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ABSTRACT Foreground segmentation aims at extracting moving objects from the background in a robust
manner under various challenging scenarios. The deep learning-based methods have achieved remarkable
improvement in this field. These methods produce semantically correct predictions based on extracted
rich semantic features yet perform poorly on segmentation of edge details. The main reason is that the
high-level features extracted by the deep network lose the high-frequency information for the successful
edge segmentation. On this basis, we propose a novel segmentation network with a cascade architecture to
refine segmentation results step by step by introducing detailed information into high-level features. The
network recorrects and optimizes the segmentation maps in each step so that more accurate segmentation
results are obtained. Furthermore, we evaluate our approach on the challenging CDnet2014 dataset and
achieve an F-measure of 0.9868. Our approach thus outperforms previous methods, such as FgSegNet_v2,
FgSegNet, BSPVGan, Cascade CNN, IUTIS-5, WeSamBE, DeepBS, and GMM-Stauffer.

INDEX TERMS Deep learning, feature-mask fusion, foreground segmentation, high-level features, video

surveillance.

I. INTRODUCTION

HE EXTRACTION of moving objects from video

sequences plays an important role in visual applica-
tions, such as video surveillance [1], human tracking [2],
action recognition [3], traffic monitoring [4], [5], [6], motion
estimation and anomaly detection [7]. Various extraction
methods have been proposed for foreground segmentation.
Conventional approaches perform well only in a certain type
of scenario and poorly for complex scenes. Compared with
traditional methods, deep learning-based approaches have
superior segmentation performance owing to their power-
ful capability to extract feature representations from images.
Nevertheless, they have limited in terms of edge detailed seg-
mentation, mainly because (1) the successive convolution and
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pooling operations lead to the decline of the final resolution
when upsampling to the original size and (2) The features in
the different stages of the network have different recognition
abilities. In the high stage, the high-level features are rich
in semantic information due to the large field of view, but
the prediction space is coarse owing to the lack of spatial
details. In the low stage, low-level features have finer spa-
tial information but poor semantic information because of
their narrow field of view. In a word, the high-level fea-
tures extracted by the deep convolutional neural network
(CNN) lack detailed information for edge segmentation,
whereas the low-level features are essential for accurately
predicting boundary details. In addition, for scenes with dif-
ficult foreground segmentation, such as scenes with small
moving objects or short moving distances, the segmentation
performance of the existing models are not good; i.e., the
segmented edges are not accurate if only high-level features
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FIGURE 1. Cascaded feature-mask fusion network. One of the decoder inputs
comes from the different-level features extracted by the encoder, and the features and
the corresponding prediction mask are taken together to regress the segmentation
performance. The cascaded design allows the capture of more edge details to
gradually refine the mask.
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are used whereas the segmented targets are easily missed
if only low-level features are used. How to effectively use
features at different levels is thus an issue that deserves more
attention.

A cascaded feature-mask fusion network (CFMEN) is
proposed in this research to fuse features at multiple levels
and thus refine edge segmentation (Fig. 1). The proposed
method uses high-level features to predict the basic con-
tour of the foreground and low-level features to optimize
the details. A mask based on feature fusion is used to fix
regions of large error. The CFMEN recursively fuses the
high-level features, low-level features, and the masks gener-
ated from the two types of feature. The input of each layer
comprises both the initial segmentation and all outputs from
previous levels. Through a multi-level cascade, the model
focuses on the details presented in the initial segmentation to
refine the boundary details. This design allows the CFMFN
to learn to adaptively fuse the features of different scales in
refining the segmentation at the finest level. In addition, the
CFMEN provides highly accurate segmentation results when
only a few training examples are used for training without
the consideration of temporal data.

The main contributions of this research are summarized
as follows.

1) We propose a foreground segmentation method based
on multi-level feature-mask fusion, which gradually
refines and corrects the local boundaries to achieve
accurate segmentation.

2) We propose a novel cascaded encoder-decoder
network, which is a decoder level cascade with better
performance, rather than the reuse of the model of the
previous methods.

3) The algorithm is evaluated on the CDnet2014
dataset [8] and found to perform better than many
existing methods, especially in the difficult segmenta-
tion scenarios.
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Il. RELATED WORKS

A. FOREGROUND SEGMENTATION

Segmenting foreground objects from the video imagery
is an active research topic in the field of computer
vision. Traditional algorithms, namely unsupervised learn-
ing algorithms, mainly rely on background modeling.
Stauffer and Grimson [1] and Zivkovic [2] first proposed
a foreground segmentation method based on the Gaussian
Mixture Model (GMM) to model each pixel as a back-
ground or foreground pixel, but their method cannot han-
dle a rapidly changing background and its parametric
nature is computationally inefficient. Various non-parametric
methods [9], [10], [11], [12], [13] have been proposed for
improved computational efficiency. In recent years, stud-
ies on the application of neural networks to foreground
segmentation [14], [15], [16] have achieved impressive
results. References [17], [18], [19] adopted the Generative
Adversarial Networks (GAN), whereby the generator learns
the mapping from the background and the current image
for the foreground mask, and the discriminator then learns
a loss function for the training of this mapping by
comparing the groundtruth and predicted output through
observing the input image and background. References
[20], [21], [22], [23] trained the network by combining
image frames with the generated background model.
The Multi-scale and Cascaded CNNs [24], [25], [26], [27]
improve the segmentation quality by acquiring multi-
scale information, resulting in improved segmentation
performance. References [28], [29], [30], [31], [32] consid-
ered the temporal data in a video sequence by designing
different types of end-to-end three-dimensional CNN to track
the temporal changes in the video sequence and avoid using
background models for training.

B. ENCODER-DECODER NETWORKS

Encoder-decoder networks comprise an encoder module and
decoder module. The encoder reduces the resolution of
the feature maps and extracts higher semantic information
whereas the decoder gradually recovers the spatial details
to produce sharp segmentation results. Encoder-decoder
networks have been successfully applied to human pose
estimation [33], object detection [34], semantic segmenta-
tion [35], [36], [37] and other computer vision tasks. The
encoder-decoder network is therefore adopted in this study
to obtain more semantic and boundary information through
a refined cascade.

C. DILATED CONVOLUTION

Dilated convolution refers to injecting holes into the stan-
dard convolution map to increase the receptive field without
losing too much detailed information. This kind of con-
volution has been widely used in semantic segmentation
recently. Models such as DeepLab [36] apply several par-
allel dilated convolutions with different rates to capture
multi-scale information. In this study, a multi-scale feature
fusion module is added between the encoder and decoder to
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capture contextual information of the image with different
proportions.

D. CASCADE NETWORK

Multi-scale analysis of cascade networks leverages in many
computer vision tasks, such as edge detection [38], object
detection [34], [39], and segmentation [35]. In particu-
lar, many methods predict independent results for different
stages and merge them to obtain multi-scale information.
CascadePSP [40] is a high-resolution segmentation model
that uses global and local refinement. It refines the down-
sampled image for global refinement using a cascaded
design. The Local step then refines details in full resolution
using image crops. On this basis, in the global refinement,
the mask generated by fusing features from different layers
is used as one of the inputs for the next finer level and
the low-level features extracted by the encoder are fused
instead of applying cropping to obtain more boundary details
and contextual semantic information of the image for local
refinement.

E. FEATURE FUSION

The use of a feature map that mainly or only comprises
features of a layer may lead to poor detection performance.
Because low-level features contain more detailed information
and less semantic owing to fewer convolution operations,
while high-level features have stronger semantic information
and less perceptive of details. It is important to fuse fea-
tures across feature layers [34], [39], [41] to improve feature
effectiveness. On the basis of feature fusion, feature-mask
fusion is added in this paper. The fusion of low-level fea-
tures and high-level features takes into account the accuracy
and robustness of network discrimination. By combining
features at different levels and masks at different scales
(especially matching of low-level features and fine masks),
significant performance optimization is achieved not only
at the shallow level of the network but also at the deep
level.

lll. METHOD

Foreground segmentation is a pixel-level classification task
where the size of the predicted output is equal to the size of
the input image. The overall structure of the network is there-
fore designed according to the encoder-decoder structure.
The encoder is typically a model pretrained on classifi-
cation tasks (e.g., VGGI16 [42] and Resnet50 [43]). The
encoder usually allows the whole network to converge
more rapidly with the use of the pretrained model as the
backbone network whereas the decoder conducts successive
convolution and upsampling to generate fine segmentation
results. In addition, a multi-scale feature fusion module
is added at the end of the encoder to enlarge the field
of view in the network. The CFMFN thus comprises an
encoder, multi-scale feature fusion module, and decoder
(Fig. 2).
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A. ENCODER

The encoder of the CFMFN selects the pretrained ResNet50
as the backbone network and removes its final fully
connected layer.

The output stride (OS) of the original ResNet50 in stage4
takes a value of 32. The OS is defined as the ratio of the
spatial resolution of the input image to the final output res-
olution. A large OS leads to the loss of image sharpness,
which makes it difficult for the decoder to restore pixel-level
image details that are lost in the extraction process, and a
small OS is thus usually used for segmentation tasks. The
encoder of the CFMFN therefore adjusts the convolution
stride in stage4 of the original ResNet50 to a value of 1 and
the dilation to a value of 2.

B. MULTI-SCALE FEATURE FUSION MODULE

The multi-scale feature fusion module includes a 1 x 1 Conv
layer, three 3 x 3 Conv layers, and a global average pooling
(GAP) layer.

o GAP merges global context information into the multi-
scale feature fusion module.

o The three 3 x 3 Conv layers are dilated convolutions
with dilation rates of 4, 8, and 12 that capture multi-
scale information and connect the output results of all
branches in parallel.

o As an input of the decoder, the 1 x 1 Conv layer is
used to obtain spatial dimensions consistent with the
features of the encoder output.

C. DECODER

General methods usually directly upsample by a factor of
16 or 8 on the feature map, which is finally obtained by the
decoder to generate a prediction equal in the size to the input
image. This one-step decoding operation does not properly
restore details lost in the pooling operation, and thus does
not improve the segmentation accuracy.

The decoder of the CFMEN is therefore designed in a
cascading fashion. Each step upsamples the fused features
F’, which comprise three parts: the feature map F, the high
(low)-level features of the encoder, and the mask gener-
ated by the fusion. Thus, F' not only contains semantic
information but also introduces certain detailed information,
which effectively improves the accuracy of segmentation.

Before fusing the low-level information, we apply 1 x 1
convolution to low-level features to reduce the number
of channels. This decoding process is expressed as in
Equation (1).

F' = Conv{Concat(F, features, mask)}, (1)

where the features are the high-level and low-level features
from the encoder, which are the output of stagel (OS of 4)
and the output of stage4 (OS of 16) of the encoder.
CFMFN refines the image using a 3-Level cascade with
output strides (OS) of 16, 4, and 1. Besides the final
stride 1 output, our model also generates intermediate
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FIGURE 2. Flow of the CFMFN architecture.Our proposed CFMFN by employing an encoder-decoder structure. After encoding in the encoder module, The Multi-scale feature
fusion module catches multi-scale contextual information by applying atrous convolution at multiple scales, while the decoder refines the segmentation results by cascaded
fusion with different output strides(OS) and the corresponding mask. In this paper, we use output strides of 16,4,1.

stride 16 and stride segmentations which focus on fixing
the overall structure of the input segmentation. the model
takes the two outputs of the OS16 and OS4 denoted as
Mask¢ and Masks. Maskie relates more to the global judg-
ments of the image and not to local exploration. Because
the introduced high-level features have stronger semantics
information with the poor perception of details. Masks intro-
duces low-level features for edge detailed segmentation and
is more refined than the coarse Mask . The network focuses
on guiding the overall structure of the next input seg-
mentation to provide the flexibility to correct local error
boundaries. The CFMFN therefore gradually corrects seg-
mentation errors while maintaining the initial segmentation
details. With the combined effects of Maskig and Masky,
the CFMFN roughly predicts the moving objects and cor-
rects larger errors at the coarse level. At the fine level, the
more robust features provided by the coarse level can be
used to address the boundary details of the image to be
processed.

Fig. 3 shows that the final Mask is much finer than Masks,
which demonstrates the effectiveness of cascaded feature-
mask fusion in edge detailed segmentation.
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D. LOSS

It follows from the above that the gradual introduction of
low-level features and the gradual refinement of the mask
significantly improves the accuracy of segmenting moving
objects. However, three predictions are made during the
decoding. Therefore, we need to consider how to learn using
these three predictions when designing the loss.

Maski6, Masks, and Mask are generated in the CFMFN
decoder with dimensions (W/16, H/16), (W/4, H/4), and
(W, H) respectively. The core idea of the CFMFN is to
gradually refine the mask and the design of the loss for
Maskie¢ and Mask, should thus focus more on how to roughly
segment the moving objects, the CFMFN uses the cross-
entropy loss with balanced weights. In our experiments, we
observe that Mask, already provides sufficient accuracy, and
the final Mask should pay more attention to addressing the
local boundaries and segmentation details. Therefore, in the
last layer, we use the Euclidean distance after L2 normaliza-
tion instead of the cross-entropy loss. The idea of treating
the last part as a regression task to correct the segmentation
errors is similar to the idea of boundary regression for object
detection. The results show the effective segmentation of the
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FIGURE 3. Differences between the masks generated by output strides of 16, 4 and
1. The 3-Level input model uses small-scale intermediates (mask16, mask4) that,
though inaccurate, capture structural information to be refined at the later stage.

boundary regions. The loss for output stride 1 (L!) can be
written as in Equation (2).

L'=2x (1 — cos(Mask, Groundtruth)). 2)

In short, different loss functions are applied to differ-
ent strides because the coarse refinement focuses on the
global structure while ignoring local details, whereas the
finest refinement aims to achieve pixel-wise accuracy by
relying on local cues. So the final loss of the CFMFN is the
sum of three loss functions:

L=L§ + L+ L, 3)

where L*, and LSCE stand for the Euclidean distance after
L2 normalization, and cross-entropy loss for output stride s
respectively.

IV. EXPERIMENTS

A. DATASET

CDnet2014 as the largest publicly available dataset
for foreground segmentation, is widely used in fore-
ground/background segmentation studies, with a total of
150,000 frames of pixel-level annotated data for 53 scenes
in 11 categories, which are named badWeather, base-
line, cameralitter, dynamicBackground, intermittentObject-
Motion, lowFramerate, nightVideos, PTZ, shadow, thermal,
and turbulence. Each category has four to six video
sequences, each containing 600 to 7999 frames, with spatial
resolutions ranging from 320 x 240 to 720 x 576 pixels. The
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dataset covers a variety of challenging scenes involving illu-
mination changes, hard shadows, highly dynamic background
motion, and camera motion.

Seven metrics provided by the CDnet2014 dataset are
used to evaluate the performance of the CFMFN: Recall
(Re), Precision (Pr), Specificity (Sp), False Negative Rate
(FRN), False Positive Rate (FNR), Percentage of Wrong
Classifications(PWC) and F-Measure (FM). Among them,
FM is used as a comprehensive performance metric of the
model performance ranking on the CDnet2014 dataset, so it
is taken it as the main metric of the CFMFN performance
evaluation in the present experiment. Given Re, Pr, and FM
is defined by:

TP
Pr=_——0. )
TP + FP
TP
Re = ——r—, &)
TP + FN
2 X Pr x Re
FM = ———, (6)
Pr+ Re

where TP, FP, and FN are stand for True Positive, False
Positive, and False Negative respectively.

B. TRAINING PROTOCOL

The PyTorch [44] framework is used to implement the model
in the experiments, following the same training procedure
as used in a previous study [25] and keeping the pretrained
weights of the original ResNet50 network. Two groups of
experiments are carried out for each scene, whereby 50 and
200 frames are selected for the training set, and the remaining
frames for the test set.

After shuffling the training set, 20% of the data are used
for validation and 80% are used to train the model. Set the
learning rate to 0.001, epochs to 100, the momentum of
SGD (stochastic gradient descent) to 0.9, and the batch size
to 32.

We use decreasing learning rate for training optimization
and BatchNorm, Dropout to optimize the convolutional neu-
ral network. And the Fig. 4 shows that the difference between
the training error and the validation error is small and in a
stable state. We design an early stopping mechanism for
up to 60 periods of training. The training ends ahead of
time when the comprehensive performance metric FM of
the verification set no longer improves over 20 epochs.

Owing to the high imbalance between the background
and foreground pixels in the scene, the CFMFN uses bal-
anced weights during training to reduce the problem of the
imbalanced data classification.

In addition, because the output of the sigmoid function
is within the range [0, 1], it is used as a probability value.
A threshold of 0.5 is applied to the processing to obtain
discrete binary labels of the foreground and background.

C. RESULTS
To reduce the burden of the ground-truth annota-
tion, [17], [24], [25], [26] only used few frames for training
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FIGURE 4. The loss function of the CFMFN while trained on some categories. The red line represents the validation loss, and the blue line represents the training loss. The
horizontal axis is the number of epochs, and the vertical axis is the value of loss function. Using the early stopping mechanism, the training is stopped when the loss no longer
decreases. The training scenes from left to right in the first row are turbulence2 (turbulence), office (baseline), sidewalk (cameraditter), and the training scenes from left to right
in the second row are boats (dynamicBackground), zoominZoomOut (PTZ), backdoor (shadow).

TABLE 1. Test results obtained by manually and randomly selecting, 50 and 200 frames from CDnet2014 dataset across 11 categories.

Category Re Sp Pr FPR FNR PWC M
50f 200f 50f 200f 50f 200f 50f 200f 50f 200f 50f 200f 50f 200f
baseline 0.9871 | 0.9950 | 0.9998 | 0.9999 | 0.9924 | 0.9960 | 0.0002 | 0.0001 | 0.0129 | 0.0050 | 0.0589 | 0.0254 | 0.9897 | 0.9955
camlJit 0.9797 | 0.9895 | 0.9997 | 0.9994 | 0.9672 | 0.9843 | 0.0013 | 0.0006 | 0.0203 | 0.0105 | 0.1905 | 0.0921 | 0.9734 | 0.9869
badWeat | 0.9144 | 0.9704 | 0.9997 | 0.9998 | 0.9760 | 0.9827 | 0.0003 | 0.0002 | 0.0856 | 0.0296 | 0.1170 | 0.0497 | 0.9434 | 0.9765
dynaBg 0.9653 | 0.9857 | 0.9999 | 0.9999 | 0.9764 | 0.9892 | 0.0001 | 0.0001 | 0.0347 | 0.0143 | 0.0316 | 0.0136 | 0.9708 | 0.9875
intermit 0.9730 | 0.9871 | 0.9985 | 0.9997 | 0.9796 | 0.9960 | 0.0015 | 0.0003 | 0.0270 | 0.0129 | 0.3154 | 0.0931 | 0.9761 | 0.9914
lowFram | 0.8782 | 0.9139 | 0.9996 | 0.9997 | 0.8658 | 0.8778 | 0.0004 | 0.0003 | 0.1218 | 0.0861 | 0.0992 | 0.0570 | 0.8714 | 0.8933
nightVid | 0.9264 | 0.9661 | 0.9987 | 0.9994 | 0.8992 | 0.9659 | 0.0013 | 0.0006 | 0.0736 | 0.0339 | 0.2386 | 0.1113 | 0.9114 | 0.9660
PTZ 0.9216 | 0.9997 | 0.9997 | 0.9999 | 0.7946 | 0.9725 | 0.0003 | 0.0001 | 0.0784 | 0.0223 | 0.0592 | 0.0252 | 0.9311 | 0.9751
shadow 0.9742 | 09909 | 0.9994 | 0.9998 | 0.9797 | 0.9927 | 0.0006 | 0.0002 | 0.0258 | 0.0091 | 0.1423 | 0.0538 | 0.9768 | 0.9918
thermal 0.9495 | 0.9801 | 0.9985 | 0.9995 | 0.9720 | 0.9884 | 0.0015 | 0.0005 | 0.0505 | 0.0199 | 0.2860 | 0.1035 | 0.9605 | 0.9842
turbul 0.9538 | 0.9736 | 0.9998 | 0.9999 | 0.9588 | 0.9790 | 0.0002 | 0.0001 | 0.0462 | 0.0264 | 0.0476 | 0.0273 | 0.9562 | 0.9763
Overall 0.9476 | 0.9755 | 0.9993 | 0.9997 | 0.9553 | 0.9750 | 0.0007 | 0.0003 | 0.0524 | 0.0245 | 0.1442 | 0.0593 | 0.9510 | 0.9750

and validation. Therefore, the present experiments use the
same training set as in [25], which is obtained by manu-
ally and randomly selecting 50 and 200 frames from the
CDnet2014 dataset.

The experiments only evaluate models using the test
frames, in other words, the training frames are not included
in the reported performances. The results are presented in
Tab. 1, with the first 11 rows giving the average results of
each category, and the last row giving the average results
for the 11 categories. With the settings mentioned above,
the CFMFN has an overall FM of 0.9510 with 50-frame
experiments and 0.9750 with 200-frame experiments.

The CFEMEFN provides high accuracy in foreground seg-
mentation when using 200 frames. The overall FM is
highest for the baseline category (0.9955) and lowest for
the lowFramrate category (0.8933). Only comparing the test
frames, the best models reported on the official website,
FgSegNet_v2 [26] and FgSegNet [25], have FM values of
0.8897 and 0.8816 on the lowFramrate respectively, and the
CFMEN thus performs better.

The FM value inevitably decreases when the number
of training samples is reduced from 200 to 50 frames.
Especially for the nightVideos, the FM is 0.0546 lower
than that when the training set has 200 frames. However,
the CFMFN still generates acceptable results with an
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average overall FM of 0.9510 across 11 categories, indi-
cating that the CFMFN works robustly in challenging
scenarios.

D. COMPARION WITH THE STATE-OF-THE-ART

The CFMFN is compared with several methods described in
related works and the best algorithms reported on the official
website, namely FgSegNet v2, FgSegNet, BSPVGan [17],
Cascade CNN [24], IUTIS-5 [45], WeSamBE [46],
DeepBS [47], and GMM-Stauffer [1]. Among them, IUTIS-
5, WeSamBE, and GMM-Stauffer are unsupervised methods.
The comparison results are shown in Tab. 2. The number
of training frames is inconsistent across the deep learning
algorithms and the traditional algorithm does not require a
training set, we need to consider all ground-truth provided
by the CDnet2014 dataset in comparing the results for our
method the results for the previous methods. According to
the tabulated data, the FM value is much higher for deep
learning methods than for traditional models, especially in
challenging categories such as PTZ (camera motion) and
nightVideos (low light at night).

The FM value of the CFMFN is 0.71% and 0.13%
higher than that for FgSegNet_v2 in the lowFramerate and
turbulence categories respectively, and a little worse than
FgSegNet_v2 in the other categories, with there being a slight
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TABLE 2. A comparison among eight methods across 11 categories. Each row shows the results for each method.

Methods F-measure Overall
baseline | camJit | badWeat | dynaBg | intermit | lowFrame | nightVid PTZ shadow | thermal | turbul
Ours 0.9973 0.9895 0.9846 0.9947 0.9923 0.9650 0.9745 0.9906 | 0.9928 0.9907 | 0.9828 | 0.9868
FgSegNet_v2 0.9980 0.9961 0.9900 0.9950 0.9939 0.9579 0.9816 0.9936 | 0.9966 0.9942 | 0.9815 | 0.9890
FgSegNet 0.9975 0.9945 0.9838 0.9939 0.9933 0.9558 0.9779 0.9893 | 0.9954 0.9923 | 0.9776 | 0.9865
BSPVGan 0.9830 0.9890 0.9640 0.9780 0.9830 0.8630 0.9010 0.9490 | 0.9360 0.9760 | 0.9310 | 0.9501
Cascade CNN 0.9786 0.9758 0.9451 0.9658 0.8505 0.8804 0.8926 0.9344 | 0.9593 0.8958 | 0.9215 | 0.9272
WeSamBE 0.9310 0.7440 0.7970 0.7390 0.8690 0.7960 0.8610 0.6600 | 0.5930 0.3840 | 0.7540 | 0.7390
DeepBS 0.9580 0.8990 0.8647 0.8761 0.6097 0.5900 0.6359 0.3306 | 0.9304 0.7583 | 0.8993 | 0.7593
IUTIS-5 0.9567 0.8332 0.8289 0.8902 0.7296 0.7911 0.5132 0.4703 | 0.9084 0.8303 | 0.8507 | 0.7820
GMM-Stauffer | 0.8320 0.6990 0.6040 0.7540 0.5810 0.6860 0.7430 0.6310 | 0.4630 0.2010 | 0.5560 | 0.6140
TABLE 3. Ablation study of the loss design.
Methods F-measure
port_0_17fps | tramCrossroad_Ifps | tunnelExit_0_35fps | turnpike_0_S5fps | lowFramerate
Ours 0.8834 0.9908 0.9915 0.9943 0.9650
FgSegNet_v2 0.8356 0.9934 0.9903 0.9918 0.9528

difference of 0.22% in the overall performance. However,
what we need to explain here is that since FgSegNet_v2
was proposed, its performance on the CDnet2014 offi-
cial website remains the first. This is because it has
achieved good performance on CDnet2014 dataset, with
FM of most categories very close to 1. Thus the over-
all performance is relatively hard to improve, but our
algorithm still achieves superior performance, outperform-
ing many existing methods. Compared with FgSegNet, the
CFMEFN has more advantages on badWeather, dynamicBack-
ground, lowFramerate, PTZ, and turbulence categories, and
its overall performance is higher than that of FgSegNet by
0.03%. That is to say, the CFMFN has superior segmenta-
tion performance relative to the other advanced algorithms
in most categories. In particular, the CFMFN has supe-
rior segmentation performance in the difficult scenes of
the lowFramerate category. In conclusion, the CFMFN out-
performs FgSegNet, BSPVGan, Cascade CNN, IUTIS-5,
WeSamBE, DeepBS, and GMM-Stauffer in terms of the
overall FM by 0.03%, 3.67%, 5.69%, 24.78%, 22.75%,
20.48%, and 37.28% respectively. In other words, the
CFMEN outperforms not only traditional methods but also
other deep learning based methods in terms of the over-
all performance (especially in terms of the robustness and
effectiveness).

Existing methods performs better in almost all categories,
except lowFrameRate category where it performs poorly
compared to other categories. This low performance is pri-
marily due to a challenging video sequence (port_0_17fps
scenes in lowFrameRate category), where there are extremely
small foreground objects in dynamic scenes with gradual illu-
mination changes. In this case, the network may pay more
attention to the major class (background) but less attention to
the rare class (foreground), resulting in misclassifying very
small foreground objects. However, the proposed method still
improves over the best method by some margins in this cate-
gory. It can be seen from the experimental results(Tab. 3) that
our performance is improved by almost 5% over the optimal
model, which can prove the superiority of our algorithm in
this scenario.
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Finally, the example results in Fig. 5 show the segmenta-
tion performance of several methods for typical complex
scenarios. It is observed that the CFMFN can segment
the local boundaries of large-scale objects (Fig. 5 traf-
fic#1146) and small-scale objects (Fig. 5 blizzard#3108)
more accurately than the other methods. Even when fac-
ing tiny foreground objects (Fig. 5 sidewalk#1155) and poor
illumination (Fig. 5 street#2472), the CFMFN again makes a
more accurate prediction. For some scenes with a great sim-
ilarity between the foreground and the background (Fig. 5
fall#1527), the CFMFN can still make accurate predictions
in terms of the ambiguity of segmentation.

V. DISCUSSION

A. ABLATION STUDY OF THE NETWORK STRUCTURE
In an ablation study, we make different design choices of
the decoder to explore the effect of the decoder structure
on the segmentation performance. There are several design
choices of the decoder as shown in Fig. 7; some decoders
directly decode the input of the decoder without introduc-
ing additional features (general methods), others introduce
high-level features into the decoding process to obtain more
global information, and others (such as deeplabv34-) intro-
duce low-level features into the decoding process to obtain
more detailed information. The high-level features and low-
level features are effectively fused in the cascade design to
generate fine masks. The experimental results are given in
Tab. 4. It is seen that the introduction of additional features
at different levels improves the segmentation performance,
but the improvement from effectively fusing features at
multiple levels is more pronounced. Fig. 8 shows that cas-
caded feature-mask fusion captures object details better in
multi-level detail optimization and makes better use of fea-
tures to generate finer segmentation than previous decoder
designs.

B. ABLATION STUDY OF THE LOSS DESIGN

An experiment is conducted to show that learning both the
global refinement (Llc%) and local refinement (L‘éE) is essen-
tial; see Tab. 5. The FM value rises more when L6 and L!
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FIGURE 5. Qualitative comparison among different foreground segmentation methods.
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FIGURE 6. Our method segments video sequences in the lowFrameRate category
more finely than FgSegNet_v2.

are chosen, corresponding to the ablation of the network
structure. The low-level features have higher resolution and
contain more location and detailed information. However, the
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TABLE 4. Ablation study of the network structure.

Methods Precision | Recall PWC F-measure
With OS; only 0.9436 0.9613 | 0.2587 0.9493
With OS1 & OS¢ 0.9581 0.9648 | 0.1764 0.9611
With OS1 & OSy 0.9796 0.9768 | 0.0842 0.9782
0S1 & OS4& OS16 0.9845 0.9892 | 0.0599 0.9868

results show that single-layer feature learning alone leads
to sub-optimal detection, and effectively combining high-
level features and low-level features for learning obviously
optimizes the performance.

C. ABLATION STUDY OF THE CHOICES OF LOSS
Simple ablation experiments on the choices of loss are con-
ducted to demonstrate the effectiveness of the loss design
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TABLE 5. Ablation study of the loss design.

©

Multi_scale
features

Low-Level Feature [ Features

0s 1s Fusion

o

Features-Mask Fusion l—b

1-Level

Input Groundtruth 3-Level

Methods Precision | Recall PWC F-measure
LT only 0.9440 0.9779 | 0.1370 0.9580
Llc?E & LT 0.9669 0.9773 | 0.1228 0.9683
Lip & L! 0.9785 [ 0.9784 [ 0.0901 0.9784
LS. & LE,& LT [ 0.9845 ] 0.9892 | 0.0599 0.9868
TABLE 6. Ablation study of the choices of loss.
Methods Precision | Recall PWC | F-measure
LT only 0.9614 0.9799 | 0.1186 0.9677
Lcg only 0.9541 0.9801 | 0.1043 0.9650
Lcg and LT 0.9845 0.9892 | 0.0599 0.9868
TABLE 7. Ablation study of design choices of the decoder.
Methods Precision | Recall PWC | F-measure
Concat(F features) 0.9621 0.9776 | 0.2542 0.9602
Concat(F,features)*mask 0.9592 0.9521 | 0.1071 0.9547
Concat(F features,mask) 0.9845 0.9892 | 0.0599 0.9868

of the CFMFN. The choices of loss are that the loss func-
tions of the three masks are all set to the Euclidean distance
after L2 normalization, the loss functions of the three masks
are all set to the cross-entropy loss, the loss functions of
Maskie and Masky are set to the cross-entropy loss, and
the Mask is set to the Euclidean distance after L2 normal-
ization. Tab. 6 shows the results of applying the different
loss functions for different strides. In the rough segmentation
of Maskis and Masks, more attention is paid to the global
information, while the final Mask focuses on the details to
achieve the accurate segmentation of the local boundaries,
which indicates the effectiveness of the CFMFN choices of
loss.

D. ABLATION STUDY OF THE DESIGN CHOICES OF THE
DECODER
To evaluate the effectiveness of our proposed module, we
compare feature-mask fusion with two other mask learning
methods, namely multiplication and no-operation methods.
Experimental results are given in Tab. 7. The fusion of the
extracted features with the corresponding mask can focus on
key features for refining boundary details.

Tab. 7 shows that feature-mask fusion obtains the best
result among the different ways of combining masks and
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FIGURE 8. Difference between a 3-Level input model and a 1-Level input model.

(b) () (d) (e)

FIGURE 9. (a) input (b) Groundtruth (c) Concat(F,features,mask) (d) Concat(F,
features) (e) Concat(F, features)smask.

features. Because the value range of the mask is O to 1, the
repeated multiplication gradually reduces the eigenvalue, if
no processing is done, more useless information is introduced
and the segmentation performance is sub-optimal. However,
features that concatenate the corresponding mask can better
guide the fine segmentation, which not only retains the high-
level information transmitted from the coarser mask but also
keeps the fine local information provided by the lower-level
mask. Additionally, Fig. 9 shows that mask concatenates
features provide more precise results, which demonstrates
the effectiveness of mask learning.

VI. CONCLUSION

This paper proposed the CFMFN as an encoder-decoder
model that is capable of end-to-end training in a supervised
manner. We improved by feature-mask fusion and adopted a
cascade design to accurately segment moving objects from
coarse to fine levels. Moreover, the CFMFN learns fore-
ground objects from isolated frames, and fine foreground
segmentation can be learned using a small number of frames.
Experimental results show that the overall F-measure of the
CFMEN on the CDnet2014 dataset is 0.9868, and the seg-
mentation performance is superior to that of many existing
methods. However, owing to the high computational cost of
the multi-scale input, future research will aim to explore a
cascaded multi-scale feature extraction network fused with
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attention mechanisms to improve the performance of seg-
menting moving objects. In addition, We have considered
proving the effectiveness of our approach in other areas as
future research work.
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