
Received 7 November 2021; revised 21 March 2022; accepted 20 April 2022. Date of publication 28 April 2022; date of current version 10 May 2022.

Digital Object Identifier 10.1109/OJITS.2022.3171072

ITANS: Incremental Task and Network Scheduling
for Time-Sensitive Networks

ANNA ARESTOVA , WOJCIECH BARON , KAI-STEFFEN J. HIELSCHER, AND REINHARD GERMAN

Department of Computer Networks and Communication Systems, University of Erlangen–Nürnberg, 91058 Erlangen, Germany

CORRESPONDING AUTHOR: A. ARESTOVA (e-mail: anna.arestova@fau.de)

This research has been developed as part of the MBPLE4Mobility project and is funded by the Federal Ministry of Economic Affairs and Climate Action.

ABSTRACT Recent trends such as automated driving in the automotive field and digitization in factory
automation confront designers of real-time systems with new challenges. These challenges have arisen due
to the increasing amount of data and an intensified interconnection of functions. For distributed safety-
critical systems, this progression has the impact that the complexity of scheduling tasks with precedence
constraints organized in so-called cause-effect chains increases the more data has to be exchanged between
tasks and the more functions are involved. Especially when data has to be transmitted over an Ethernet-
based communication network, the coordination between the tasks running on different end-devices and
the network flows has to be ensured to meet strict end-to-end deadlines. In this work, we present an
incremental heuristic approach that computes schedules for distributed and data-dependent cause-effect
chains consisting of multi-rate tasks and network flows in time-sensitive networks. On the one hand, we
provide a common task model for tasks and network flows. On the other hand, we introduce the concept of
earliest and latest start times to speed up the solution discovery process and to discard infeasible solutions
at an early stage. Our algorithm is able to solve large problems for synthetic network topologies with
randomized data dependencies in a few seconds on average under strict end-to-end deadlines. We have
achieved a high success rate for multi-rate cause-effect chains and an even better result for homogeneous
or harmonic chains. Our approach also showed low jitter for homogeonous cause-effect chains.

INDEX TERMS Cause-effect-chains, real time, task scheduling, time-sensitive networks.

I. INTRODUCTION

UPCOMING innovations entail a steadily increasing
amount of new functionalities, highly interconnected

smart devices such as sensors and actuators, and an increas-
ing volume of data transmitted over a communication
network. The future project Industry 4.0 is a promoter of
this trend. It propels the digitization of industrial production
and strives for greater connectivity between sensors, actua-
tors, and machines [1], [2]. This leads to a growth of data
in the system and creates new challenges to coordinate the
amount of information and functionalities on processing and
network systems and makes more difficult to comply to tim-
ing requirements. In the automotive context, the emergence
of automated driving and advanced driver assistance systems
make interconnectivity and consequently end-to-end con-
straints even more important. Both functions rely on tightly

The review of this article was arranged by Associate Editor Erik Jenelius.

coupled processing chains consisting of sensors like radar,
LiDAR, and cameras [3], that perceive the world and further
processing tasks that generate proper outputs for actuators.
Also, the railway domain drives research to raise the grade of
automation of the Automatic Train Operation (ATO) system
introducing new applications and dependencies to achieve a
semi-automatic or even an unattended train operation [4].
Especially if tasks from safety-related domains like the

aforementioned are related to each other by data dependency
in so-called Cause-Effect Chains (CECs) the end-to-end
timing behavior becomes more relevant and more difficult
to handle. Relevant end-to-end metrics are the end-to-end
system response time and the maximum data age [5]. The
former expresses the reaction of the system to a change
in value [6]. Data age, in contrast, describes the maximum
time that input data influences the output of a CEC [7]. The
Sensor-to-Actuator delay constraint is a known representative
of such end-to-end chains [7].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2022 369

HTTPS://ORCID.ORG/0000-0003-3972-464X
HTTPS://ORCID.ORG/0000-0001-9767-296X

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

Meeting the end-to-end requirements goes beyond the
scheduling and analysis of a single device to the exam-
ination of a whole distributed system. This also includes
the communication system in addition. Recent developments
entail new communication technologies on top of Ethernet
like the Time-Sensitive Networking (TSN) [8] that seem to
be promising candidates to implement the future communi-
cation systems for different safety-critical domains and to
establish a common and standardized development ground
for future innovations. Even though TSN provides beneficial
mechanisms to realize reliable real-time communication it
still relies on proper configuration and scheduling. Network
flow scheduling in time-sensitive networks and task schedul-
ing is a widely explored area. The generation of combined
schedules for chained tasks and network flows in distributed
systems is a multi-objective problem that has been little
addressed. It requires an adaptation to the applied tech-
nologies and a careful analysis. Some works look at the
problem from the other side: they provide formal meth-
ods to analyze the maximum end-to-end delays of already
scheduled CECs [6], [9]. Other singular papers exist that
address the combined task and network scheduling with the
help of exact methods such as Integer Linear Programming
(ILP) [10] and satisfiability approaches [11], which are able
to provide optimal solutions but can lead to long runtimes of
several hours depending on the complexity of the problem.
Often, an optimal solution is not necessary. Neither do these
works consider the characteristics of TSN mechanisms. Since
TSN has not been regarded in combination with CECs yet
and due to the lack of heuristic solutions in the field of
joint task and network scheduling, we want to introduce a
heuristic approach ITANS for incrementally scheduling multi-
rate CECs in time-sensitive networks using the Time-Aware
Shaper (TAS). The emphasis is first put on the consideration
of the end-to-end deadlines for the system response time. In
this work, we will address the most common difficulties
that arise for scheduling distributed and chained tasks and
network flows. Additionally, will introduce a common task
model for task and network flows for distributed real-time
systems. Furthermore, we will apply the concept of the ear-
liest start time (EST) and latest start time (LST) that enables
finding feasible as well as invalid solutions faster. Finally,
we will demonstrate by means of selected use cases from the
automotive domain that the ITANS heuristic allows to sched-
ule more than a thousand tasks and network flows organized
in CECs of different lengths and with different system con-
figurations within a few seconds on average. We achieve a
high success rate for multi-rate CECs and provide even bet-
ter results for homogeneous and harmonic CECs. Moreover,
we are able to provide a low jitter for homogeneous CECs.
The paper is organized as follows. In Section II, we intro-

duce the applied TSN mechanisms. We present the system
model in Section III and formulate the necessary scheduling
constraints in Section IV. The heuristic approach is presented
in Section V. We evaluate and reflect on the performance of
ITANS in Section VI. In Section VII we review the related

FIGURE 1. TAS components, cf. [19].

work. Finally, we discuss and conclude our approach and
give a preview of future activities in Section VIII.

II. FUNDAMENTALS
A. TIME-SENSITIVE NETWORKING
Since the presented algorithm exploits characteristic prop-
erties of TSN, we want to introduce TSN in more detail
to the reader. TSN provides a set of standardized mecha-
nisms based on IEEE 802.3 Ethernet that make the Ethernet
technology real-time capable [12], [13] and enable the co-
existence of network traffic with mixed criticality, e.g., jitter-
and latency-sensitive real-time traffic and best-effort traffic
without jitter and latency requirements, solely resource guar-
antees [14]. Moreover, TSN in combination with Ethernet
supports link speeds greater or equal to 1 gigabit per second
and thus provides high capacities for communication links
as opposed to the PROFINET technology. TSN enriches the
Ethernet with the following aspects:

• Synchronization of time
• Reliability
• Resource management
• Latency guarantees

Latency guarantees promote deterministic behavior in the
network and, depending on the applied mechanism, also pro-
mote low jitter to time-sensitive network traffic. Mechanisms
such as frame preemption (IEEE 802.1 Qbu [15]), cyclic
queuing and forwarding (IEEE 802.1 Qch [16]), asyn-
chronous traffic shaping (IEEE 802.1 Qcr [17]), and TAS
(IEEE 802.1 Qbv [18]) can facilitate these goals. In this
work, we focus on the latter.
TAS introduces a Time Division Multiple Access

(TDMA)-based principle that enables the assignment of
transmission slots to different traffic classes. Therefore, each
egress queue of a physical network port that supports 802.1
Qbv is preceded by a time-aware gate. The time-aware gates
can open (state 1) or close (state 0) according to a cyclic
schedule specified in the gate control list (GCL) (Fig. 1).
Solely packets located in queues with open gates are con-
sidered for transmission by the transmission selection. If

370 VOLUME 3, 2022

FIGURE 2. Serialization on the wire, cf. [19].

several queues are open, the transmission selection operates
according to the established algorithm. In most cases, strict
priority is applied.
An exemplary configuration of the TAS components is

illustrated in Fig. 1. The critical traffic is transmitted in the
relative interval [0, 2] ms within a cycle of 10ms. The binary
representation 10000000 shows the states of the time-aware
gates. Each position represents one of 8 time-aware gates.
In this example and also in our approach, the transmission
selection policy is set to strict priority and one egress queue
is dedicated for time- and safety-critical traffic. This queue
assignment is also proposed in [20], [21]. The resulting seri-
alization on the wire is depicted in Fig. 2. The example from
Fig. 1 shows a possible TAS configuration for one egress
port. To be able to guarantee latency and jitter bounds for
one or several flows, a feasible configuration of the gates
associated with time-critical traffic has to be found on each
egress port that is traversed by critical flows.
Additionally, 802.1 Qbv introduces guard bands. They

prevent the transmission of packets a certain interval before
the closing time of their gate and before the opening time
of other gates. This mechanism prevents non-critical traf-
fic from delaying critical traffic in their own transmission
window. Without the guard bands, a non-critical network
packet could initiate a send process just an instant before
the closing time of its gate. Since the transmission process
cannot be interrupted at any point in time, the non-critical
packet might finish or might be interrupted in the transmis-
sion slot of the critical traffic. Such a safety interval may
have the size of the transmission duration of a Maximum
Transmission Unit (MTU). Further guard band mechanisms
are described in [18]. TAS requires a common notion of
time in all involved network devices and end-device. This
can be ensured by the generalized Precision Time Protocol
(PTP) specified in [22].

B. TSN ON THE DATA LINK LAYER
TSN mechanisms are located on the data link layer in the
Open Systems Interconnection (OSI) model. As TSN is part
of the IEEE 802.1 Working Group, network flows that want
to make use of TSN services carry a Virtual Local Area
Network (VLAN) tag. This tag contains a priority code point
(PCP) field that is used for traffic classification. The PCP
value that has the integer range of 0-7 assigns a priority to the
flow. Each priority value can be mapped to one egress queue
if a physical port has eight egress queues, which usually
applies. Additionally, TSN introduces the terms talker that
refers to the source application and listener that identifies

the destination application of a TSN flow. TSN flows can
be propagated in a unicast or multicast fashion.

C. TSN IN END-DEVICES
TSN mechanisms not only apply to network devices but can
also be configured in end-devices. Linux-based operating
systems adopted special techniques to enable time-triggered
injection of network traffic. The traffic control module tc
of Linux allows to apply Quality of Service (QoS) mech-
anisms such as shaping, scheduling, policing, and packet
dropping to network traffic [23]. The submodule qdisc (queu-
ing discipline) allows the configuration of traffic control
disciplines for each network interface. Queuing disciplines
can control the behavior of the whole network interface card
(NIC) or certain network classes. The queuing discipline of
interest to achieve real-time behavior is Earliest TxTime First
(ETF) [24]. ETF allows users to determine on application
level the time when a network packet of a certain traffic
class should be dequeued from the traffic control buffer into
the hardware queue of a NIC. Furthermore, it gives users the
ability to specify the time when the packet should leave the
NIC if the function offload is specified and supported [24].
Special network drivers are necessary to realize the ETF
functionality. Additionally, the system clock and the hard-
ware clock of the NIC have to be synchronized in order to
achieve the desired behavior.
The mapping of socket priorities to traffic classes and

mapping of traffic classes to hardware queues can be done
either by the Multiqueue Priority (MQPRIO) queuing dis-
cipline [25] or the Time Aware Priority Shaper (TAPRIO)
queuing discipline [26]. Both disciplines are classfull, i.e.,
they are able to create classes to which other queuing dis-
ciplines can be applied. ETF, in contrast, works on a traffic
class. TAPRIO additionally provides an implementation of
the TAS operating principle as a software solution (at this
point in time). When using TAPRIO, it is possible to config-
ure time slices for network classes of an egress port. These
time slices determine the interval when packets of a certain
class are forwarded to the NIC.
Queuing disciplines can be combined by switching them

hierarchically. When TAPRIO acts as the superior disci-
pline and ETF is applied to one or multiple classes of
TAPRIO, TAPRIO controls the transmission windows of
different traffic classes and ETF specifies when a certain
packet of a traffic class is forwarded to the NIC and put
on the wire [27], [28]. The combination of MQPRIO and
ETF allows the classification of outgoing network traffic
and the timely injection of individual packets of a certain
traffic class on the wire. MQPRIO does not subdivide the
time space into transmission windows for dedicated traffic
classes. We refer at least to the MQPRIO-ETF combination
in our scheduling approach. However, we prefer and advise
using the TAPRIO-ETF configuration to avoid the collision
with packets from non-critical traffic classes that are gen-
erated in the same end-device. Our goal is to specify the
transmission offset and deterministic travel time through the

VOLUME 3, 2022 371

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

communication network for each TSN flow with the ITANS
algorithm.

III. SYSTEM MODEL
First, we introduce a system model for a distributed real-
time system consisting of processing and network resources
and tasks. We divide the system model into an architectural
model and a task model. We adopt the concept of a common
representation of processing and network tasks from [10].

A. ARCHITECTURAL MODEL
We denote the architectural view of the system as a graph
G(V,L) consisting of vertices V and links L. The set V
comprises end-devices, denoted as vei ∈ V , and network
switches, represented by vsi ∈ V . Each end-device node vei
owns one or several processing cores. The devices are phys-
ically interconnected by bi-directional full-duplex Ethernet
links. For each physical link between two distinct nodes
vj and vk (j! = k) the set L contains two directed logical
Ethernet links lj,k and lk,j. The links uniquely identify the
physical source and destination ports. Each logical link lj,k
is characterized by the tuple 〈rj,k, sj,k〉, with rj,k describing
the link’s data rate in bit per second and sj,k denoting the
length of the link in meter.

B. TASK MODEL
The task set T is divided into the representation of processing
tasks τ

p
i ∈ T , and network tasks τ ni ∈ T . Each processing

task τ
p
i is defined by the tuple 〈pi, φi, di, eji, ωj

i〉, with pi
denoting the task period, φi the release offset referred to the
relative beginning t′ = 0 of pi, and di the relative deadline.
The worst-case execution time (WCET) is depicted by eji
and the worst-case response time (WCRT) is denoted by ω

j
i.

Index j refers to the end-device vej and expresses that WCET
and WCRT are hardware-dependent. The WCRT comprises
the difference between the release time φi and the completion
time of the task that is φi + eji plus the delay Dipreempt due
to preemption by other tasks and the scheduling overhead
Djsched on v

e
j . The preemption delay depends on the number of

tasks on the same core that have a higher priority and whose
execution overlap with the task of interest. The scheduling
overhead arises due to context switches and depends on the
hardware and the operating system (OS).
Whenever tasks are connected by a precedence order due

to data dependencies, they form a CEC [29]. It means
that tasks supply data to their immediate successor tasks.
Additionally, we introduce the term job that describes a task
in execution. τi,k is the k-th execution or job of task τi. Thus,
φi can be adjusted to φi,k of the k-th instance, which corre-
sponds to φi,k = φk+(k−1)×pi since the first release (k = 1)
of task τi. Also ω

j
i may be different in each period. Thus,

ω
j
i,k defines the WCRT of the k-th instance. Tasks can be

data-dependent on each other. We refer to the dependencies
between jobs as job-level dependencies [29]. {τ p1,1, τ

n
2,3, τ

p
3,2}

and {τ p1,2, τ
n
2,5, τ

p
3,2} illustrate end-to-end job-level paths in

FIGURE 3. Job-level dependencies for τ1 ≺ τ2 ≺ τ3.

Fig. 3. Since we allow different periods within a CEC the
temporal distances between the same jobs on different end-
to-end job paths may vary. This variation is among others
caused by task preemption (τ p1,1 and τ

p
3,2), and the delay of

task execution (τ p1,4 and τ
p
3,2). Another major reason for the

jitter of end-to-end latency is the transition of periods. p3
is four times greater than p2 and two times greater than p1
in the example of Fig. 3. Thus, the job-level path consisting
of the jobs {τ p1,1, τ

n
2,3, τ

p
3,2} in Fig. 3 is longer than the path

{τ p1,2, τ
n
2,5, τ

p
3,2}. Whenever a task with predecessors has a

higher period than the first task in a CEC, the jitter regard-
ing the system response time on different job-level paths is
inevitable. Also in case of homogeneous periods within a
CEC, the path length can differ due to preemption or priority
scheduling.
One CEC ceci ∈ ζ is captured by the tuple 〈Ti, e2ei, hpi〉,

with Ti comprising all processing and network tasks that are
related by data dependencies, e2ei denoting the maximum
allowed end-to-end duration on all job-level dependency
paths, and hpi the hyperperiod of ceci. The end-to-end time
refers in our case primarily to the maximum response time of
a system. The hyperperiod, in general, is the least common
multiple of the periods of tasks on the same core after which
a task schedule is repeated [30]. The hyperperiod of a CEC
is the least common multiple of all hyperperiods of the cores
on which its processing tasks are running and the hyperpe-
riod of the communication network if the CEC has network
tasks. A network task is created when a processing task of a
CEC is located on a different end-device than its preceding
task. As illustrated in Fig. 4, task τ

p
1 has two successor tasks

τ
p
2 and τ

p
3 . While τ

p
1 and τ

p
2 share the same end-device ve1, τ

p
3

has been allocated to end-device ve2. Thus, the network task
τ n4 has to be inserted and becomes the immediate succes-
sor of τ

p
1 and the new predecessor of τ

p
3 . The identification

of the predecessors (previous tasks) of an allocated task is
determined by the function prev : T −→ T . The determi-
nation of successors (next tasks) of a task is defined by the
mapping next : T −→ T .
The network task set comprises TSN flows that arise due

to allocation of CEC tasks to different nodes. We assume that
each TSN flow consists of one Ethernet frame to simplify the

372 VOLUME 3, 2022

FIGURE 4. CEC allocation to end-devices.

characterization. To unify the representation of processing
and network tasks, each flow or network task τ ni is charac-
terized by the tuple 〈pi, φi, di, eji, ωj

i, si, ptj〉, with pi denoting
the period, φi the relative transmission start offset referred to
the beginning of pi, and di the maximum allowed end-to-end
network latency. In contrast to processing tasks, eji determines
the worst-case transmission time (WCTT) through the com-
munication network from the source node to the sink vej . We
pursue a no-wait principle introduced in [31] and applied to
TSN flows in [20] and discussed in our former work [32]
where flows get exclusive access to all communication links
of their path as soon as they are injected onto the wire by
the talker node. It means that they will not experience any
interference with other flows and they do not have to wait
in egress queues of the traversed ports. Thus, preemption of
network tasks is not allowed and consequently the WCRT
ω
j
i of τ ni equals the WCTT eji. We maintain the index j of the

node for the WCTT and WCRT to clarify that if the flow
has multiple listeners (consuming processing tasks) eji and
ω
j
i may differ for each listener if the listeners are located

on different nodes. The size of the flow in Byte is defined
by si, and ptj specifies the flow path. ptj consists of an
ordered sequence of Ethernet links included in L starting
from the talker node and reaching to the listener node vej .
It is included in the list Pi that contains the paths to all
listeners. Furthermore, we introduce a mapping of the flow
to the talker node and the listener nodes. The assignment
of a talker node to the flow is captured by the function
talkV : T −→ V . The mapping of listener nodes to a flow
is defined by listsV : T −→ V . The talker application of τ ni
can be retrieved by prev(τ ni) and the listeners by next(τ ni)

accordingly.
Fig. 5 shows some characteristics of the network task τ n2 .

The talker and at the same time the predecessor task of τ n2
is τ

p
1 . The listeners are represented by the processing tasks

τ
p
3 and τ

p
4 . The listener nodes ve3 and ve4 can be retrieved

with the function listsV(τ n2). Each listener has its individual
WCTT and WCRT. The path pt3 from ve1 to ve3 is described

FIGURE 5. Example of network task characteristics.

by the ordered sequence {l1,2, l2,3} and the path pt4 from ve1
to ve4 is described with {l1,2, l2,4}.
IV. FORMAL CONSTRAINTS
We declare a resulting ITANS schedule as feasible if the fol-
lowing set of constraints is fulfilled. The constraints describe
the required timing behavior of the set of tasks to be sched-
uled. We divide them into CEC, task constraints, as well as
LST and EST specification and constraints.

A. CEC CONSTRAINTS
We distinguish between processing and network tasks. Each
CEC has one producer task and a variable number of
intermediate and last tasks. The producer task and all
last tasks of a task chain are always processing tasks.
Intermediate tasks can be processing or network tasks. Each
network task has exactly one predecessor task and a variable
number of successor tasks. The predecessor and the succes-
sors of a network task are processing tasks. A processing
task can follow and precede a variable number of processing
tasks (same end-device) as well as network tasks. Each task
is member of one or multiple CECs. The processing tasks of
a CEC can have different periodic activation patterns, homo-
geneous (same periods), harmonic (multiple of each other),
or non-harmonic. Conversely, the periods of network tasks
are harmonic to each other. All CECs are loop-free, e.g.,
from sensor to actuator, or the other way around.
For each CEC ceci we have to determine the jobs of the

tasks ∈ Ti that form a job-level dependency and minimize
the end-to-end latency as illustrated in Fig. 3 and Fig. 6. To
determine the worst-case end-to-end latency we have to form
feasible job-level paths. Each path must provide a forward
reachability in the time domain [6]. Backwards jumps are
not allowed. To determine the response time, we search for
the shortest feasible path from the first job to the last on a
dependency path. This semantic is described as the first-to-
first path delay in [6]. For example, τ

p
1,1 from Fig. 6 cannot

provide data to τ
p
2,3. In the case of system response time,

there are hpi/pa paths, where hpi is the hyperperiod of ceci
and pa describes the period of the producer task τa ∈ Ti.

VOLUME 3, 2022 373

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

FIGURE 6. Job-level dependency between τ1 and τ2.

In Eq. (1) we match the jobs of the first task and its
direct successors that build a job-level dependency for each
CEC. At first, we first introduce the variable γa that depicts
the γa-th instance of the first task τ

p
a ∈ Ti. We formulate

the precedence constraint for the immediate successors τk ∈
next(τ pa). Therefore, we determine execution number γ ak that
specifies the successor job τk,γ ak of job τ

p
a,γa :

∀ceci ∈ ζ, τ pa = first{Ti},∀τk ∈ next
(
τ pa

)
, γa ∈

{
1, . . . ,

hpi
pa

}
,

γ ak ∈ N,∀γa ∃γ ak :

arg min
γ ak

{
φk,γ ak : φk,γ ak ≥ φa,γa + ωj

a,γa + Dcomm
}
, (1)

where τk,γ ak is the earliest job that follows after τ
p
a,γa has

finished and after the additional delay Dcomm. Therefore, γ ak
specifies the selected task instances in a job-level depen-
dency. Not all jobs are considered. In Fig. 3 the relevant
jobs of τ n2 are τ n2,3 and τ n2,5. Selecting the jobs τ n2,4 and τ n2,6
would lead to the same end-to-end duration. The function
first{Ti} returns the first task of the set of tasks Ti of ceci.
The index j in the WCRT ω

j
a,γa indicates that τ

p
a is running

on device vej . We maintain the index j to have a common
expression for network and processing tasks. Network tasks
depend on the index as it indicates the destination node of
one of its listeners and the WCRT might differ for each
listener. The delay Dcomm describes the delay caused by the
inter-process communication if τ

p
a and τk are both processing

tasks. Otherwise, Dcomm represents the delay caused by the
communication stack when packing or unpacking a network
packet and the delay caused by the NIC before sending or
receiving the packet. If the predecessor is a processing task
and the successor a network task then Dcomm depends on
the device that the processing task is running on. Vice versa
Dcomm depends on the listener’s node of the network task.
If pk > pa then jobs of pk exist that are not part of any data
path (compare τ n2 and τ

p
1 in Fig. 3).

Eq. (2) describes how a job-level dependency is extended
for all direct and indirect successor tasks of τ

p
a . Here, τk is an

intermediate task and τm its immediate successor. The vari-
able γ ak depicts the relevant task executions that have been
identified to be on a job-level path starting with τ

p
a,γa . γ am

identifies the instance of τm. To satisfy the precedence con-
straint, we have to identify the relevant job τm,γ am

that starts
after the runtime of τk,γ ak and the additional delay Dcomm.

∀ceci ∈ ζ, τk ∈ Ti,∀τm ∈ next(τk)
= ∅, γ am ∈ N,

γa ∈
{

1, . . . ,
hpi
pa

}
,∀γ ak ∃γ am :

arg min
γ am

{
φm,γ am

: φm,γ am
≥ φk,γ ak + ω

j
k,γ ak
+ Dcomm

}
. (2)

Each CEC has an end-to-end deadline constraint on the
job-level dependency. This contraint applies to all identified
job-level paths. The difference between the release time φa,γa
of the first job on a job-level path and the end time of the
last job τ

p
k,γk

in the same job-level dependency has to be less
than or equal to the specified end-to-end latency e2ei:

∀ceci ∈ ζ, τ pa = first{Ti},∀γa ∈
{

1, . . . ,
hpi
pa

}
:

max
τ
p
k ∈last(Ti)

(
φk,γ ak + ω

j
k,γ ak

)
− φa,γa ≤ e2ei. (3)

The function last(Ti) returns the tasks without successors
within the task set Ti of ceci. The variable γ ak identifies the
job that is reachable from τ

p
a,γa

B. TASK CONSTRAINTS
Each processing and network task has to be executed once in
its period. Processing tasks are allowed to start in one period
and to finish in the consecutive one, as shown in Fig. 6.
However, jobs of a task are not allowed to overlap [33]. If
the task τk has a relative offset φk > 0, we adjust dk to
dk = pk + φk. We define the maximum response of all task
executions as ω

j
k,max. Network tasks have the same WCTT

for all execution. Thus ω
j
k,max = ω

j
k. Also, network tasks

are restricted by the common network cycle TASCycle that
is discussed in Section V-C. Thus, dk of a network task
τ nk is specified as dk = TASCycle. The period constraint is
described with:

∀τk ∈ T : φk + ω
j
k,max ≤ dk. (4)

Eq. (4) applies to all task executions. Processing tasks on
the same processing core can preempt each other. Network
tasks are planned collision-free according to the no-wait prin-
ciple. Thus, the dynamic queuing delay D

lx,y
q on the link lx,y

assumes zero. This measure contributes to less jitter and
more determinism, as the remaining delays in the network
are static. But it also requires a careful planning approach.
As already described in our previous work [34], the static
network delays cover:

• the transmission delay D
lx,y
tans,k = (sk × 8bit/Byte)/rx,y

of network task τ nk on link lx,y
• the propagation delay D

lx,y
prop in dependence of the cable

length sx,y and material composition,
• and the processing delay Dxproc on a network node vsx.

374 VOLUME 3, 2022

Dxproc depends on the switching factory. The WCRT ω
j
k of

a network task τ nk from the talker to a listener is formed as
follows:

∀vej ∈ listsV
(
τ nk

)
, ptj ∈ Pk :

sumlinks =
∑

lx,y∈ptj\{first(ptj)}
Dxproc + Dlx,ytrans,k + Dlx,yprop

ω
j
k = D

first(ptj)
trans,k + D

first(ptj)
prop + sumlinks, (5)

with vej specifying a listener’s node and ptj denoting the flow
path of the network task τ nk to the listener’s node vej . The
function first(ptj) returns the first Ethernet link of the set
ptj consisting of ordered links. Eq. (5) indirectly includes
the constraint, that the transmission on an intermediate or
last link lx,y cannot start until all bits of the flow have been
pushed on the previous link, the flow has been propagated
over the previous link, and before it has been processed on
the source node vsx of link lx,y. It is also evident from the
formulas that we focus on store-and-forward switches.

C. LATEST START TIME
Since we provide an incremental scheduling approach, we
determine for each task with predecessors the EST and LST .
These parameters define the scope and the mobility for the
task scheduling. Furthermore, the algorithm can use these
parameters to detect invalid plans at an early stage. The
calculation of the EST is elaborated in Section IV-D. LSTk
of task τk tells which maximum offset the task can have
within a job-level path to still comply to the end-to-end
times. The LSTk of τk can be calculated solely with the
knowledge of the maximum end-to-end delay of the CEC and
the precedence relationships. The relative value is identical
for all task execution. All LSTs are determined starting with
the last task in a CEC, and before the actual scheduling
process. The LST of the last task is the maximum allowed
end-to-end time of a CEC minus the WCET and the overhead
delay caused by the hardware or the OS. The LST of an
intermediate task is derived from the LST of the successor
with the smallest LST value:

∀τk ∈ T , prev(τk)
= ∅, next(τk)
= ∅ :

LSTk = min
τm∈next(τk)

LSTm −
(
ejk + Dk

)
, (6)

where τm is a successor task of τk. Dk summarizes the
occurring overhead delays arisen due to inter-process com-
munication, the communication stack, and scheduling. Since
the calculation takes place before the actual scheduling pro-
cess, we do not yet know the WCRT of the tasks. After
determining the job-level dependencies, each relevant job of
τk is assigned an aligned LSTk to keep the LSTk value con-
sistent on each job-level path. Therefore, the LSTk,γ ak value
of a job τk,γ ak is calculated by shifting LSTk by the actual
start time of the first job τ

p
a,γa on the same job-level path.

As illustrated in Fig. 7, the LST2 of τ
p
2 is determined by

e2e− (WCET2+D2)+φ1,1. φ1,1 is the release time and the

FIGURE 7. Determination of EST2 and LST2 for τ1 ≺ τ2.

actual start time in this example. The job τ
p
2,γ 1

2
can start its

execution in the scope of EST2,γ 1
2
and LST2,γ 1

2
in order to

not miss the end-to-end deadline.

D. EARLIEST START TIME
The specification of the EST is a major part of ITANS. We
use the EST value to find the best task offset for all job-level
paths that helps to fulfil the end-to-end deadlines. The task
scheduling process will try to plan a task τk with the initial
offset ESTk%pk. ESTk is calculated after all predecessors of
τk have been scheduled. On a certain job-level path, the best
EST value is the finish time of the direct predecessor job
plus an overhead delay. The relative EST value can vary in
each job-level dependency in contrast to the LST .
To determine the best ESTk value, we observe the duration

of all job-level paths including all scheduled predecessors of
τk and excluding τk and its successors. After, we calculate
the ESTk,γ ak value on each path. Then, we identify the longest
path and try to select the proper value for ESTk. The goal is
to avoid an unnecessary extension of the longest path. The
best ESTk value in order to not worsen the longest path is the
finish time of the predecessor job on the longest path plus
the overhead delay by hardware and the OS. The example
in Fig. 8 identifies the path {τ p1,2, τ

p
2,2} as the longest path

in scenario 1. If we set EST3 to EST3,γ 2
3
(the earliest start

time on the second path) and manage to schedule the τ3 at
EST3%p3 then all deadlines are met. Respectively, τ

p
3,1 starts

before LST3,γ 1
3
value (latest start time on the first path) and

τ
p
3,2 does not violate LST3,γ 2

3
. Both absolute values refer to

t′ = 0 that is the absolute release time of the first task. If
we choose EST3 = EST3,γ 1

3
then we extend the second path

such that the end-to-end deadline is missed, more specifically
LST3,γ 2

3
is exceeded.

However, the optimum value for the longest path might
make another path long enough to miss LSTk. This can be the
case if the period of τk is significantly bigger than the period
of its predecessor. The worst-case on any path is that a job
start time results to be just an instant before the calculated
EST value on the path. This would enlarge the path by about

VOLUME 3, 2022 375

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

FIGURE 8. Determination of EST3.

pk + ejk. To avoid this situation, we initially set ESTk to the
optimal value for the longest path and shift it incrementally
until we find a feasible value that does not violate LSTk
on any path. We shift by a maximum of one period of
the predecessor task on the longest path. All further shift
operations would repeat the behavior. In the case of several
predecessors, we still determine the longest path and try to
find the ESTk value that satisfies all paths. The mobility of a
task is the difference between the ascertained relative ESTk
and the earliest relative LSTk of all paths.

The initial ESTa for the producer tasks τa are zero. The
LSTa values are set to pk to provide mobility to the pro-
ducer tasks. The definition of EST and LST values does
not guarantee a feasible schedule. It is a support to narrow
the solution space for a certain task schedule order and to
eliminate invalid solutions faster.

V. SCHEDULING ALGORITHM
The proposed scheduling algorithm includes both the plan-
ning of processing tasks and the scheduling of network tasks
on their assigned resources. While processing tasks allow
preemption, network tasks have to run without interference.
The goal of the algorithm is to schedule the tasks of all
CECs so that the aforementioned constraints are met. We do
not provide solutions for the route planning of flows, nor do
we optimize the allocation of tasks to resources. However,
we presume a proper allocation of tasks to resources and
fixed flow paths.

A. ALLOCATION OF TIME RESOURCES
We manage all processing and network resources in time
slots. The time slots can be occupied or free. Each time slot

FIGURE 9. Distribution of producer tasks.

is described by the size in microseconds. Each occupied slot
is associated with a task. Occupied slots register the start and
end times of the occupancy by a task. Computational cores
are the resources of the processing tasks and communication
links are referred to as the resources of network tasks. In
case of the communication links, the relevant resources for
network tasks are egress ports.
A single processing task can occupy one slot or several

split slots per period if preemption is allowed. A network
task can only have one slot per period and the slots have
to be equidistant within the hyperperiod of the network that
is the least common multiple of all network task periods.
This measure serves to comply to the no-wait principle for
network flows and to avoid dynamic queuing delays.
The following procedures are explained in advance to

better understand the overall algorithm from Section V-E.

B. MANAGEMENT OF PROCESSING TASK RESOURCES
The planProcessingTask method applied in Section V-E
schedules one task τ

p
k on its computing resource ck. The

function looks for fitting free slots for task τ
p
k in the interval

of one period pk and within the hyperperiod hpck of all task
periods that are executed on the core ck. Hence, τ

p
k has to

be scheduled hpck/pk times per hyperperiod. The initial slot
search offset for τ

p
k is ESTk%pk. From there on, further slots

are searched at intervals of the task period. The search offset
increases gradually if no feasible slots can be found. It does
not exceed min{ESTk%pk + pk,ESTk%pk + task mobility}.
Here, the constraint Eq. (4) is regarded. Already scheduled
tasks will not be shifted.
Whenever a task finds fitting slots within the hyperpe-

riod, the affected free slots are reduced by the size of the
task (WCET) and Djsched of the system. This leads to new
occupied slots that are associated with the planned task. On
success, the slotSearchProc function sets the earliest release
time φk, all actual start times of the jobs, and all WCRTs
ω
j
k,γ ak

(on device vej). The slots are organized in a ring buffer.
I.e., the slot search is allowed to exceed the absolute hyper-
period value but is restricted to ESTk%pk + hpck initially.
Each planned task is assigned a priority that is the consec-
utive number in planning order, which is managed for each
core independently. τ

p
k from Fig. 9 gets the priority 3 for

instance. The priority is higher the smaller the value is. If
slots that cover the task’s size and overhead are not avail-
able, the algorithm looks for a composition of free slots

376 VOLUME 3, 2022

FIGURE 10. Example of slot search for a network task.

comprising the duration of the task and each considering
the overhead delays. Composite slots indicate task preemp-
tion. Whether the preemption occurs depends on the actual
execution time that is less than or equal to the WCET.

C. MANAGEMENT OF NETWORK TASK RESOURCES
We introduce a management unit for network task resources
that is the smallest organizing unit. Each management unit
organizes its free and occupied slots. On an egress port, one
management unit has the size of the smallest occurring task
period TASCycle in the network. The flow planning is more
complex as one flow has to be planned across several links.
Thus, on each link free slots have to be detected that occupy
the size of the flow. The size comprises the transmission
duration of the flow on the link plus the interframe gap in
our case. Physically, we look for resources on the source port
of the link. The slots on subsequent links must be properly
aligned. Fig. 10 shows a scheduling example of network
task τ n2 on the path {l1,2, l2,3, l3,4}. If there is a fitting slot
on l1,2, we will search on l2,3 for slots that start exactly at
the same time or before the flow arrives at the egress queue
of the source port of l2,3. The arrival time on l2,3 includes
the static network delay that comprises the transmission and
propagation on l1,2 and the processing on device vs2 (source
node of l2,3). If the slot on l1,2 is bigger than the necessary
size, τ n2,1 can be shifted within the slot to fit in the next
one. The same rule applies to the link l3,4. The occupied
slots are representatives of GCL entries. After finding proper
slots, the GCL entries on the corresponding devices will be
configured such that the gates for the critical egress queues
will be opened when the slots start (see Section V-D). If the
flow arrived before the start of a slot, it would have to wait.
This situation would result in the need to buffer the flow

FIGURE 11. Example of flow planning.

and in a queuing delay. Consequently, this would violate
the no-wait principle. Extending ITANS to consider queuing
delays is a subject of future work.
For the whole network, we determine a common schedul-

ing cycle TASCycle that corresponds to the smallest period
of all occurring critical flows/network tasks in the network.
The periods of critical flows must be a multiple of TASCycle.
We refer to the harmonic periods which are also a subject in
PROFINET [35] or TTEthernet [36]. Non-harmonic periods
contribute to more complexity and make it more difficult
to find a valid schedule. We handle the free and occupied
slots over the hyperperiod of the network. Let us assume
that the network cycle is 1ms and the hyperperiod is 4ms.
A network task with a period of 1ms has to find equidistant
free slots over the hyperperiod, thus in all 4 management
units and on all links. A network task with a period of 4ms
has to be scheduled in one of four management units on
each link. The restriction defined in Eq. (4) must be taken
into account.
Let us consider the following example in Fig. 11: p3 =

2ms, TASCycle = 1ms, and EST3 = 3.5ms. The network
hyperperiod corresponds to p3 in the example. To minimize
the e2e time of the corresponding CEC, we normalize the
EST3 value to specify in which management unit we have
to look for slots first. The first step translates the EST3
value to the hyperperiod: EST3%hyperperiod = 1.5ms. The
second step determines the index of the management unit
(that begins with 1):
(1.5ms)/TASCycle� + 1 = 2. Hence,
we search for free slots in the second management unit on
the whole path starting on link l1,2. The initial offset is
EST3%TASCycle = 0.5ms. If no slots can be found in the
specified management unit, we continue the slot search in
the next management unit. The search offset will then be
reset to zero. We resume the search until we find suitable
slots across the hyperperiod or fail to find a feasible solu-
tion. In the course of the scheduling process, the number of
occupied slots rises and the number of free slots decreases.
Still, solutions can be easily found since the network delay
of critical flows is small due to high link speeds in time-
sensitive networks. The described procedure is applied in
the method planNetworkTask in Algorithm 2 (Section V-E).
Fig. 12 shows the management of resources and the ratio

of the periods applied for the scheduling of processing and

VOLUME 3, 2022 377

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

FIGURE 12. Example of a CEC schedule.

FIGURE 13. Example of a GCL merge.

network tasks. The assumed network hyperperiod and task
period is period. TASCycle is period/2. The flow τ n2 did
not find fitting slots in the first management unit. Thus, the
algorithm resumed the slot search in the second management
unit and found suitable slots on the links l1,2 and l2,3.

D. GENERATION OF GATE CONTROL LISTS
The GCLs are generated after the scheduling algorithm has
found a feasible solution. The TAS cycle in the GCLs corre-
sponds to TASCycle. After one TASCycle, the GCL schedule
is repeated in each TSN-capable egress port or queuing dis-
cipline. To construct the GCL, we collect all occupied slots
associated with network tasks from all management units of
the port and translate the start and end times of the slots
to the range of TASCycle by applying the modulo operator.
After sorting the translated times in ascending order, we cre-
ate the GCL entries. First, we assume that each flow gets
its own slot. However, we merge two slots if:
• two slots directly follow each other (τ n1,1 and τ n2,1 as
well as τ n1,2 and τ n3,1 in Fig. 13),

• two slots overlap (τ n2,1 and τ n3,1 as well as τ n1,1 and τ n1,2
in Fig. 13),

• two adjacent slots are less apart than the transmission
time of the smallest Ethernet frame on wire plus the
interframe gap

• not enough entries are available
Planning with the smallest period reduces the number of

entries in the GCL of a TSN-capable egress port. The maxi-
mum number of GCL entries is limited. Flows with a greater
period than TASCycle can occupy one slot alternatively if
they use different TASCycles or management units. However,
if the alternation is not optimal, the whole slot or a part of
the slot will be reserved in every TASCycle, even though
it is not used. On the other side, if we constructed the
GCLs using the hyperperiod and if the difference between
the biggest and the smallest flow period in the system were
large, the number of necessary entries in the GCL could
exceed the number of maximum allowed entries in the hard-
ware. Furthermore, after each critical slot, we have to create
at least one GCL entry for less critical slots in addition.
Moreover, the configuration would become less manageable
due to many entries. Heterogeneous periods increase the
hyperperiod and the complexity in network task planning
even more. ITANS may not be able to choose the smallest
period to be the TASCycle any more. Consequently, we only
allow harmonic periods for network tasks since they have a
greatest common divisor that is easy to determine and allow
to plan within the smallest flow period to initially reduce
GCL entries.

E. OVERALL SCHEDULING PROCESS
The proposed scheduling heuristic represents an incremental
process that is dependent on the input sequence of CECs. The
program flow is illustrated in Fig. 14. First, we calculate the
LST values for all tasks. Then we sort the CECs by their
mobility. The mobility of a chain ceci is e2ei minus the
highest sum of sequential execution times of all tasks ∈ Ti.
Finally, we plan all tasks of the CECs on the corresponding
resources in planAllTasks (see Section V-E1). If the method
does not find a feasible solution we retry the scheduling
by applying a repair and reordering function Section V-F.
If the algorithm does not succeed in planning all CECs
after fifty iterations, the overall scheduling process fails.
Otherwise, if all CECs are planned, we return the GCLs
of TAS-capable egress ports or queuing disciplines (when
TAPRIO is used) and the start offsets of the processing and
network tasks. Those can be used to configure the schedules
in the end-device or switch hardware.

1) PLAN ALL TASKS

Algorithm 1 describes how the tasks of all CECs are sched-
uled. The first step of the method is the generation of a
list of tasks that are plannable (line 1). The set contains
tasks, whose EST and LST values have already been defined.
This primarily accounts for all producer tasks in the first
iteration. In other iterations the initial task set may con-
tain intermediate or last tasks. The successor tasks will be
appended to the task set during the schedule run. In the

378 VOLUME 3, 2022

FIGURE 14. Overall program flow chart.

Algorithm 1: planAllTasks(G, ζ)

1 taskSet ← createTaskSet(G, ζ);
2 sort(taskSet);
3 while taskSet is not empty do
4 τ

p
k ← getNextTask(taskSet);

5 success ← planProcessingTask(τ pk);
6 if success == false then
7 success ← reschedule(τ pk);
8 if success == false then
9 return -1;
10 end
11 return 0;

second step, we sort the task set by task mobility and by
the period. This approach leads to urgent tasks and tasks
with a small period to be planned first. The smaller the
priority the more often the task has to be planned through-
out the hyperperiod of its assigned core. If tasks with high
periods are planned first they could occupy so much space
that a task with a smaller period will either experience
much jitter or will not be able to find fitting slots. Fig. 15
shows that the task τ

p
4 with the lowest period is sched-

uled after task τ
p
2 . It does not find possible slots in the

first scenario. When planning τ
p
4 before τ

p
2 we might get a

feasible plan, as shown in the second scenario. After get-
ting the first task from the task set (line 4) we try to plan
it (line 5). The planProcessingTask function searches for

FIGURE 15. Scheduling tasks with small periods on a core.

Algorithm 2: activateSuccessorTasks(G, τ
p
k)

1 foreach successor in next(τ pk) do
2 success ← setEST(successor);
3 if success == false then
4 return -1;
5 if successor is NetworkFlow then
6 success ← planNetworkTask(successor);
7 if success then
8 foreach s_successor in next(successor) do
9 success ← setEST(s_successor);
10 if success == false then
11 return -1;
12 else
13 appendToTaskSet(s_successor);
14 end
15 end
16 else
17 return -1;
18 end
19 else
20 appendToTaskSet(successor);
21 end
22 end
23 return 0;

suitable time slots throughout the hyperperiod for a given
input task (see also Section V-B). If the process succeeds.
i.e., if the tasks find enough slots and the LST value is
respected, the successor tasks will be activated in the pro-
cedure activateSuccessorTasks (see Algorithm 2). If the task
cannot be planned, the activation of successors fails, or if the
LST is exceeded, as illustrated in Fig. 16, the task releases
its slots and an infeasible planning process is reported by
planProcessingTask. In this case a reschedule function as
explained in Section V-F is applied Section V-F (line 7). If
the reschedule trial does not find a feasible solution either the

VOLUME 3, 2022 379

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

FIGURE 16. Job τ
p
1,1 exceeds the LST of an activated task.

schedule iteration will be terminated and the planAllTasks
function reports an impossible planning process.
Algorithm 2 describes how the successors of a planned

task τ
p
k are configured and activated in the method

activateSuccessorTasks. First, we determine the EST value
for each successor within the job-level dependency (line
2). If the obtained EST value exceeds the LST , then
a failure is reported. If the successor task of τ

p
k is a

network flow (line 6), then we plan the flow in the
method planNetworkTask (see Section V-C). The function
planNetworkTask sets the transmission offset and the WCTT.
After, we try to set the EST bounds of each successor of
the flow and append them to the task set (line 9-14) if all
their predecessor have already been scheduled.
If the successor of τ

p
k is not a flow, we will append it to

the task set if possible (line 20).

F. REPAIR FUNCTIONS
Whenever a processing task or a network task could not be
planned or the EST value exceeded the LST value, we have
taken a closer look at the cause. A frequent source of failure
was that a task with a higher period or WCET/WCTT was
scheduled before a task with a lower value on the same core
or egress port. Another common cause was that the planning
according to the order of tasks within a CEC has not worked
out. Thus, we identified different rescheduling strategies. In
summary the countermeasures are:

• Exchanging the order of tasks on the core of the failed
processing task

• Exchanging the order of flows on the busiest egress
port of the failed network task

• Exchanging the order of tasks within the CECs of the
failed tasks

• Permutation of the start order of the CECs
• Assigning another offset to the producer tasks of the
CECs

Exchanging the order of tasks on a core or egress port
is applied in Algorithm 1, line 7. It is done by gradually
swapping the position of already scheduled tasks with the
failed task, starting with the last planned task to avoid big
changes in the existing plan. After a change in the order,
ITANS checks if the modified tasks still meet their deadline.
Only in this case, the iteration can be resumed. Otherwise,

the iteration fails. The other countermeasures are applied
after a whole iteration fails, see Fig. 14. Whenever a whole
iteration is not successful the algorithm resets all scheduled
tasks and resource occupancy. Then it identifies the conflict-
ing tasks of the failed task. If the conflicting tasks are part
of the same CEC we try to change the order of the tasks
within the chain and to schedule all predecessor tasks of the
failed task and the failed task itself. If this step works out,
the succeeding tasks are placed in the initial task set, see
Algorithm 1 line 1. The remaining order stays unchained.
If the conflicting tasks are part of other CECs ITANS puts
the CECs of the failed task before the conflicting CECs and
begins a new iteration. In this case, the failed task is not
scheduled yet before the next iteration, but the producer tasks
of its CECs are scheduled before the producer tasks of the
conflicting CECs. If the same task fails several times ITANS
either randomly assigns start offsets to the producer tasks of
the CECs or randomly permutates the order of the CECs.
The experience showed that rescheduling within the core or
egress port of the failed tasks and rescheduling within the
CECs have solved the majority of schedule problems.

VI. CASE STUDY
In this section, we evaluate the proposed ITANS heuristic by
alternating different parameters. We look at the success rate,
runtime, and jitter development. Additionally, we compare
ITANS with other approaches.

A. EXPERIMENTAL SETUP
The main emphasis of this case study is to evaluate the
usability and performance of our approach. CEC with strict
end-to-end delay constraints are especially common in the
context of automated driving and assisted driving in the
automotive context and in the railway domain for ATO. In
these domains, the majority of data dependency paths turns
out to be Sensor-to-Actuator paths [7]. This kind of CEC
involves many complex steps as stated and detailed in [37]:

• sensing and fusing sensor data
• localization
• interpretation and generation of a world model
• trajectory calculation
• reactive control
• diagnosis and fault management
• trajectory execution
• platform stabilization

Based on this use case and with the information taken
from real world automotive benchmarks [33] we have carried
out different case studies with synthetic tasks and network
topologies varying the following parameters:

• Core utilization ∈ {0.5, 0.6, 0.65}
• Number of CECs ∈ {10, 30, 50, 100, 120, 150}
• Number of processing tasks within a CEC ∈ {2, .., 10}
• Number of network tasks within a CEC ∈ {1, .., 5}
• Harmonic and non-harmonic processing task periods
• Harmonic network task periods

380 VOLUME 3, 2022

FIGURE 17. Considered network topologies.

TABLE 1. Description of experiments.

• Number of switches in the network ∈ {5, 10, 20, 30}
• Link speed of egress ports ∈ {100Mbps, 1Gbps}
• Network topologies ∈ {Mesh, Ring, Hierarchical}

The number of end-devices depends on the utilization. The
number of processing cores was randomly chosen between
one and two cores per end-device, where predominantly one
core was selected to force the distribution of tasks across
the system. Each task was assigned to one processing core
in a manner to comply to the average regarded utiliza-
tion and to create an overall rate of 25-30% of network
tasks proportionally to the overall number of all tasks. The
assumed WCET of a processing task was less than or
equal 1%-10% of the task period. The heuristic was imple-
mented and tested on a Core i7-8550U CPU, 1.88 GHz
processor with 24GB RAM. 1 gigabit per (Gbps) second
was selected preferentially over 100 megabit per (Mbps).
The network flows periods were selected to be the greatest
common divisors of its predecessor and successors or the

TABLE 2. Average number of tasks over all experiments.

smallest available network period to not introduce additional
overhead.
As described in Table 1, we carry out 4 major experiments

varying the parameters mentioned previously. Each experi-
ment was divided into a small- to middle-sized (S) and a
large system (L):
• S: {5,10} switches, {10,30,50} CECs
• L: {20,30} switches, {100,120,150} CECs
We execute the most experiments with non-harmonic peri-

ods. Nevertheless, we make a comparison with a task set
with harmonic periods as well. As stated in [33], 70%
of engine control applications use homogeneous and har-
monic task periods. The mesh network (Fig. 17(a)) is a
random interconnected network topology, but not necessarily
fully-meshed. The ring topology (Fig. 17(c)) defines a ring
of switches and interconnects one or several end-devices.
The hierarchical network (Fig. 17(b)) interconnects different
subtopologies. For example: a line topology with a link to
upper floors, as can be found in industrial automation, or an
extended star topology. The path length for the flows was
between one hop and (number of switches)/2 for the ring
and hierarchical topology. In contrast, the number of hops
of the network tasks in the mesh topology was only a few
hops. The end-to-end deadlines were calculated as proposed
in [33].

B. RESULTS
In the first step, we have determined the success rate for a
different number of CECs in dependence of the processor uti-
lization, number of switches, and the topology. The success
rate is defined as success rate = #successful runs

#successful runs + #failed runs .

VOLUME 3, 2022 381

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

FIGURE 18. Success rate for a different number of CECs in dependence of the tuple (utilization, number of switches).

The failure rate is 1 − success rate accordingly. Fig. 18
illustrates the success rate in different network topologies
for non-harmonic CECs and harmonic CECs. In summary,
we can observe that ITANS provides a high success rate for
randomized synthetic topologies and tasks and in particular
for a utilization rate of 50%. If we take a closer look, we
can state that ITANS performs better for harmonic CECs.
We can also see that the failure rate is particularly higher
for a higher number of CECs and a higher utilization. A
higher number of CECs raises the complexity. The number
of possible scheduling orders increases exponentially with
the number of tasks. Furthermore, we can see that the ring
topology shows a higher failure rate than other topologies.
The network schedule can have a higher impact in a ring
topology. Certain ports may have a higher traffic load than
others. Here, the optimization of network task schedule can
be more important than processing task schedule. Especially,

TABLE 3. Minimum | average | maximum runtime in dependence of CECs and
switches for (S) system.

if the ports have a lower link speed. In this case, the WCTT
might even be higher than the WCET of the tasks. On long
flow paths and for maximum sized Ethernet frames, the
WCTT can have a size of over 1ms. This is a multiple of
common processing task WCETs [33]. This has to be taken
into consideration in the calculation of end-to-end deadlines.
We illustrate the runtime of the ITANS heuristic in Table 4.

Therefore, we have recorded the minimum, average, and
maximum execution time of successful runs with different

382 VOLUME 3, 2022

TABLE 4. Minimum | average | maximum runtime in dependence of CECs and
switches for (L) system.

FIGURE 19. Path ratios.

utilizations varying the number of CECs and the number of
switches in the system. The most influencing factor is the
number of CECs. The average runtime increases with the
number of CECs. We are able to find feasible solutions for
more than 1000 network and processing tasks in under 5 s
on average. In the case of maximum values, we can detect
outliers like 120 CECs and 20 switches or 150 CECs and 30
switches. Those outliers especially arise in combination with
a higher utilization and a higher number of CECs. We can
also see that the executions in topologies with 5 switches
entail a higher maximum execution time. This is especially
caused when an egress ports or a sequence of egress ports
transmits many network tasks. A feasible order of network
tasks has to be found. We could observe up to 40 flows per
port (with 1 Gbps) in certain scenarios. In case of 100 Mbps
egress ports, the complexity of finding a working sequence
of flows increases since network flows occupy ten times
more resources than in 1 Gbps egress ports.
Jitter is an important factor, particularly in motion con-

trol. We have investigated the jitter of end-to-end delays of
the CECs for homogeneous CECs during our experiments.
Therefore, we have compared the smallest and the biggest
path length as pathRatio = smallest path duration

longest path duration . The higher
the pathRatio value, the lower the jitter. Fig. 19 illustrates
the path ratio for homogeneous CECs. We can provide very
low jitter for the majority of the experiments. Regarding the
jitter for harmonic or heterogeneous CECs, we can state that
the path lengths will always vary if any task has a higher
period than the first task in the chain, see Fig. 20. This jit-
ter is inevitable. In our approach, the jitter is predictable in
the most cases, due to static priority-based scheduling and
no-wait task scheduling.
Furthermore, we have analyzed the ratio of the longest

path to the end-to-end deadline of a CEC as maxPathRatio =

FIGURE 20. Inevitable difference of job-level path lengths.

FIGURE 21. Runtime of ITANS compared to MIP.

longest path duration
end−to−end deadline . Fig. 19 shows the maxPathRatio for
homogeneous (H) and non-homogeneous (NH) periods. On
average, we are well below the end-to-end deadline. This
ratio also indicates that the average system response time is
low compared to the maximum end-to-end deadline. Non-
harmonic and harmonic CECs logically show a higher ratio
than harmonic due to period transitions.

C. COMPARISON TO OTHER APPROACHES
A Mixed Integer Programming (MIP) approach is presented
in [10] that describes a task- and network-level schedule co-
synthesis of Ethernet-based time-triggered systems. It is able
to calculate optimized solutions regarding multiple objects
link maximal response time of all applications. On the one
hand, we have reproduced the case study to analyze the
maximum response time. In a tree network topology with
homogeneous 30 CECs and maximum 5 tasks per chain, the
authors achieve a maximal end-to-end latency of all appli-
cations of 1740.72 µs. Our algorithm is able to provide a
maximum response time of 2950.00 µs.
This result of ITANS satisfies all deadlines and is obtained

in 0.41 s in comparison to several seconds of the MIP
approach. Although the runtime of the case study is not
explicitly mentioned, we can deduce the runtime from
the scalability analysis of the work. Furthermore, we are
able achieve low jitter. Comparing the runtime development
depending on number of CECs and topology size, we can
illustrate that we outrun the MIP approach, as presented in
Fig. 21. The MIP approach develops an exponential course.
ITANS, in contrast, performs under one second.

VOLUME 3, 2022 383

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

FIGURE 22. Comparison of end-to-end response times of ITANS and an
isochronous scheduling.

Furthermore, we want to compare ITANS to isochronous
scheduling that is often associated for TAS [38] and
application scheduling in time-sensitive applications like
motion control, as also stated in IEC/IEEE 60802 TSN pro-
file for Industrial Automation (TSN-IA) [39]. A common
application data cycle is defined in which a fixed share of
the cycle is dedicated for the execution of the processing
tasks and the other for the transfer time of critical network
traffic. For example: the application data cycle is defined as
the greatest common divisor of all processing and network
tasks. The first 60% are dedicated for task execution and the
other 40% for network. The applications are not executed
during the network share and other and also vice versa. Thus,
the processing and network tasks are coordinated. We have
compared this common scheduling paradigm to the ITANS
heuristic for harmonic CECs that are conventional in this
domain. Therefore, we have defined 100 CECs with different
periods {2,4,8,16,32} and have scheduled them using ITANS
and an optimized isochronous scheduling with an applica-
tion data cycle of 2ms. The result is, that the isochronous
scheduling provides predictable and fixed time slots for pro-
cessing and network tasks, but it introduces a large delay to
the end-to-end semantic as shown in Fig. 22. It is however
easier to implement. Nevertheless, ITANS is also able to
provide lower jitter for homogeneous CECs and is suitable
for this kind of application.

D. SCHEDULE PLAUSIBILITY
To check the plausibility of the resulting schedules, we
have simulated the runs and compared them to the result-
ing schedules. Therefore, we have performed the following
steps:

• Examination of the schedules of each task chain and
its deadline

• Evaluation of each flow schedule from the talker node
to each listener

• Investigation of the complete schedule on each traversed
network link

• Validation of the schedules on each processing core

Additionally, we were able to import our synthetic topolo-
gies and network task descriptions into the simulation
environment in OMNeT++ and were able to verify our
flow schedules with the help of the INET and NeSTiNg [40]
library. The plausibility checks have shown that the simu-
lated schedules have matched with the calculated schedules
in all runs.

VII. RELATED WORK
Scheduling of CECs combines different research areas. We
want to address the related work that deals with the schedul-
ing of TSN flows applying the TAS mechanism, joint task
and network planning, and CECs. In the field of flow
planning in time-sensitive networks, different scheduling
approaches have arisen. Craciunas et al. [41] formulate
scheduling constraints for 802.1Qbv-compliant networks.
They solve the problem of scheduling of up to 1000
TSN flows with predetermined paths by using Satisfiability
Modulo Theories (SMT) and Optimization Modulo Theories
(OMT). The approaches presented in [21], [32] apply genetic
algorithms to schedule time-triggered traffic in time-sensitive
networks. Dürr and Nayak [20] present a mapping of the Job
Shop Scheduling Problem (JSP) to the planning of TSN traf-
fic. They create flow schedules by integrating the no-wait
method and the Tabu Search principle. In [42], a window-
based approach that determines the GCL entries is presented.
The authors embed a worst-case delay analysis to guarantee
upper delay bounds instead of using strict temporal isolation.
These works primarily focus on the network scheduling. As
we combine the task and network schedule, we employ an
incremental first-fit strategy to satisfy both, the processing
and the network tasks. The number of regarded network
flows is about 200. In comparison to the discussed works,
we show a lower runtime for the same amount of network
flows plus additional processing tasks but do not further
optimize the flow schedules.
Regarding combined task and network scheduling strate-

gies, Zhang et al. [10] propose a MIP-based approach
for non-preemptive periodic applications and network tasks.
They define the objectives to optimize the end-to-end task
chain latencies and response times of applications. They are
able to find optimal solutions for small until middle-sized
industrial use cases with up to 90 task chains consisting
of 2 processing and one network task in less than 150 s.
As already discussed, we are able to outrun the execu-
tion times of the MIP approach still providing low response
times and jitter. The SMT-based approach presented in [11]
solves the combined task and network scheduling problem
for middle- to large-sized industrial use cases. The runtime
of the SMT-based variant varies from a few milliseconds to
several hours. The authors focus on the earliest deadline first
(EDF) scheduling approach for preemptive processing tasks.
They formulate network, task, and memory constraints. The
approach was evaluated in terms of runtime and scalability
that increases exponentially with the system size. ITANS can
keep up with the regarded small, middle, and large system

384 VOLUME 3, 2022

sizes and scales well. Besides, [10], [11] focus on time-
triggered Ethernet networks using protocols like TTEthernet.
We put the emphasis to TSN-based communication networks
integrating the 802.1Qbv mechanisms.
The CEC topic is also well researched. Kramer et al. [33]

provide automotive benchmarks taking typical CEC char-
acteristics into consideration. They present among others
common task periods and execution times of tasks in the
automotive field. Becker et al. [9] introduce an end-to-end
response time analysis for CECs in automotive embedded
systems. They focus on the computation of the maximum
data age of CECs. The ITANS heuristic works the other way
around. We try to schedule the tasks of the CECs so that we
comply to given end-to-end times. Schlatow et al. [7] propose
a Mixed Integer Linear Program (MILP)-based optimization
for the data age of CECs comprising preemptive processing
tasks. They determine the phase offset, priority, and proces-
sor mapping of processing tasks minimizing the data age.
Network tasks are not considered in this work. The authors
show that their approach is applicable to real work automo-
tive use cases such as Advanced Driver Assistance Systems
(ADAS) and engine control.
Even though ITANS does not focus on optimal solutions,

it is able solve complex and large scheduling problems in
a short time. Additionally, ITANS is tailored to consider
the characteristics of complex CEC and TAS. Consequently,
ITANS addresses real-world and future-related scenarios.
Nevertheless, it must be mentioned that heuristic approaches
do not always find a solution. But in this case, heuristics
can be backed up with exact algorithms or meta-heuristics.

VIII. DISCUSSION AND CONCLUSION
We have shown that it is possible to calculate feasible sched-
ules for time-triggered processing and network tasks with
different requirements. The methods were chosen to satisfy
both. Other approaches are also plausible. The mentioned
isochronous scheduling approach fits under this category.
Moreover, it is, e.g., conceivable that first all processing tasks
of the CECs are planned and then a feasible schedule for the
network has to be found. However, in this case the release
times of succeeding processing tasks on different end-devices
have to be estimated as the intermediate network task will
be scheduled later. Moreover, this approach still requires a
worst-case estimation of network delays, e.g., through analyt-
ical methods like network calculus, to determine the earliest
start time of the succeeding processing tasks on different end-
devices. If the network delay is underestimated data will be
delivered to a later execution of the succeeding processing
task and data age will rise. It is especially difficult to meet
the end-to-end deadlines of the CECs when regarding both
separately. An incremental and combined approach allows
to better synchronize the processing and network tasks and
to find less pessimistic bounds for network latency and jitter
when applying the TAS mechanism.
The ITANS approach involves the use of static priorities

for processing tasks. Dynamic priorities, as, e.g., used for

scheduling policies like EDF, might reorder already sched-
uled tasks in our approach. This can lead to the tasks
no longer being coordinated with other tasks in the task
chain and to missing the end-to-end deadline. Moreover, the
proposed priority-based scheduling promotes a similar exe-
cution of the tasks throughout the hyperperiod.This in turn
helps to reduce the jitter on different job-level paths.
EDF and RM scheduling can achieve 100% core utiliza-

tion when using harmonic tasks [43]. Yet, it is difficult to
achieve this utilization for CECs, especially when release off-
sets and tight end-to-end deadlines are involved. Therefore,
we account for some slack times.
We allow multi-rate CECs. In practice, 70% of engine

control applications as can be found in the automotive, indus-
trial automation, and railway domain use homogeneous and
harmonic periods [33]. Heterogeneous and harmonic periods
among CECs can lead to unnecessary task execution [44]
due to over- or undersampling. Since ITANS overall per-
forms best for homogeneous CECs, our algorithm proves to
be well-suited and applicable.
Nonetheless, we have to annotate that we neglect the

consideration of memory resources in our approach. This
concerns memory that is necessary for the execution of pro-
cessing tasks and the buffers for network traffic. Among
others, there are buffer restrictions in the NICs of end-devices
and in the traffic control module, if it is available in the
OS. The difference between the best-case execution time
(BCET) and WCET of processing tasks leads to network
packets arriving at traffic control modules or NICs earlier
than the computed and configured forwarding time. Thus,
early packets have to be buffered for some time. Also when
network packets arrive at network switches and before they
are processed and forwarded to the proper egress ports, they
have to be buffered. Depending on the number of ingress
ports this can be more or less critical. The memory con-
sumption due to queuing in egress ports is in our case not
of interest as we avoid queuing delays.
We do not elaborate on the problem of shared or exclusive

resources for processing tasks that is referenced extensively
in [30]. We leave the analysis to system or application
designers. Nevertheless, we can integrate those times in the
WCRTs. Also, the clock drift between clocks of different
devices was not considered. Synchronized clocks are neces-
sary for the TAS mechanisms and the CEC task sequence.
We have assumed ideal clocks. The PTP protocol and adap-
tations of it are common time synchronization protocols for
Ethernet-based systems that promise a maximum deviation
in the sub-microsecond range between clocks. This deviation
can be considered in the proposed formulas.
In summary, we presented a heuristic approach for

the joint task and network scheduling covering common
problems in a variety of complex application domains.
Furthermore, we have shown that our algorithm is capable
to find feasible solutions for middle- to large-sized problems
with a high success rate and low end-to-end jitter in just a
few seconds. The definition of earliest and latest start times

VOLUME 3, 2022 385

ARESTOVA et al.: ITANS: INCREMENTAL TASK AND NETWORK SCHEDULING FOR TIME-SENSITIVE NETWORKS

allows a more efficient exploration of the solution space and
provides a quick assessment of the feasibility of the certain
schedule. In the future, we plan to extend ITANS to consider
the maximum data age. Moreover, we intend to elaborate
the algorithm by including meta-heuristics like genetic algo-
rithms to determine a more optimal input order of CECs.
Finally, we plan to involve further scheduling mechanisms
besides TAS and embed network flow analysis in ITANS.

REFERENCES
[1] C. Mannweiler et al., “Reliable and deterministic mobile communica-

tions for industry 4.0: Key challenges and solutions for the integration
of the 3GPP 5G system with IEEE,” in Proc. Mobile Commun.
Technol. Appl. ITG-Symp., 2019, pp. 1–6.

[2] L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida, “On the adequacy
of SDN and TSN for industry 4.0,” in Proc. IEEE 22nd Int. Symp.
Real-Time Distrib. Comput. (ISORC), 2019, pp. 43–51.

[3] Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated
driving: A survey,” IEEE Access, vol. 8, pp. 2847–2868, 2020.

[4] R. Lagay and G. M. Adell, “The autonomous train: A game changer
for the railways industry,” in Proc. 16th Int. Conf. Intell. Transp. Syst.
Telecommun. (ITST), 2018, pp. 1–5.

[5] M. Dürr, G. Von Der Brüggen, K.-H. Chen, and J.-J. Chen, “End-
to-end timing analysis of sporadic cause-effect chains in distributed
systems,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 5S, p. 58,
Oct. 2019. [Online]. Available: https://doi.org/10.1145/3358181

[6] N. Feiertag, K. Richter, J. E. Nordlander, and J. Å. Jönsson, “A
compositional framework for end-to-end path delay calculation of
automotive systems under different path semantics,” presented at the
Workshop RTSS, Barcelona, Spain, 2008.

[7] J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst, “Data-
age analysis and optimisation for cause-effect chains in automotive
control systems,” in Proc. IEEE 13th Int. Symp. Ind. Embedded Syst.
(SIES), 2018, pp. 1–9.

[8] “Time-Sensitive Networking (TSN) Task Group.” [Online]. Available:
https://1.ieee802.org/tsn/ (Accessed: Mar. 16, 2022).

[9] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” J. Syst. Archit., vol. 80, pp. 104–113, Oct. 2017.

[10] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task- and
network-level schedule co-synthesis of ethernet-based time-triggered
systems,” in Proc. Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2014, pp. 119–124.

[11] S. Craciunas and R. S. Oliver, “Combined task- and network-level
scheduling for distributed time-triggered systems,” Real-Time Syst.,
vol. 52, pp. 161–200, Mar. 2016.

[12] N. Finn, “Introduction to time-sensitive networking,” IEEE
Commun. Stand. Mag., vol. 2, no. 2, pp. 22–28, Jun. 2018,
doi: 10.1109/MCOMSTD.2018.1700076.

[13] J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE
Commun. Stand. Mag., vol. 2, no. 2, pp. 29–33, Jun. 2018.

[14] A. Ademaj et al., “Time sensitive networks for flexible manufacturing
Testbed—Description of converged traffic types,” IIC Consortium,
Boston, MA, USA, Rep. IIC:WHT:IS3:V1.0:PB:20180418,
2018. Accessed: Mar. 19, 2022. [Online]. Available: https://
www.iiconsortium.org/pdf/IIC_TSN_Testbed_Traffic_Whitepaper_
20180418.pdf

[15] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 26: Frame Preemption, IEEE
Standard 802.1Qbu-2016, Aug. 2016.

[16] IEEE Standard for Local and Metropolitan Area Networks—
Bridges and Bridged Networks—Amendment 29: Cyclic Queuing and
Forwarding, IEEE Standard 802.1Qch-2017, 2017.

[17] IEEE Standard for Local and Metropolitan Area Networks—
Bridges and Bridged Networks—Amendment 34: Asynchronous Traffic
Shaping, IEEE Standard 802.1Qcr-2020, 2020.

[18] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 25: Enhancements for Scheduled
Traffic, IEEE Standard 802.1Qbv-2015, Mar. 2016.

[19] A. Arestova, M. Martin, K.-S. J. Hielscher, and R. German, “A service-
oriented real-time communication scheme for AUTOSAR adaptive
using OPC UA and time-sensitive networking,” Sensors, vol. 21,
no. 7, p. 2337, 2021. [Online]. Available: https://www.mdpi.com/1424-
8220/21/7/2337

[20] F. Dürr and N. G. Nayak, “No-wait packet scheduling for ieee time-
sensitive networks (TSN),” in Proc. 24th Int. Conf. Real-Time Netw.
Syst., 2016, pp. 203–212.

[21] M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling
time-triggered traffic in time-sensitive networks,” in Proc. IEEE 23rd
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), vol. 1, Sep. 2018,
pp. 337–344.

[22] IEEE Standard for Local and Metropolitan Area Networks—Timing
and Synchronization for Time-Sensitive Applications, IEEE Standard
802.1AS-2020, 2020.

[23] “TC(8)—Linux Manual Page.” [Online]. Available: https://man7.org/
linux/man-pages/man8/tc.8.html (Accessed: Sep. 16, 2021).

[24] “TC-ETF(8)—Linux Manual Page.” [Online]. Available: https://
man7.org/linux/man-pages/man8/tc-etf.8.html (Accessed: Aug. 16,
2021).

[25] “TC-MQPRIO(8)—Linux Manual Page.” [Online]. Available:
https://man7.org/linux/man-pages/man8/tc-mqprio.8.html (Accessed:
Aug. 16, 2021).

[26] “TC-TAPRIO(8)—Linux Manual Page.” [Online]. Available: https://
man7.org/linux/man-pages/man8/tc-taprio.8.html (Accessed: Aug. 16,
2021).

[27] “Scheduled Packet Transmission: ETF.” [Online]. Available:
https://lwn.net/Articles/758592/ (Accessed: Sep. 16, 2021).

[28] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches,
“Real-time linux communications: An evaluation of the Linux
communication stack for real-time robotic applications,” 2018,
arXiv:1808.10821.

[29] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte,
“Synthesizing job-level dependencies for automotive multi-rate effect
chains,” in Proc. IEEE 22nd Int. Conf. Embedded Real-Time Comput.
Syst. Appl. (RTCSA), 2016, pp. 159–169.

[30] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications (Real-Time Systems Series
24), 3rd ed. Cham, Switzerland: Springer, 2011.

[31] A. Mascis and D. Pacciarelli, “Job-shop scheduling with blocking and
no-wait constraints,” Eur. J. Oper. Res., vol. 143, no. 3, pp. 498–517,
2002. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0377221701003381

[32] A. Arestova, K.-S. J. Hielscher, and R. German, “Design of a hybrid
genetic algorithm for time-sensitive networking,” in Measurement,
Modelling and Evaluation of Computing Systems. Cham, Switzerland:
Springer Int., Mar. 2020, pp. 99–117.

[33] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automo-
tive benchmarks for free,” in Proc. 6th Int. Workshop Anal. Tools
Methodol. Embedded Real-Time Syst., 2015. [Online]. Available:
http://waters2015.inria.fr/

[34] A. Arestova, K.-S. J. Hielscher, and R. German, “Simulative evaluation
of the TSN mechanisms time-aware shaper and frame preemption and
their suitability for industrial use cases,” in Proc. IFIP Netw. Conf.
(IFIP Netw.), 2021, pp. 1–6.

[35] Industrial Communication Networks—Profiles—Part 2: Additional
Fieldbus Profiles for Realtime Networks Based on ISO/IEC/IEEE
88023, IEC Standard 61784-2:2019, Jul. 2020.

[36] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered Ethernet (TTE) design,” in Proc. 8th IEEE Int. Symp. Object-
Oriented Real-Time Distrib. Comput. (ISORC), May 2005, pp. 22–33.

[37] S. Behere and M. Törngren, “A functional reference architecture for
autonomous driving,” Inf. Softw. Technol., vol. 73, pp. 136–150, May
2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584915002177

[38] M. Kim, D. Hyeon, and J. Paek, “eTAS: Enhanced time-aware shaper
for supporting non-isochronous emergency traffic in time-sensitive
networks,” IEEE Internet Things J., early access, Nov. 13, 2021,
doi: 10.1109/JIOT.2021.3124508.

[39] “IEC/IEEE 60802 TSN Profile for Industrial Automation (D1.2).”
[Online]. Available: https://www.ieee802.org/1/files/private/60802-
drafts/d1/60802-d1-2.pdf (Accessed: Mar. 20, 2022).

386 VOLUME 3, 2022

http://dx.doi.org/10.1109/MCOMSTD.2018.1700076
http://dx.doi.org/10.1109/JIOT.2021.3124508

[40] J. Falk et al., “NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++,” in Proc. Int. Conf. Netw. Syst. (NetSys), 2019,
pp. 1–8.

[41] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner,
“Scheduling real-time communication in IEEE 802.1Qbv time sen-
sitive networks,” in Proc. 24th Int. Conf. Real-Time Netw. Syst., 2016,
pp. 183–192.

[42] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, “Window-based
schedule synthesis for industrial IEEE 802.1Qbv TSN networks,” in
Proc. 16th IEEE Int. Conf. Factory Commun. Syst. (WFCS), 2020,
pp. 1–4.

[43] M. Mohaqeqi, M. Nasri, Y. Xu, A. Cervin, and K. Årzén, “Optimal
harmonic period assignment: Complexity results and approximation
algorithms,” Real-Time Syst., vol. 54, pp. 830–860, Apr. 2018.

[44] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Transparent distribu-
tion of real-time components based on logical execution time,” ACM
SIGPLAN Not., vol. 40, no. 7, pp. 31–39, Jul. 2005.

ANNA ARESTOVA received the bachelor’s and
M.Sc. degrees in 2018 in information and
communication technology from the University
of Erlangen–Nürnberg, Germany, where she is
currently pursuing the Ph.D. degree with the
Department of Computer Science. Her research
interests are time-sensitive networking, modeling
and simulation of communication networks, as
well as real-time scheduling.

WOJCIECH BARON received the B.Sc. and M.Sc.
degrees in information and communication tech-
nology from the University of Erlangen–Nürnberg,
Germany, in 2015 and 2018, respectively, where
he is currently pursuing the Ph.D. degree with the
Department of Computer Science. He collaborates
with AUDI AG in diverse projects that evaluate
synchronization mechanisms and real-time capa-
bilities in distributed simulation systems in the
context of automated driving.

KAI-STEFFEN J. HIELSCHER was born in
Münchberg, Germany, in 1972. He received
the Ph.D. degree in computer science from
the University of Erlangen–Nürnberg in 2008,
where he is currently working as a Postdoctoral
Researcher with the Department of Computer
Science (Computer Networks and Communication
Systems). His focus of research includes mea-
surement, modeling and simulation of distributed
systems as well as deterministic and stochastic
Network Calculus.

REINHARD GERMAN received the master’s degree
in computer science and the Ph.D. degree from
the Computer Science Department, Technical
University of Berlin, Germany, in 1991 and
1994, respectively. He is a Full Professor with
the Computer Networks Lab, Department of
Computer Science, University Erlangen–Nürnberg,
Germany. He is also an Adjunct Professor with
the Faculty of Information Technology, Monash
University, Melbourne, Australia. His research
interests include performance and dependability

analysis of interconnected systems based on numerical analysis, network
calculus, discrete-event simulation, measurements, and testing. Vehicular
communications and smart energy constitute major application domains.

VOLUME 3, 2022 387

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

