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ABSTRACT We present a physics-informed deep learning (PIDL) approach to tackle the challenge
of data sparsity and sensor noise in traffic state estimation (TSE). PIDL strengthens a deep learning
(DL) neural network with the knowledge of traffic flow theory to accurately estimate traffic conditions.
The ‘physics’—a priori information of the system—acts as a regularization agent during training. We
illustrate the implementation of the proposed approach with two commonly used models representing
traffic physics: Lighthill-Whitham-Richards (LWR) model and the cell transmission model (CTM). The
LWR implementation is illustrated with Greenshields’ and inverse-lambda fundamental diagrams; whereas,
CTM model implementation works with any fundamental diagram of choice. Two case studies validate
the approach by reconstructing the velocity-field. Case study-I uses synthetic data generated to resemble
the trajectory of connected and autonomous vehicles as captured by roadside units. Case study-II employs
NGSIM data mimicking scant probe vehicle observations. We observe that the proposed PIDL approach
is particularly better in state estimation with a lower amount of training data, illustrating the capability
of PIDL in making precise and timely TSE even with sparse input. E.g., With 10% CAV penetration rate
and a 15% added-noise, relative error for PIDL was at 22.9% compared to 30.8% for DL.

INDEX TERMS Physics informed deep learning, traffic state estimation, LWR model, CTM model, TSE,

PIDL, PINN.

I. INTRODUCTION

ACROSCOPIC traffic state variables, such as flow

rate f, mean speed v, and vehicle density p, denote
the traffic conditions on the road infrastructures in a traffic
network. Through these measurements, urban planners and
policymakers can perceive the congestion levels, understand
traffic demand, and even recognize gridlocks and bottlenecks
of a road network [1]. For example, a sharp deterioration in
travel speed at a road section can indicate particular events
such as traffic incidents or disturbances.

Nevertheless, these crucial measurements necessitated for
traffic management and planning are oftentimes scanty and
likely noisy [2]. Due to the various factors such as cost
of sensor installation, the precision of vehicle detection
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methods, and constraints on data storage and communi-
cation, these traffic state variables are frequently observed
partially [3], [4]. For instance, traffic data would only be
registered at chosen locations with the scattered deployment
of vehicle detectors on a highway system [5]. Additionally,
this type of recorded data is often compromised with various
levels of imprecision due to the presence of measurement
noise in detection and sensing devices [6]. Moreover, the data
collected are routinely aggregated, worsening the temporal
resolution of these measurements [7], [8].

What is TSE? Based on the above discussion, the chal-
lenge is how to efficiently utilize limited, sparsely sampled
(in spatial and temporal domains), and potentially noisy
data to gain a clear sense of traffic conditions in real-time.
Tools that fill the voids in traffic measurements and pro-
vide a reliable description of traffic conditions are referred
to as traffic state estimation (TSE) techniques. In other

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2022

503


HTTPS://ORCID.ORG/0000-0001-6736-5627
HTTPS://ORCID.ORG/0000-0001-7754-6341

HUANG AND AGARWAL: PIDL FOR TSE

words, TSE relates to the inference of traffic state variables
of road segments using partially observed traffic data [9].
Accurate and prompt TSE is of the essence for effective
traffic management since control strategies are implemented
accordingly [10]. For instance, the usage of ramp control on
freeways exemplifies the value of TSE. It uses the measured
traffic flow data to estimate freeway traffic conditions, then
alternates the traffic signals to allow vehicles at the ramp into
the traffic stream according to the upstream and downstream
flow levels [11].

TSE Approaches in Literature: Given the impediment dis-
cussed above in the traffic data collection and the importance
of TSE applications in transportation planning, practitioners
and researchers often use a priori knowledge to estimate traf-
fic states. These estimation procedures can be categorized as
model-driven approaches and data-driven approaches, based
on the type of a priori assumption they rely on [9].

Model-driven approaches deploy a model from the traf-
fic flow theory in predicting traffic states. Models such as
cell transmission model (CTM) [12], and switching mode
model (SMM) [13] have been proposed to represent traf-
fic flows. Lighthill-Whitham-Richards (LWR) model, along
with higher-order models such as Payne-Whitham (PW)
model [14], [15], Aw-Rascle-Zhang (ARZ) model [16], [17]
are widely used because of their accurate traffic characteri-
zation and fair computation cost.

Kalman filter [18], and its various extensions [19]-[21]
are commonly used to solve the task of TSE efficiently
and calibrate the traffic flow models. The Kalman filter and
its variations determine the most presumable state for the
observed data, system variables of the model, and noises [9].
However, a few major challenges remain in the model-driven
approach for TSE. The estimation of model parameters,
changing road conditions (e.g., due to lane closures, road
construction projects), and suitability of a chosen model for
the exact road location of interest remain major hurdles in
adopting the traffic flow model approach for TSE.

Suppose the selected traffic flow model can convincingly
capture the relationship between traffic state variables such as
flow and density observed in reality. In that case, the model-
driven approach—based on the physics of traffic flow—can
precisely predict the traffic states in unobserved areas with no
data collection devices. In addition, it can yield a higher spa-
tial and temporal resolution of traffic state data at locations
where data collection technology is deployed. On the other
hand, the dependence on the traffic flow model brings the
vulnerability of unfit model adoption. Using standard traf-
fic flow models with empirical evidence somewhat lowers
this kind of risk. Nevertheless, the robustness of estimation
in the event of an anomaly such as a traffic accident or
inclement weather condition leaves room for improvement
in the estimation result.

Data-Driven Approaches: With the advancement of sta-
tistical tools and machine learning, data-driven methods
have become another type of prominent approach for
TSE. Data-driven TSE adopts the insights of historically
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FIGURE 1. Traffic State Estimation Approaches.

observed traffic data for estimation and prediction tasks.
It enables the model to discover the underlying traf-
fic data structure, eliminating the requirement of fitting
a traffic flow model suitable for each road segment
involved. In this kind of approach, probabilistic principal
component analysis [22], k-nearest neighbors [23], Deep
learning [24], recurrent neural network (RNN) [25], [26]
and long short-term memory (LSTM) [27], [28] neural
network have all been experimented and applied in the
literature.

However, the current machine learning (ML) based
approaches rely overly on the obtained traffic data, which
leads to over-fitting when applied in a different traffic
scenario. The lack of robustness limits the applications
of the experimental ML models. For instance, the proba-
bilistic approach cannot distinguish some temporal patterns
from long-term trends [22], and k-nearest neighbors may
not be an ideal approach when unusual traffic patterns
occur [23].

State-of-the-art approaches such as LSTM and RNN-type
neural networks have given impressive performance in cap-
turing the nonlinear relationships among traffic states [29].
However, LSTM and RNNs are known for the hindrance
in the training process as updating the weights, and bias
parameters consume immense memory and computational
resources. In other words, these algorithms and their variants
are not suitable for hardware acceleration. Moreover, these
algorithms are affected by different random weight initial-
ization and are also prone to over-fitting.The relationship
between the conventional TSE approaches and the proposed
PIDL approach is shown in Fig. 1.

Research Questions: Carefully analyzing the literature dis-
cussed above leads to the following two motivating research
questions for this study:

1) Instead of blindly feeding the data into a learning
model, can the fundamental principles of traffic flow
theory be harnessed to augment the power of machine
learning?

VOLUME 3, 2022



IEEE Open Journal of
Intelligent Transportation
Systems

2) Can the physical laws and constraints of traffic flow in
help uncover the implicit relationship between traffic
state variables buried in the data?

The approach combining the advantage of machine learn-
ing and the knowledge of governing physical equations of
traffic flow is termed as physics-informed deep learning
(PIDL). Together, the data-driven approach and the physics
of traffic flow have the potential to build a fast, resilient, and
computation-friendly TSE strategy. Moreover, when the mea-
surements of traffic states at fixed locations are unavailable
due to the malfunction of sensing devices or incidents like
cyber-attacks, the PIDL approach presents an ideal alterna-
tive in utilizing potentially sparse and noisy data to estimate
and predict traffic state variables.

Key Features and Contributions: This paper offers details
of the proposed PIDL algorithm by demonstrating its applica-
tion using the hydrodynamic traffic conservation law (LWR)
model and a numerically more appropriate discrete cell trans-
mission (CTM) model. Two case studies are presented to
evaluate the proposed methodology. The first case study uses
synthetic data resembling the trajectories of connected and
autonomous vehicles (CAVs) as captured by roadside units
(RSUs). The second case study is designed to resemble
scant observations from probe vehicles using the trajec-
tory information from Next Generation Simulation (NGSIM)
data. We investigate the accuracy and convergence-time
of PIDL and a similarly configured deep learning neu-
ral network with varying levels of scantily collected traffic
observations. The novel contributions of this paper are as
follows:

1) We propose a novel physics-informed deep learning
approach for traffic state estimation and reconstruc-
tion. It equips a deep learning neural network with
the physics of traffic flow theory, termed as physics
informed deep learning (PIDL).

2) We not only consider the conservation law of traffic
flow in the form of the Lighthill-Whitham-Richards
(LWR) model but also formulate the physics cost (loss
function) using a more realistic cell transmission model
(CTM). To the best of our knowledge, this is the first
attempt at incorporating CTM in the training of neural
networks for traffic state estimation and prediction.

3) We demonstrate the incorporation of various fun-
damental diagrams - Greenshields’, Daganzo’s, and
inverse-lambda.

Note: This research paper is an extension of our previous
conference paper [30], with significant additions. Previous
work only considered the LWR model with Greenshield’s
fundamental diagram, and the case study in the conference
paper involved synthetic data resembling the traditional loop
detector data. In this paper, a framework for using PIDL with
CTM is devised, and the incorporation of multiple funda-
mental diagrams is demonstrated. We introduce two new
case studies a) synthetic data resembling CAV data col-
lected by RSUs, and b) the scantily collected probe vehicle
data using the NGSIM dataset. The case studies demonstrate
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the capability of PIDL in traffic state estimation under var-
ious scenarios. Hence, both theoretical and experimental
contributions are enriched in this paper.

Outline: The rest of the paper is organized as follows:
Section II provides the background of deep learning neural
networks. Section III reviews traffic flow theory and the
conservation law as the physical law in TSE. Section IV
proposes the integration of physics and deep learning in the
estimation of traffic states. Section V presents the first case
study using simulated data. Section VI presents the second
case study with the Next Generation Simulation (NGSIM)
data. Section VII provides a discussion on the usage of
physics as a regularization agent in training neural network
approaches. Finally, section VIII concludes the paper and
suggests future work.

Il. DEEP LEARNING NEURAL NETWORK

The data-driven approach of TSE addresses the tasks of
estimation and prediction using only the data collected on
the roads. It applies the rapidly emerging machine learning
(ML) techniques to recognize the relationship between traffic
state variables. The ML algorithm adapts to the particular
environment pattern, such as congestion or rush-hour traffic,
based on the input data it gets in real-time. Because of
its adaptability, the data-driven TSE result is expected to
be more reliable when a traffic pattern anomaly is present
compared to a model-based approach.

Deep learning (DL) neural network is a subset learning
method of ML techniques. The topology of a DL neural
network consists of sequential layers of neurons, which are
computation units resembling the biological neurons. The
three types of layers are input layer, where input data are
accepted; output layer, where output is produced; and hid-
den layer, where information is processed in between. The
architecture of a typical deep learning feedforward neural
network is drawn in Fig. 2.

A few essential components that warrant contemplation
when building a DL neural network are as follows:

Learning Rate - It determines the steps in adjusting the
value of weights in the neural network. A relatively large
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learning rate has the advantage of quicker convergence, pro-
ducing the prediction results in a shorter period. However,
it may omit the better weight configuration and therefore
sacrifice the output accuracy.

Network Size - The network size is determined by the
number of layers n; and the number of hidden units ny.
It reflects the complexity of the neural network, which also
has an impact on output accuracy. A complex neural network
may be beneficial in yielding accurate results, but it may also
be prone to over-fitting [31], and generally takes a long time
for convergence.

Cost Function - Also known as loss function, it reflects
the performance of a trained neural network. The purpose of
training a neural network is to adjust its weights to minimize
the cost. Various measurements can be used to build cost
functions. For instance, (1) gives a cost function using mean
square error (MSE), in which N, is the number of observation
points for training. Using vehicle density p as an example,
0(x, 1) is the estimation of p at location x and time ¢.

For (x,f) e R x R™:

IpL = MSE (5., p(x.1))
G 2
_ LS a0 0) (0 0
_Noj;:p(x Ny ) ,0<x ot )‘ (1)

Optimization - Gradient descent is a popular algorithms
to perform optimization [32]. It minimizes the cost function
J (9) by updating the parameters 6 € R in the opposite direc-
tion of the gradient of [ (0) with respect to the parameters.
Batch gradient descent (BGD), mini-batch gradient descent
(m-BGD), and Stochastic gradient descent (SGD) are some
of the most common methods in the groups of techniques
used in search of local minimum.

BGD is formulated as (2). The step it takes to update the
parameters is the learning rate 5. It calculates each update
using the entire training set; this can be very slow, and it
doesn’t allow online model updates.

A0 =—n-VpJ(0). 2

SGD circumvents BGD’s problem of redundancy by
updating the parameters for each training sample. However,
the frequent corrections cause high levels of fluctuation in
the value of the cost function. m-BGD takes advantage of
both algorithms and updates the parameters using a mini-
batch of training samples, reducing the variance of samples
and the time of convergence.

Convergence Time - is the time a neural network takes to
converge; we included this measure as estimation of traffic
states in real-time is preferable in traffic management [33].
A longer computation time from a complex neural network
limits its adaptability for application.

Deep learning for TSE can swiftly modify its weights
configuration based on real-time data. However, sensor and
detection bias may be introduced in the estimation due to the
limited availability of traffic data, hindering the reliability of
learning results. Besides, computation capacity is critical to
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process the extensive incoming traffic data promptly. It com-
pels constructing the computational infrastructure of a higher
standard, including data servers and processing centers, to
support this data-driven approach.

Relative Percent Ly Error - measures the performance of
neural network output. After training, the relative error is
evaluated based on the neural network’s estimation of the
test data. A normalized error measurement using Frobenius
norm is shown in (3). P is the matrix form of vehicle density
p(x, 1), and P is the estimation of P, where (x,f) € RxR™T.
Let N1 and N, be the number of bins after discretizing the
density field in space and time, respectively. Le., N - N> is
the total number of grid points to be estimated. Note that
this error formulation is also referred to as root mean square
percentage error (RMPSE).

L5 = ——F % 100%

NN 5600, 10) — p(x), 1)) [*
=\/” ( )l )|><100%.(3)

VEL o0, 10)

Regularization - Regularization is a group of methods used
to prevent over-fitting when fit a function or a model appro-
priately on the given training set [34]. With the learned set
of parameters W, a regularization term can be formulated
as (4). M represents the number of parameters in W. The
associated penalty £ (cost) becomes L1-norm (Lasso regu-
larization) when ¢ = 1 and L2-norm (Ridge regularization)
when g = 2.

M
£=3 |wl. @)
j=1

Automatic Differentiation (AD) - Also called algorithmic
differentiation, AD is a set of techniques for precisely and
efficiently evaluating the derivative of numeric functions
specified by the computational algorithm. It substitutes the
domain of the variables to assimilate the derivative values
and replaces the operators per the chain rule to propagate
the derivatives [35].

AD addresses the weakness of alternative groups of
computation methods: susceptibility of error in manual
differentiation [36] and numerical differentiation, due to
round-off and truncation errors [37]; and the enigmatic,
complex expression resulting from symbolic differentia-
tion [38]. To deploy the standard optimization methods such
as LM-BFGS in deep learning, AD produces quantitative
derivative evaluations instead of expressions, benefiting the
computational accuracy and efficiency [35].

lll. THE PHYSICS OF TRAFFIC FLOW
The traffic flow model and the fundamental diagram are two
critical elements of the traffic flow theory.
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A. FLOW MODELS

Traffic flow models use empirical data and the developed
hypotheses to model traffic conditions [39]. Let the flow rate
g indicate the number of vehicles that pass a set location
in a unit of time. Average speed v is the mean value of
speed among vehicles traveling on a road segment. Density
p represents the number of vehicles in a unit road of space.
Together, these quantities narrate the temporal and spatial
development of traffic conditions.

At a specified location x and a designated time ¢, flow
q(x,t) and density p(x,?) have the following relationship
with the cumulative flow A (x, f): Cumulative flow N (x, t)
depicts the number of vehicles which have passed location
x by the time f. Density p(x, ) is the partial differen-
tial of cumulative count A (x, ) with respect to x. Flow
q(x, 1) is the partial differential of cumulative count N (x, £)
with respect to ¢. These connections between variables are
exhibited in (5).

/)(x7 l*) — _w
X 5)
5 N@D (

There are several traffic flow models discussed in the
literature. Continuous-time models include the Lighthill-
Whitham-Richards (LWR) model, along with higher-order
models such as Payne-Whitham (PW) model [14], [15], Aw-
Rascle-Zhang (ARZ) model [16], [17]. Discretized models
include cell transmission model (CTM) [12] and switching
mode model (SMM) [13]. The first order LWR Model and
its discretized version CTM model are the most used traf-
fic flow models for their simplicity and accuracy. We use
these two models as the ‘physics’ of the system and incor-
porate them into the PIDL framework. These two models
are explained next.

B. LWR MODEL

When the cumulative count A/ (x, 1) is differentiable in both
the time and space domain, Lighthill-Whitham-Richards
(LWR) model [40], [41] relates N '(x, ) with flow g(x, 1)
and density p(x, f). Equation (5) leads to the conservation
law of traffic flow, given by (6), which is referred to as
LWR traffic flow partial differential equation (PDE).

For (x,1) € R x RT:

dgq(x, 1) n ap(x, 1)
ax ar

0. (6)

1) GENERALIZED SOLUTIONS OF LWR

For a conservation law

or+1g()] =0 (7

with the initial condition

p(x,0) = po(x), ®)
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where pg € L}OC(R; R), for a given smooth vector field

¢ : R — R the solution in the distributional sense is defined
as follows [42]:

Definition 1: A measurable locally integrable function
p(x, 1) is a solution in the distributional sense of the Cauchy
problem (7) if for every ¢ € C3°(R x RY) >R

// [o(x, ) r(x, 1) + q(o(x, 1) P (x, 1)] dxdr
RTxR
+ /R po(x) ¢ (x,0) dx = 0. )

2) WEAK SOLUTIONS

A measurable locally integrable function p(z, x) is a weak
distributional solution of the Cauchy problem (7) if it is
a distributional solution in (0,7) x R satisfying (8) and
if p is a continuous function from [0, T] into L}OC. If we
assume p(x, ) = p(x, 1), then the continuity condition can

be formulated as

lim/ lo(x, 1) — po(x)|dx = 0. (10)
=0 JR

These conditions give meaning to sets of measure zero
for functions in L!. For an L! function established on the
two dimensions (x, f), the domain given by ¢ = 0 is a set of
measure zero.

Therefore, to implement an initial function in this context
we necessitate the L! continuity of the map r — p(-,f) as
exhibited in equation (10). Furthermore, we also necessitate
establishing the function’s boundary value for a given x value
for a fixed time ¢. This is achieved by requiring p(x, ) =
o(xT, 1) =lim,_, .+ p(w, £). For further details refer to [42].

The traffic density equation should be consistent with the
entropy Kruzkov solution (see [43]).

Definition 2 (Kruzkov Solution): The Kruzkov entropy
solution is a function p:[0,00) — L[ (R), such that
Vk € R,¢ > 0 € CP(R x R") with the compact sup-
port of ¢ is in ¢ > 0, assuming the flow g locally Lipschitz,
we have

/ / [1p — ki + (@(p) — g(k)) sn(o — K)gs,|dxc = 0.
(11

and there exists a set E of zero measure on [0, T], such

that for ¢t € [0, T] — E, the function p(x, t) is defined almost

everywhere in R, and for any ball K, = {|x| < r}
lim [ [p(x, 1) — po(x)|dx = 0. (12)
t—0 K,

It is essential to point out that KruZkov entropy solutions

have been proved equivalent to vanishing viscosity solutions
for hyperbolic conservation laws [42], [44].

C. CTM MODEL

Cell transmission model (CTM) is a discretized model which
represents the traffic by dividing the road into consecutive
homogeneous sections (cells) [12]. Each cell is created with
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FIGURE 3. Cell Transmission Model (CTM) of Traffic Flow.

the equal length [ = vy - Az, in which vy is the free-flow
speed. Vehicle flow enters the cell downstream as shown in
Fig. 3: y;_1,;(k) represents the flow from upstream cell i — 1
to downstream cell i at time step k, and y; ;+1(k) represents
the flow from upstream cell i to downstream cell i + 1 at
time step k. nj—1(k), and n;y1(k) conveys the numbers of
vehicle in each cell at time step k. The resultant flow at the
junction of two cells is determined using Godunov approach
described in the later sections.

The flow of vehicles between the cells and the number of
vehicles present in them comply with (13), in which n;(k)
represents the number of vehicles present in cell i at time
step k; and y;_1 (k) represents the vehicle flow from cell
i—1toiattime step k. Fori € Z*, k € Z*:

ni(k + 1) — ni(k) = yi—1,i(k) — yi,i+-1(k). (13)

CTM was initially proposed using a trapezoidal fun-
damental diagram, in which the flow-density relationship
is formulated as (14). The road capacity is ¢, and the
backward wave speed is —w.

g = min{pv, gm, w(pm — p) }. (14)

D. FUNDAMENTAL DIAGRAMS
The fundamental diagram of traffic flow gives the relation-
ship between traffic states - density p, flow g, and speed v.
It enables modeling the driving behavior from the observed
data [45]. Several representations of fundamental diagrams
exist; the one proposed by Greenshields [46] is widely used
due to its simplicity and the linear relationship between v
and p.
The Greenshields model is shown in Fig. 4.
Greenshields fundamental diagram sets the relationship
between traffic state variables as in (15), where p,, is the
jam density (also known as maximum density), and vf is the

free-flow speed.
p
q(p) = pr<1 - —>
Pm

o
= l— o
o =i(1-7:)

Daganzo has offered an alternative model to represent the
flow-density relationship by two straight lines, introducing
a third parameter—critical capacity g.—at which the maxi-
mum flow is reached [47]. Daganzo’s fundamental diagram

5)
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FIGURE 4. Greenshields’ Fundamental Diagram.
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FIGURE 5. Daganzo’s Fundamental Diagram.

is presented in Fig. 5, and the formulation is shown in (16).

if /O S pCa

pe
16
P — Pc (16)

Clc<1——> if o> pc,
Pm — Pc

Often, a capacity drop is observed when traffic density
reaches p.. Thus a modification of Daganzo’s fundamental
diagram—inverse-lambda shaped fundamental diagram—
was proposed to reflect this phenomenon [48]-[50]. The
modified fundamental diagram is exhibited in Fig. 6, and
the relationship between the traffic states is given in (17).
The adjusted parameter g, now is split into two values - g,
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FIGURE 6. Inverse-lambda Fundamental Diagram.

before the capacity drop, and g, after the drop.

o .
qe1— if p=<p

pe
17
P — Pc a7

462(1 - ﬁ) if p>pc.
m c

IV. PHYSICS INFORMED DEEP LEARNING FOR TRAFFIC
STATE ESTIMATION

Physics informed deep learning (PIDL) is a type of DL
method where a neural network is trained to solve learn-
ing tasks while respecting the law of physics [51]. With
the inherent physical laws encoded as a priori knowl-
edge, the resulting neural network forms data-efficient
approximators to process input information and give recon-
struction/prediction results [52]. When the input data is
inadequate (scanty) or noisy, the physics in PIDL aug-
ments the neural network to use the data effectively. Physics
explains the underlying relationship in the data and improves
the prediction results.

Therefore, given the unique advantage of PIDL in effi-
ciently utilizing limited input data and the physics (con-
servation law of traffic flow), we propose physics-informed
deep learning for traffic state estimation problems. It com-
bines the strengths of the underlying physical law of the
system and the deep learning method in exploiting sparsely
observed traffic data for TSE.

q(p) =

A. PROBLEM FORMULATION
Let P = X'x7T be a space-time domain and p (x, f) represents
the value of the field at (x, ) € P. On a given road X, ¥cXx
are the discretized homogeneous road segments and # C T
are the time intervals. o

In P, sparse data of the field p(x,t) at (x,,f,) are
observed. Collectively, the observed (), ) constitutes a
sub-domain O C P. Given that V (x,t) € O, p(x,t) is
known, the reconstruction and prediction problem becomes
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finding a mapping function F(-) : p(O) — p(P), which
minimizes the reconstruction cost of p(P).

B. APPROACH OVERVIEW

The PIDL algorithm for TSE is as follows. After splitting
the collected traffic state dataset into training and testing
datasets, PIDL makes an estimation based on the training
dataset. Both estimation cost and physics cost are computed
from the estimation result. The neural network gains the
knowledge of the governing physical law by incorporating
the non-compliance cost of conservation law Jpyy into the
cost function 7. The training iteration is repeated if the
sum of estimation cost and physics cost is greater than the
designated threshold. Otherwise, the fine-tuned PIDL gives
the estimation as output. A maximum of allowed learning
iterations - ipgy 1S set to prevent the learning process from
running eternally in the event of no change in total cost.
These steps are graphically presented in Fig. 7. The design
of the cost function is one of the primary components of
PIDL. Next, we illustrate the design of cost functions using
LWR and CTM traffic flow models.

C. COST FUNCTION USING LWR MODEL
We present the cost function formulation using the hydrody-
namic LWR conservation model coupled with Greenshields’
and inverse-lambda fundamental diagrams. The conservation
law of traffic flow described in (6) establishes the rela-
tionship of traffic state variables with respect to location
x and time . It needs to be integrated into the learn-
ing process of a PIDL neural network. We establish two
measures to evaluate the estimation performance. 1) DL-
cost, Jpr, denoting the error in estimation while using just
the DL. 2) physics cost, Jpgy, denoting the disobedience
of conservation law in the estimation. The DL-cost uti-
lizes the observed data O = {(x,,Z)j = 1,2,...,N,}.
Whereas the physics cost is computed on the collocation
points C = {(x., £.)j = 1,2, ..., N.}. Note that since the DL
estimates the entire grid, there is no restriction on the num-
ber of collocation points. Meaning that collocation points
(where the physics cost is computed) are not restricted to
the observation points, rather they can be any subset of the
entire grid points.

LWR and Greenshields’ Model: The relationship between
density p and traffic flow g from Greenshields’ fundamental
diagram (15) transforms the conservation law (6) into (18).

2p(x,1) dp(x, 1) 9p(x,1)
ut Pm ) x + at

Consequently, we can further formulate the DL-cost Jpy,
and physics cost Jpgy as (19):

Nio Zj\,:”l p(xj‘;’ t{?) _ﬁ<xé’ff;>
o1 ) )

0 (18)

2

JpL =
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FIGURE 7. Physics Informed Deep Learning for Traffic State Estimation.

where p(¥/, #) is the estimated density by the DL component
of the PIDL approach.

LWR and Inverse-Lambda Model: When using the inverse-
lambda fundamental diagram, given the relationship between
traffic state variables flow g and density p in (17), the physics
cost Jpgy can be formulated as (20). Note that the DL
cost (Jpr) remains the same as shown previously for the
Greenshields’ model. The collocation points in this case are
separated into two subsets Cy = {(x;;, 7, )Iv=1,2,..., Nc1}
where p(xV;, 2))) {5, ) lw =

< p and Cp
1,2,...,Neo} where p(x)5, 215) > pe.

1 Ncl
Jpay1 = Nt ZV:I

. . 2
3P (1. 17y) ray 3p(xyy. 1)

ot Pc dx

R . 2
Soya = N [P ) g 350 )
PHY2 = N L ty=i at Pom—pc  Ox

Nei - Jpay1 + Nea - Jpay2
Ncl + NC2

Jpry =

(20)

note that N1 and N, are the number of collocation points
in the free flow region and congested region, respectively;
p(xY,, tV) and p(x,, %) are the estimated density by the
DL component of the PIDL approach.

To incorporate the conservation law of traffic flow in train-
ing a PIDL neural network, the cost function of PIDL is
comprised of the DL-cost Jp;, and the physics cost Jpgy.
Hyperparameter p is introduced to adjust the weights of Jpy,
and Jpgy. The cost function J of PIDL for TSE is given
as (21):

J =wux*xJIpL+ (1 —pu)*Jpgy. (21)

D. COST FUNCTION USING CELL TRANSMISSION
MODEL (CTM)

Now we present the cost function formulation using the
discrete CTM. Note that it can be coupled with any suit-
able fundamental diagram. Recall that CTM solves the LWR
PDE through a finite difference scheme, also referred to as
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FIGURE 8. Discretization of space-time in CTM.

Godunov’s numerical method. Consider a spatial-temporal
representation of traffic states illustrated in Fig. 8 where the
colors denote the variety of traffic state values. Let N; and
N, be the number of bins after discretizing the density field
in space and time, respectively. Thus, Ni - Ny is the total
number of grid points to be estimated.

Making the algorithm conform to the CTM model will
lead to the following physics cost:

1 N1 N
= 2 |tk + D = i)
V20

‘ 2

J, =
PHY N

— [Fim1,i(0) = $i i1 ()] (22)

Recall that CTM assumes uniform density p in cells
at each time step (n;j(k) = p;i(k) - Ax) and uniform flow
q between cells during each time interval (y;—p;(k) =
gi—1,i(k) - At). Therefore, the DL-cost and the physics cost
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with CTM become as follows:

2

1 N, .. A
Jo =37 0 o (1) = (x5 5)
L=
1 Ny Ny
Ty = Ni-N, Zi:l Zk:l

2
—[@i—l,i(k) - f]i,i+1(k)] . At‘ .
(23)

[pitk+ 1) — pi(k)] - Ax

Similar to the previous discussion on the LWR model,
the cost function of PIDL is comprised of the DL-cost Jp,
and the physics cost Jpyy given in (23). Note that Jpp
is computed in a similar fashion using N, observations.
Whereas, the formulation of Jpyy differs from the LWR
case. Also, unlike the case of LWR, here we use the entire
grid (N7 - N2) as collocation points. This makes the repre-
sentation easier, however, a subset of Nj - N, can also be
used. Hyperparameter n can adjust the weights of Jp; and
Jphy as shown in (21).

The computation of flow (g;—1,;) between the adjacent
cells i — 1 and i is described next. The density conditions
of both cells determine the flow rate at the boundary of
two adjacent cells. It can be computed using Godunov’s
numerical scheme [11], [53]. The Godunov method dis-
cretizes the first-order traffic flow models such as the
LWR model by solving the Riemann problem with the ini-
tial condition of upstream density p;—; and downstream
density p; [44].

Either a shockwave or a rarefaction wave will originate
from the junction of the two densities. A shockwave devel-
ops when ¢'(pi—1) > ¢'(p;), and a rarefaction develops
when ¢'(pi—1) < ¢'(p;). The speed of the shockwave is
given by:

o Ao _ [aoin) —ate)]
dt Pi—1 — Pi

(24)

where x,(f) is the position of the shockwave as a function
of time. If the shock speed is positive, then the inflow at the
junction between the two traffic densities will be a function
of upstream traffic density. In contrast, if the shockwave
speed is negative, then the inflow at the junction between
the two traffic densities will be a function of downstream
traffic density.

Let Q(-, -) be a function denoting the flow at the boundary
of two cells which can be determined as follows:

O(pi-1, pi) = q(p* (pi=1, pi)) (25)

where p* denotes the flow-dictating density. p* is determined
by the following relationship emanating from the Godunov
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scheme:
pi-1,  if q'(pi-1),q'(pi) = 0
Pis if ¢'(pi-1),4(p)) <0
pi-1, if ¢'(pim1) =0 =4 (p)
p* = and  g(pi—1) > q(p;) (26)

pi.  if q(pi1) =0=4' (o)

and  g(pi-1) < q(pi)
pe, if ¢ (pi1) <0 <4 (o)

here p. is the critical density.

Hence depending on the traffic densities on the left and
right side of the junction, flow at the junction can have
three possible values, i.e., Q(p;i—1, p;) can have three distinct
values, q(pi-1), q(pi), or q(pc). Note that Q(pi—1, pi) =
gi—1,i- Once the flow-dictating density p* is identified, the
corresponding flow ¢(p*) can obtained using any suitable
fundamental diagram.

V. CASE STUDY-I

Case study-I is designed to resemble the application sce-
nario where the trajectory information of connected and
autonomous vehicles (CAVs) as captured by roadside units
(RSUs) is available for TSE.

A. DATA DESCRIPTION

Synthetic dataset is constructed mimicking vehicular traffic
using the Lax-Hopf method as described in [54]. The test-
bed consists of a 5000-meter road segment for 300 seconds
(x, t € [0,5000] x [0,300]). The spatial resolution of the
dataset is 5 meters and the temporal resolution is 1 second
(Ax =5, At = 1). In this case study, velocity-field v(x, f)
is the learning objective of the neural network. The exper-
imental synthetic dataset is shown in Fig. 9. The vehicle
trajectory data is produced under the following assumptions
and control measures:

1) Vehicle Speed-Density Relationship: Greenshields’
fundamental diagram formulated is Eq. (15) applies
in the relationship between vehicle speed and density.
The free flow speed vy is 25 meters per second (90 kph
or 56 mph). The maximum density o, is 0.15 vehicles
per meter.

2) Initial Vehicle Density: At t = 0, density p is 0.14
vehicle per meter (veh/m) at x € [0, 1500], 0.04 veh/m
at x € [1500, 3500], 0.08 veh/m at x € [3500, 4000],
and 0.1 veh/m at x € [4000, 5000].

3) Upstream Flow and Downstream Flow: At x = 0,
the upstream flow ¢;, is 0.3 vehicle per second
(veh/s) at t € [0, 60], 0.4 veh/s at t € [60, 180], and
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FIGURE 9. Experiment Dataset.

0.1 veh/s at ¢ € [180, 300]. At x = 5000, the down-
stream flow g, is 0.2 vehicle per second (veh/s) at
t € [0,60], 0.1 veh/s at ¢t € [60, 120], and 0.3 veh/s
at t € [120, 240] and O (to simulate a road closure or
traffic accident) at ¢ € [240, 300].

Recall that the case study is designed to utilize the CAV
data as collected by RSUs, with the objective to estimate
velocity field. It assumes that the RSUs are deployed every
1000 meter on the road segment; therefore, there are 6 RSUs
installed on the 5000-meter road (the first one is installed
at initial location x = 0). Based on [55], the communication
range of RSU is assumed to be 300 meters (DSRC technol-
ogy). That means, vehicle information broadcast by CAVs at
x € [0, 300] can be captured by the first RSU and the sec-
ond RSU can log CAV data transmitted at x € [700, 1300].
Data broadcasted at x € [300, 700] however is cutoff to the
system. Data loss due to the limitation of the communica-
tion range of RSU is also considered. More details on the
creation of the synthetic data can be found in [30].

B. IMPLEMENTATION DETAILS

The PIDL neural network for the experiment is built with a
10-hidden-layer architecture, with 40 neurons on each hid-
den layer. The optimization algorithm is a limited-memory
Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) algorithm.
The maximum learning iteration is 5000. For comparison
with PIDL on performance, a deep learning (DL) neural
network with the same architecture, however, unaware of
the conservation law in traffic flow theory, is also trained in
this case study. The experiment is conducted on an Intel
Core i7-8700 CPU @ 3.20GHz.

C. RESULTS AND DISCUSSION
We perform the analysis with various penetration rates of
CAVs in the traffic stream. We use computation time and
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FIGURE 10. PIDL & DL Estimation with 1% CAV Fleet.

the percent relative £, error metric (defined in (3)) to eval-
uate the performance. Each neural network’s performance
is evaluated 3 times using 3 training datasets obtained with
different sampling seeds. We also assume that there is a 10
percent data loss; hence 90 percent of the transmitted data
within the communication range of RSUs are recorded.

1% Penetration Rate: First, we investigate the PIDL
approach’s performance with a vehicle fleet consisting of 1
percent CAVs and 99 percent conventional vehicles. Under
this scenario, only 4 vehicles in the experiment can broad-
cast information through the vehicle to infrastructure (V2I)
communication to RSUs. The estimation results of PIDL
and DL (for comparison) are presented in Fig. 10. Vehicle
velocity data logged by RSUs are also marked.

Interpretation: We notice that with the aid of the phys-
ical law of traffic flow, PIDL outperforms DL with higher
estimation accuracy and achieves shorter computation time,
which means greater feasibility of time-sensitive applica-
tions. The physics-informed approach accommodates the
reality of (training) data sparsity by leveraging the collo-
cation points. As discussed before, collocation points are
coordinate pairs of location and time (x, #) where the physics
cost can be computed to quantify the disobedience of current
states in terms of the governing conservation law. The phys-
ical equations provide tangible insights into the underlying
relationship between traffic state variables such as flow and
velocity. And the physics cost assessed by PIDL serves as
a torchlight guiding the optimization process of parameters
in the neural network.

10% Penetration Rate: Next, we discuss the performance
of the PIDL approach considering a 10 percent CAV fleet.
The estimation result is shown in Fig. 11. In both penetration
level scenarios, the estimation error and computation time
reported are the mean averages of 3 experiments.

Interpretation: With the higher availability of vehicle data
in this scenario, the accuracy performance of DL is slightly
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TABLE 1. Sensitivity analysis for various penetration rates.

CAV Computation Time Relative Lo Error (%)
Penetration Rate PIDL DL PIDL DL
1% 33.7s 75.0s 31.7 429
10% 238.1s 473.6s 16.7 13.1
25% 379.2s 643.8s 7.2 10.8
50% 148.6s 250.3s 5.6 9.4
75% 96.8s 124.7s 6.2 8.7
100% 21.8s 45.1s 34 5.6

better, suggesting the richness in input data compensates for
the absence of physical law awareness. However, the accu-
racy achieved by DL comes at the expense of computation
time. In contrast, PIDL achieves similar estimation accuracy
in a much shorter time. The experiment once again demon-
strates the benefit of incorporating physical law in training
neural networks. We observe that while accomplishing com-
parable estimation accuracy in some cases, the PIDL method
always has the advantage of quick convergence and proves
to be a desirable approach for real-time applications.

25%, 50%, 75%, and 100% Penetration Rate: Similarly,
we analyze the penetration rates of 25%, 50%, 75%, and
100%. Table 1 provides the results for various penetration
levels. Bold font indicates better performance.

Interpretation: With the aid of physics, PIDL consistently
surpasses the estimation accuracy metric of DL. We also
observe that with the increasing availability of training data
as the CAV fleet expands, the time to convergence of PIDL
and DL both decreases (when the CAV penetration rate is
above 25%). This suggests that with the abundant training
data, the estimation tasks are becoming increasingly unde-
manding, and both neural networks (PIDL & DL) are able
to produce the results in shorter periods of time.

Noise Sensitivity Analysis: Lastly, we conduct the sensi-
tivity analysis with regard to noise level in the training data
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TABLE 2. Sensitivity analysis for various noise levels.

. Relative Lo Error (%)
Noise Level
PIDL DL
5% 18.3 19.2
10% 19.6 21.3
15% 229 30.8

to examine the performance of PIDL and DL. Even with
the best available sensing technology, the consideration of
imprecision in the observed traffic state is imperative. Given
the synthetic dataset, we fuse the training data with 4 levels
of Gaussian noise and compare the performance under the
10% CAV penetration rate scenario. The results are shown
in Table 2.

The benefit of physics in training is more evident with
added data noise, as the results show PIDL outperforms
DL under noisy data scenarios, and the difference is more
pronounced as the noise level grows.

Summary of Results for Case Study-I :

o The computation time of PIDL is better for all pene-
tration rates.

o For 1% penetration rate, the relative £, error for PIDL
was 31.7% as compared to 42.9% for DL.

o With a 15% noise added to the sensor data, the relative
L, error for PIDL was at 22.9% compared to 30.8%
for DL.

VI. CASE STUDY-II

Recall that the second case study is designed to resem-
ble scant observations from probe vehicles using the
trajectory information from Next Generation Simulation
(NGSIM) data [56]. It examines the performance of the
physics-informed deep learning approach in recreating the
velocity field. We choose the vehicle trajectory data col-
lected on the interstate 80 freeway (I-80) in Emeryville,
California.

A. DATA DESCRIPTION

The road segment with recorded vehicle trajectory is about
1600 feet long [57], and the vehicle velocity and posi-
tional information is extracted from video recordings [58].
The 15-minute vehicle velocity-field obtained from 4:00pm
- 4:15pm on April 13", 2005 on 1-80 freeway is shown
in Fig. 12. Shock waves can be observed in the fig-
ure, indicating congestion propagating backward on the
freeway.

The velocity field is constructed from vehicle trajectory
data using a binning method with spatial resolution Ax of
20 feet and the temporal resolution At of 5 seconds. The
average speed of vehicles in each bin is calculated. The
resulting velocity-field consists of 180 temporal bins and 80
spatial bins.
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FIGURE 12. NGSIM Vehicle Velocity-Field, I-80 Freeway, 4:00pm - 4:15pm.
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FIGURE 13. Parameter Estimation of Critical Traffic States in NGSIM I-80 Freeway,
4:00pm - 4:15pm Dataset.

B. IMPLEMENTATION DETAILS

The performance of PIDL in regenerating the velocity field is
investigated with the acquaintance of a few samples from the
NGSIM dataset. The Greenshields’ fundamental diagram is
deployed to represent the relationship between traffic state
variables. The LWR conservation law is still used as the
governing physical equation.

The recorded NGSIM data shows vehicles experiencing
various levels of congestion [59]. Recall that in the case
study-I, the velocity field was built using known values of
parameters such as free-flow speed vy and jam density py,.
Whereas, in this experiment, traffic parameters are unknown
and need to be estimated.

The density-velocity relationship is illustrated in Fig. 13.
The estimated values are summarized in Table 3. It is worth
pointing out that the vehicle density p is the summation
of vehicles on the 5 lanes of I-80 freeway in Emeryville,
California.
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Free-flow Speed
vp=46.64ft/s

Jam Density

pm= 0.20veh/ ft

Estimated Para-
meter Value

Training samples from the velocity field are randomly
selected (to mimic scant probe vehicle observations), pro-
viding the neural network observations at various spatial-
temporal locations.

C. RESULTS AND DISCUSSION

The reconstructed velocity-field using 1440 (10%) and 2000
(14%) samples are presented in Fig. 14 and Fig. 15. The
accuracy of the estimation result is evaluated by using the
percent relative £ error defined in (3).

We observe from Fig. 14 and Fig. 15 that in both scenarios,
PIDL captured the characteristics of the NGSIM data and
reconstructed the shockwaves from limited data samples. In
contrast, no meaningful traffic insights can be extracted from
the velocity field restored by DL. DL neural networks did
converge quicker at the expense of reconstruction accuracy.
PIDL neural networks underwent noticeably more iterations
updating the weight matrices and bias vectors before con-
vergence and acquiring a lower cost value. It highlights the
limited training iterations of DL as compared to PIDL. It may
be due to the DL algorithm converging to a local minimum.

We also assume a scenario in which the computation
capacity is limited, and there is a constraint on the num-
ber of training iterations. The performance of PIDL and DL
are examined after both neural networks are only allowed
5000 iterations for training. In this case, PIDL still outper-
forms DL in terms of securing a lower value of cost. The
cost and training iterations at convergence and the cost at
5000-iteration limit of PIDL and DL are detailed in Table 4.
Better performances are highlighted in bold.

Although both neural networks are built upon the same
architecture and are given the same training samples, the dif-
ference in cost functions provides the PIDL with a unique
advantage in efficiently utilizing limited observation and
producing estimation. The distinction of the PIDL cost func-
tion should be considered when comparing the performance
between PIDL and DL based on the cost at convergence.

Summary of Results for Case Study-11:

o With 10% data, the relative £, error for PIDL was 6.8%
compared to 26.7% for DL.

o The experiment results demonstrate that PIDL achieved
superior performance in TSE with limited amount of
training data, comparing to DL.

Note: The github repository containing the data and code

can be found at: github.com/Urbanity-Lab/PIDL

Vil. DISCUSSION: PHYSICS AS A REGULARIZATION
AGENT

In this section, we reflect back on the proposed approach
and case studies, and discuss the applicability of physics as
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FIGURE 14. Reconstructed Velocity-Field based on 1440 (10%) Samples from NGSIM.
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FIGURE 15. Reconstructed Velocity-Field based on 2000 (14%) Samples from NGSIM.

TABLE 4. PIDL & DL performance comparison.
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Relative Lo Error (%)

Training Samples at Convergence

Training Iterations
at Convergence

Relative Lo Error (%)
at 5000-Iteration

PIDL DL PIDL DL PIDL DL
1440 (10%) 6.8 26.7 13014 3712 8.2 26.7
2000 (14%) 9.4 17.6 14693 4296 10.3 17.6

a regularization agent in the framework of physics-informed
deep learning. Recall the cost function of PIDL in (21); the
physics cost can be viewed as a regularization agent of the
learning process [60].

Given the limited observation of traffic, a regular neural
network has meager input in the training process to iden-
tify meaningful parameter values (weights and biases, for
instance) needed for traffic state estimation. In order to pro-
duce a realistic assessment, procedures need to be considered
to prevent both the under-fitting and over-fitting problems for
accuracy and robustness. Under this background, laws from
the traffic flow theory provide valid guidelines in fitting the
model specification to acquire knowledge of the traffic in
unobserved areas. It can prevent over/under-fitting training
samples by penalizing learning where reconstruction doesn’t
satisfy the physical law.
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Under-fitting commonly occurs when the input data is
complex, and the structure of a learning model is naive.
As pointed out earlier, given the complexity of deep learn-
ing models and the limited availability of the training data,
under-fitting is not a major concern in our case. Preventing
the over-fitting problem to ensure the acceptable model
performance is the prominent task here. Over-fitting happens
when a model brings impaired generalization from observed
data into the unseen field [61]. It excessively relies on the
training input and loses the ability to adapt to the unseen
test data. Regularization counters the issue of over-fitting by
reducing the complexity of the model, limiting the weights
assigned to features deemed less influential in producing the
desired output [62]. It introduces a penalty term to the cost
function to restrict the model from learning more features or
assigning heavier weights to trivial features during training.
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Common practices to avoid over-fitting include ‘“early-
stopping”, which deals with the phenomenon where testing
accuracy ceases to improve after a certain amount of train-
ing [63]; “network-reduction” [64], which reduces the size
of the learning network to limit model complexity, ultimately
to quash the noise or irrelevant information in the training
data. Data expansion [65] is another strategy that falls into
this category to combat over-fitting by creating more training
inputs through either acquisition of new data or re-sampling
existing observation points.

However, all the above-mentioned methods have respec-
tive shortcomings. In order to implement “‘early-stopping”,
the hyper-parameter of the training iteration limit (the point
at which training must be stopped), needs to be determined
through empirical evidence. Note that a premature stop-
ping induces the “under-fitting” problem. Similarly, “network
reduction” necessitates an informed decision on reducing the
model complexity while preserving the capacity of learning
the underlying relationship presented in the training data.
When new data is not easily available, which is often the
case with TSE, bias associated with the re-sampling strategy
may be introduced in the data expansion process.

By incorporating the physics cost Jpgy into the cost func-
tion in the “physics-informed” framework, physical laws
from the traffic flow theory act as a regularization agent
in the training process and let the binding rules of traf-
fic state with respect to space and time play a role in
guiding the optimization. It penalizes the parameters and
configuration of the neural network that does not comply
with the system of laws imposed. This brings improve-
ment in estimation accuracy and convergence time, as are
demonstrated in the case studies, owing to two unique
advantages.

The first advantage of the PIDL model in preventing over-
fitting is the information gained supplied by the physics.
The partial derivatives of traffic state with respect to time
and space in the conservation law reflect the relationship
between traffic state in adjacent locations, and the incre-
mental changes as the state evolve. This information on how
traffic states transform presents a powerful tool in utilizing
the sparse training input by constructing an educated estima-
tion of traffic states at neighboring locations or succeeding
timestamps.

The second benefit of the incorporation of physics cost
Jphy, by design, is the introduction of collocation points in
the training process. Collocation points are coordinate pairs
of location and timestamp (x,t). Albeit the size of train-
ing input is small, a much greater amount of collocation
points can be selected, and Jpyy at collocation points are
assessed to verify the compliance with governing laws of
physics. In other words, even if the ground truth of traffic
state for training is in short supply, the “physics-informed”
neural network can calculate the physics cost at any given
location x and time ¢ and minimize it. The aforemen-
tioned advantages of PIDL are consequential in precise and
prompt TSE.
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VIIl. CONCLUSION

This paper presented a physics-informed deep learning
(PIDL) methodology for traffic state estimation (TSE).
Combining the strength of underlying physical laws of traf-
fic flow and deep learning techniques, we demonstrated
the capability of PIDL in utilizing scantily available traf-
fic data for accurate and real-time TSE. The approach was
presented using LWR and CTM models combined with the
Greenshields’, Daganzo’s, and Inverse-lambda fundamen-
tal diagrams. Two case studies were performed to validate
the proposed approach. The first case study utilized syn-
thetic data resembling CAV trajectory data as captured by
RSUs. The second case study utilized NGSIM data - re-
purposed to resemble a scantily collected probe vehicle data.
Results showed that PIDL is effective in TSE and outper-
forms the DL method, especially with sparse and unreliable
(due to noise and communication loss) measurements. Future
work should consider a simultaneous estimation of model
parameters and state reconstruction.
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