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ABSTRACT Knowing how much people travel is essential for transport planning. Empirical mobility
traces collected from call detail records (CDRs), location-based social networks (LBSNs), and social
media data have been used widely to study mobility patterns. However, these data suffer from sparsity, an
issue that has largely been overlooked. In order to extend the use of these low-cost and accessible data,
this study proposes a mobility model that fills the gaps in sparse mobility traces from which one can
later synthesise travel demand. The proposed model extends the fundamental mechanisms of exploration
and preferential return to synthesise mobility trips. The model is tested on sparse mobility traces from
Twitter. We validate our model and find good agreement on origin-destination matrices and trip distance
distributions for Sweden, the Netherlands, and São Paulo, Brazil, compared with a benchmark model using
a heuristic method, especially for the most frequent trip distance range (1–40 km). Moreover, the learned
model parameters are found to be transferable from one region to another. Using the proposed model,
reasonable travel demand values can be synthesised from a dataset covering a large enough population
of very sparse individual geolocations (around 1.5 geolocations per day covering 100 days on average).

INDEX TERMS Origin-destination estimation, sparse mobility traces, social media data, travel demand,
trip distance distribution.

I. INTRODUCTION

TRANSPORTATION accounts for 24% of global CO2
emissions annually [1], presenting a major challenge to

climate change mitigation. Meeting the challenge will require
knowing the details of travel demand: how and how much
people travel. Quantifying travel demand often relies on an
origin-destination (OD) matrix [2], representing the intensity
of flows of people between different zones/regions. Another
extensively explored aspect is the trip distance distribution,
which characterises how far people travel.
In transport planning and policymaking, different models

are used to estimate travel demand either directly at the pop-
ulation level or through the detailed activity chains of agents.
They rely on high-quality data collected through traditional
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methods including road traffic counting, household travel
surveys, censuses, and population mobility models. These
data collection methods are often costly, have small sample
sizes, and are updated infrequently [3].

The increased prevalence of location-aware devices over
the last decade has benefited our understanding of human
mobility [4], [5]. Common sources include: call detail
records (CDRs); GPS-enabled devices; tracking apps on
smartphones; location-based social networks (LBSNs), e.g.,
Foursquare; and social media data, e.g., Twitter. The mobility
traces obtained from these sources are promising in quanti-
fying the flows of people between places and how far they
travel [6].
Given that geolocations are collected with triggered phone

activities or volunteered reports, one salient issue is to what
extent the covered traces are incomplete, i.e., the sparsity
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issue. Data sources like CDRs, LBSNs, and social media data
only provide a partial view of the actual mobility trajecto-
ries [7]. The incompleteness of the traces limits the accuracy
of the estimated travel demand. Nevertheless, these sources
are collectively abundant, especially LBSNs and social media
data, which are relatively less expensive and available glob-
ally. In order to extend the use of these data sources, it is
important to have appropriate techniques to fill the gaps in
sparse mobility traces.
This study proposes a mobility model that fills the gaps

in sparse mobility traces, tested on geolocations collected
from social media data. Using the model-processed data,
one can subsequently synthesise travel demand on two
aspects: the share of trips between spatial zones and the
trip distance distribution. The proposed model extends the
fundamental mechanisms of exploration and preferential
return to synthesise mobility trips [8] for accommodating the
individually-sparse but collectively abundant mobility traces.
We first calibrate and validate the model with official data on
daily travel demand. We then apply the model to represent
the travel demand in two countries and one metropoli-
tan region. The model generates good transferability of its
parameters from one region to another.
The remainder of this paper is organised as follows. The

rest of this section reviews the work related to different data
sources used to estimate the two aspects of travel demand:
trip distance distribution and flows between spatial zones.
It covers the shortcomings of these data sources, specifi-
cally related to sparsity, followed by a brief summary of
the objectives of the present study. Section II describes the
model design, and Section III describes the model experi-
ment. The results are presented in Sections IV, and Section V
discusses the findings and identifies future research needs
and the conclusions.

A. RELATED WORK
Common models for travel demand estimation include the
four-step model [9], activity-based models [10], and agent-
based models (ABM) with a synthetic population [11]. These
models rely on data collected from traditional travel surveys
and censuses. For instance, a study uses the data from an
yearly census and a national household travel survey to create
a synthetic population and its travel demand [11]. These
data sources have careful sampling designed to statistically
represent the true population. However, they also have many
shortcomings such as being costly to collect and having
low sampling rates, short survey duration, under-reporting
of trips, and being out-of-date [12]. Travel surveys also fail
to capture most of the infrequent long-distance trips [13].
Travel demand estimation has benefited from increasingly

available location-aware devices [12] that provide a variety
of human mobility records. Using data from GPS-enabled
devices, a multi-scale model has been proposed to synthesise
mobility traces that yield representative trip distance dis-
tribution [5]. Another study has updated origin-destination
matrices using aggregated GPS data [14]. The movements of

a large population can be captured by CDRs [15], [16], [17].
CDRs have been used to develop a microscopic individual
mobility model [8] and reveal fundamental mobility laws
such as the distance-frequency scaling law [18]. Wang et al.
(2018) have explored social disparities of travel distances
using 650 million geotagged tweets [19]. Liao et al. (2021)
have modelled the overall travel demand using geolocations
of Twitter data, showing good agreements with the ground
truth data [20].
However, data collected from CDRs, LBSNs, and social

media are collectively abundant but individually sparse. For
example, in Twitter data, the top geotag users generate 1–3
geolocations per active day on average as revealed by the
present study. In other words, these data sources capture
incomplete mobility trips because they do not record all the
locations a user has visited. Due to this sparsity issue, esti-
mating travel demand using CDRs is not very feasible [21].
Similarly, sparse traces from social media data yield sparse
origin-destination matrices (ODMs) [22].
In order to address the sparsity issue, studies have

developed different techniques to fill the gaps in sparse indi-
vidual mobility traces. Typical techniques include heuristic
methods and mathematical models. Heuristic methods that
are widely used in processing sparse traces consist of intu-
itive rules. For example, a CDR entry can be regarded as a
stay that lasts for a certain time period, e.g., one hour [23];
the missing entries between 10 pm and 7 am, when a user
is assumed to be at home, are filled with the home loca-
tion estimated based on the user’s historical records [21].
When using sparse traces, the reported geolocations need to
be processed to become trips. A widely applied practice is
to connect the two consecutive geolocations and filter out
connections with a time interval longer than a selected time
threshold, e.g., 4 hours [22], [24]. However, these heuristic
methods using time-based rules are arbitrary. Moreover, such
filtering leads to a massive reduction of available data which
does not reflect true mobility patterns.
Beyond the heuristic methods, a variety of mathematical

models have been designed to bridge the gaps in the sparse
mobility traces to increase their usability in understanding
mobility patterns. Chen et al. (2019) have developed a tech-
nique called Context-enhanced Trajectory Reconstruction
that completes individual CDR-based traces using tensor
factorisation [7]. The synthesised data deliver a trip dis-
tance distribution with a better fit among other key mobility
indicators. Their study suggests that filling the gaps in the
sparse individual traces results in better representation of
travel demand, e.g., the truncated power-law distribution of
trip distance distributions. Burkhard et al. (2017) have recon-
structed regular mobility patterns from users with sparse
CDRs using idiosyncratic daily patterns from clustered daily
activities [25].
With the exception of these few studies, most studies

design methods that directly extract patterns from sparse
mobility traces [19], [20], [26]. The generally overlooked
bias from data sparsity can affect the observed mobility
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patterns [7] and limit their usability for travel demand
estimation.

B. STUDY OBJECTIVES
Sparse mobility traces collected from CDRs, LBSNs, and
social media data have been widely used to study mobility
patterns. However, most studies use them directly and ignore
the impact of the sparsity issue, or apply simple heuristic
methods, both of which lead to results that are potentially
biased and inaccurate. In order to extend the use of these
data, it is crucial to design appropriate techniques to fill the
gaps in sparse mobility traces.
To bridge the gaps in the literature, we propose a mobility

model to deal with sparse mobility traces, tested on geolo-
cations of social media data. We calibrate and validate the
model with the other established data sources in the form
of origin-destination matrices quantifying the daily travel
demand in Sweden, the Netherlands, and São Paulo, Brazil.
Specifically, we attempt to answer the following research
questions:

• Can we develop a model that fills the gaps in sparse
mobility data for a more accurate travel demand
estimation?

• How well does the model perform compared with
heuristic methods?

II. MODEL DESIGN
This section proposes a model that fills the gaps in sparse
mobility traces. The model-synthesised data are used to
obtain individual trips for synthetic travel demand. We start
with a problem statement (Section II-A) defining the sparse
input and the synthesised output. In Section II-B, we describe
the features extracted from the sparse traces for modelling.
Then in Section II-C, we describe how the model components
work together to synthesise mobility data.

A. PROBLEM STATEMENT
Part of the mobility traces of a given individual are observed
via CDRs or social media platforms over a certain duration,
expressed as: Trac = {(X,Y)p | 1 ≤ p ≤ N} where X and
Y are the decimal degree of latitude and longitude respec-
tively, and p is the chronological order index of the observed
visits to a variety of locations ranging from 1 to the total
number of visits by the individual, i.e., N. Locations are
distinguished by their recorded coordinates (X,Y), however,
their spatial resolution varies depending on logging noise,
cell tower coverage of CDRs, or different social media plat-
forms. Therefore, in practice, some preprocessing is needed
to cluster the raw location coordinates so that their spa-
tial resolution is more consistent. After preprocessing the
raw data, we refer to a location as a unique pair of GPS
coordinates.
However, the sparse traces Trac are incomplete, they do

not include all the locations visited by an individual, and are
biased by the associated activity, be it tweeting or making a

phone call, depending on how frequently, at what time and
where the specific activity is typically performed. In order
to fill the gaps, the proposed model takes Trac as input and
synthesises them into a more representative set of mobility
data, Trac′, for travel demand estimation.
As model output, the synthesised mobility traces Trac′ =
{(X,Y)day,m | 1 ≤ day ≤ D, 1 ≤ m ≤ Mday} represent visits
of an individual that happen in a series of simulation days
(day) where m is the chronological order index of a visit
to a location (X,Y) in a simulation day. A simulation day
is a working unit of how the model generates synthesised
data, as specified in Section II-C.3. The total number of sim-
ulation days (D) is determined when the aggregate output
of the model-synthesised data stabilises (see Appendix C).
The number of visits per simulation day, Mday, is empiri-
cally determined by looking at how many displacements are
usually made by the population or a specific individual. In
the experiment of this study, we use the Swedish National
Travel Survey (2011–2016) [27] to get the distribution of the
number of visits per day across all survey participants. For
each simulation day of each individual, Mday is randomly
drawn from that distribution (detailed in Appendix C).

B. FEATURE EXTRACTION
For a given individual, a number of features can be extracted
from the model input Trac. These features are later used for
synthesising mobility data.
The set S is defined as a collection of all the distinct

locations having different values of (X,Y). The number of
distinct locations in S is indicated by n. The frequency rate
of them being visited is expressed as fj, j = 1, 2, . . . , n.
Among these locations, the home location sh is identified
as the most-visited location between 7 pm and 8 am on
weekdays and the whole day on weekends [19], [20], [28].
The jump size θp connecting two consecutive observed

locations, sp and sp+1, is defined as the Haversine distance
between them. The bearing αp, referring to the direction
from sp to sp+1, is an angle measured clockwise from the
north direction. The set of the jump size and the bearing of
all the pairs of consecutive locations in Trac is expressed
as J = {(θ, α)p | 1 ≤ p ≤ N − 1}.

C. SYNTHESISING MOBILITY DATA
Given Trac, the model sets the individual at home (sh) to
start the simulation day. As shown in Figure 1, the model
generates the next location given current location sp with
two options: 1) to return to a previously visited location sj ∈
S, j �= p with a probability of Prob(return) or 2) to explore
a new location with a probability of Prob(explore) where
we have Prob(explore)+Prob(return) = 1. According to the
individual mobility model [8], the probability of exploring
a new location is expressed as:

Prob(explore) = ρn−γ (1)

where the greater the n, the smaller the probability of explor-
ing a new location and ρ and γ control how much n affects
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FIGURE 1. Model framework for generating synthetic mobility data. An example of an individual with 5 unique observed locations. The individual is at present located at Place
3 (sp = s3) and has the option of either returning to a previously visited location (Option 1) or exploring a new location (Option 2).

the probability. Given the same n and γ , the greater the
ρ, the higher the probability of exploring. Given the same
ρ, the greater the γ , the more rapidly declining Prob(explore)
as n increases.

1) RETURN TO AN OLD PLACE

If a return is generated, the model moves this individual to
a previously visited location in S. This location is selected
from all the candidate locations in S that have unequal proba-
bilities. The probability of a candidate place sp+1 considering
the current location sp is determined by two factors, visita-
tion frequency P(sp+1|sp) and impedance to the candidate
places I(sp+1|sp).
Visitation frequency: The sparse traces are often col-

lected passively, i.e., being opportunistic due to their asso-
ciation with certain activities. They have biased visitation
frequency of observed places. For social media data, habitual
places such as home and work are much less reported relative
to uncommon places [29]. For CDRs, the sparse traces are
biased toward locations of phone activities [30]. However,
one may expect the rank order of places, based on their vis-
itation frequency from sparse traces, to be preserved, if not
the absolute frequency [21]. Therefore, we define visitation
frequency P(sp+1|sp) as:

P
(
sp+1 | sp

) = k−ζ
sp+1

∑
sp+1∈S,sp+1 �=sp k

−ζ
sp+1

(2)

where ksp+1 represents the rank order of location sp+1, which
is the kth most visited location whose visitation frequency
follows Zipf’s law k−ζ

sp+1 where ζ ≈ 1.2± 0.1 [8].
Impedance to the candidate places: The other factor

affecting the selection of returning to an old place is the
distance (travel impedance) from the current location to the
candidate place. Naturally, people are more likely to visit
nearby locations over distant ones [18]. Besides, the incorpo-
ration of the travel impedance factor helps to further correct
the biases of rank order of locations in the sparse data, to
avoid their frequency dominating the visitation probability

of different candidate places. We define this impedance term
I(sp+1 | sp) as:

I
(
sp+1 | sp

) =
exp

(−β · θ(
Xp,Yp,Xp+1,Yp+1

))

∑
sp+1∈S,sp+1 �=sp exp

(−β · θ(
Xp,Yp,Xp+1,Yp+1

)) (3)

where θ(Xp,Yp,Xp+1,Yp+1) is the distance between a can-
didate place sp+1 and the current location sp. To keep the
model generic and boundary-free, we use Harvesine distance.
And the parameter β controls the degree to which a given
individual is constrained by distance. The higher the β, the
more likely the individual is to visit places nearby.
Combining 2 and 3, the selection of a return location is

associated with the distances from the current location to the
candidate places as well as the historical visitation frequency
indicating the importance levels of these candidate places:

Prob
(
sp+1 | sp

) =
P
(
p+1 | sp

)
I
(
sp+1 | sp

)

∑
sp+1∈S,sp+1 �=sp P

(
sp+1 | sp

)
I
(
sp+1 | sp

) (4)

2) EXPLORE A NEW PLACE

If exploring a new location, the model moves individual i to
an unobserved location sp+1 (sp+1 /∈ S). The new location
is determined by the current location sp and the jump size
θ and bearing α randomly selected from J as illustrated in
Figure 1-Option 2:

Xp+1,Yp+1 = shift
(
Xp,Yp, θ, α

)
(5)

where the function shift computes the coordinates of the new
location by moving the jump size of θ along the clockwise
direction of the bearing angle α (the north as zero degrees).
Every time a new place is selected, the total number of

distinct places visited n is updated, n← n+ 1.

3) GENERATE SIMULATION DAYS

For a simulation day with Mday visits, the individual departs
from sh to visit a series of locations, where the last one is
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FIGURE 2. Experiment of the proposed model.

Algorithm 1: Synthesising Mobility Data Using Sparse
Traces From an Individual
Data: ρ, γ, ζ, β,D,M, Trac
Result: Trac′
n,S, sh, J← FeatureExtraction[Trac];
Trac′ ← [ ];
while day < D do

append sh to Trac′;
sp← sh;
while m < Mday − 2 do

Prob(explore)← ρn−γ ;
t ← generateRandomNumber[0,1];
if t ≤ Prob(explore) then

θ, α← selectJumpBearing[J];
sp+1 ← shift(sp, θ, α);
n← n+ 1;

else
Prob

(
sp+1 | sp

)←
ReturnProbability[sp+1, sp, ζ, β];
sp+1 ← selectPlace[Prob

(
sp+1 | sp

)
];

end
append sp+1 to Trac′;
sp← sp+1;
m← m+ 1;

end
append sh to Trac′;
day← day+ 1;

end

also sh. For Mday−1 visits, each location is created by either
returning to an old place (Section II-C.1) or exploring a new
place (Section II-C.2). As illustrated in Algorithm 1, after
the specified simulation days (D) are finished, the mobility
data of the individual (Trac′) are synthesised by using the
sparse input Trac.

III. MODEL EXPERIMENT
Considering the ground-truth data availability and the poten-
tial impact of geographical scales on the model performance,
we select Sweden, the Netherlands, and São Paulo to do
the model experiment. These three regions have similar

TABLE 1. Descriptions of model parameters and assumptions.

population sizes but distinct areas; São Paulo is a metropoli-
tan area whereas Sweden and the Netherlands are two
countries of different sizes (detailed in Table 1). Specifically,
we use a benchmark model (Section III-A) with geotagged
tweets as an example of sparse mobility traces (detailed in
Appendix B).
As illustrated in Figure 2, we first construct models for the

three study areas and calibrate the models against the official
travel survey data as the ground truth to find the optimal
parameters. The aim of the experiment (Section III-B) is
to see how the model performs in representing the travel
demand, as quantified by the aggregated population flows
between spatial zones, when validated against official data
sources. The model performance is evaluated by comparing
the ODM and its trip distance distribution with the ground
truth in contrast with the benchmark model.

A. BENCHMARK MODEL
In assessing the performance of the model’s synthetic travel
demand estimation, we create a benchmark model using a
common heuristic method of generating an origin-destination
matrix (ODM) based on sparse mobility traces. The bench-
mark model converts the displacements of two consecutive
geolocations generated by the same individual with a time
interval below 24 hours into trips [22], [24], [31]. The origin-
destination pairs of these converted trips go through spatial
aggregation for all the covered individuals to formulate the
benchmark ODM to be compared with the ground truth
together with the proposed model. The performance gain
between the proposed model and the benchmark model quan-
tifies to what extent the proposed model corrects the biases in
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sparse traces, thus contributing to an improved travel demand
estimation at the aggregate level.

B. MODEL EXPERIMENT
The preprocessed sparse geolocations, as described in
Appendix B, are ordered chronologically and divided into
two equal-length parts, one part for calibration and the other
for validation. With an initial parameter setting, the model
takes in sparse traces for each individual (Trac) to generate
visits (Trac′). All the individuals’ visits are further aggre-
gated on the spatial zones consistent with the ground-truth
data to calculate the ODM. The calculated ODM is compared
with the ground truth in terms of the trip distance distribution
using the Kullback-Leibler (KL) divergence measure [20],
[32], [33]. A small KL divergence value indicates that the
two distributions are similar. The optimal model parame-
ters are those that yield the smallest KL divergence with
Bayesian optimisation. The model with optimal parameters
is applied to the validation dataset, and the performance (KL
divergence from the ground truth) is compared to that for
the calibration dataset.

1) MODEL SETTINGS

The initial model setup is illustrated in Algorithm 1 (Data).
Except for the input of sparse traces (Trac), the model has a
few parameters that need to be set in order for it to synthesise
mobility data. The meanings and values of these parameters
are displayed in Table 1. Prob(F) is the probability of a set
of values of No. of visits to locations per day, F, which is
empirically derived from the Swedish National Travel Survey
(2011–2016) [27]. See the detailed distribution in Figure 1.
D is determined based on the exploration of the relationship
between the model’s performance, KL divergence, with a
varying value of the number of simulation days (detailed
in Figure 1). For three of these parameters, ρ, γ , and β,
Bayesian optimisation on model outputs against the ground-
truth data is used to specify the values within the intervals
in Table 1. This is introduced in the rest of this section.

2) GROUND-TRUTH DATA

We use the travel survey data covering detailed trip
information, such as the origin, destination and distance for
individual trips, from three selected regions as shown in
Figure 3. Given that some validation data only report week-
day travel, for the sake of consistency, we focus on weekday
trips.
Sweden: The Swedish National Travel Survey collects

one-day travel diaries for 2011 to 2016 [27]. The survey
includes 171,553 trips from 38,258 participants with 2,189
record days [20]. This dataset contains the origins and desti-
nations of trips as well as trip distance. The spatial resolution
is the DeSO zone defined as 5,984 demographic statistics
areas by Statistics Sweden.
The Netherlands: The dataset of daily mobility OViN

(Onderzoek Verplaatsingen in Nederland) [34] is a survey
conducted in 2017 with 37,016 respondents at the national

FIGURE 3. Spatial zones. (a) Sweden. (b) The Netherlands. (c) São Paulo, Brazil.

level. All trips originate and end in postal code areas,
grouped by their first four digits. In total, there are 4,066
zones.
São Paulo, Brazil: The OD survey [35] carried out in 2017

interviewed 32,000 households (100,000 people) for their
recorded weekday. There are 517 spatial zones, of which 342
zones correspond to the municipality of São Paulo, and the
rest cover the neighbouring municipalities. This dataset does
not have detailed trip distances. The trip distances of the OD
pairs are calculated based on the Haversine distance between
the centroids of the corresponding origin and destination
zones.

3) BAYESIAN OPTIMISATION

In the optimisation process, we aim to find the optimal values
of the undetermined parameters listed in Table 1 so that the
calibrated model approximates the ground truth as closely
as possible. Bayesian optimisation is a global optimisation
that does not specify any forms of functions; it finds the
optimal parameters given the objective function by taking
advantage of the full information provided by the history of
the optimisation [36].
In this study, the objective function KL divergence is

defined below:

DKL(P‖Q) =
∑

d∈dgroup
P(d) log

P(d)

Q(d)
(6)

where dgroup is a set of quantile-based distance groups (100
quantiles) based on the spatial zones of the study area and
P(d) is the frequency rate of trips that fall in a given distance
group d ∈ dgroup based on the ground-truth data:

P(d) = F(ground truth) (7)
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TABLE 2. Optimal model parameters for the three regions in comparison with the benchmark.

while Q(d) is the frequency rate of trips in a given
distance group d ∈ dgroup based on the model output
i.e., its synthesised mobility data from all the individuals
i = 1, 2, . . . , I:

Q(d) = F
(
ρ, γ, β,

[
Trac′1,Trac′2, . . . ,Trac′I

])
(8)

where ρ, γ , and β are the target parameters whose optimal
values are selected to maximise −DKL (minimise DKL).
We use a constrained global optimisation package in

Python that is built upon Bayesian inference and Gaussian
process [37]. The technique is chosen over other alterna-
tives, e.g., a grid search, due to the high computation cost
of calculating the objective function starting with sparse
traces. Moreover, this technique allows a balance between
exploration and exploitation in searching for the optimal
parameters [37].

IV. RESULTS
In this section, we first present the model calibration and
validation results with the optimal parameters (Section IV-A)
and then test the model’s performance in representing travel
demand (Section IV-B), and the impact of trip distance
and length of sparse traces on the model’s performance
(Section IV-C). In the last of this section, we discuss model
parameter transferability (Section IV-D).

A. CALIBRATED MODELS FOR SWEDEN, THE
NETHERLANDS, AND SÃO PAULO, BRAZIL
In model calibration, the Bayesian optimisation searches over
the parameters’ value space to find the optimal set of ρ,
γ , and β for the three case study regions. The results are
presented in Figure 4. In the search through the parameter
space, the KL divergence varies similarly for the three
geographical regions.
Table 2 summarises the optimal model parameters and

corresponding model performance in terms of KL divergence
for the calibration and validation datasets. The performance
difference between the calibration and validation datasets
is small for the Netherlands and São Paulo; it is slightly
greater for Sweden. Compared with the benchmark, the
proposed model approximates the ground truth better: KL
divergence decreases from the benchmark to the proposed
model 67% – 96% for the calibration data and 35% – 98%
for the validation data.
Figure 5 shows an example of generated individual ODMs

using the benchmark model vs. the proposed model based
on sparse geolocations of an individual covering 315 days.
In Figure 5(a), the sparse geolocations are directly used by

FIGURE 4. Parameter search results. (a) Sweden. (b) The Netherlands. (c) São
Paulo, Brazil. A circle represents one combination of parameters with its colour
indicating the KL divergence. The surface is interpolated from the circles. The cooler
the colour (deep blue), the smaller the KL divergence.

FIGURE 5. Individual mobility ODM from a selected individual living in São Paulo,
Brazil based on the (a) benchmark model, and (b) proposed model. Each arc indicates
a spatial zone. The more arcs, the more spatial zones covered by visits.

the benchmark to produce the individual ODM, resulting in
64 spatial zones between which the trips are created. The
proposed model, on the other hand, fills the gaps in the
sparse data resulting in more diverse synthetic trips cover-
ing 123 spatial zones (Figure 5(b)). For both ODMs from the
benchmark and the proposed model, the blue arc represents
the home location. For daily travel, many trips are origi-
nated from or attracted to the home. We see the proposed
model better reflects such a pattern compared with the
benchmark.

VOLUME 3, 2022 671



LIAO et al.: MOBILITY MODEL FOR SYNTHETIC TRAVEL DEMAND FROM SPARSE TRACES

FIGURE 6. Trip frequency rate between zones (calibration results) using the
proposed model (y axis) in contrast with ground truth (x axis). The gray diagonal line
corresponds to a perfect agreement between the ground-truth data and the
model/benchmark output. Heat maps of point counts show the distributions of No. of
OD pairs. Circles are median values for each bin and lines are the 0.25-0.75 quantiles.
Left columns are the proposed model and right are the benchmark model, for (a-b)
Sweden, (c-d) the Netherlands, and (e-f) São Paulo, Brazil.

B. POPULATION FLOWS: ODMS AND DISTANCE
DISTRIBUTION
We quantify the population flows between the spatial zones
in the study areas by aggregating the results of all the
individuals from the proposed and benchmark models, and
compare with the trips in the ground-truth data. Compared
with the ground-truth data, four trip frequency rate values
are calculated from the proposed model vs. the benchmark
model, using the calibration data vs. the validation data.
These four model-based frequency rates are each compared
with the one from the ground-truth data.
As illustrated in Figure 6, if the model performs the same

as the ground truth, all points will fall on the diagonal line.
We see that the model generally performs better for OD pairs
of higher frequency rate than for those of lower frequency
rate. We also observe that the performance varies between the

TABLE 3. Model performance regarding the similarity between ODMs. For all
correlation tests, p < 0.001.

three regions. Compared with the benchmark model results,
the proposed model generates more representative trips that
generally approximate the ground truth better.
Besides the visualisation in Figure 6, we use two indica-

tors, Kendall’s tau and the Sørensen–Dice similarity index
(SSI) [38], to further compare the performance of the
proposed and benchmark models. Kendall’s tau quantifies
the correlation of the trip frequency rate of all the spatial
zones between the ground truth and the model vs. the bench-
mark outputs. The SSI takes values between 0, when there is
no similarity, and 1, when the model output and the ground-
truth data are identical. Taking the average of validation and
calibration, their results are shown in Table 3.

The similarity scores (KL divergence) for the trip distance
distribution of the ground truth and model outputs against the
benchmark are included in the CDF plots of Figure 7. The
proposed model approximates the ground truth better than
the benchmark model, i.e., the blue curves are closer to the
orange curve than the green curves. Moreover, the benchmark
model tends to underestimate the trip distance. For example,
trips below 10 km account for 75 – 90% of total trips in all
three regions according to the benchmark models. However,
the ground-truth data and the model outputs suggest the
shares of 75%, 80%, and 55% approximately, which largely
depend on the regions. The overall similarity results are
consistent with the results of ODMs. In all three regions,
the model applied to the calibration dataset approximates the
ground-truth data slightly better than the one applied to the
validation dataset.
For ODMs and distance distributions, the proposed model

generally performs better than the benchmark model. There
is one exception for Sweden: the similarity of ODMs
between the model output and the ground-truth data is the
same or worse than the benchmark. But its KL divergence
indicates better performance than the benchmark. In sum-
mary, there is a consistent regional difference for both ODMs
and distance distribution: the proposed model performs the
best in São Paulo, followed by the Netherlands, and Sweden.

C. IMPACT OF TRIP DISTANCE AND LENGTH OF
SPARSE TRACES
How the model approximates the ground truth of trip
frequency rate depends on trip distance and region
(Figure 8). The model output is very close to the ground truth
data for the most frequent trip distance range (1–10 km). For
the rest of the trip distance ranges, the model slightly under-
estimates the trip frequency for distances between 10–30 km
and overestimates above 30 km up to 100–300 km in the
two countries (Figure 8a-d). When the trip distance increases
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FIGURE 7. CDF (cumulative distribution function) plots to compare the trip distance distributions of the ground-truth data (orange), the proposed model (blue), and the
benchmark model (green): (a) Sweden. (b) The Netherlands. (c) São Paulo, Brazil. C stands for calibration data and V validation data. Values following the symbol “=” are the
model’s corresponding KL divergence as compared with the ground truth.

above 100–300 km, the trip frequency in the ground-truth
data starts to fluctuate, and its value difference between the
model output rises. For São Paulo (Figure 8e-f), the model
approximates the ground truth well as opposed to the bench-
mark that greatly overestimates short-distance trips below
3 km. The model output is similar to the ground-truth data
for the rest of the distance ranges up to 40 km. However,
the model overestimates the occurrence of long-distance trips
above 40 km within São Paulo.
The similarity between the model output and the ground

truth of trip distance distribution depends on data length
(Figure 9). We consider two types of data length: the total
number of geolocations and the maximum number of geolo-
cations used for each individual. The more geolocations we
have in our model, the better its output resembles the ground
truth (Figure 9a). For all the regions, we see a continuous
increase in performance (declining KL divergence) and such
trend even holds after we include all the individuals’ data,
especially for Sweden, the largest among the study areas,
whose performance is far from saturation, unlike São Paulo.
However, the model performance is not sensitive to increas-
ing the maximum number of geolocations of each individual
(Figure 9b). It seems a maximum of 200 geolocations per
individual, even a large number of individuals have much
less than 200 (median value about 140 per individual), suf-
fices for generating similar trip distance distribution to the
ground truth. Figure 9 suggests that a dataset covering a large
enough population with a relatively small number of indi-
vidual geolocations can be enough for the model to generate
sensible travel demand.

D. PARAMETER TRANSFERABILITY
Consistent ground-truth data are not always available for
those regions where one can collect sparse mobility data.
If the good performance of the proposed model largely
relies on external data sources to calibrate its parameters,
its application is limited. Can we use a set of parame-
ters learned from one region’s ground-truth data to another
without compromising the performance too much? To answer

FIGURE 8. Trip frequency rate between zones (y axis) as a function of trip distance
(x axis). Left columns are the calibration results and right are the validation results,
for (a-b) Sweden, (c-d) the Netherlands, and (e-f) São Paulo, Brazil.

this question, we test how transferable the calibrated param-
eters are from one region to another. To do so, for each of the
three regions, we run the model to synthesise mobility data
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FIGURE 9. Model performance as a function of data length (against the calibration
dataset). (a) Total number of sparse geolocations, from individuals in the order of the
ones with least geolocations to the ones with most. (b) Maximum number of
geolocations per individual. Parameters are optimal for each region. The smaller the
KL divergence, the better the model performs.

FIGURE 10. Comparison of the relative performance of each region using its
calibrated model parameters (diagonal scores), against model parameters calibrated
for the other regions. SE = Sweden, NL = The Netherlands, SP = São Paulo, and AVG
= average model parameters. (a) Calibration dataset. (b) Validation dataset.

with the calibrated parameters of the other two regions and
with the average value of the parameters of all three regions,
and compare the results with their ground truth results. The
performance gain is calculated as the relative decrease of KL
divergence of the model as compared with the benchmark
in %. A negative value of the performance gain indicates
that the proposed model performs worse than the benchmark
model. The relative performance, i.e., how good the model
parameters of one region are to another, is quantified by the
ratio of the performance gain (applying region / ego region).
For the region results using its own model parameters, this
relative performance is 100%.
Figure 10 shows the results of the test of how transfer-

able the calibrated model parameters are from one region
to another. Except for the use of Sweden’s parameters on
the Netherlands, we observe only a small variation in rela-
tive performance. This indicates that the model performance
is not very sensitive to the change of the parameters’ val-
ues given a certain level of knowledge. And it is promising
for reaching a good performance when using the calibrated
parameters in other regions with similar sparse data. It
is worth noting that, in some cases, we have a relative
performance above 100%, which means that some other
regions’ model parameters are better than the ones found
for one region. This is due to the fact that the Bayesian
optimisation approximates the optimal parameters.

V. DISCUSSION AND CONCLUSION
This study proposes a model that fills the gaps in sparse
mobility traces. The synthesised mobility data can be used
for quantifying travel demand in terms of population flows
and trip distance distributions. The proposed model extends
the fundamental mechanisms of exploration and preferential
return to synthesise mobility [8], and is tested on sparse
individual traces found in geolocated social media data.
The proposed model generally performs better than the

benchmark (heuristic) model in terms of quantifying popu-
lation flows and trip distance distribution. Compared with
the other methods addressing sparsity issues, the proposed
model has a few advantages. First, instead of trajectory
reconstruction which risks the invasion of privacy, our model
estimates travel demand based on collective travel patterns.
Second, it is based on fundamental mechanisms of human
mobility, expressed in a simpler form than in previous stud-
ies [7]. Third, based on real-world data that are very sparse
(around 1.5 geolocations per day covering 100 days on aver-
age), the proposed model shows good performance. This
level of sparsity is higher than previous studies using CDRs
[7], [25], [39].

A. MODEL DESIGN FOR SPARSE TRACES
Sparse mobility traces are often collected passively, only
when the phone users are engaged in certain phone activi-
ties: making a call, messaging, tweeting with a geotag, or
using location-aware applications. Hence, these geolocations
are incomplete and sparse observations of the individuals’
mobility. In a previous study of sparse geolocations from
Twitter, we found that the long-term observation of indi-
vidual geolocations captures both routine mobility and
occasional exploration to new places [40], despite the pro-
portion of regular locations to uncommon places deviating
from the users’ actual mobility [29]. Therefore, we follow
the assumption that the rank order of places, based on their
visitation frequency from sparse traces, are preserved [21].
According to the literature, we make two designs in the

model accounting for the sparsity issue. First, we use the
visitation frequency obtained from the Zipf’s law when
designing the probability function for returning to an old
place (Section II-C.1), instead of the a visitation frequency
directly calculated from the sparse input. In doing so, we
attempt to exclude the bias of overly representing uncom-
mon places in the sparse geolocations. Second, we create a
two-dimensional collection of jump size (trip distance) and
bearing for exploring a new place, instead of replicating the
biased displacements in the sparse traces (Section II-C.2).
This distribution is shaped by the individual’s returning and
exploring behaviour observed in the sparse input, and the
visits to new places are constrained by where the individ-
ual lives and stays most of the time. The second design is
similar to a study that introduces the heterogeneity of visit-
ing directions [18] to the individual mobility model [8]. The
difference is that we consider this directional preference at
the individual level. In contrast, they consider how a large
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group of people influence each other, i.e., people tend to visit
places that are frequently visited by others based on their
empirical findings [18]. The integrated heterogeneity of vis-
iting directions provides more spatial details. By these two
designs, the proposed model synthesises the sparse traces
into more representative mobility data.
The proposed model protects personal data and privacy

by 1) clustering raw geolocations for identifying the home
regions (see Appendix B) and 2) not reconstructing indi-
vidual mobility trajectories that could potentially reveal the
precise movement of each data contributor; instead, it creates
synthetic mobility data from sparse inputs. The objective of
the proposed model is to fill the gaps in sparse traces so
that the synthesised mobility data are more representative
of average daily visits and total distance travelled for fur-
ther aggregation. Apart from constructing ODMs, we can
also develop activity-based models driven by the model-
synthesised data for simulating individuals’ daily activities.
Using these synthetic data from easy-to-access geolocation
big data, we can provide more timely and realistic trip data
than traditional data-driven approaches [41].

B. MODEL PERFORMANCE
We use the available travel survey data to calibrate the cus-
tomisable parameters of the proposed model for Sweden,
the Netherlands, and São Paulo (Section III-B). It is worth
noting that the model is designed in such a way that if there
are “ground-truth” trajectories, the model can be calibrated
against these data. In reality, it is difficult to access high qual-
ity ground-truth data, which often are either non-existence
or outdated. Therefore, in this study, we calibrate the model
against population-level data for three selected regions. The
difference between the results using the calibration and the
validation sample is small (Table 2).

There are regional differences between the model outputs
for the three regions. Overall, the model for São Paulo per-
forms better than the ones for Sweden and the Netherlands.
One reason for this relates to how the individuals’ home
locations are distributed across the study area. Previous stud-
ies have suggested that most active Twitter users live in
urban areas [40], [42] and that using sparse geolocations
of Twitter data for simulating travel demand is more suit-
able for urban residents than for the population as a whole.
Another reason is that São Paulo has the smallest area but
the greatest number of individuals and geolocations in the
sparse traces. Given the impact of data length on the model
performance (Figure 9), abundant data may contribute to its
best performance among the three study areas. The same
reasoning may explain the less ideal model performance in
Sweden, where its performance may be further improved
by covering a larger population (Figure 9a). The other rea-
son may be due to the effect of the modifiable areal unit
problem (MAUP), a phenomenon where spatial results vary
depending on how the study area is divided into smaller
analysis units [43], [44], [45]. We could not use a consistent
gridding system to compare the model performance due to

the predefined region-specific spatial zones of the ground-
truth data. Therefore, the origins and destinations of trips are
aggregated to different spatial zones for the three regions.
With more precise ground-truth data, the model can be fur-
ther investigated using a uniform gridding system to exclude
the MAUP effect.
Based on the results of the parameter search, we observe

that there is a large parameter space where the model
performance is quite robust to a moderate range of values
for the three parameters (Figure 4). Our results suggest that
the parameters calibrated for one region are transferable to
another (Figure 10), except for using Sweden’s parameters
on the Netherlands. The exception may be due to the distinct
geographical scales of these two countries and the MAUP
issue. We need more in-depth analysis and a broader model
test in different regions to understand the reasons better. In
general, the proposed model with the parameters’ average
values has the potential to be applied to the other regions in
the absence of ground-truth data.

C. LIMITATIONS AND FUTURE WORK
The proposed model for filling the gaps in sparse mobility
traces has some limitations. (1) The proposed model syn-
thesise mobility data by filling in the data gaps of sparse
individual traces. However, due to the lack of matching indi-
viduals, our validation data represent the aggregated pictures
of population flows and trip distances from daily trips. More
steps can be taken to address the inherent inconsistency
between the proposed individual-based model and the cali-
bration to the population data. One future direction is to test
the performance of the proposed model using high-resolution
GPS data: with a more complete set of mobility trajectories,
we can simulate a variety of sparsity levels by downsampling
the observed locations and evaluate the impact of sparsity
on the model’s performance. (2) The model can be extended
in future studies by integrating spatial context and temporal
dimensions [7] to account for the types of activities based on
the semantic context of historical trips. These improvements
can make the synthesised mobility data more useful in trans-
port planning. (3) The model simulates daily trips that always
return to home therefore, an important aspect of mobility,
overnight trips, is yet to be integrated for future improve-
ments. (4) We use geolocations from Twitter as an example
of sparse traces. However, Twitter has recently changed its
policy, making the geolocations less precise [46]. Despite
using the data collected before this significant change, future
work will need to test the feasibility of the proposed model
by using more sources of sparse traces such as mobile
application data from more regions.
Code is available at https://github.com/TheYuanLiao/

individual_mobility_model.

APPENDIX A
NOTATIONS
The main symbols used in this manuscript and their
definitions are briefly summarised in Table 4.
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TABLE 4. Notation table. Main symbols and their definitions.

APPENDIX B
DATA DESCRIPTION OF APPLIED SPARSE TRACES
Geotagged tweets are a typical source of sparse mobility
traces. Twitter users can choose to geotag tweets, in which
case the social media data include geolocation information.
One can collect tweets from the Twitter User Timeline API to
get a maximum of 3,200 tweets from a Twitter user’s history,
where a (small) portion of these are geotagged. We purchased
data from a Twitter subsidiary, Gnip, to get a complete archive
of geotagged tweets from a six-month period (20 Dec 2015 –
20 Jun 2016), generated within the study areas: Sweden, the
Netherlands, and São Paulo, Brazil. Using this Gnip dataset,
we identified the top geotag users, i.e., those who generated
at least 30 geotagged tweets during the data collection period.
For the model experiment, we collected their user timelines
to get their historical geotagged tweets.
Before these geotagged tweets can be used, we care-

fully preprocess them to reduce artefacts [20]. We remove:
1) Users who only geotag tweets of a single place, on suspi-
cion of bot accounts, e.g., for job posting or weather updates.
2) Tweets for which the Twitter user posts a place’s loca-
tion, e.g., the centre of a country, instead of the tweet’s
precise GPS coordinates. 3) Those top geotag Twitter users
who nevertheless have insufficiently many (< 20) geotagged
tweets. 4) Tweets from before an apparent move to a study
region. To protect privacy, we further cluster raw geoloca-
tions using DBSCAN so that the identified home location
refers to an area [47] instead of a precise point on the map.
The distance threshold for merging is set as 0.1 km. The
minimum number of location for a region is set as 1.
The geotagged tweets after the above preprocessing are

summarised in Table 5. The sparsity of the data is observed
in all three regions, given that the number of geolocations
per day ranges from 1.4 to 3.2, with all having fewer than
two locations, which is far lower than the typical number

TABLE 5. Statistics of the sparse traces from Twitter covering the time span of
2010 – 2019.

FIGURE 11. Value settings of the model parameters Mday and D. (a) Mday .
Empirical distribution of the number of visits per day derived from the Swedish
National Travel Survey [27]. (b) D. Relationship between the model performance (KL
divergence compared with ground truth) and the value of parameter D. The other
parameters are optimal for each region. The smaller the KL divergence, the better the
model performs.

of visits per day such as 3.1 for Sweden. This makes it
challenging to directly use these sparse traces to adequately
model travel demand [20].

APPENDIX C
DETERMINATION OF MODEL PARAMETERS MDAY AND D
The model parameter Mday determines how many visits to
generate for each simulation day, which can be empiri-
cally informed. In this study, we use the Swedish National
Travel Survey to get the distribution (Figure 11a) that the
model draws Mday from. The model parameter D decides
how many simulation days to generate data, which can be
determined by experiments. In this study, we compare the
model-synthesised ODMs with the ground truth (quantified
by KL divergence) using varying values of D. Due to the
stochasticity of the model output, we need more than one
simulation day to achieve stable results of individual mobility
trajectories. Figure 11b suggests a stabilised KL divergence
after 260 days for all three regions. To balance the model
performance and computation efficiency, we set D to 260.

APPENDIX D
POPULATION FLOWS USING VALIDATION DATASET
Figure 12 shows the trip frequency rate between zones from
the validation results, comparing the model output with the
benchmark output. The overall trend is consistent with the
results from the calibration dataset as shown in Figure 6.

676 VOLUME 3, 2022



FIGURE 12. Modelling the trip frequency rate between zones (validation results).
The gray diagonal line corresponds to a perfect agreement between the ground-truth
data and the model/benchmark output. Heat maps of point counts show the
distributions of No. of OD pairs. Circles are median values for each bin and lines are
the 0.25-0.75 quantiles. (a-b) Sweden, model and benchmark. (c-d) The Netherlands,
model and benchmark. (e-f) São Paulo, Brazil, model and benchmark.
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