
Received 24 November 2021; revised 15 February 2022 and 21 March 2022; accepted 27 April 2022.
Date of publication 29 April 2022; date of current version 6 May 2022.

Digital Object Identifier 10.1109/OJITS.2022.3171502

Generalized Path Planning for UTM
Systems With a Space-Time Graph

RAFAEL PAPA (Graduate Student Member, IEEE), IONUT CARDEI (Senior Member, IEEE),
AND MIHAELA CARDEI (Senior Member, IEEE)

Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA

CORRESPONDING AUTHOR: M. CARDEI (e-mail: mcardei@fau.edu)

ABSTRACT Motivated by the increased use of UAS in commercial applications, in this paper we tackle
the problem of path planning when requests are submitted by UAS managed by different operators. We
propose the new problem of generalized path planning for UAS Traffic Management, where the UAS
path is described by operators with a sequence of waypoint groups and a solution trajectory must pass
through a waypoint in each group. This problem is typical for applications where multiple charging
stations and pickup/drop-off locations are distributed in a flight area. Our solution builds upon prior
work on discretized space-time graph path planning and proposes a novel multi-source/multi-destination
graph search algorithm that generates collision-free trajectories for pre-flight CDR. Our efficient algorithm
has runtime proportional to the number of groups and avoids combinatorial explosion. We apply our
mechanism to the energy-constrained UAS package delivery problem with multiple warehouses and battery
charging stations. Simulation results show that our algorithm is efficient and scalable with the number
of requests and graph size. The addition of charging stations and the option for multiple warehouses
increases the request admission ratio and reduces the overall trajectory duration, effectively improving
both the planner’s quality of service and the efficiency of airspace usage.

INDEX TERMS UAS path planning, UTM system, space-time graph, pre-flight CDR.

I. INTRODUCTION

THEUNMANNED Aircraft Systems (UAS) service mar-
ket is expected to grow to $63.6 billion by 2025 [1].

According to Statista [2], drone sales have surpassed $1.25
billion in 2020. The low cost of acquisition, payload capac-
ity, maneuverability, and the ability to fly at low-altitudes
with a very low cost of operation, make unmanned aerial
vehicles (UAVs) a perfect fit to revolutionize the payload
transportation of small items. There are many commer-
cial applications for UAS at low altitude including package
delivery, inspection, surveillance, monitoring and aerial
photography.
Unmanned Aerial Vehicle (UAV) technology has evolved

considerably in recent years. Many research challenges are
still related to the device limitations. Low operating speed,

The review of this article was arranged by Associate Editor Fernando
Auat Cheein.

battery lifetime, vulnerability to hackers and little resis-
tance against weather change still affect some real life
simulation/results. Flying under rain, snow and/or lighting
environments may damage the circuit components and also
interfere with the communication between the UAV and the
controller.
UAS operations must ensure safety, security, efficiency

and equity of the airspace system. The airspace could become
congested in the next few years, exceeding the Air Traffic
Control (ATC) capacity [3], therefore the need to regulate
drone flights and provide a system that ensures a fair distri-
bution of the available airspace to commercial applications
has become increasingly important.
To address this challenge, NASA and the U.S. Federal

Aviation Administration (FAA) have developed an UAS
Traffic Management (UTM) architecture [4] that supports
a set of services to enable cooperative management of
low-altitude UTM operations between UAS Operators. This
architecture supports common situational awareness among

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 3, 2022 351

HTTPS://ORCID.ORG/0000-0003-2359-6196

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

TABLE 1. Acronym list.

all UTM stakeholders (e.g., Operators, FAA, and other
government agencies). UTM [4] is a community-based, coop-
erative traffic management system, where the Operators and
entities providing operation support services are responsi-
ble for the coordination, execution, and management of
operations, with rules of the road established by FAA.
One of the most important components of the UTM archi-

tecture is the UAS Service Supplier (or USS). The USS helps
UAS operators to meet the UTM operational requirements
to provide safety and an efficiency use of the airspace. The
USS acts as a communication bridge between the UTM
controller and the UAS operators. It provides information
about the planned operations within the UTM and it stores
operation data in its historical databases for future analy-
sis. Those functions allow the architecture to provide an
independent cooperative management of the UAVs opera-
tions without the necessity of direct FAA involvement in the
process.
UAV path planning is an important operation of the UTM

systems. USS must process requests from different UAS
operators. Some of the challenges of designing path plan-
ning mechanisms are obstacle avoidance (both static and
dynamic), dealing with Conflict Detection and Resolution
(CDR), scalability with number of requests and graph size,
and efficiency. In addition, there are limitations due to UAV
technology. For example a commercial drone can only fly
for about half an hour in good conditions (i.e., no wind or
rain).
Different from a standard aircraft flight plan where its

route is propagated through ATC automation systems for
aircraft operations, the flight intent (or path planning) in
UTM have to be submitted and shared among its Operators
in the form of an Operation Plan. The Operation Plan
has to be computed in advance and it has to provide the
information required by UTM to be able to be approved. For
instance, such information could include UAV launch, recov-
ery, planned times, and locations (waypoints) associated with
the path. The Operation Plan created by the Operator may be
impacted by other planned operations, airspace constraints,
or even ground constraints [4]. In such a case, the Operator
should be able to adjust the submitted plan accordingly and
resubmit its plan for a new evaluation. The UTM system will
be responsible to provide all appropriate information affect-
ing the planned operation of an Operator. On the other hand,
the operator will need to identify operational conflicts and

be able to strategically de-conflict them and the USS will be
responsible to provide a fair distribution of the airspace [4].
UAV must avoid static and dynamic obstacles [5]. Static

obstacles include airports, stadiums, and other no-fly areas.
Dynamic obstacles include UAVs controlled by other ser-
vice providers. There are two types of CDR: (i) pre-flight
CDR performed before the actual flight and it accounts for
flights already scheduled, and (ii) in-flight CDR that adapt
UAS flight in real-time due to weather or other emergency
situations. Research work [5] considers an implementation
of the UTM system where Operators use USS for path plan-
ning and other tasks, and a central Core UTM to deal with
in-flight CDR.
Our main contribution in this article is the formulation

of the generalized path planning problem for UTM and
an algorithm that finds such collision-free trajectories with
low computational complexity. Our novel algorithm is effi-
cient and scalable in simulations with thousands of vehicles.
This algorithm can be used by UTM for pre-flight CDR.
It is a generalized solution of the UAS Energy-constrained
Delivery Scheduling (UAS-ECDS) problem we introduced
in [6]. With generalized path planning a UAS operator spec-
ifies a path planning request with a sequence of waypoint
groups, including a source group and a destination group. A
solution trajectory is a collision-free sequence of locations
that must include one waypoint from each waypoint group
in the required order, and that keeps UAS at a safe distance
from each other at all times. Generalized path planning is
a new problem from all our own prior work and any other
prior work in UAS path planning/routing. Traditional path
planning is just a special case: when all waypoint groups
have size 1, generalized path planning reverts to the tradi-
tional waypoint planning problem. Groups with more than
one waypoint are practical in scenarios when an operator has
access to multiple battery charging stations (or battery resup-
ply/changing stations) and when a UAS can pick up/deliver
from/to a group of warehouses or clients. We build upon
our prior work on UAS collision-free path planning using a
discretized space-time graph ([6], [18], [19]). Our solution is
a novel greedy multi-source/multi-destination graph search
algorithm that runs on the discretized space-time graph over-
layed on the flight volume of operation under UTM control.
The algorithm runtime is directly proportional to the product
of the number of groups and the maximum waypoint group
size and it avoids combinatorial explosion.
The second contribution is a path validation algorithm

that checks whether a trajectory supplied by an operator is
in conflict with other current or pending trajectories in the
same area. The algorithm operates on the discretized space-
time graph. Its runtime complexity is directly proportional
with the path size or the number of graph vertices. The
runtime does not depend in any way with the total number
of UAS or trajectories and that makes it very scalable in
large scenarios.
For our third contribution we formulate a solution to the

UAS Energy-constrained Delivery Scheduling (UAS-ECDS)

352 VOLUME 3, 2022

problem [6] using the novel generalized path planning algo-
rithm. In the UAS-ECDS problem a UAS picks up a package
from any of set of start warehouses and delivers it to a client
location. After that, the UAS must fly to any of a set of
destination warehouses. The UAS may use optional charg-
ing stations as intermediary waypoints to extend their flight
range between the source/finish warehouses and the client
vertex. A performance evaluation analysis with simulations
reveals that our solutions have low runtime, scale well with
large networks and deployments, and use graph resources
efficiently, with high admission ratio to find tours with low
delay.
The rest of the paper is organized as follows. Related

works in UAS path planning and our prior work are presented
in Section II. Section III discusses the motivation and intro-
duces the problem definition. In Section IV we propose
our generalized path planning mechanism, the path valida-
tion algorithm, and we apply the former to the UAS-ECDS
problem. The performance of our algorithm is discussed in
Section V. The conclusions are stated in Section VI.

II. RELATED WORK
UAS path planning is an important research problem that
has attracted recently increased attention. In this section we
present relevant research in conflict detection and resolution,
the NASA UTM architecture concept, and our prior work
that serves as foundation for the contributions in this article.
Paper [7] proposes a path planning algorithm that can

be used when conventional UAVs and aircrafts need to fly
in close proximity. The objective is to generate path tra-
jectories for multiple UAVs and aircrafts flying to multiple
destinations while maintaining an adequate separation dis-
tance between them. The authors formulate a mixed-integer
programming (MIP) problem that can be solved using the
Quadratic Unconstrained Binary Optimization (QUBO). Due
to their complexity, MIP formulations have high complexity
and they are not scalable. To overcome these drawbacks,
authors use quantum annealing to solve some of the cases.
The current airspace management system requires a solu-

tion that integrates the high-density UAV traffic into the
regular airspace traffic. Article [8] extended the aforemen-
tioned work by taking into consideration large groups of
autonomous UAVs flying close together, i.e., swarms of
UAVs. Each swarm is represented by a unique member called
"locomotive”. The same QUBO optimization problem is used
to compute the locomotive path planning and to solve the
conflicts between clusters of UAVs. The proposed approach
uses instantaneous optimization focusing on local effects,
and it does not provide a global optimal path for the entire
system.
Paper [9] proposes off-line and on-line approaches for

path planning. The off-line approach implements a genetic
algorithm (GA) that provides multiples trajectories using the
Pareto Front (PF), while the on-line mechanism uses the A*
algorithm as a decision factor to prune branches of its exist-
ing exploring tree. The PF is used to reduce the number of

possible solutions and provides a suitable set to the external
operator. The authors have demonstrated that the GA algo-
rithm outperforms the A* when possible solutions are taken
into consideration, however the A* mechanism runs faster.
Article [10] computes the path planning using UTM

Volumes. Each vehicle has to operate inside one of these
approved volumes during the whole operation. The proposed
approach uses a tree based local path planner to ensure colli-
sion free trajectories of the UAVs inside the UTM approved
volumes in high-density urban areas (UTM TCL4). The
authors use a recursive tree to generate the paths and then
select the one that satisfies all constraints within the approved
UTM volume. The local planner is responsible to compute
possible trajectories based on a list of waypoints that vehi-
cles have to follow. The internal controller ensures that the
UAV will follow a feasible trajectory. The UAV current
position is part of a list of local waypoints computed in
the previous time step and the current position is used to
generate the next one. To avoid collisions, the UAVs are
exchanging relevant information through Dedicated Short-
Range Communications (DSRC). Simulation results show
that the paths computed by the local planer satisfy all the
UTM constrains and avoid the static obstacles.
Article [11] designs a path-planning algorithm that com-

bines a flight scheduling heuristic with 4D trajectory
optimization. A set of encounter-based metrics are used to
estimate the complexity and the capacity of the unmanned
airspace. By reducing the fraction of vehicle encounters in
the airspace, they can achieve better safety performance and
outperform the traditional path planning approaches. This
work focuses on gradient-based motion planning algorithms
know as trajectory optimization [12] to compute the flight
trajectories. Integer linear programming is used to compute
the total number of encounters of hypothetical flights in
a specific time range. The algorithm mainly works to per-
form the de-conflicting against other existing trajectories and
obstacles in the airspace without considering the capacity
constraints and the impact on the current airspace.
Conflict detection and resolution (CDR) is an important

aspect to be considered for path planning. Work [5] proposes
an adaptation of the optimal reciprocal collision avoidance,
a well-known mechanism used in robotics for providing
collision-free motion between multiple independent mobile
robots. The objective is to minimize the total sum of dis-
tances traveled by all UAVs of the fleet using tabu search.
Collisions are avoided by selecting the optimal action of each
agent based on a low-dimensional linear program resolution.
Each agent takes half of the responsibility of avoiding pair-
wise collisions during a flight. Authors considered scenarios
with 3 UAS operators and a fleet varying from 15 to 35
UAVs. However, more scalable approaches are needed for
practical applicability.
A different approach is presented by Sacharny et al.

in [13]. The authors proposed a lane-based method where
lanes are created and reserved on demand by USSs, after
being approved by UTM authorities. The objective of the

VOLUME 3, 2022 353

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

strategic deconfliction algorithm presented in this work is to
determine conflicts between UAS flight paths before UAS
take off. Authors use a space-time lane diagram where each
lane has a single entry point and a single exit point that
allows a direct UAS flight between the two ending points.
Crossing conflicts are eliminated by an airspace structure
inspired by roadway roundabouts, which is a concept from
the ground traffic engineering [14]. The innovation of the
approach relies on the dynamic nature of lane creation or
deletion, as well as on the introduction of virtual roundabouts
in airspace to perform strategic deconfliction.
Instead of virtual lanes, article [15] uses geofences to

organize the airspace into spatial and temporal segments
following the UTM definitions. The main goal is to decon-
flict new requested geofences from the already approved
ones in the UTM system. Several algorithms are introduced
for various operations such as adding/removing geofences to
the UTM database, managing the geofence temporal bounds,
and geofence boundary deconfliction. The evaluation is done
in order in which new geofences requests are received and
static geofences have higher priority over the dynamic ones.
Performing strategic deconfliction reduces the occurrence

of real-time (or tactical) deconfiction during the flight.
Several works have introduced communication protocols to
overcome the issues created by the tactical deconfliction. For
instance, Sacharny et al. [16] have used a lane-based model,
presented earlier in this section, and have proposed a protocol
to coordinate the airspace in the proposed UTM architecture.
The protocol is responsible to manage deconfliction using
the Closest Point of Approach algorithm and the lane-based
infrastructure is responsible to inform the ideal operating
density to the UTM environment. The objective is to reduce
the speed of one or more UAVs that are heading to the same
destination and flying too close from each other.
The UTM architecture presented by NASA is still in the

development stage. Paper [17] presents a UTM Core platform
used to minimize the impact of multiple USSs connected to
the UTM services directly. The objectives are to facilitate
data exchange, enable the community-based regulations to
be implemented, and use of the airspace more efficiently.
The proposed platform centralizes all safety-critical airspace
management functions of USSs into a single UTM Core. It
also separates the low-altitude functions from the commercial
services of UAS operators. The new UTM Core allows the
USSs to focus on the main core business and clients while
delegating the safety-critical functions to a central operator.
In our prior work from [18] we propose a scalable path

planning algorithm that uses an extension of the Breadth-
First-Search (BFS) algorithm over a discretized space-time
unit graph. The graph representing the aerial highway with
airspace available for UAS transit is discretized in segment
units equal to the minimum safety distance (or longer).
With vehicle speed constrained to 0 m/s (hover) or a uni-
form cruise speed for all vehicles, the path search algorithm
generates conflict-free trajectories that maintain the safety
distance between all UAS in operation. An edge pruning

mechanism is used to make nearby edges unavailable when
computing paths for other vehicles. Some details on the dis-
cretized space-time graph and edge pruning are relevant for
this article and are presented in Section IV-A. Simulations
have been conducted for up to 9000 UAS requests arriv-
ing at a rate of 4.5/s with an average run time of 0.152
seconds per request for a map of downtown Boca Raton,
Florida, and performance results proved that our space-time
graph approach is very scalable for scenarios with thousands
of vehicles in the same area. Other UAS and vehicle path
planning algorithms only scale with scenarios with much
fewer vehicles. We extended this work and article [19] pro-
poses a mechanism that processes the requests in batches,
yields better admission ratio and delay overhead in low and
medium density scenarios. The running time is 4-7 times
shorter compared to the algorithm in Section IV-A, showing
even higher scalability in practical situations.
In paper [6] we turned to the problem of UAS path

planning for package delivery with multiple warehouses
as starting and ending points and with multiple charg-
ing stations that can be used to extend UAS operational
range. We formulated the UAS Energy-constrained Delivery
Scheduling problem and we proposed a path planning mech-
anism that uses a multi-source A* algorithm variant. The
solution assumes a centralized traffic management system
that processes all client requests, regardless of their opera-
tors, and has global information on the airspace availability.
The algorithm proved to be scalable in scenarios with thou-
sands of vehicles operating in the same metropolitan-size
airspace.
Our main contribution in this article uses the space-time

graph framework from [18] to address a new and different
problem that was not considered elsewhere in the UAS/UAV
path planning literature, to the best of our knowledge. We
propose a novel generalized path planning algorithm which
is later applied to solve the UAS-ECDS problem from [6]
(see Section IV-D). The proposed generalized path problem
takes as input the waypoint groups that must be traversed
in sequence and the vertex graph and seeks to compute
a path that consists of graph edges that includes exactly
one vertex from each waypoint group, in the given order.
The algorithm takes a greedy approach, promoting short
paths. Traditional source-destination path planning problems
and waypoint-based path planning problems can be trivially
reformulated as waypoint group generalized path planning
problems that our new solution in this article can handle.
Our new algorithm has a competitive running time and is
scalable with the number of UAS requests.

III. MOTIVATION AND PROBLEM DEFINITION
We begin this section with a brief overview of the problem
domain for the generalized path planning problem. Many
applications are using drone technology recently such as
surveillance, aerial photography, shipping and delivery, geo-
graphic mapping, search and rescue, and weather forecast.

354 VOLUME 3, 2022

According to Statista [2], there were 372,000 commer-
cial drones registered in U.S. in 2021, and this number is
expected to grow in the near future. New rules and reg-
ulation are needed to establish how the airspace will be
shared. One the most important and relevant research prob-
lems is the UAS path planning. Challenges associated to this
problem are the physical limitations of the vehicles (mass,
flight time, vehicle dynamics), sharing the airspace, safety
of the vehicles, collision detection and resolution, scalability,
efficiency, and seamless integration of vehicles from different
commercial organizations and recreational drones.
The constituents of a UTM system are operators (com-

panies such as UPS, Amazon, Walmart) and the UTM path
planner. Operators may send planning requests to the UTM
planner at any time. A request contains the start location(s),
the destination location(s), a sequence of waypoint groups
and time constraints for navigation between groups. A group
has one or more waypoints. The computed trajectory will
pass through exactly one waypoint in each group, in the given
group sequence. Examples of requests are delivery of items
from one of the Amazon warehouses to a client, surveil-
lance from a start location to destination location traversing
several points of interest.
Giving the UAS the option to pass through any waypoint

in a group of waypoints along the path defined by such
groups generalizes the path planning problem. It is suitable
in scenarios where there are several options to pick up or
deliver packages and for scenarios where charging stations
can be used to extend flight range. Adding charger groups to
a request improves considerably the request admission ratio,
as seen in the performance evaluation Section V-C. The
objective is to design an efficient, on-demand path planning
mechanism that produces collision-free trajectories.
We assume that all UAS’s have the same maximum speed

vmax and they must be separated by a distance greater than
or equal to the safety distance d when in flight in order to
be collision-free.
Our proposed mechanism for path planning addresses the

following aspects:

• UAS serviced by different operators
• pre-flight collision detection and resolution
• scalability with large scenarios: thousands of concurrent
flights in a shared city-wide airspace.

IV. GENERALIZED PATH PLANNING MECHANISM WITH A
SPACE-TIME GRAPH
In this section we propose a generalized path planning
mechanism for UTM systems with pre-flight CDR. This
mechanism will ensure that any new path planned will not
interfere with other in-flight UAS. In prior work ([6], [18],
[19]) we devised the space-time graph framework upon
which we built the contributions in this article. We sum-
marize it in Section IV-A. We continue in Section IV-B
with the generalized path planning architecture, the planning
algorithm, and the path validation algorithm. Section IV-C

TABLE 2. Configuration parameters with typical values.

discusses issues and trade-offs from using a graph for tra-
jectory planning. Section IV-D presents a use case for the
UAS Energy-constrained Delivery Scheduling (UAS-ECDS)
problem and shows a new and efficient solution using the
generalized path planning algorithm.

A. SPACE-TIME GRAPH MODEL
The model we introduced in [18] defines the aerial highway
system as a directed graph G(V,E), with UAS able fly only
along the edges of the graph G and allowed to hover only
in vertices in V . We assume that all UAS have the same
maximum (or cruise) speed vmax and they must be separated
in flight by a distance greater than or equal to the safety dis-
tance d in order for trajectories to be collision-free. Table 2
summarizes model parameters.
We make the following assumptions:

• UAS are capable of waypoint navigation with localiza-
tion errors of a few cm.

• UAS move along the edges of the aerial highway traffic
graph Ginit(V,Einit). This is a weighted spatial graph,
where the weight of an edge dist(u, v) is the Euclidean
distance from u to v. The graph must be 2D planar or
with vertices at 3D positions so that non-adjacent edges
are at minimum safety distance d.

• the minimum speed of each UAS is 0m/s, such as for
VTOL (vertical takeoff and landing) UAS. The speed
of each UAS is between 0m/s and vmax.

• Vehicles have a robust communication system, e.g.,
multi-carrier 5G cellular modems, to reduce the proba-
bility of outage.

• Vehicles report in real time their location to the UTM
system (directly or indirectly via the operator) and
follow the trajectory set by the operator or UTM.

To maintain a collision-free trajectories, the UTM system
must ensure that the distance between UAS operated by the
same or different operators is at least the safety distance d.

To enforce the safety distance requirement graph Ginit

is discretized to a unit-graph Ginitu = (Vu,Einitu) where the
weight of each edge in Einitu is in interval (0, d]. The edges
in Einitu result from dividing each spatial edge (u, v) of the
original spatial graph Ginit into segments of length d and plus
a shorter segment at the end in case d does not divide evenly
d(u, v). The key constraint towards collision-free trajectories
is that at most one UAS can traverse a unit edge at any time.
An edge (u, v) from the unit-graph is traversed by the

UAS in time δ = d/vmax. Time is discretized with 1 time
unit equal to δ. If an UAS is located at the vertex u at time

VOLUME 3, 2022 355

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

FIGURE 1. Simplified architecture that shows the communication protocol between the UAS Operator and the UAS Service Supplier.

t, then it will be in the same location at t + 1 if the UAS
pauses (e.g., hovers), or it may be located at some vertex v
if the UAS traverses some edge (u, v).

When an UAS travels an edge (u, v) between [t, t + 1),
we need to ensure that a safety distance d is maintained to
any other UAS.
Without loss of generality, we assume in the following

that δ = 1. We model the availability of edges in time
using a space-time graph denoted Gu(t) = (Vu, Eu(t)) where
Eu(t) is the set of edges which are available during the
time interval [t, t + 1). Initially, Eu(t) = Einitu for each t =
0, 1, 2, . . . , however the set of edges is pruned when new
UAS trajectories are scheduled.
We use the PRUNE-RULE algorithm from [18] to remove

the edges that would conflict with a newly schedule trajec-
tory. If a UAS traverses the edge (u, v) between [t, t + 1),
then the pruning mechanism removes from Eu(t) the edge
(u, v), and all edges (a, b) with distance{(u, v), (a, b)} <

d with the following exceptions: (i) an edge (a, u) is not
deleted from Eu(t) if the vertices a, u, and v are collinear
and dist(a, u) = dist(u, v) = d; (ii) an edge (v, b) is not
deleted from Eu(t) if the vertices u, v, and b are collinear
and dist(u, v) = dist(v, b) = d; and (iii) the reverse edge
(v, u) is not deleted from Eu(t).
The edge (u, v) is removed from Eu(t) since each edge in

the unit-graph can be traversed by at most one UAS. The
edges located at distance smaller than d are removed since
they violate the safety distance d. Edges which are adjacent
to (u, v) and lie on the same straight line as (u, v) will not be
removed since they can be active at time [t, t+ 1). Reverse
edge are not removed since we assume they have sufficient
altitude separation.

B. GENERALIZED PATH PLANNING WITH PRE-FLIGHT
CDR
In this section we present the main contribution of this arti-
cle: a generalized path planning mechanism with pre-flight
Collision Detection and Resolution (CDR). A client request
contains the start location (one or more nodes), the desti-
nation location (one or more nodes) and time constraints.

Based on a client request, the operator prepares a Request
to be sent to the UTM UAS Service Provider.
A simplified architecture is presented in Figure 1. Upon

receiving the client request, the operator checks for fea-
sibility and based on that prepares a Request for the UAS
Service Supplier (USS) or reject the client request. Checking
for feasibility include operations such as: checking that the
client request can be completed by the desired time, check-
ing that the flight time does not exceed the battery capacity
limitations, etc.
The USS pre-flight CDR processes the requests in the

order of arrival, although a priority mechanism could be
implemented. There are two types of requests that can be
initiated by the UAS Operator, see Figure 1, and either of
them can be used many times interchangeable. In the first
type, the UAS operator computes a path for the client request.
However, the UAS operator does not have the global graph
state information and the computed path may have collisions
with other in-flight UAS. Request(path) is sent to the USS
which uses the VALIDATE_PATH algorithm to determine
whether the proposed path has conflicts with the ongoing
traffic and returns true/false accordingly. Based on this, the
proposed path is approved/rejected.
If the path is approved, then the resources are allocated

by the USS using the pruning algorithm for the space-time
graph. If the path is rejected, then the UAS can make another
request to the USS (either type of request), or can reject the
client request.
In the second request type (Figure 1), the operator formu-

lates a generalized path request Request(WG) that contains
a list of waypoints groups WG = (WG0, . . . ,WGn−1),
n ≥ 1, where WG0 contains the possible source loca-
tions and WGn−1 contains the possible destination locations.
Each waypoint group WGi contains a number of nodes gi0,
gi1, . . . , gij where j ≥ 0 and possible time constraints for
the prior waypoint groups, e.g., the flight duration between
WGk and WGi is at most tki time units. The UAS must
visit any vertex from each group, in the given group order
WG0,WG1, . . . ,WGn−1.
The USS uses the UTM_COMPUTE_PATH algorithm to

compute a path that meet the waypoint group requirements

356 VOLUME 3, 2022

Algorithm 1: VALIDATE_PATH(Gu, path)
1: for i = 0 to path.length - 2 do
2: if (path[i][0],path[i+1,0])/∈ Eu(path[i][1]) then
3: /∗ conflict detected ∗/
4: return false
5: end if
6: end for
7: /∗ no conflict detected ∗/

8: return true

and time constraints. The algorithm returns the first feasi-
ble path, however it can be changed to return all feasible
paths. If there is no feasible path, then the algorithm returns
NIL. Based on the algorithm outcome, the USS sends
Approved(path) or Rejected to the UAS operator.
Next, we describe the VALIDATE_PATH algorithm. The

algorithm checks whether the path is available in the space-
time graph. Each path is a list of tuples. For example, a path
p = [(a, 3), (b, 4), (c, 5)] is a path a → b → c where the
edge (a, b) is traversed at time 3 (i.e., time interval [3, 4)),
the edge (b, c) is traversed at time 4, and the UAS reaches
the last vertex c at time 5. To check validity of p, we need
to ensure the validity of the path in the space-time graph.
More specifically we need to ensure that (a, b) ∈ Eu(3) and
(b, c) ∈ Eu(4).
Lines 1 to 6 of the algorithm checks whether each edge

of the path is in the space-time graph at the corresponding
time. If at least one edge is not available, then the algorithm
returns false (line 4). Otherwise, the algorithm returns true
(line 8).
Next we describe the UTM_COMPUTE_PATH algorithm.

The two input arguments are the space-time graph Gu and
the list of waypoint groups WG. The algorithm will return
a path from one of the vertices in the start waypoint group
WG[0] to one of the vertices in the final waypoint groups
WG[k − 1] if such a path exist, or NIL otherwise.
We denote by k the number of waypoint groups (line 1).

Line 2 calls the INIT_GROUPS algorithm, which initializes
wgTime and path fields for each element of each waypoint
group. WG[i][j].wgTime stores the time when a path start-
ing from an element in WG[0] reaches WG[i][j]. The field
WG[i][j].path stores the path from an element in the prior
waygroup WG[i−1] to WG[i][j]. The initialization algorithm
sets up the wgTime values to infinity and path to NIL since
no paths are computed yet. The wgTime values in the initial
waypoint group WG[0] are set up based on the Request from
the UAS Operator.
The for loop (lines 3 to 45) in the

UTM_COMPUTE_PATH algorithm computes paths
between consecutive waypoint groups WG[i] and WG[i+1],
for i = 0 to k − 2. Variable tmaxIntervalTime is the maximum
possible time for this interval and it is computed based on
time restrictions included in the Request from the UAS
Operator to the USS. Since each edge is traversed in 1 time

Algorithm 2: UTM_COMPUTE_PATH(Gu, WG[][])
1: k = WG.size()
2: INIT_GROUPS(WG[][])
3: for i = 0 to k-2 do
4: /∗ compute paths between group i and group i+1 ∗/
5: tmaxIntervalTime =

COMPUTE_INTERVAL_MAX_TIME(WG[][], i, i+1)
6: t = ts =

min{WG[i][j].wgTime for j = 0 to WG[i].size() − 1}
7: for each vertex v at most tmaxIntervalTime hops from

WG[i] do
8: v.color = white
9: v.π = NIL
10: v.time = ∞
11: end for
12: INIT_PRIORITY_QUEUE(Q)
13: for j = 0 to WG[i].size()-1 do
14: WG[i][j].vertex.color = gray
15: WG[i][j].vertex.π = NIL
16: WG[i][j].vertex.time = WG[i][j].wgTime
17: ENQUEUE(Q, (WG[i][j].vertex.time, WG[i][j].vertex))
18: end for
19: while (Q�=NIL) && (t ≤ ts + tmaxIntervalTime) &&

REACHED_ALL_GROUP_VERTICES(WG[][], i+1) do
20: (t, v) = DEQUEUE(Q)
21: for each vertex u such that (v,u) ∈ Einitu do
22: if u.color �= white then continue
23: if (v,u) ∈ Eu(t) then
24: u.color = gray
25: u.π = v
26: u.time = t + 1
27: if (i == k-2) && (u == WG[k-1][j].vertex for

some j between 0 and WG[k-1].size()-1) &&
CHECK_TIME_CONSTRAINTS(WG[k-1][j])
then

28: ASSIGN_PATH(WG[k-1][j])
29: PRUNE-GRAPH(Gu, WG[k-1][j].path)
30: return WG[k-1][j].path
31: else
32: ENQUEUE(Q, (t+1, u))
33: end if
34: else
35: /∗ u is white and (v,u) /∈ Eu(t) ∗/
36: if (t+1, v) /∈ Q then ENQUEUE(Q, (t+1, v))
37: end if
38: end for
39: end while
40: for j = 0 to WG[i+1].size()-1 do
41: if CHECK_TIME_CONSTRAINTS(WG[i+1][j]) then
42: ASSIGN_PATH(WG[i+1][j])
43: end if
44: end for
45: end for
46: return NIL

unit, tmaxIntervalTime also indicates the maximum path length
from an element in WG[i] to an element in WG[i+ 1].
The pseudocode presented in lines 7 to 39 is a novel multi-

source/multi-destination technique that runs on a discretized
space-time unit graph. The vertices in WG[i] are the source
vertices, while the vertices in WG[i+ 1] are the destination
vertices.

VOLUME 3, 2022 357

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

Algorithm 3: INIT_GROUPS(WG[][])
1: k = WG.size()
2: for i = 0 to k-1 do
3: for j = 0 to WG[i].size() - 1 do
4: if i == 0 then
5: set WG[0][j].wgTime based on the Request from the

UAS Operator
6: else
7: WG[i][j].wgTime = ∞
8: end if
9: WG[i][j].path = NIL
10: end for
11: end for

Algorithm 4: REACHED_ALL_GROUP_VERTICES(WG[
][], i)

1: for j = 0 to WG[i].size() - 1 do
2: if WG[i][j].wgTime == ∞ then return false
3: end for
4: return true

Lines 7 to 11 initialize the vertices that are at most
tmaxIntervalTime hops from the source vertices in WG[i]. The
color is set up to white, the predecessor to NIL and the time
field is set up to infinity. When a vertex is later discovered
it will be colored to gray, and the predecessor and the time
will be set-up accordingly.
The algorithm uses a priority queue Q. The elements of

Q are tuples (t, v) where t is a time value and v is a vertex
in Vu. The priority of the elements in Q is given by the first
value of the tuple (i.e., by t) and elements with the same t
value can be dequeued in any order.
Lines 13 to 18 initialize the source vertices from WG[i]

and insert them in Q. The while loop (lines 19 to 39)
dequeues and processes one element at each iteration as
long as the queue is not empty, the maximum duration
tmaxIntervalTime was not exceeded, and there are destination
vertices which are not yet reached. For this we check the
wgTime field of all the elements in the waypoint group
WG[i+ 1] using algorithm 4.
Let (t, v) be the current element dequeued in line 20. The

for loop examines each neighbor u from Ginitu . If u is colored
gray, then it has been already discovered. If u is colored white
and the edge (v, u) is available at the current time (line 23),
then u is discovered and the fields color, predecessor, and
time are updated accordingly. If u is a final vertex, i.e., a
vertex in the final waypoint group WG[k−1] (line 27), then
the algorithm has found a path which is returned in line 30.
If u is not a final vertex, then u is added to Q (line 32).

In line 36, if u is white and the edge (v, u) is pruned, then
(t + 1, v) is added to Q, if it is not already an element of
Q. In this way the edge (v, u) is re-evaluated at the time
instance t + 1. Vertex v will be re-inserted in the queue at
subsequent times as long as it has white neighbors.

When the path search for the interval WG[i] to WG[i+ 1]
terminates, paths are assigned for the destination nodes in
the group WG[i+ 1], as seen on lines 40-44.

Next, we present the running time analysis. The complex-
ity of the VALIDATE_PATH algorithm is O(path.length)
which can be expressed as O(Vu). To analyze the
UTM_COMPUTE_PATH algorithm, we denote p the max-
imum number of elements in a waypoint group WG[i] for
i = 0, . . . , k − 1. We also denote T the maximum interval
time between two consecutive groups.
The while loop executes at most O(VuT) time, since each

vertex is added to the queue at most once for each time
value t. We denote α the maximum node out-degree. The
for loop in line 21 adds a multiplication factor α. Therefore,
the complexity for the lines 19 to 39 is O(αVuT). Lines 40
to 44 assign paths to all the destination vertices in WG[i+1]
following the predecessor field π . The complexity for the
lines 40 to 44 is O(pVu).

The overall complexity has another factor k due to the for
loop in line 3. The PRUNE-GRAPH algorithm is run only
once, when a final destination has been reached and has
complexity O(kTEu). The complexity of the Algorithm 2 is
therefore O(k(αVuT + pVu + TEu)).
For the performance evaluation in Section V we generate

the graphs using OpenStreetMap. These graphs have a small
maximum node out-degree α. For example, α = 5 for the
unit-graph of the downtown Miami map for d = 10, with
an average degree of 1.053. Therefore, we can approximate
α as constant. Also, for the generated unit-graph of the
downtown Miami map |Eu| 	 |Vu|. In this case, the overall
running time becomes O(k(T + p)Vu).

C. LIMITATIONS OF THE SPACE-TIME GRAPH
APPROACH
Space-time graph planning solutions abstract over UAS capa-
bilities and constraints. The trajectory planner computes
trajectories that consist of edges in the discretized space-
time unit graph. Since at most one UAS may “occupy” an
edge during a time unit, a space-time edge path keeps vehi-
cles separated by the safety distance. The graphs used for
illustration in this article are directly derived from road maps
on OpenStreetMap, which may not be realistic for UAS oper-
ation. The unit space graph used for simulations is a 2D and
mostly planar (e.g., except for tunnels and bridges). This
proof-of-concept approach for graph generation was conve-
nient and it can easily scale up to very large maps with
minimal manual work. The graph inherently avoids build-
ings, private property, and public places of gathering, like
stadiums and parks.
The algorithms in this article will work equally well in 3D

non-planar graphs, with vertices located at arbitrary heights.
There is no assumption in the algorithms on its topology.
The graph construction algorithm allows one to easily

create models with more realistic elements that better suit
current drone dynamic/inertial constraints, such as generating
aerial lanes in opposite directions properly separated, with

358 VOLUME 3, 2022

curved multi-segment corners, and roundabouts, as described
in [25], to reduce contention in busy intersections.
We assumed an idealized model for a UAS, that is capa-

ble of precise waypoint navigation. We do not make other
assumptions on the UAS performance, except for its ability to
hover and its maximum speed. The discretized graph model
forces vehicles to traverse each edge in a time unit δ. It does
not constrain how vehicles accelerate (angular/translational)
during that edge traversal. In the real world, UAS are sub-
ject to dynamic constraints (e.g., limited acceleration and
rotation speeds), navigation/localization errors from operat-
ing between high-rise buildings, communication errors, and
environmental factors, such as wind and precipitation. These
may cause UAS to deviate from their strict space-time edge
paths. What can be done?
Here are some avenues to deal with these issues. The time

unit edge traversal constraint does not care about the choice
of angular or linear UAS accelerations. The UAS guidance
and navigation subsystems are free to compute a short term
trajectory based on current conditions and vehicle capabil-
ities. A longer time unit δ (e.g., 5 seconds instead of 1 s)
may be sufficient for most UAS to traverse a longer edge
while dealing with dynamic constraints and small naviga-
tion errors from wind or precipitation. The drawback of a
longer time unit is a lower spatial vehicle density and higher
contention for unit edges, leading up to a lower admission
rate for new planning requests. Depending on the real-world
application, a longer time unit may not be an issue at all
and may provide a much higher safety margin.
A higher magnitude of navigation and localization error

is handled by UTM by recomputing trajectories. Since UAS
report periodically in real time their location, the UTM
system will determine when a vehicle deviates to a degree
that demands a new trajectory. The UTM planner will deal-
locate all space-time edges used for the remaining current
trajectory and it will recompute a new trajectory starting
with the UAS’s current position (vertex) going to the orig-
inal destination. The operator will then forward the new
route to the UAS. If an unforeseen weather event forces
multiple vehicles to deviate from their current plan, the
UTM planner will force all affected vehicles to switch
to a detached hover state that minimizes interference with
other ongoing flights while it recomputes new trajectories
starting from the current vertices. If a new trajectory is
not possible any more, the UTM will route the UAS to
a new destination (e.g., depot) in collaboration with the
operator.
In case of a brief interruption of the communication chan-

nel between a UAS and the operator (and UTM), the UAS
may continue its planned trajectory and rely on its onboard
collision avoidance to prevent collisions for the short term.
If the interruption exceeds a duration threshold the UAS
may switch to a safely hover state until communication with
UTM or the operator resumes. The UTM will then have
to recompute trajectories for affected UAS. Specific policies
will have to be formulated by regulatory agencies (e.g., FAA

in the USA) that standardize UAS behaviors in case of such
large-scale disruptions.
Space-time graph planning requires further investigation

and refinement to fully support operational scenarios like
those mentioned above. Future work will look at dealing
with navigation/communication errors and dynamic vehicle
rerouting. The field is in rapid evolution with directions set
by regulatory bodies.

D. USE CASE: UAS ENERGY-CONSTRAINED DELIVERY
SCHEDULING
In this section we present a novel solution for the
UAS Energy-constrained Delivery Scheduling (UAS-ECDS)
problem we introduced in [6]. The UAS-ECDS problem is
about an operator finding a UAS trajectory for package deliv-
ery to a client when the operator has multiple options for
start and finish warehouses and the UAS can recharge/replace
its battery at multiple charging stations. As drone battery
technology evolves this type of scenario will become more
likely to be used in practice. This algorithm relies on the
UTM system using the generalized path planner presented
in Section IV-B.
In the UAS-ECDS problem we are given an aerial high-

way traffic system modeled as a directed graph G(V,E).
The set of vertices C = {c1, . . . , ck}, C ⊂ V , is the set of
charging stations. The operator formulates a request for the
UTM system with the following fields: client location (a
vertex in V), the set of start warehouses Ws ⊂ V , the set
of final warehouses Wf ⊂ V , where Ws ⊆ Wf , the request
start time, the deadline to reach the client, and the dead-
line to reach a final warehouse. The flight time is limited
by the battery capacity, but the UAS operational range can
be extended by stopping at charging stations to recharge or
replace the battery. Our solution has the operator formulate
the initial planning problem to a sequence of waypoint-group
path planning requests sent to the generalized path planner
used by the UTM system.
We assume that the UAS can charge at most once on the

path from the start warehouse (a vertex in Ws) to the client,
and at most once on the path from the client to the final
warehouse (a vertex in Wf). A delivery path looks as follows:
start warehouse → charging station (optional) → client →
charging station (optional) → final warehouse. Charging or
replacing a UAS battery takes a time that is a configuration
parameter. Charging takes a relatively small time if the only
operation performed is to replace the battery. There are few
ways in which we can model the battery constraint UAS
delivery. Since in our framework UAS travel along unit-
edges and each UAS takes δ time to traverse an edge, we
assume that a fully charged battery lasts H×δ time, thus the
UAS can traverse at most H unit edges before recharging.

A request has the following fields: req = (clientVertex, Ws,
Wf , C, ts, maxTimeClient, maxTimeWf), where clientVertex
is the client location, Ws is the set of start warehouses, Wf is
the set of final warehouses, C is the set of charging stations,
ts is the request start time, maxTimeClient is the deadline to

VOLUME 3, 2022 359

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

FIGURE 2. Four cases for computing a path for the UAS-ECDS problem.

reach the client, and maxTimeWf is the deadline to reach a
final warehouse.
When a UAS operator needs a new package delivery tra-

jectory it considers four possible cases, shown in Figure 2,
in the order listed below. For each of the four cases, the
operator creates an admission Request for a waypoint group
path that also includes corresponding time constraints and
then it sends it to the UTM planner. The UTM planner exe-
cutes the generalized path planning algorithm and replies
with the planning result: a message with success code and
the trajectory, or a message with reject code. In case of
success, the operator concludes the admission process and
it will send the returned trajectory to the UAS before the
scheduled take-off time. In case of rejection the operator will
attempt the next case from the four. If all four cases fail,
the operator gives up, as no feasible trajectory was found
by the UTM system.
Initially, the operator will attempt a waypoint group

path without using any charging station. Each successive
attempted case uses progressively more charging station
groups. This is to find shorter paths, rather than unnecessary

long ones involving charging stations. Since the generalized
path planning algorithm is greedy, this iterative solution also
follows a greedy strategy.
We discuss next the four cases attempted by the operator

in sequence, also shown in Figure 2. The operator models
the sets of start warehouses and finish warehouses as the
start (Ws(WG1)) and end (Wf (WGx)) waypoint groups. A
group C is defined for the client vertex. Additional groups
represent the charging stations, CH1 and CH2. Each subfig-
ure illustrates the groups from the admission request from
top to bottom. A group (e.g., WG1) has some number of ver-
tices (horizontal line of black dots). On the right-hand side
the subfigures show the time constraints to reach waypoints
from the request waypoint groups.

• Case 1: no charging stations. Paths (see Figure 2(a))
are in the form: w → client → wf, where w is
a starting warehouse w ∈ Ws, and wf is a final
warehouse ∈ Wf . There are 3 waypoint groups WG
defined as follows: WG0 = Ws, WG1 = {ClientVertex},
and WG2 = Wf . The time constrains are defined as
follows: (i) Time(WG0,WG2) ≤ Hδ ensures that the

360 VOLUME 3, 2022

FIGURE 3. (a) Miami map used for evaluation. (b) Sample route for the Miami graph. The green circle shows the start warehouse, the red X marks the client, the red circle is the
finish warehouse and the light blue circle is a charging station.

battery resources are sufficient for the whole path, (ii)
Time(WG0,WG1) ≤ MaxTimeClient ensures that the
UAS reaches the client before the deadline, and (iii)
Time(WG0,WG2) ≤ MaxTimeWf means that the UAS
meets the deadline for reaching a final warehouse. This
case is attempted only if the minimum total distance
between a source warehouse, the client, and a desti-
nation warehouse is shorter than the maximum flight
distance (Hδvmax).

• Case 2: charging stations after client. Paths (see
Figure 2(b)) are in the form: w → client → ch2
→ wf, where ch2 is a charging station ch2 ∈ C.
There are 4 waypoint groups WG defined as fol-
lows: WG0 = Ws, WG1 = {ClientVertex}, WG2 = C
where C is the set of charging stations, and WG3 =
Wf . The time constrains are defined as follows: (i)
Time(WG0,WG2) ≤ Hδ, (ii) Time(WG2,WG3) ≤
Hδ, (iii) Time(WG0,WG1) ≤ MaxTimeClient, and
(iv) Time(WG0,WG3) ≤ MaxTimeWf . The first two
time constraints ensure that the battery resource con-
straints are met from the start warehouse to the charging
station and from the charging station to the final ware-
house. The last two constraints ensure that the time
constraints to the client and to the final warehouse are
met.

• Case 3: charging stations before client. Paths (see
Figure 2(c)) are in the form: w → ch1 → client
→ wf, where ch1 is a charging station ch1 ∈ C.
There are 4 waypoint groups defined as follows:
WG0 = Ws, WG1 = C, WG2 = {ClientVertex}, and
WG3 = Wf . The time constrains are defined as follows:
(i) Time(WG0,WG1) ≤ Hδ, (ii) Time(WG1,WG3) ≤
Hδ, (iii) Time(WG0,WG2) ≤ MaxTimeClient, and (iv)
Time(WG0,WG3) ≤ MaxTimeWf . Their description is
similar to Case 2.

• Case 4: charging stations before and after client.
Paths (see Figure 2(d)) are in the form: w→ ch1→ client

→ ch2 → wf. There are 5 waypoint groups defined as
follows: WG0 = Ws, WG1 = C, WG2 = {ClientVertex},
WG3 = C and WG4 = Wf . The time constrains
are defined as follows: (i) Time(WG0,WG1) ≤ Hδ,
(ii) Time(WG1,WG3) ≤ Hδ, (iii) Time(WG3,WG4) ≤
Hδ, (iv) Time(WG0,WG2) ≤ MaxTimeClient, and
(v) Time(WG0,WG4) ≤ MaxTimeWf . The first three
constraints ensure the battery resource constraints are
met from the start warehouse to the first charging sta-
tion, between the two charging stations, and from the
second charging station to the final warehouse. The last
two time constrains are similar to those in the prior cases.

Section V evaluates the performance of the proposed
mechanism compared to the algorithm from [6].

V. PERFORMANCE EVALUATION
In this section we analyze the performance of the
UTM_COMPUTE_PATH algorithm for generalized path
planning and that of the UAS-ECDS solution described
in Section IV-D. We compare the latter with the original
delivery algorithm from [6].

A. SIMULATION ENVIRONMENT
We implemented the algorithms from the previous section
and a simulation framework in Python 3 [20]. The simula-
tions ran on the Florida Atlantic University high performance
computer cluster [21], [22]. Program execution was handled
by SLURM [23], the scalable cluster management and job
scheduling system for Linux clusters. The computers that ran
the simulations are Dell PowerEdge C4140/013M88 with 32
Intel Xeon Gold 6130 CPUs @ 2.10 GHz, 187 GB memory,
and NVidia GPUs.
We used the downtown Miami map (FL USA) from [6],

see Figure 3. The map was extracted from the Open Street
Maps website [24]. The Miami (3700 × 2400 m) unit graph
has 6946 vertices and 14264 edges. Figure 3(a) shows the
original directed graph representation G(V,E) over-imposed

VOLUME 3, 2022 361

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

FIGURE 4. Experiment 1 focuses on request rate and presents results for admission ratio, tour delay and running time.

TABLE 3. Simulation parameters common to both performance evaluation studies.

on the geographic map. Table 3 lists simulation parameters
common to both studies. Our algorithms rely on the grid
system from [18] for caching edge neighborhood information
to speed up edge pruning when updating the space-time edge
availability after a successful admission.
Both performance analyses have two common

performance metrics. The runtime measurement repre-
sents how fast an algorithm performs a planning algorithm
for all admission requests sent during the entire simulation.
It depends on the admission request count, which is equal
to the product of the request rate simulation variable
and the simulation time during which new requests are
submitted. The admission ratio measures how many requests
were successfully admitted divided by the total number
of requests submitted for admission. Other performance
metrics are introduced later for specific experiments.

B. THE WAYPOINT GROUP TOUR PLANNER
EVALUATION
The UTM_COMPUTE_PATH algorithm was evaluated with
three experiments, each with a different range of variables
and using the common configuration parameters listed in
Table 4.
The experiment variables fixed for a single simulation

scenario are the request rate, the number of groups, and the
number of waypoints per group, which is the same for all
groups in a request. The maximum allowed route duration
for each request is limited by the number of groups and
the maximum flight time allowed between two waypoints
(200s), and it varies between 200s (2 groups) and 1400s (8
groups).

TABLE 4. Simulation parameters used for UTM_COMPUTE_PATH experiments.

Each simulation scenario involves 10 random runs (iter-
ations) with identical variables but different requests, with
waypoint vertices selected at random in each group so there
is at least one feasible path with the constrained total duration
in an idle graph from the first to the last group. Thus, ignor-
ing any load on the graph resources, the maximal admission
ratio would be 100%. The admission ratio is always less
than 100% for cases with heavy traffic.
The performance metrics for this study are the algo-

rithm CPU runtime, the average tour delay, and the average
admission ratio. The measurements for each scenario are
averaged and the mean is reported. The variables for the
three experiments are listed in Table 5.
In the first experiment we look at the impact of the request

rate on performance. We vary the request admission rate
between 0.01/s (corresponding to N = 32-38 UAS requests
overall) to 5/s (N = 16000-19000). The group count changes
from 2 to 5, and the waypoint count per group is 1, 2, or
4. Different values for N are obtained for each combination
of group count/group size.
The performance results are shown in Figure 4. The first

chart shows the average admission ratio. We expect that
a higher load on space-time graph resources that can’t be
shared (space-time edges) will lower the admission ratio.
When space-time graph edges connecting two different ver-
tices are busy the planner will compute a path with higher
cost in space-time. Longer space-time paths will have a
higher probability of hitting the maximum flight duration
scenario parameter limit, leading to a lower admission ratio.

362 VOLUME 3, 2022

TABLE 5. Variable values used for the three UTM_COMPUTE_PATH experiments.

FIGURE 5. Experiment 2 focuses on group size and presents results for admission ratio, tour delay and running time.

The chart shows that for a higher request rate the admis-
sion ratio drops, as expected, because of the increased
contention for resources. We also notice that for the same
group size the admission ratio will decrease significantly
with more waypoint groups for a path. This is because con-
tention for graph resources is proportional with the path
length, which is on average proportional with the number of
groups. The admission ratio drop is more dramatic for small
group sizes.
The second chart of the Figure 4 shows the average tour

delay. As expected, with constant group size the tour delay
is proportional with groups − 1, since each additional leg
of a path contributes on average a similar delay between
waypoints. Noticeable is the very slow growth of the tour
delay with higher request rate and a low group count of 2.
The load increase on graph resources up to 5 requests/s is
not enough for a sharper delay growth. That can be observed
when the group number goes up to 5. The extra load (e.g.,
occupancy) on graph resources from more UAS enroute for 5
groups is 4 times that of of scenarios with 2 groups, causing
a clear growth trend. With groups = 5 and groupsize = 4 the
tour delay growth trend is accelerating when the request rate
is increasing. Another important observation is that adding
more waypoints to the group size reduces the tour delay
significantly: between 12-27% for groups = 5 and going
from 1 waypoint to 2 per group, for a request rate of 5/s.
The drop is more dramatic when going from groupsize = 1
to 5 per group: 34%-54% drop in tour delay. The benefit
from having more options is clear.
The third chart in Figure 4 displays the runtime. As

first derived in Section IV-B, the theoretical complexity of
Algorithm 2 is O(k(αVuT + pVu + TEu)), and this is just
for one request. Here, k is the number of waypoint groups,

T is the maximum interval time between two consecutive
groups, p is the maximum group size. The runtime should
be directly proportional to p · k, the product of the maxi-
mal group size and the group count. The runtime measured
includes all requests during a scenario, so it depends linearly
on the request rate, as expected. However, the runtime mea-
surement does not seem to be proportional to p·k. The reason
for that is that the theoretical formula is an upper bound and
it does not consider the effects of dwindling resource (edges
and vertices) availability with higher request rates.
The second experiment varies the group size from 1 to 9,

with charts in Figure 5. The first chart shows the admission
ratio for various request rate - group count combinations.
The request rate values are 0.1/s (N = 300 − 380), 1/s
(N = 3000 − 3800), 4/s (N = 12000 − 15200), and 5/s
(N = 15000 − 19000). The number of groups is 2, 4, and
6. As expected, the admission ratio grows quickly when
the group size increases from 1 to 9. A group size of 6
brings it to or very close to 100% for all parameter combina-
tions. A higher waypoint group size increases the probability
of admission - up to 100%, even in busy scenarios with
19000 requests (request rate = 5/s). The admission ratio is
reduced by heavier contention for graph resources leading
up to longer paths that have a higher probability of miss-
ing the maximum allowed delay per inter-waypoint path –
the maximum flight time. We see that for scenarios with 4
groups and 6 groups that start their growth trend from much
lower admission ratios (e.g., 27% for request rate = 5 and
groups = 6).
The second chart from Figure 5 illustrates the dependency

of the tour delay on the group size, with group counts (2, 4,
6) and request rates (0.1, 1, 4, and 5). With more waypoints
per group, paths are shorter due to more options and there

VOLUME 3, 2022 363

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

FIGURE 6. Experiment 3 focuses on the number of waypoint groups and presents results for admission ratio, tour delay and running time.

is also a higher probability of admission. The drop in the
tour delay is more pronounced for paths with more groups.
The runtime is shown in the third chart in Figure 5. We

notice a higher variation for scenarios with higher request
rates (4/s, 5/s) and more groups (4 and 6). It seems there
is no consistent dependency on group size across the board,
considering all other variables constant. In theory, the upper
bound for runtime should be proportional to the group size.
In each iteration, the algorithm tries to find a path con-
necting reachable waypoints from the current group to all
waypoints in the next group. In practice, it is also deter-
mined by resource availability. We notice that for a request
rate of 5/s and 6 groups there is a clear growth trend, since
the graph is quite busy.
The charts in Figure 6 show the results from the third

experiment, with the number of groups growing from 2 to
8. The request rate is one of 1 and 5/s, and the group size
ranges in {1, 2, 4, 8}.
The first chart shows the admission ratio. A higher way-

point group number means longer paths and higher edge
occupancy due to the proportionally higher number of UAS
being concurrently enroute. This causes a clear drop in
admission ratio with more groups. The drop is sharper with
small group sizes, like 1 and 2, since the probability of
finding a path with fewer waypoint options is lower. This is
very visible for request rate 5/s. The admission rate falls from
87% with group size 1 to 19%, with 8 groups. Increasing the
group size from 1 to 4 raises the admission ratio for 8 groups
to 66%, and to 99.91% for a group size of 8 waypoints.
The average tour delay is illustrated on the second chart

in Figure 6. The linear dependency of the tour delay on
the group count is clear. For higher request rate (5/s) and
bigger groups (4 and 8) the tour delay has a slight upswing
with more groups because of the increased contention for
space-time graph resources.
The third chart in Figure 6 shows the runtime dependency

on the group count. The upper bound for the algorithm
complexity is linear in the group count (variable k in its
pseudo-code). This is apparent for small values of the group
count. The downward swing of the runtime for higher group

TABLE 6. Simulation parameters used for the delivery problem comparison study.

counts and low group sizes is correlated with a drop in the
admission ratio in this cases, as discussed above. Basically,
the path search algorithm fails faster for an increasing
number of admission requests.

C. COMPARISON OF THE PACKAGE DELIVERY
ALGORITHM (SECTION IV-D) WITH THE ALGORITHM
FROM [6]
Next, we compare the performance of the package delivery
algorithm from Section IV-D and abbreviated in charts with
letter “w”) with the original trajectory planner from related
work [6], abbreviated in the charts with letter “d”.
We used the same simulation environment described at

the top of this section for both algorithms, including the
same downtown Miami map and graph parameters from
Table 3. The scenario variables and configuration parameters
are summarized in Table 6.
The maximum flight time represents the battery lifetime

constraint. A UAS must reach a charger or a finish group
warehouse within this time interval. The maximum route
duration to client is the maximum allowed time to reach a
client from a starting warehouse. The performance metrics
are the algorithm runtime, the time to reach the client vertex,
and the request admission ratio, defined as in Section V-B.
The independent variables in this study are: the request

rate, the number of charging stations (“Nch”), and the num-
ber of warehouses (“Nw”), equal for both the start and finish
warehouse groups.

364 VOLUME 3, 2022

FIGURE 7. Performance results for the comparison study with request rate variation.

The charger vertices are selected from unit graph vertices
nearest to the k−means of all unit graph vertices in order to
improve their even spatial distribution. The k parameter for
the k − means clustering algorithm is equal to the number
of chargers (Nch) for a particular scenario.
The first chart in Figure 7 shows the admission ratio for

both algorithms, where “d” stands for the original delivery
algorithms and “w” for the waypoint group-based delivery
algorithms. The request rate grows from 0.01/s (N = 20) to
5/s (N = 10000) and the number of start/finish warehouses is
1 or 4 and the number of chargers is 0, 1, or 5. Not surprising,
with a higher request rate the admission ratio trends down
from the increased contention that causes an increasing num-
ber of requests to miss deadlines. We notice that for request
rates exceeding 0.5/s and for all warehouse-charger count
combinations, the admission ratio is significantly better for
the waypoint group-based delivery algorithm, and the advan-
tage just keeps growing with higher request rates. The path
planning algorithm proposed in this article does better by
searching paths directly in the space-time graph, as opposed
to the original delivery algorithm that finds shortest paths in
the spatial domain (space-only graph) and then deals with
resource contention by scheduling time-only edges, effec-
tively delaying UAS progress by making them wait, instead
of finding alternate space-time routes.
The second important observation is that addition of

well-placed charging stations raises the admission ratio dra-
matically for low request rates. For high request rates it is
much more effective to have several warehouses, instead of
one.
The second chart in Figure 7 measures the delay to client

metric, i.e., the time to reach the client from any of the start
warehouses, when the request rate varies from 0.01/s to 5/s,
for various combinations of Nw and Nch. For scenarios
with one warehouse per groups (Nw = 1) the new waypoint

group-based delivery algorithm does not perform better than
the old algorithm. However, with 4 warehouses the new
algorithm achieves a smaller client delay.
The third chart in Figure 7 compares the runtime of

the two algorithms when the request rate varies in the
0.01/s - 5/s range, and for different combinations for Nw
and Nch. In general, the runtime is proportional with the
request rate, with some variation between 0.5/s and 1/s
for the new waypoint group based algorithm. The original
delivery algorithm is consistently much faster, as it oper-
ates mainly in a 2D search space (the space graph), and
not in a space-time graph. The trade-off for a higher exe-
cution time, however, is much better admission ratio and
higher graph resource utilization, i.e., a higher UAS traffic
density.
In a second experiment we vary the warehouse count per

group, keep the request rate at 5/s and change the number
of chargers from 0, to 3, to 6. Figure 8 shows the simulation
results.
The first chart displays the admission ratio. As the num-

ber of warehouse grows, the new waypoint group delivery
algorithm outperforms consistently the original delivery algo-
rithm, by 20% for low Nw. Adding more chargers to a
request further increases the admission ratio, but more so
for the new delivery algorithm.
The second chart in Figure 8 displays the path delay to

client metric under the same set of variables. We notice
that the new waypoint group based delivery algorithm starts
outperforming the original delivery algorithm when the num-
ber of warehouses reaches 4, for scenarios with 3 or more
chargers. It always gives lower delays for scenarios with
NCh = 0. The new algorithm proves to be more effec-
tive, with lower delay metrics and better admission ratios
under higher resource contention and with more options for
warehouses and chargers.

VOLUME 3, 2022 365

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

FIGURE 8. Performance results for the comparison study when the number of warehouses per group changes from 1 to 9.

FIGURE 9. Performance results for the comparison study when the number of chargers per group changes from 0 to 9 and the request rate is 5/s.

The third chart in Figure 8 shows the algorithm runtime.
For all scenarios the original algorithm has a quicker execu-
tion time, regardless of Nw. With a growing Nw, the runtime
for the new algorithm drops and gets just 70% higher than
that of the original delivery algorithm for request rate at
0.5/s and Nch = 6. The new algorithm achieves consistently
a higher admission ratio than the old algorithm, and a much
higher one for a low number of warehouses, Nw. This trans-
lates to a longer algorithm runtime since the search in the
space-time graph does not fail so soon.
The third experiment looks at the impact of the num-

ber of chargers on performance metrics when the request
rate is 5/s and Nw is 1, 2, or 4. Results are shown in
Figure 9. The admission ratio is shown on the first chart. The
first observation is that the new algorithm always provides
higher admission ratios compared to the original algorithm.
Also, the growth is accelerated mostly up to Nch = 4, after
which the growth is slower. We conclude that the new algo-
rithm benefits from adding charging stations, resulting in an
improvement in admission ratio and better use of the UAS
airspace.

The second chart in the Figure 9 shows the delay to
client metric. With Nch > 0 the delay is longer for the new
algorithm, except for the Nw = 4 case, that consistently
outperforms the original algorithm. This chart shows us that
for this configuration, adding more than 4 chargers does not
improve the delay metric, although it gives slightly better
admission ratios.
The algorithm runtime is displayed in the third chart of

the Figure 9. The new algorithm has much longer execution
time compared to the original algorithm, as seen already in
the prior runtime charts.

D. SUMMARY
The results of the UTM_COMPUTE_PATH algorithm sim-
ulations from Figures 4-6 showed that:

• a higher request rate causes increased contention on
space-time graph edges, causing the planner to compute
longer paths leading to a drop to admission ratio, and
a linear increase in the algorithm runtime;

• adding more waypoints to each group

366 VOLUME 3, 2022

– quickly increases the admission ratio for all sce-
nario configurations. With 6 vertices in each group
the admission ratio reached very close to 100%
even for scenarios with high request rates (5/s,
N = 19000) and 6 groups.

– the tour delay drops gradually with a slowing trend;

• adding more waypoint groups to a path:

– reduces the admission rate because of increased
contention for space-time graph resources;

– increases the tour delay linearly;
– generally also increases the runtime linearly, but

with a sublinear growth trend for higher request
rates because of an increasing number of admis-
sions failing that cut short the algorithm.

The comparison study of the UAS-ECDS algorithm from
Section IV-D with the original delivery algorithm from [6]
demonstrated the following:

• increasing the request rate:

– the admission ratio trends down from the increased
contention for graph resources (edges). The new
waypoint group-based delivery algorithm does con-
siderably better for request rates exceeding 0.5/s,
for all warehouse-charger count combinations.

– the delay to client metric is lower for the new
algorithm in cases with more than one warehouses
per start/finish group

– the runtime grows linearly and is consistently
higher for the new algorithm.

• increasing the number of warehouses in the start and
finish groups:

– the new algorithm has consistently higher admis-
sion ratio (up to a 20% difference);

– the new algorithm starts to generate paths with
lower delay to client when the number of ware-
houses reaches 4, for scenarios with 3 or more
chargers;

– the original algorithm has a lower runtime;

• increasing the number of number of charging stations:

– the new delivery algorithm always provide higher
admission ratios compared to the original algo-
rithm, with the growing trend slowing after reach-
ing Nch = 4;

– the new algorithm gets a lower delay to client only
for scenarios with 4 warehouses per start/finish
group

– the new algorithm has consistently higher runtime
then the original one.

We note that adding a few well-placed charging stations
to a request raises the admission ratio dramatically for low
request rates. For high request rates it is much more effective
to add multiple warehouses to a request.
We conclude the performance evaluation summary by stat-

ing that the new waypoint group-based delivery solution
outperforms the original one from [6] for admission ratio in

most scenarios, for delay to client in scenarios with higher
number of warehouses, and trades off these qualities for a
higher runtime. In practical UTM implementations the plan-
ner algorithm would run on a powerful computer cluster
with extensive parallelization, so that a higher runtime can
be mitigated.

VI. CONCLUSION
This paper proposes a novel mechanism for generalized path
planning using a space-time graph framework and a path vali-
dation algorithm. A generalized path is defined by a sequence
of waypoint groups. The UAS must pass through exactly one
waypoint in each of the groups and the computed trajectory
must be collision-free, keeping all UAS with a minimum
safety distance separation. The space-time graph discretiza-
tion together with space-time edge pruning for allocated
edges ensure all trajectories are collision-free by construc-
tion. To compute the space-time trajectory, we devised a
novel multi-source/multi-destination graph search algorithm
that runs on the space-time graph. The path validation algo-
rithm verifies that all path space time edges are available
in the space-time graph. We use our generalized path plan-
ner to solve the UAS-ECDS problem for package delivery
with multiple warehouses and multiple charging stations.
Simulation results show that our path planning algorithm is
efficient asymptotically and it is scalable with the number
of requests and graph size.

REFERENCES
[1] “Business insider, drone market outlook in 2021: Industry growth

trends, market stats and forecast.” Nov. 2021. [Online]. Available:
https://www.businessinsider.com/drone-industry-analysis-market-
trends-growth-forecasts

[2] Statista. “Drone market revenue worldwide from 2019 to 2025.”
Nov. 2021. [Online]. Available: https://www.statista.com/statistics/
1200348/drone-market-revenue-worldwide/

[3] The Federal Aviation Administration (FAA). “Aerospace forecast
fiscal years (FY) 2020–2040.” Nov. 2021. [Online]. Available:
https://www.faa.gov/newsroom/federal-aviation-administration-faa-
aerospace-forecast-fiscal-years-fy-2020-2040

[4] “The Federal Aviation Administration (FAA), unmanned aircraft
systems (UAS) traffic management (UTM) concept of operations ver-
sion 2.0, Washington, DC, USA.” Nov. 2021. [Online]. Available:
https://www.faa.gov/uas/research_development/traffic_management/

[5] F. Ho, R. Geraldes, A. Gonçalves, M. Cavazza, and H. Prendinger,
“Improved conflict detection and resolution for service UAVs in shared
airspace,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1231–1242,
Feb. 2019, doi: 10.1109/TVT.2018.2889459.

[6] R. Papa, I. Cardei, and M. Cardei, “Energy-constrained drone deliv-
ery scheduling,” in Proc. Int. Conf. Comb. Optim. Appl. (COCOA),
Dec. 2020, pp. 125–139.

[7] S. H. James and R. N. Raheb, “Path planning for critical ATM/UTM
areas,” in Proc. IEEE/AIAA 38th Digit. Avionics Syst. Conf. (DASC),
2019, pp. 1–6, doi: 10.1109/DASC43569.2019.9081662.

[8] S. James, R. Raheb, and A. Hudak, “UAV swarm path planning,”
in Proc. Integr. Commun. Navig. Surveillance Conf. (ICNS), 2020,
pp. 2G3-1–2G3-12, doi: 10.1109/ICNS50378.2020.9223005.

[9] V. Jeauneau, L. Jouanneau, and A. Kotenkoff, “Path planner methods
for UAVs in real environment,” IFAC-PapersOnLine, vol. 51, no. 22,
pp. 292–297, 2018, doi: 10.1016/j.ifacol.2018.11.557.

VOLUME 3, 2022 367

http://dx.doi.org/10.1109/TVT.2018.2889459
http://dx.doi.org/10.1109/DASC43569.2019.9081662
http://dx.doi.org/10.1109/ICNS50378.2020.9223005
http://dx.doi.org/10.1016/j.ifacol.2018.11.557

PAPA et al.: GENERALIZED PATH PLANNING FOR UTM SYSTEMS WITH SPACE-TIME GRAPH

[10] A. Chakrabarty, V. Stepanyan, K. Krishnakumar, and C. Ippolito,
“Real-time path planning for multi-copters flying in UTM-TCL4,”
presented at the AIAA Scitech Forum, San Diego, CA, USA, 2019,
pp. 1–16.

[11] M. Egorov, V. Kuroda, and P. Sachs, “Encounter aware
flight planning in the unmanned airspace,” in Proc. Integr.
Commun. Navig. Surveillance Conf. (ICNS), 2019, pp. 1–7,
doi: 10.1109/ICNSURV.2019.8735399.

[12] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
J. Guid. Control Dyn., vol. 21, no. 2, pp. 193–207, 1998.

[13] D. Sacharny, T. Henderson, and M. Cline, “An efficient strate-
gic deconfliction algorithm for large-scale UAS traffic manage-
ment,” School Comput., Univ. Utah, Salt Lake City, UT, USA,
Rep. UUCS-20-010, 2020.

[14] National Academies of Sciences, Engineering, and Medicine,
Roundabouts: An Informational Guide, 2nd ed. Washington, DC, USA:
Nat. Acad. Press, 2010. [Online]. Available: https://doi.org/10.17226/
22914

[15] M. Stevens and E. Atkins, “Geofence definition and deconfliction for
UAS traffic management,” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 9, pp. 5880–5889, Sep. 2021, doi: 10.1109/TITS.2020.3040595.

[16] D. Sacharny, T. Henderson, and E. Guo, “A DDDAS protocol for
real-time large-scale UAS flight coordination,” in Proc. ACM DDDAS,
2020, pp. 49–56, doi: 10.1007/978-3-030-61725-7_8.

[17] F. Matus and B. Hedblom, “Addressing the low-altitude airspace
integration challenge—USS or UTM core?” in Proc. Integr.
Commun. Navig. Surveillance Conf. (ICNS), 2018, pp. 2F1-1–2F1-11,
doi: 10.1109/ICNSURV.2018.8384848.

[18] A. Steinberg, M. Cardei, and I. Cardei, “UAS path planning using a
space-time graph,” in Proc. IEEE SysCon, Aug. 2020, pp. 1–8.

[19] A. Steinberg, M. Cardei, and I. Cardei, “UAS batch path planning
with a space–time graph,” IEEE Open J. Intell. Transp. Syst., vol. 2,
pp. 60–72, 2021, doi: 10.1109/OJITS.2021.3070415.

[20] “Python.” 2021. [Online]. Available: https://docs.python.org(Accessed:
Nov. 2021).

[21] “High performance computing, FAU HPC.” [Online]. Available:
https://hpc.fau.edu/(Accessed: Nov. 2021).

[22] “Ko’Ko, FAU HPC.” [Online]. Available: https://hpc.fau.edu/
resources-2/koko/ (Accessed: Nov. 2021).

[23] “The SLURM workload manager for Linux clusters.” [Online].
Available: https://slurm.schedmd.com/ (Accessed: Nov. 2021).

[24] “Query features—OpenStreetMap.” 2021. [Online]. Available:
https://www.openstreetmap.org/query?lat=26.3678&lon=-
80.0780#map=14/26.3497/-80.0777 (Accessed: Nov. 2021).

[25] D. Sacharny and T. C. Henderson, “A lane-based approach for
large-scale strategic conflict management for UAS service sup-
pliers,” in Proc. Int. Conf. Unmanned Aircraft Syst., Jun. 2019,
pp. 1–9.

368 VOLUME 3, 2022

http://dx.doi.org/10.1109/ICNSURV.2019.8735399
http://dx.doi.org/10.1109/TITS.2020.3040595
http://dx.doi.org/10.1007/978-3-030-61725-7_8
http://dx.doi.org/10.1109/ICNSURV.2018.8384848
http://dx.doi.org/10.1109/OJITS.2021.3070415

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

