is very aggre-
gated, and the comparison between the three models is best
achieved by comparing the metrics in Table 3. In Table 3,
we observe that the progressive model values are showing
the best result. Therefore, the progressive model can esti-
mate the links’ travel time more accurately than the other
models.

VI. CONCLUSION
This work proposes a methodology to estimate historical
link travel times based on GPS OD data; historical means
that the parameters uniquely belong to a past time period.
Of course, such a process could be applied in a real-time
setting or a hybrid model by combining historical estimates
and real-time measurements. The proposed model infers the
unknown path by the cabs with the simple assumption that
the cabs always travel the shortest path based on the distance,
and the difference between the observed and calculated path
is reduced by calculating up to the 20-shortest path utilizing
Yen’s algorithm [39]. The link travel times and their cor-
responding variances can then be estimated by formulating
a maximum likelihood function. This optimization problem
is computationally challenging but can be tackled by an
iterative decomposition scheme suggested by [36]. In order
to consider the spatial correlation, we have proposed a spa-
tial correlation matrix for each sub-network and adopted the
methodology for correlated links.
The model was applied to the Manhattan network for

quarter-hourly time intervals from 7 am to 9 am on Tuesday,
1st of February 2011. The data used in this study were

FIGURE 7. Normalized Mean Travel Time Rates for all models for Wednesday
02-02-2011.

collected by the yellow New York City taxi cabs and
are provided by the New York City Taxi and Limousine
Commission [37]. The time of day had a significant effect
on the means and variability of the travel times, with travel
times gradually increasing on many links from 7 am to
9 am. The algorithm correctly detected a spatial pattern of
streets having higher relative travel times than avenues in all
time intervals. Furthermore, by comparing our results against
other benchmarks, we show that the consideration of pro-
gressive correlation can improve the results, thus leading to
a more accurate parametric travel time estimation approach.
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FIGURE 8. Normalized Mean Travel Time Rates for all the models for Saturday
05-02-2011.

The proposed methodology can be applied to any GPS probe
vehicle data set, for instance, synthetic data provided by [48],
[49] or real data set [37], [50], given that the data provide
the origin, destination, and path travel time. Furthermore,
the higher number of observations for a link travel time can
increase the accuracy of the proposed methodology [7].

This study proposes a more accurate approach for esti-
mating travel times that fully utilizes the partial information
received from taxi data in cities as well as known or
constructed (static or progressive) spatial correlations.

TABLE 4. Experimental results comparison between the proposed models and the
baseline model for Wednesday 02-02-2011.

TABLE 5. Experimental results comparison between the proposed models and the
baseline model for Saturday 05-02-2011.

APPENDIX
In this Appendix, we present the results of all the proposed
models for another day of the week (Wednesday 02-02-2011)
in Figure 7 and a Weekend day (Saturday 05-02-2011) in
Figure 8. In addition, the experimental result comparison
between the proposed models is presented in Table 4 for
Wednesday 02-02-2011 and in Table 5 for Saturday 05-02-
2011. We can conclude that, the progressive model has the
best performance comparing to the other models.
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