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ABSTRACT Every year worldwide more than one million people die and a further 50 million people are
injured in traffic accidents. Therefore, the development of car safety features that actively support the driver
in preventing accidents, is of utmost importance to reduce the number of injuries and fatalities. However,
to establish this support it is necessary that the advanced driver assistance system (ADAS) understands
the driver’s intended behavior in advance. The growing variety of sensors available for vehicles together
with improved computer vision techniques, hence led to increased research directed towards inferring the
driver’s intentions. This article reviews 64 driver intention recognition studies with regard to the maneuvers
considered, the driving features included, the Al methods utilized, the achieved performance within the
presented experiments, and the open challenges identified by the respected researchers. The article provides
a high level analysis of the current technology readiness level of driver intention recognition technology
to address the challenges to enable reliable driver intention recognition, such as the system architecture,

implementation, and the purpose of the technology.

INDEX TERMS Driver intentions, intention recognition, driver behavior, driving maneuvers.

. INTRODUCTION

HE NUMBER of annual traffic fatalities in the world

rose from 1.15 million in the year 2000 to 1.35 million
in 2016, and more than half of the victims were vulnerable
road users (pedestrians, cyclists, and motorcyclists) [1]. In
addition to the fatalities, an estimated number of 54 mil-
lion injuries (e.g., limb fractures, traumatic brain injury,
or amputations) were caused by road accidents worldwide
in 2017 [2]. To realize a reduction of the number of traffic
fatalities and injuries, car safety is named among one of the
important factors [2], [3].

Car safety consists of passive, active, and pro-active safety.
Passive safety [4], [5] aims to minimize the impact of a crash
for the driver and the passengers (airbags, seat belts, or
crumple zones). Active safety [6] aims to decrease human
driving errors and avoid crashes from happening (e.g., an
anti-lock brake system, or an autonomous emergency brak-
ing system). Given that traffic conflicts happen more often
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than actual collisions [7], pro-active safety quantifies the
short-term risks of an accident and tries to influence the
driver’s behavior to avoid any conflicts (e.g., a front-collision
warning system, or a driver monitoring system). The increas-
ing number of sensors on a car enables the development of
more advanced active safety features (e.g., driver intention
recognition or driver behavior understanding). The sensor
data can be divided into three categories: vehicle dynamics
(e.g., velocity, yaw-rate, or steering wheel angle), driver state
(e.g., head pose estimation, eye gaze direction, pupil size, or
blink rate), or driving scene cues (e.g., localization of other
road users, lane detection, or traffic sign detection).

For the driver intention recognition (DIR) research field to
progress, it is fundamental to understand what is the current
state-of-the-art (SOTA) of the field, and what gaps have to
be addressed before the technology is ready to be integrated
as part of the advanced driver assistance system (ADAS), or
how it can support autonomous driving systems (ADS) in
the future. From an industrial perspective, it is interesting to
understand the needs (e.g., minimal computational capabil-
ities, required software packages, or sensors) of the current
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SOTA solutions, and whether the current hardware in the car
is sufficient to fulfill the regulatory and legal requirements
for an ADAS and ADS. Earlier DIR literature reviews from
Doshi and Trivedi (2011) [8], and Lefevre et al. (2014) [9]
did not cover any deep learning methods. A more recent sur-
vey from Xing et al. (2019) [10] handpicked 21 lane change
intention articles and presented an overview. Thus, this paper
covers the need for a complete overview and analysis of
the current DIR research field and formalizes the gaps that
must be overcome to integrate the technology into a car. We
focus on DIR methods that aim to recognize the intentions
of the driver of the car. We performed a systematic litera-
ture review that analyzes studies from 2008 — 2020 based
on experimental design, data collection, features, sampling
distribution, applied methods, performance, and the listed
open challenges. Due to the contextual nature of the DIR
studies, no comparison can be made based on the reported
performance. The distribution of the reported performance
is visualized. Accordingly, a high level estimation of the
technology readiness level is presented.

The article is organized as follows: Section II covers
the concept of intentions, applied methods, and technology
readiness levels. Section III describes the research strategy
and eligibility criteria for this literature review. Section IV
covers the evaluation of the experimental set-up, data collec-
tion, sampling and distribution, applied methodologies, open
challenges, and a high level technology readiness level esti-
mation. In Section V the identified gaps of current DIR
approaches are discussed. Section VI concludes the key
findings and suggests steps forward based on this review.

Il. BACKGROUND

First, the intention recognition terminology is introduced,
and its differences compared to the terms actions, activi-
ties, goals, and plans are highlighted with a driving scenario
example. The term agent is in principle anything that can
perceive the environment through sensors [11], but in this
paper we limited the scope to human road users and refer to
the driver of the considered car as the agent. A high-level
introduction of the methods applied in single-agent driver
intention recognition studies is presented, followed by an out-
line of evaluation metrics to understand how the performance
of the methods can be assessed. Lastly, technology readiness
levels are explained and their usage is discussed briefly.

A. INTENTION RECOGNITION
We use the term intention recognition as the identification of
what an observed agent is aspiring to do in the immediate
future (for example, described by [12], [13]). Where the
immediate future refers to the upcoming seconds depending
on the maneuver type and driving scene. The recognition of
the observed agent’s intention allows one to interact with
that agent and to proactively adjust one’s behavior to avoid
accidents or solve problems that require cooperation.

For humans, intention recognition comes naturally and
has been investigated in the literature for a long time, for
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FIGURE 1. Visualization of a highway overtaking example which requires a lane
change maneuver. When the ADAS or ADS infers the intention of the driver to
overtake a car at time step t-1 it allows the system to support or intervene with the
driver at time step t when the driver will make the first move (action). For example, if a
car is approaching very fast on the left lane, the lane change maneuver could lead to a
dangerous situation. Hence, the intention recognition performed by the ADAS allows
for anticipation of the scenario and supports the driver to execute the intended
maneuver safely.

example by Johansson [14], Blakemore and Decety [15],
Gallese et al. [16], Gallese and Goldman [17], and Heider
and Simmel [18]. Following the Theory of Mind [19], inten-
tions, together with beliefs and desires, are mental states [20],
[21], [22]. Here, beliefs denote everything a person knows
about the world, desires describe the person’s wish to achieve
some goal, and intentions describe that the person is want-
ing to act towards achieving the goal. Given that we are
about to enter a hybrid era of both autonomous and human
driven cars on the road [23], intention recognition will be
an essential element for ADAS and ADS. The prediction
of the driver’s intentions and the prediction of the potential
actions of other traffic participants enable the driver or the
car to anticipate proactively. This ensures safe and comfort-
able driving. Thus, research on intention recognition is a part
of most autonomous driving and ADAS projects.

Instead of the term intention recognition, several other

terms can be found in the literature that are often used
interchangeably. For example, goal recognition, action recog-
nition, and plan recognition, as well as activity recognition
and behavior recognition. Even though the differences
between those terms might not appear important from a
technical perspective, we would like to illustrate them with
an example (see Figure 1 for a visualization):
Suppose a car driver (our agent), who travels on a highway,
approaches another car from behind and which the driver
wishes to overtake. In this example, the driver’s (desired)
goal is to be in front of the other car. When one decides
to pursue this goal, an intention is formed to overtake the
car ahead. However, it is not required to act immediately
on this intention. The driver may stay behind the car and
wait for a good moment to change lanes and overtake. The
moment one starts to overtake the car, a sequence of actions
will be executed that takes one in front of the other car. This
sequence of actions is denoted as the plan.

Usually, when using the terms actions and plans, one is
concerned with the concrete actions in an exact sequence, for
example looking over the shoulder, looking in the rear mirror,
switching on the turn signals, turning the steering wheel to
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FIGURE 2. A Bayesian Network that shows the relation of the variables on the lane
change intention probability.

the left, etc. When one is only concerned with the fact that
the driver is overtaking another car, it is called an activity or
behavior. For example, while overtaking another car actions
such as a series of head movements, switching on the turn
signals, and turning the steering wheel must be executed.
When one observes a driver (or agent) doing those actions (in
some order), one can conclude that the driver is overtaking.

It is important to be aware that only actions can be
directly observed, all the others (intention, plan, goal, activ-
ity, or behavior) are subject to inference based on these
observed actions and possible changes within the environ-
ment through someone’s actions. Hence, action recognition
always describes the first step for any of the denoted recogni-
tion tasks. Since the intention is to achieve the desired goal,
intention recognition and goal recognition are closely related
and often regarded as similar in the literature. However, the
goal denotes the achieved state at the end of the executed
sequence of actions, whereas the intention denotes the wish
of pursuing the goal and thus the beginning of the maneu-
ver even before the first action is taken. Therefore, intentions
must be recognized before the first action whereas for pure
goal recognition one has time after the first few actions
have already taken place to identify the goal. Knowing the
goal can be helpful to identify the intention of pursuing it.
However, in traffic situations, traffic participants’ goals are
of secondary importance. For example, it does not matter
why (for what goal) the driver wants to sheer out of his
lane, what matters is that the ADAS can timely anticipate
this action and smoothly support. Therefore, one needs to
capture the intention of taking (the first) action which, in
this example, is steering to the other lane, before the driver
actually makes that move.

B. DRIVER INTENTION RECOGNITION METHODS
Approaches commonly used in DIR studies are outlined in
this section. For every method, the intuition is described,
followed by the limitations of the approach.

1) PROBABILISTIC GRAPHICAL MODELS

Predominantly three types of probabilistic graphical mod-
els (PGMs) are used in DIR studies: Bayesian networks
(BN) [24], dynamic Bayesian networks (DBN) [25], [26],
and hidden Markov models (HMM) [27].

PGMs use a graph-based representation to visualize the
relationship between the modeled variables. In a BN, every
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FIGURE 3. Two-time slice Bayesian network to illustrate how the variables influence
each other over time.

node corresponds to a different variable. Directed links con-
nect the nodes. When there is a link from node X to node
Y, this means that X is the parent node of Y. A node can
have multiple parents and multiple children, depending on
the topology of the network. Every variable (node) in the
network is described by a conditional probability distribution
that represents the joint effect of the parent nodes on that
variable (equation 1).

n
A
PXi=x1,....X,=x,) = Hp(xilxparents(i)) (1)
i=1
where:
P(X;) = The joint distribution per node as a
product of the conditional distributions
= The conditional distribution of node x;

given the parent nodes

p(xi |xparents(i) )

Considering the example introduced in Section II-A, it
is possible to model the probability that the driver has an
intention to change lanes. To keep the methodology examples
clear, we assume that there are three independent variables
that describe the vehicle dynamics (the steering wheel angle,
state of the turn indicators, and velocity). The BN in Figure 2
is an example of how the variables relate to the identification
(recognition) of the lane change intention of the driver.

A DBN extends a BN over time and is commonly visual-
ized as a two-timeslice Bayesian network (2TBN) (refer to
Figure 3 for an example). The variables in the network do
not only depend on the state in the current time step but can
also be affected by their state in the previous time step. For
example, the lane change intention at time step t+1 depends
on the turn indicator state at time step t+1, and on the lane
change intention state at time step t.

A hidden Markov model (HMM) uses observed outputs
to estimate an unobservable state. In our example, the driv-
ing intentions is the unobservable state that is based on
the observable driving actions (Figure 4). HMMs rely on
three assumptions [28]: the limited horizon assumption pre-
sumes that the previous state holds enough information to
predict the next state (also called the Markov assumption),
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FIGURE 4. Hidden Markov Model that shows the relations between the driving
intention states (lane change and lane keeping) and the observed variables.

TABLE 1. Transition matrix A which corresponds to the example in Figure 4. Sy
represents the initial state and has an initial probability over the other states.

SO Slane change Slane
intention keeping
So 0 0.5 0.5
A= Slane change intention 0 0.75 0.25
Slane keeping 0 0.1 0.9

the stationary process assumption supposes that the condi-
tional distributions are stable over time, and the independent
output assumption states that the current observations stand
alone from the preceding observations.

The transition probabilities between the unobservable
states, illustrated by the a;; edges in Figure 4 and equation 2,
regulate how the new state of the driver at time step t+1 will
be based on the state at time step ¢ [29]. The probabilities
together form the state transition matrix A (Table 1).

ajj = P(qi+1 = sjlg; = 5) 2
Where:
a;j = Transition probability from state i to state j
q: = State at time step t
S = State
biky = P(os = vilg: = s)) 3
Where:
bjx = Emission probability for observation k given state j
q: = State at time step t
S = State
o; = Observation at time step t
\ = Observation

For every unobservable state, the emission probability rep-
resents hhow likely it is to observe variables that indicate a
certain state. Refer to the bj; edges in Figure 4 for the visual
representation of the emission probabilities, and equation 3
for the formal notation. Every state has an emission matrix,
consisting of the emission probabilities for that state. In the
example, two emission matrices can be constructed (one for
the lane change intention state and one for the lane-keeping
intention state). If the emission probability for using the turn
indicator is 80% for the lane change intention state and 20%
for the lane-keeping intention state, then the probability that
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FIGURE 5. Feed-Forward Neural Network with the input variables and three output
categories. The colors highlight the different layers (green for the input layer, grey for
the hidden layers, and red for the output layer).

the driver uses the turn indicator is higher when the driver
intends to change lanes.

Various estimation techniques can be used to establish
the transition and emission matrices (parameters A and B)
of an HMM. For example, the Baum-Welch expectation-
maximization algorithm tries to find the maximum likelihood
of the parameters given the observations, and the Viterbi
max-sum algorithm aims to find the most likely assignment
of the states [30], [31].

Every HMM is a single variable DBN and every discrete
DBN is an HMM. The difference is the number of parameters
of the models. The transition matrix of an HMM requires a
connection between all variables and the hidden states, which
results in an increasingly large transition matrix. Suppose,
instead of having two Boolean state variables like in the
example (lane change intention and lane-keeping intention),
there are ten Boolean state variables. The corresponding
HMM has 210 states which leads to 220 probabilities (over a
million) to be estimated. In this case, a more practical solu-
tion would be to use a DBN transition model which allows
modeling only the relevant relations between the variables.
This reduces the number of probabilities to be computed but
requires domain knowledge for the modeling task.

2) ARTIFICIAL NEURAL NETWORKS

Recent DIR studies rely often on (deep) artificial neu-
ral networks (ANNs) for recognizing driver intentions
(e.g., [32], [33], [34]). Networks with at least two hidden lay-
ers are considered to be deep neural networks [35]. Refer to
Figure 5 for a visual representation of a feed-forward neu-
ral network (FFNN). To handle sequential input data, the
recurrent neural network (RNN) architecture can be used
(Figure 6). A RNN reuses the output of a previous time
step. The reuse of the output extends a RNN which can be
regarded as a form of memory [36].

To train ANNs Rumelhart et al. [37] introduced the back-
propagation training algorithm. Backpropagation is used for
computing the gradients of the network and algorithms like
stochastic gradient descent are used for learning the gradi-
ents [38], [39]. A loss function computes how well a network
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FIGURE 6. Unfolded recurrent neural network for three time steps. At every time
step t, a vector of the previous time step is shared between the hidden layers to re-use
the output in the next time step.

performs. For example, ANNs that perform binary classifi-
cation can use the cross-entropy loss, which measures the
difference between two probability distributions:

L(z,y) = =[ylog(z) + (1 — y) log(1 = 2)] €))
Where:
L = Loss function to evaluate the model performance
z = Correctly predicted output
y = Actual output

The weights of an ANN are updated by computing the
gradient of the loss for each weight (equation 5). For an
RNN, the loss function is based on the sum of the loss at
every time step, and the derivatives of the loss function for
each weight are also computed at every time step [38], [39].

aL(z,
w < gy — IEGY) )
ow
Where:
o = Learning rate
w = Weight
# = Gradient of the loss for each weight

The FFNN (Figure 5) and RNN (Figure 6) do not show the
relationship between the variables, in contrast to, for exam-
ple, a DBN. Through the training procedure, the network
learns how to represent the relations between the variables
in the hidden layers. Subsequently, the visual representations
of an FFNN and RNN have no meaning other than displaying
the architecture of the network. Even though DBNs, HMMs,
and RNNs can be used for estimating an unobserved variable
given a sequence of observations, RNNs deduce this latent
variable deterministically based on the observed sequence
instead of making use of, for example, a Markov chain [40].

3) EVALUATION METRICS

To avoid making misleading conclusions, it is crucial to
select proper evaluation metrics and to determine the class
balance of a dataset [41], [42]. A severe imbalanced dis-
tribution leads to poor performance of a classifier [43].
The standard evaluation metrics used by the DIR studies
are briefly introduced below. Refer to Zheng [44] for an
introduction of basic evaluation metrics.

606

The true positives (TP), and true negatives (TN) are the
cases that are correctly classified. False negatives (FN) are
cases that should have been positives, and false positives
(FP) should have been labeled as another class. The fraction
of the total number of correct predictions is obtained via
computing the accuracy = (TP+TN)/(TP+TN+FP+FN).
The fraction of correctly predicted classes is calculated with
the precision = (TP)/(TP + FP). The number of a correct
predictions given the total number of items present in a
class is defined as the recall = (TP)/(TP + FN). Last, the
Fiscore = (2-TP)/(2- TP+ FP+ FN) balances the precision
and recall curve via combining the harmonic mean.

The Receiver Operating Characteristic (ROC) is con-
structed by plotting the true positive rate against the false
positive rate. The ROC curve shows how many correct
classifications can be yielded if more false positives are
allowed [45], [46]. For discrete classifiers, only one con-
fusion matrix is produced, however a logistic regression
produces a value to which degree an instance belongs to
a class. A threshold for that value can be applied to pro-
duce a binary classification. For each value of a certain
threshold, a confusion matrix is produced, and thus a ROC
point. The optimal threshold of the classifier depends on
whether or not it is desired to accept more false positives
to increase the true positive rate. Hanley and McNeil [47]
note that the ROC area under the curve (AUC) value can
be used to compare the performance of models. When using
the ROC-AUC to compare different models, one should ana-
lyze whether the curves overlap rather than only comparing
the AUC value [48]. A model can be disregarded if it is
outperformed at every threshold step, but if there is an over-
lap it might indicate that an ensemble or fusion approach
is beneficial for the performance. In cases with more than
two classes, a multi-class ROC analysis should be performed
where a pairwise comparison (one vs all) could be made to
assess the performance of the model [49], [S0]. Altogether,
the evaluation metrics allow assessing model performance
from different perspectives. Depending on the comparison
needs, multiple metrics can support the assessment of the
model performance.

Lastly, time is an essential parameter for the evalua-
tion metrics applied to assess a DIR method. The overall
goal of DIR methods is to predict whether the intended
driving maneuvers are safe to execute and to pro-actively
warn a driver if necessary. Previous surveys already high-
lighted the need for complementary evaluation metrics to
consider the required time horizon that enables a driver
to act upon the predicted information [9], [10]. Thus, the
performance of a DIR model should be assessed over time
to understand how well and far in advance an intention can
be recognized.

C. TECHNOLOGY READINESS LEVELS

In the 1970s NASA introduced technology readiness levels
(TRLs) to monitor and assess the maturation of technology
to use in a particular application domain [51]. TRL1 (the
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TABLE 2. Overview of the used search queries and databases.

Search query

Date
accessed

Records

retrieved Database

Search type

(goal OR intention) AND (recognition OR prediction) AND (traffic OR lane OR road OR

driver OR highway OR intersection OR pedestrian OR urban AND (bayesian OR markov
OR "deep learning" OR hmm OR dbn or "hidden markov model" OR "neural network"

787 2020-10-07  Scopus Document search

OR "recurrent neural network” OR Istm OR fuzzy OR logic OR probabilistic))

TITLE-ABS-KEY(((goal* OR intent* OR intend* OR action* OR activity* or plan* )
W/2 (recogni* OR predict*)) AND (driver* or driving*) AND (traffic* OR lane* OR

road* OR "advanced driver assistance system") AND (highway* OR intersection* OR
urban* OR city* OR bayes* OR dbn OR "dynamic bayesian network" OR markov

368 2020-11-12  Scopus Advanced search

OR "deep learning" OR *hmm OR "hidden markov model" OR "neural network" OR
"recurrent neural network" OR Istm OR rnn OR fuzzy OR logic OR probabilistic))

TITLE-ABS-KEY(((goal* OR intent* OR intend* OR action* OR activity* or plan* or
maneuver* or manoeuvre*) W/2 (recogni* OR predict*)) AND (driver* or driving*) AND
(traffic* OR lane* OR road* OR "advanced driver assistance system") AND (highway*

OR intersection® OR urban* OR city* OR bayes* OR dbn OR "dynamic bayesian 483

2022-03-22  Scopus Advanced search

network"” OR markov OR "deep learning" OR *hmm OR "hidden markov model"
OR "neural network" OR "recurrent neural network" OR Istm OR rnn OR fuzzy
OR logic OR probabilistic OR "decision trees" OR "random forests" OR "ensemble"))

(traffic | urban | lane | highway | road | driver | pedestrian | bayesian | markov | "deep
learning" | hmm | "neural network" | Istm | "fuzzy logic" | probabilistic) AND
(goal | intention | plan) AND (recognition | prediction) allintitle: (driver AND intention)

Application:

163 2020-11-15 publish or perish.

Scholar

lowest level) corresponds to the state where the respective
technology is merely an existing idea to solve a problem or
to improve existing technology, whereas TRL9 (the highest
level) refers to the state when the technology is certified and
deployed in industry (refer to [51], [52] for more extensive
details on the TRL framework). An example of the TRL pro-
cess was the journey to reduce jet engine noise, which led
to the development of chevrons. In the 1980s, fundamental
research on air-mixing devices was conducted (TRL1-2) and
the first lab tests and concepts on paper were explored dur-
ing the early 1990s (TRL3). TRL 4-5 was reached between
1995 and 1997 by conducting acoustic model tests and
the first full-scale tests followed in the year after (TRLO).
After validating the concept from 2001 till 2005 (TRL7),
it was fully deployed into the market (TRL8-9). The gap
between the TRLs indicates the number of conceptual stud-
ies, modeling, testing, or integration that has to be done
before the technology is ready for real-world use. Apart
from space and aero-engineering, other industries (e.g., oil,
renewable energy, technology, and defense) have adopted the
TRL framework to monitor their technological advances [53],
[54], [55], [56], [57].

The application of TRLs has been criticized concerning
validity, clarity, and completeness. Smith [58] highlighted
that TRLs mainly focus on successful testing and integrat-
ing technology into real-world environments. In software
engineering, changes are released continuously, but the tech-
nology ages quickly. In this scenario, it is unrealistic to
assume that the technology remains at TRL9 in the absence
of improvements and changes. Olechowski et al. [56] intro-
duce 15 challenges for the TRL assessment, and noted
subjectivity and imprecision of the scale as validity threats.
When using a TRL classification to select a new technology,
an individual who favors a certain technology might interpret
the TRL higher than it is. Furthermore, the interpretation of
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the assessment itself, even when it is adjusted for a particular
industry, could generate different results. In our case, the
level should be interpreted as a guidance together with the
identified gaps to understand what needs to be done before
integrating DIR technology in an ADAS and for the field to
move to the next TRL.

lll. SYSTEMATIC REVIEW METHOD

We followed the guidelines of Moher et al. [59], Grant and
Booth [60] and Snyder [61] to conduct this literature review.
First, the used data sources are disclosed, followed by the
rationale of the search parameters. At last, the screening
and eligibility procedure describes the criteria for selecting
which studies to include.

Google Scholar covers well over 300 million records
[62], [63], and the Scopus database contains more than
75 million records [64]. Both platforms also include records
from the IEEE Xplore, Sciencedirect, and Springerlink
databases. To find as many relevant studies as possible,
both Scopus and Google Scholar were used. The search
queries considered: the title, the keywords, the abstract of
the study and aimed to include experimental studies that
have the objective to infer or predict the intention of a car
driver but exclude trajectory prediction studies.

As discussed in Section II-A, the terms action, activ-
ity, goal, intention, and plan recognition are closely related
and sometimes used interchangeably in the literature. To
avoid missing any record that used a different term but does
conduct an intention recognition experiment, we chose to
include all closely related terms and to evaluate the eligi-
bility. Previous literature reviews [8], [9], [10] highlighted
several methods and environmental settings that were used
in DIR experiments. As shown in Table 2 the first query
had a wider perspective to include more studies, whereas
the second query focused more specifically on DIR studies.
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[ Scopus: 767+368+483 ] [ Google Scholar: 163 j
V.
[Dup]icalcs removal: 178H Records Excluded: 514]
¥
[ Title screening: 1267 ]—)[Records Excluded: 902]
¥
[Ahslmcl evaluation: 365}[ Records Excluded: 197]
¥
[Manual search of 2020 studies: 5]—)[Full-lexl evaluation: 168]—)[Records Excluded: 104]

Papers included: 64

FIGURE 7. PRISMA diagram [59] to visualize the reporting of the identification,
screening, eligibility and inclusion process of this literature review.

The third Scopus query also aims to include driver maneu-
ver prediction studies, and the last query searches for driver
intention studies on Google Scholar.

Figure 7 shows the screening and eligibility process of
the search. 1781 papers were identified after removing the
duplicates from the search results. Content analysis [65] is
performed to systematically analyze the search results and to
make valid and replicable inferences to understand how and
what kind of results are reported in the DIR experiments. The
papers are screened based on the title to determine whether
the paper had a connection to the topic of DIR or infer-
ence. An abstract evaluation is conducted to understand if a
driving intention recognition experiment is performed. The
full-text review checks if the papers reported the results of
the experiments. This step is necessary to exclude work-in-
progress papers and to disregard papers that did not report
their findings in detail. Subsequently, the reported intentions
in the papers were evaluated. The most researched driv-
ing maneuver intentions were left lane changes, right lane
changes, turning right, turning left, and driving straight/lane-
keeping. Other driving intentions (such as u-turns, emergency
lane changes, emergency turning, yielding, curvy road lane
changes, lane change preparations, and sharp turning inten-
tions) were excluded due to a limited coverage by the
included studies which prohibits a high-level analysis. Papers
not written in English, with zero citations two years after the
publication, or only cited by the authors are also excluded.
No limits were set on the publication year because we wanted
to be able to identify trends in the literature over time. The
initial search was conducted in October and November in
2020, an initial manual search was conducted in April 2021
to add studies published in 2020, and a final search query was
conducted in March 2022 to include maneuver prediction
studies up until 2020. In the end, 64 studies were used for
the literature review.

IV. EVALUATION OF DRIVER INTENTION RECOGNITION
STUDIES

Section IV-A introduces the considered scenarios and the
used feature types in the included studies. Section IV-B cov-
ers how the studies collected data, and which open-source

608

datasets are available. Section IV-C reviews the sample sizes
and the number of instances per maneuver type in the DIR
studies, followed by an overview of the applied methods and
the reported performance. Section I'V-D lists the open chal-
lenges mentioned by studies published between 2016-2020.
Lastly, Section IV-E presents a high level estimation of the
current TRL of the driver maneuver intention recognition
field, and an indication of challenges that must be addressed
to advance to the next TRL.

A. OVERVIEW OF THE INCLUDED STUDIES

Figures 8 and 9 show an overview of the maneuvers con-
sidered by the included studies. The number of studies that
consider DIR has increased in recent years, and the major-
ity is focused on lane change intentions. Roughly 17% of
the included studies consider both lane change and turn
maneuvers. Although, we acknowledge the effect that pre-
processing strategies of the features can have on the DIR
performance, we limit the feature analysis to a high-level
categorization. To infer the intentions of a driver to perform
a maneuver, three high level categories of features are used:

o Vehicle dynamics (e.g., steering wheel angle, pedal
state, turn signal, acceleration, velocity, yaw rate).

« Driver state (e.g., eye tracking, head pose estimation,
facial expression, drowsiness).

e Driving scene cues (e.g., lane detection, GPS map
information, (vulnerable) road user detection, distance
to other vehicles, or relative speed).

Figure 10 shows an overview of the feature categories that
have been used over time. Note, that a study can include
features from several categories. Driver state features are
least often used to classify the driver’s intentions (Figure 11).
Driving scene cues have become the most popular features to
include since 2015, but this is partially due to the increased
use of the Next Generation Simulation (NGSIM) open-source
dataset.

B. EXPERIMENTAL SET-UP
How and where researchers collect data can affect the
results of an experiment. One example of the differences
between the studies is the number of involved participants.
For example, Gerdes [66] involved two participants, where
Li et al. [67] recruited 47 participants. Apart from the varying
characteristics of the involved participants across DIR stud-
ies, two methods are used to collect data: a driving simulator
or a real-world driving experiment. The data collection setup
can differ greatly across the included studies. For example,
Lethaus er al. [68] built a simulator with an actual car chas-
sis in a lab to perform simulated DIR experiments, whereas
Kim et al. [69] used a screen, and a steering wheel. Of the
included studies, two of the turn intention experiments and
13 of the lane change intention experiments used a driv-
ing simulator to collect data. In total roughly 20% of the
included studies used a simulator.

Another way to research driving intentions is to leverage
an open-source dataset. The NGSIM database was the only
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available open-source dataset for years. A major drawback of
the NGSIM database is that the dataset was collected through
static cameras that recorded highways and intersections.
Therefore, access to the driver state or vehicle dynamics fea-
tures (apart from the direction and velocity) is impossible.
However, in recent years multiple datasets have been pub-
lished with intention labels, multiple environments, and video
footage of the driver and the driving scene. The following
open-source datasets are found in the included studies:

o For the NGSIM datasets [70] stationary cameras were
placed at highways and intersections in Los Angeles in
2007. The datasets were constructed with the purpose
to enable the development of intelligent transportation
systems based on real-world data. The database consists
of 90 minutes of bird’s-eye-view video footage, vehicle
trajectories, and lane change features.

o For the Brain4Cars dataset [71] thousands of miles
were driven around San Francisco in both highway and
urban environments. 274 lane change scenes and 131
turn scenes were captured. The provided data consist
of driving intention labels and videos of the driver and
the driving scene.

o The highD dataset [72] was collected on a German
highway around Cologne by drone. Over 5600 highway
lane changes were captured. The provided data consists
of 16.5 hours of bird’s-eye-view highway video footage,
vehicle trajectories, time headway, and lane changes
made by a vehicle (when the lane markings are crossed).

« The Honda Research Institute Driving Dataset
(HDD) [73] consist of 104 hours of lane branch,
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lane change, merge, park, passing, and turn maneuvers
in the San Francisco Bay Area. The provided data
include exterior camera and lidar footage, GPS, vehicle
dynamics, and behavioral labels.

o For the collection of the PREVENTION dataset [74],

a test car was equipped with a camera, lidar, and radar
sensors, and drove for six hours on a highway. In total
2000 left lane changes, 2000 right lane changes, and
1309 lane keeping sequences were captured. The pro-
vided data consist of exterior video footage, radar and
lidar footage, road user detections, lane changes, and
vehicle trajectories.

LIMITATIONS. Simulations of driving environments can
be useful for testing novel model architectures or to create
examples of rare scenarios, but the question remains how rep-
resentative the results are if the involved participants execute
driving maneuvers on a screen in a lab setting. As mentioned
by Xing et al. [10], there is a potential bias if the driver
has to execute a maneuver on request. In such a scenario,
the interaction with other road users might not be realistic
which limits the generalization of the results. Lastly, driving
experiments are expensive and the captured data are poten-
tially subject to privacy infringements. Thus, it is a positive
trend that more datasets have become publicly available in
the past five years.

C. SAMPLING, METHODS, AND PERFORMANCE

The included DIR studies mainly consider two types of
maneuvers: lane changes and turns. The majority of the
highway lane change intention studies aim to infer whether
a driver intends to perform one of the following maneuvers:
a left lane change, right lane change, or whether the driver
continues to drive straight and to stay in the same lane (also
referred to as lane keeping). For the intersection turn inten-
tion studies the driver intention classification task consists of
the following three maneuvers: turning left, turning right, or
driving straight ahead at a crossroad. To enable the recog-
nition of driver intentions for a maneuver, a dataset must
have enough instances per maneuver and must be balanced
across the maneuver types. The study of Philips et al. [75]
used a dataset where 8355 instances (21%) were left turn
maneuvers, 2106 instances (5%) right turn maneuvers, and
29086 instances (71%) were examples of driving straight.
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The RNN implementation recognized the driver’s intention
to perform a right turn maneuver poorly (precision: 3.9%),
in contrast to recognizing the intention to drive straight
(precision: 96.80%), or the intention to perform a left turn
(precision: 68.20%). This example highlights that having
thousands of instances per maneuver type does not directly
lead to a high performance if the dataset is imbalanced.

To understand the reliability of a DIR experiment, the
studies are divided into three groups based on the number
of instances used to conduct the experiment: 0-99 instances,
100-999 instances, or a 1000 or more instances. Figure 12
visualizes the number of instances used over time, and
Figure 13 shows a total overview of the used number of
instances. Note, studies that consider lane change maneuvers
and turn maneuvers are included separately per maneuver
type. A dataset with three types of maneuvers (e.g., left
lane change, right lane change, or lane keeping) would be
perfectly balanced if every maneuver type would make up
for 33.33% of the instances in the dataset. To understand
the balance distribution of the included studies, we analyzed
the papers that report the number of instances per maneu-
ver type. If the number of instances of a maneuver type is
between 30% and 40% of the total number of instances in the
dataset, the class is considered to be balanced for that study.
In eleven lane change intention studies the lane keeping
and right lane change maneuver instances are imbalanced in
45% of the studies. The left lane change instances are imbal-
anced in 55% of the studies. For nine of the turn maneuver
intention studies, the turn left and turn right classes are
imbalanced 50% of the time. The driving straight instances
are imbalanced in 63% of the studies.
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The usage of deep learning methods to recognize driver
intentions rose from 2016 onward. Since 2016, 78% of the
turn maneuver studies and 54% of the lane change maneu-
ver studies applied a deep learning method to infer the
driver’s intentions. Figure 14 shows the usages of differ-
ent methods over time. Note, if a study compares multiple
methods, every method is included separately. For example,
Tang et al. [76] compared the result of an HMM, SVM,
and DBN, and Driggs-Campbell and Bajcsy [77] evaluated
an SVM, REF, and Logistic Regression. Therefore, the total
number of applied methods exceeds the total number of
included studies.

Figure 15 shows the performance bandwidth of studies
that disclose the precision per maneuver type and were
published between 2016-2020. The precision is based on
the time step closest to the execution of the intended driv-
ing maneuver. Figure 15 illustrates that the performance of
the applied methods is skewed towards 100%. The skewed
performance hints towards, regardless the method, a rela-
tively high performance for recognizing the driver’s intention
to perform a right lane change maneuver compared to a left
lane change maneuver.

For the ADAS to infer the driver’s intention, it is essen-
tial to complete the inference task before the driver starts to
act. However, not every study reports the performance of the
method at multiple time steps and some studies do not use
seconds to indicate the time step. For example, Tran and Firl
(2012) [78] reported the number of frames without mention-
ing the frequency, and Tang et al. (2015) [76] reported the
relative distance in meters to an intersection. In recent stud-
ies the performance varies and the results are presented with
different metrics. Li et al. (2019) [67] performed an exper-
iment with 47 participants, acquired 2759 driving scenarios
from which vehicle dynamics and driving scene features
were constructed. A neural network architecture that com-
bined a convolutional neural network and a RNN (LSTM)
yielded an accuracy of 77.2%. Xu et al. (2019) [79] used
the open-source dataset from [73] and proposed a tempo-
ral recurrent neural network architecture. The precision for
the left and right turn intentions were respectively 77.0%
and 76.6%, while the lane change precision was 45.9% for
the left lane change and 43.6% for the right lane change
maneuver. Girma et al. (2020) [80] used 2970 data points of
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which 990 were labeled as driving straight, 770 as stopping,
660 turning right, and 550 turning left at an intersection.
Only the velocity and yaw rate were used as categorized
sequence features as input to a bidirectional LSTM with an
attention mechanism and yielded an accuracy of 99.65%.
Xing et al. (2020) [34] conducted a study with three par-
ticipants and constructed a dataset consisting of 65 left lane
change maneuvers, 70 right lane change maneuvers, and 66
lane-keeping instances. Vehicle dynamics, driver monitoring,
and driving scene features served as input for an ensemble
of three RNNs and they reported the precision for multiple
time steps. The left lane change, right lane change, and
lane-keeping precision were respectively, 95.6%, 95.6%, and
94.9% at half a second before the maneuver, 95.9%, 93.2%,
and 94.7% at two seconds before the maneuver, and 93.8%,
88.9%, and 87.2% at three and a half seconds before the
maneuver. At five seconds before the maneuver, the precision
drops to 70% for all three maneuver types. Rong et al.
(2020) [81] only use the video frames from the Brain4Cars
dataset [71] as input to their convolutional based encoder-
decoder architecture. The fusion of the interior and exterior
achieved the best result. Similar to Xing et al. [34] the
performance is reported per time step before the maneuver.
The accuracy was 83.98% at zero seconds before the lane
change or turn maneuver, 72.09% at two seconds before the
maneuver and 59.13% at four seconds before the maneuver.

LIMITATIONS. The imbalance across the maneuver
types disqualifies accuracy alone as a sufficient evaluation
metric. The relatively low performance of left lane changes,
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regardless of the method, can motivate extra research efforts
to explain the difference in detail (Figure 15). Although the
results of some studies look promising, it is necessary to
assess the performance on multiple datasets to understand
whether the methods are capable to generalize. Driving sce-
narios and interactions can be highly contextual, which can
lead to biased models.

DIR studies that explicitly state to study intentions and
that do not report the performance of the method before
the actual maneuver is executed are classifying maneuvers
rather than recognizing what a driver aspires to do. Besides
the different terminology usage, a unified approach to report
performance over time is non-existing, but the performance
leading up to a maneuver is essential for DIR research.

D. OPEN CHALLENGES

Figure 16 shows the high level classification of the open
challenges recommended by the included studies published
between 2016 and 2020. Nine studies do not indicate any
directions for future work (e.g., [26], [67], [71], [82], [83],
[84], [85], [86]), whereas other studies mention multiple
challenges. For example, Benterki er al. [32] described
the need for a larger dataset with more instances, differ-
ent driving scenes, and new feature representations (e.g.,
a way to represent the interactions between vehicles).
Ramanishka et al. [73] stated that adding data could improve
the performance, but a better representation is required to
understand the relationship between behaviors in different
layers. Only two of the included studies considered a layered
representation: Ramanishka et al. [73] decomposed driver
behavior in a four-layer representation (goal, stimulus, cause,
and attention) and Li et al. [67] analyzed human driving
data on multiple levels (driving action recognition, attention,
driver intentions and cause inference).

LIMITATIONS. The mentioned challenges are valid
areas to explore, but they are not unique for DIR research.
For most machine learning research more data can result
in performance improvements or saturation. Figure 15 indi-
cates that the reported precision of lane change intention
studies is skewed to 100%. However, similar to what
Ramanishka et al. [73] stated, applying different ML algo-
rithms without changing the underlying modeling approach
will not support the progress.
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E. TECHNOLOGY READINESS LEVEL ESTIMATION

The TRLs are translated to criteria that enable a high level
estimate of the current TRL of DIR technology [51]. TRL1
(basis principles observed) is the level where the initial
research hypothesis is formulated. The environment where
the technology should operate is still hypothetical and initial
scientific observations are reported in journals or proceed-
ings. TRL2 (concept formulation) marks the stage where
experiments are performed on synthetic data, a desktop
environment is used, and that the individual parts of the tech-
nology work without an actual integration attempt. For TRL3
(the experimental proof-of-concept phase), experiments have
to be conducted on small representative datasets and the
algorithm should be implemented on a surrogate processor

612

in a lab environment. TRL4 (broad laboratory validation)
requires formal systems architecture development, system
requirements to be known, and experiments with full-scale
representative datasets. One of the criteria for TRLS5 (valida-
tion in a relevant environment) is that the algorithms run on
a processor with similar characteristics as the future target
environment.

The included studies have not yet demonstrated their
DIR methods in a computational environment similar to a
car. Several studies reported the hardware used to conduct
the analysis (e.g., [27], [34], [79], [86], [87], [88], [89],
[90], [91]). For example, Zhou et al. [86] used the NVIDIA
Titan X GPU, and Xu et al. [79] used the NVIDIA Quadro
P6000 GPU for processing the data. For future cars, most
car manufacturers announced to integrate a GPU to enable
an ADAS or ADS to process multiple (visual) data streams
in parallel [92]. Embedding a DIR module in the ADAS that
can infer the driver’s intention of several different maneu-
vers in real-time multiple time steps ahead is required for
the field to advance to the next TRL (TRL5 and above).

Besides from not testing algorithms in a computational
environment similar to a car, there is also a lack of under-
standing on how the intention recognition methods will
support the driver. For example, Han et al. [26], who
used an open-source static highway dataset, claim that the
developed system can support the decision making process
of the car but it is unclear what decisions are supported.
Leonhardt et al. [24] combined driving scene cues and driver
state features to detect the driver’s intention to perform a
lane change maneuver and suggest that these functions are
the basis for an ‘adaptive driver assistance system’ without
clarifying what that system would do.

In summary, the TRL of DIR technology is estimated to be
between TRL3 and TRL4. To progress to TRLS and above,
the actual application of the technology must be clear and the
algorithms should be tested in an environment with similar
computational power as a car, and comply with the regulatory
requirements for ADAS and Al based functionalities.

V. DISCUSSION
This section highlights challenges that need to be tackled
to advance the DIR research field. Section V-A covers the
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lack of performance evaluation comparisons between meth-
ods and highlights why estimating a minimal required time
horizon is a complex task, Section V-B discusses the lack
of uncertainty representations, and Section V-C considers a
hierarchical modelling approach.

A. EVALUATION

It is unlikely that future DIR studies will always share
their datasets. Thus, a true comparison between studies
and the applied methods is impossible. Therefore, con-
structing a benchmark dataset from existing open-source
datasets enables the possibility to understand the effective-
ness of different DIR methods better. A drawback of using
a benchmark dataset is that not all desired sensor data are
available. After the construction of a benchmark dataset,
the performance comparison approach also requires atten-
tion. A common performance comparison approach is to
construct an overview table and highlight which method
yields the best precision and recall (e.g., [88]). To estab-
lish SOTA performance for a method for a driving scenario,
statistical significance testing is required. For example, after
computing the evaluation metrics, the approach described
by DemsSar [93] can be followed to establish significant
performance differences between methods.

Following  the  integrated  safety = model  of
Jiménez et al. [94], a DIR system aims to assist or
warn a driver to avoid potential traffic conflicts. The system
must recognize a driving intention well in advance before
the first action. This means that a driver should get enough
time to process and act on the notification to alter the plan
of actions if necessary.

Green (2000) [95] argued that a standard or general per-
ception reaction time does not exist, and Muttart (2003) [96]
showed that the use of a mean response time is inappropri-
ate. Thus, the estimation of how far ahead a DIR method
should recognize an intention remains a challenging task.
The required minimal time horizon depends on multiple fac-
tors, ranging from the time the system needs to recognize
the driving intentions, the time the driver needs to change
the physical position, to the time the car needs to respond
to the driver’s action. The driver’s perception to register the
scenario is also subject to multiple factors [97]. For example,
the mean reaction time increases with age [98], [99], [100],
[101], results are indecisive on whether there is a difference
between sexes with regard to reaction time ([99], [101],
[102] did not observe any difference, where [103], [104]
did find a difference). Multiple studies found evidence that
distractions such as phone usage influence the reaction time
while driving [105], [106], [107], also the response time of
a driver to a detection task increases when the driving con-
text becomes more complex (e.g., a rural area without other
vehicles compared to a busy intersection with pedestrians,
cyclists, and multiple traffic signs) [108], [109]. While the
list of examples is non-exhaustive, it illustrates the com-
plexity and dynamic nature of estimating the required time
horizon for a DIR system.
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B. UNCERTAINTY REPRESENTATION

Guo et al. (2017) [110] and Wilson and Izmailov
(2020) [111] highlighted that modern deep learning
approaches are often not accurately calibrated. This means
that the prediction confidence of the classifier is not aligned
with the misclassification rate to express the uncertainty of
the model. To assess how well a model is calibrated, a com-
parison between the predictions and actual outcomes can
be made. For example, the number of times a model pre-
dicts driving intentions for a maneuver and the number of
times that maneuver is actually performed by the driver.
However, in this specific case, the abandoned intentions are
not considered.

The two most common uncertainty types are aleatoric
and epistemic uncertainty. On an abstract level, aleatoric
uncertainty covers the natural variation in a considered envi-
ronment, whereas epistemic uncertainty describes the lack of
knowledge or information during the modeling phase [112].
In a machine learning context, this means that the aleatoric
uncertainty deals with the randomness of the input data and
that the epistemic uncertainty (also referred to as model or
parameter uncertainty) expresses to what extend the model
is certain about the produced output [113]. In a driving con-
text, a modeling approach does not account for all unique
scenarios. Given the safety-critical environment in which
a car and a driver operate, a method should be capable to
express when it is uncertain about the produced result [114].
If a method is capable to express the epistemic uncertainty, it
helps to understand the limitations and gaps of the modeling
approach.

C. HIERARCHICAL MODELING

Driving is a complex behavior where a driver can possi-
bly entertain multiple intentions at the same time. It could
be beneficial to introduce a hierarchy of driving intentions
[67], [73]. Consider the following example, a car is stuck
behind a slower truck on a two-way highway. As long as
it is impossible to change lanes due to the upcoming traffic
on the left lane, the driver might still have the intention to
overtake the truck, however for the time being the driver
intents to keep the lane until overtaking becomes possible.
This scenario covers an intention without an immediate pri-
ority to act. A driver can be stuck behind the truck for half
a minute, while nothing changes about the intention and
the commitment to overtake the truck. In sum, it might be
worthwhile to investigate if short, medium, and long-term
driving intentions improve performance.

VL. CONCLUSION

A significant amount of research has been performed on sin-
gle agent DIR maneuver classification. Recently, more open-
source DIR datasets have become publicly available [70],
[71], [72], [73], [74]. The number of instances to train a DIR
method have increased and deep learning algorithms have
become the preferred approach. The imbalance of the num-
ber of reported instances of a maneuver type in a dataset and

613



VELLENGA et al.: DRIVER INTENTION RECOGNITION: STATE-OF-THE-ART REVIEW

the selected evaluation metrics require attention to avoid mis-
leading conclusions. Several challenges must be addressed
for DIR technology to proceed to TRL 4-5. The intention
recognition methods should be implemented in a computing
environment similar to a car. A DIR system needs a clear goal
of how it can support a driver and in which driving scenarios
it can offer support. Complementary evaluation metrics must
be applied to review if the approach is capable to timely rec-
ognize the driving intentions and significance testing should
be executed to establish performance differences between
methods.
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