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ABSTRACT Queue dissipation has been extensively studied about traffic signalization, work zone oper-
ations, and ramp metering. Various methods for estimating the intersection’s queue length and dissipation
time have been reported in the literature, including the use of car-following models with simulation,
vehicle trajectories from GPS, shock-wave theory, statistical estimation from traffic flow patterns, and
artificial neural networks (ANN). However, most of such methods cannot account for the impacts of
interactions between different vehicle types and their spatial distributions in the queue length on the
initial discharge time and the resulting total dissipation duration. As such, this study presents a system,
named TrafficTalk, that applies a deep learning-based method to reliably capture the queue characteristics
of mixed traffic flows, and produce a robust estimate of the dissipating duration for the design of the
optimal signal plan. The proposed TrafficTalk, featuring the effectiveness in transforming video-imaged
traffic conditions into vehicle density maps, has proved its performance under extensive field evaluations.
For instance, compared with the benchmark model, XGBoost in the literature, it has reduced the MAPE
from 25.8% to 10.4%., and from 31.3% to 10.4% if the queue discharging stream comprises motorcycles.

INDEX TERMS Deep learning (DL), traffic queue dissipation time, traffic queue pattern, mixed traffic
flows, object detection, traffic signal countdown timer (TSCT).

I. INTRODUCTION

ARELIABLE estimate of queue dissipation duration is
essential information for traffic controls and operations.

Delays and other congestion-related measurements based on
reliably estimated queue information have been widely used
by a large body of researchers for work zones [1]–[3], and
ramp metering operations [4]. For instance, Rouhani and
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Niemeier argued that accurate estimation of traffic conges-
tion and delay is imperative to studying traffic and flow
characteristics as well as formulating effective traffic con-
trol strategies [5]. Dion et al. categorized five intersection
delay models involving different queue estimation meth-
ods: deterministic queuing model, shock wave delay model,
steady-state stochastic delay model, time-dependent stochas-
tic delay model, and finally microscopic simulation delay
model [6]. He also indicated that delay is a parameter that
is difficult to estimate without reliably estimated queue
information.
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Recognizing the vital role of queue dissipation information
in design of traffic control strategies, some studies proposed
to approximate such an estimate with microscopic traffic sim-
ulation models [7]. The extensive calibration needs of their
embedded car-following and intersection discharging behav-
iors often encumber the estimation work with the simulation
to yield the desired level of accuracy.
Intending to address the same issue but from different

perspectives, traffic researchers have explored a variety of
different estimation methods. For instance, some studies
apply the Hidden Markov model based on the processed
GPS trajectory data to assess traffic queues and congestion
levels [8].
One classical method widely adopted by the traffic control

community is to employ the shockwave theory to charac-
terize the queue formation and dissipation patterns and then
compute the resulting delay. Examples of methods along this
line can be found in the studies by Michalopoulos et al. [9]
and Wu and Liu [10].
Note that most available models for estimating the queue

formation and dissipation times are developed traffic flow of
one vehicle type. The entire estimation task becomes much
more challenging when the traffic flows comprise mixed
types of vehicles such as transit vehicles and motorcycles.
For example, the motorcycles may parallelly park in a lane at
the signalized intersection, and the dissipation rates for such
motorcycles are very different from their surrounding cars.
Moreover, the spatial distribution of motorcycles in the queue
lines also affects their discharging times and the resulting
dissipation rate of the entire queue. More specifically, the
total dissipating duration for an intersection’s mixed-flow
queue length may vary significantly with how motorcycles
are distributed in the queued stream.
How to design effective transportation systems is an

important issue for a modern city. In traditional approaches,
each signalized intersection is provided a fixed signal timing
plan on a predetermined basis according to historical traffic
flow data. However, the predetermined signal plans can-
not capture the characteristics of real-time traffic patterns,
which usually lead to unnecessary vehicle waiting times,
and make the transportation system inefficient. In addition,
the conventional traffic signal control models cannot cap-
ture the complexity of the traffic flows in the real world. In
recent years, some studies have used reinforcement learn-
ing (RL) to realize signal control trained with simulation
platforms [11]–[14]. Unfortunately, these simulation-trained
RL solutions may not reflect the characteristics of real traffic
flows. Also, most simulation platforms do not consider the
real effects of motorcycles, and simply convert a motorcycle
into a value of passenger car unit (PCU) (i.e., 0.4 PCU [15])
to be manipulated in the simulation platforms. Furthermore,
the RL model cannot be used to correctly display the traf-
fic signal countdown timer (TSCT) feature in the real-time
scenario.
In many countries, motorcycles account for significant

parts of the mixed traffic flows. The irregular behaviors of

motorcyclists usually lead to complicated characteristics of
mixed traffic flows, which will make the design of traffic
signal timing plans more challenging. The most common
method for designing traffic signal timing plans is to use
conventional traffic signal control models with offline his-
torical traffic flow data. The average dissipation rate for
mixed traffic flows is estimated according to the headway
and the occupied space based on statistical data, and the
assumptions made on the traffic patterns may be difficult to
reflect the actual traffic state. For example, the motorcycles
may parallel park in a lane at the signalized intersection, and
the dissipation rates for these motorcycles are very different
from the cars. Therefore, parameters and the assumptions of
conventional traffic signal control models are unable to fully
account for the real-world traffic complexity.
Reinforcement learning for traffic signal control was used

in the conventional traffic models [11], [12]. However, these
models cannot investigate the characteristics of parallel dis-
sipation of motorcycles. According to historical traffic flow
data, some solutions [13], [14] utilized traffic simulation
platforms to generate animations. The animations serve as
inputs to design RL-based signal timing plans without con-
sidering the composition of traffic flows and the queue
patterns. Although the simulated animations are generated
according to historical traffic flow data and real-world road
geometry, they still cannot exactly fit the actual traffic flows
dissipation state, especially for mixed traffic flows. Also,
when a red traffic light in Taiwan is turned on, the road
users will see the remaining TSCT seconds. Since RL has
to repeat making decisions in a short period (e.g., every 3 or
5 seconds), it is infeasible to apply RL to obtain TSCT in
advance. Also, the computational complexity of RL is much
higher than deep learning (DL). Therefore, it is expensive
to implement practical traffic signal control using RL for
timely changing actions in the real world.
To deal with the complexity involved in estimating the

mixed flows’ queue dissipation duration, this study explores
a novel method called TrafficTalk, which can transform the
real-world traffic information captured from the real-time
streaming videos into “vehicle density maps” and reflect
the spatial distribution of different types of vehicles in the
queues. Then, such information in turn serves as the input
for TrafficTalk to predict the queue dissipation time of mixed
traffic flows at signalized intersections. The paper is orga-
nized as follows: Section II presents previous studies of
queue length estimation and dissipation time prediction;
Section III proposes the vehicle density map and deep
learning models for TrafficTalk; Section IV describes the
TrafficTalk architecture; and Section V demonstrates the
experiments and results.

II. RELATED WORK
In this section, we review previous queue estimation meth-
ods. In [16], the vehicle queue length was investigated in the
simulation. The authors conducted a case study using traf-
fic data from an intersection in Beaufort, North Carolina.
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However, there is no ground truth in the case study. Also, in
the simulation, the study assumed that whether the queue is
empty or not is known in advance. Such assumptions may
not be practical in real-time traffic situations.
In [17], the cycle-based queue lengths at a signalized

intersection were estimated by probe vehicle trajectory data.
This study used the maximum likelihood estimation (MLE)
method and conducted a performance evaluation of the
proposed approach based on simulation and empirical data.
However, the estimation of the queue with mixed through-
turn lanes was not available. Also, this study did not include
cases with mixed traffic flows.
Based on License Plate Recognition (LPR) data, queue

length estimation at signalized intersections [18] was
proposed. The queue length in the current cycle is predicted
through regression analysis using the queue length in the
previous cycle.
In [19], real data was collected from the Adalhan junc-

tion in a central position in the province of Konya Turkey.
The data were used to derive the vehicle arrival and depar-
ture distributions. Then the standard M/M/1, M/G/1, and
G/G/1 models were used to derive the queue lengths.
Dissipation time was not studied in this paper.
The M/M/1 model was also used in [20]. The arrivals

are approximated as the Poisson process for M/M/1 and
M/G/1. For G/G/1, the arrival process was approximated by
the measured mean and variance.
The study in [21] also made the Poisson assumption for

its simulation experiments. Note that in a real scenario, the
behavior of the traffic in the junction is transient, and the
Poisson assumption may not apply.
The study in [22] proposed a real-time queue length esti-

mation method based on probe vehicles’ data. Based on the
trajectories and stopping information, an integrated parking
process together with the Markov model was developed to
compute the queue length. As listed in their future work,
the impact of queue length estimation accuracy caused by
different connected vehicle distributions in the queue should
be considered.
In [23], the authors estimated the vehicle queue length

at a signalized intersection. Although the discharging time
was not considered, the study suggests that the accuracy of
queue length estimation has nothing to do with typology
and phases of the intersection. Instead, it is affected by the
positions of the waiting vehicles and the vehicle types. This
observation is consistent with our study.
Vehicle-to-vehicle communication facilitates the exchange

of roadside information, enabling easy access and sharing
among users. In [24], the study introduced Linear Adaptive
Congestion Control (LACC), enhancing the advantages of
greedy routing and Data Dissemination Model (DDM). The
study in [25] investigated joint queue estimation and max
pressure control for urban networks with traffic lights. This
approach was investigated by simulation experiments and it
is not clear how the performance of this approach is affected
by real traffic.

In [26], the authors applied the Lighthill–Whitham–
Richards shockwave theory and Robertson’s platoon disper-
sion model to predict the arrival of vehicles in advance at
intervals of 5 seconds. This study did not consider vehicle
types and did not derive the discharging times.
Using Artificial Neural Networks (ANN) to compute

the highly stochastic queue dissipation time has also been
attempted by the traffic community. For instance, Murat and
Baskan applied the ANN to estimate the vehicle delay time
for over-saturated or non-uniform traffic conditions [27],
which has the mean average error (MAE) [28] of
more than 4 seconds and the mean absolute percentage
error (MAPE) [29] of 12.4061%. TrafficTalk proposed in this
paper achieves better MAPE (i.e., 10.4%). Motawej et al.
applied the same method along with the dissipativity-
based control to build a time-series model to perform the
estimation [30]. In their methods, the lagged traffic flow
data are used as the input for predicting the real-time traffic
flow. Note that the discrepancies in discharge time between
different vehicle types and the impact of parallelly queued
and discharged motorcycles in the traffic stream are not
considered in this model.
To our knowledge, all of the previous studies considered

queue length, not queue dissipation time. Also, they seldom
considered the impact of motorcycles. Furthermore, these
methods may not reasonably reflect the real traffic situations
since the arrival processes and the permutations of the queues
were randomly created rather than generated from the real
scenarios.
In [31], linear regression was applied to calibrate the func-

tional relations between the total queue dissipation duration
and its key contributing variables, including the passenger
cars, sport utility vehicles or track, heavy vehicles and three
binary variables. The R-squared value (R2) [32] of the Trans-
Log model in [31] is 0.73, which is lower than the R2 value
of TrafficTalk, which is 0.9145.

III. THE DEEP LEARNING MODELS
This paper considers three major types of vehicles in Taiwan
including large vehicles (buses or trucks), passenger cars,
and motorcycles. To detect the vehicles and predict their
behaviors, TrafficTalk designs a cascade deep learning model
consisting of YOLO (for detection) and convolutional neu-
ral network (CNN, for prediction) [33], [34]. We first define
a queue pattern as the order of different types of vehicles
queued at the last second of the effective red time in any
given signal cycle. According to the data we collected, it
is observable that the dissipation characteristics of differ-
ent queue patterns will affect the required dissipation time.
The driver of a large vehicle may spend more perception
and reaction time to start up at the beginning of each green
time of the traffic signal cycle. Compared with a passenger
car or a motorcycle, a large vehicle requires more headway
(i.e., the elapsed time between two successive vehicles as
they pass a point on the roadway) [35], and the correspond-
ing dissipation time varies for different types of vehicles.
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FIGURE 1. Two different arrangements with the same number of vehicles.

Fig. 1 shows the queue patterns with two arrangements of
four large vehicles, seven passenger cars, and one motorcy-
cle. In Fig. 1 (a), two large vehicles are queued in the front
of the intersection, which requires about 18 seconds of dis-
sipation time; Fig. 1 (b) shows the queue pattern with two
passenger cars in front of the queue, which requires about
13 seconds of dissipation time.
TrafficTalk builds a CNN model to recognize the different

queue patterns in traffic videos and predict the correspond-
ing dissipation times. This section describes how TrafficTalk
detects and extracts the vehicles from an image, and modifies
the CNN model for more efficient execution.

A. VEHICLE OBJECT DETECTION AND EXTRACTION
In our study, the traffic video datasets 1-3 were collected
from three signalized intersections illustrated in Fig. 2 (a).
Details of the datasets 1-3 will be elaborated in Section V. We
translate the video images into the vehicle density maps
illustrated in Fig. 2 (c). The concept of vehicle density map
assumes that different types of vehicles have different “den-
sities”. In physics, objects with larger densities have larger
static frictions, which results in slower object movement
(long headways of the vehicles). By creating a vehicle den-
sity map from a vehicle pattern image in a road intersection,
we translate the question “how long the vehicles in an
intersection are dissipated” into a question like “how long
can we squeeze the heterogeneous-density toothpaste out of
the tube”.
To create a vehicle density map, we first use YOLOv4 [36]

to identify the types of vehicles and detect the positions of
the vehicle objects in the traffic videos (Fig. 2 (a)). The
detection results (Fig. 2 (b)) were affected by miscellaneous
noises (such as buildings and roadside trees) other than the
target objects. Such noises reduce the accuracy of model
predictions. To resolve this issue, we extract the detected
vehicles as colored rectangles and remove the “background
information” (Fig. 2 (c)). The extracted objects include pas-
senger cars and large vehicles, which are considered in most
traffic management models [37]. We also detect and extract
motorcycle objects since they account for a large propor-
tion of mixed traffic flows in Taiwan. In TrafficTalk, vehicle
object detection is performed in the YOLO detection module
(to be elaborated later in Fig. 6 (3)). Vehicle object extraction

FIGURE 2. Vehicle density map creation through vehicle object detection and
extraction.

is performed in the extraction module of the Predictor (to
be elaborated later in Fig. 7 (2)).
The above two-step image processing creates a vehi-

cle density map bounded by a yellow-boundary region in
Fig. 2 (b), where a green rectangle denotes a passenger car
(i.e., the density for a passenger car), a blue rectangle denotes
a motorcycle, and a red rectangle represents a large vehicle
such as a bus or a truck.

B. LABELS FOR QUEUE DISSIPATION TIME PREDICTION
TrafficTalk uses CNN models to learn different vehicle den-
sity maps (queue patterns in traffic videos) and predict the
corresponding dissipation time. As we mentioned in the
previous subsection, the output of the extraction module
is a vehicle density map, which is the input of the CNN
model. In this paper, one of the most common CNN models,
VGG16 [38] is used in TrafficTalk. Since we have reduced
the complexity of the images through the feature extraction
model, when the resulting simplified queue pattern images
serve as the inputs of the VGG16 model, we can reduce the
computational cost of the model without compromising the
prediction accuracy of the dissipation time. The details will
be given in the next subsection. To automatically generate
the label data of the dissipation time prediction model at the
training phase, the SORT [39] algorithm is used for vehicle
tracking as shown in Fig. 3.
In the region with the yellow boundaries in Fig. 3, the

queue pattern is captured at the start time of the green light,
denoted as ts. Through SORT, we track all detected vehicles
in the queue during the effective green time until they are
dissipated, and then record the time ti when vehicle i is
discharged for i = 1, 2, . . . , n, where n is the number of
the detected vehicles in the queue. Then we compute the
queue-pattern dissipation time, tl, as the label data of the
queue dissipation time prediction model as follows:

t1 = max(ti) − ts for i = 1, 2, . . . n (1)

Eq. (1) computes tl as the time for the queue to dissipate
in the specific intersection.
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FIGURE 3. The procedure for generating the label data of the dissipation time
prediction model (for training).

C. TRANSFER LEARNING AND MODEL REDUCTION
To predict the dissipation time from the vehicle density
maps, we first apply transfer learning [40] to modify the
VGG16 model for prediction. The TrafficTalk CNN archi-
tecture is divided into the input block (Fig. 4 (1)), the
convolutional block (Fig. 4 (2)), and the fully connected
block (FC block; Fig. 4 (3)). In Fig. 4, a white circle rep-
resents a convolutional layer with the activation function
of ReLU [41], where the stride is 2 and the kernel size is
3x3. A black circle represents a max pooling layer. Fig. 4
(a) illustrates the pre-trained VGG16 model with the input
size 512x512, the convolutional block of thirteen convo-
lutional layers, and the FC block of two fully connected
layers.
The above FC block is a modification of the original

VGG 16 model through transfer learning. For the purpose of
description, we use the notation FC(x, y) to represent a fully
connected layer with the kernel number x and the activation
function y. The original VGG 16 model consists of two fully
connected layers of 4096 kernels with the ReLU activation
function (Fig. 5 (a)), and the second FC(4096, ReLU) is
followed by the fully connected layer of 1000 kernels with
the softmax activation function.
Through transfer learning, we replace the FC block in

Fig. 5 (a) with the simplified FC block in Fig. 5 (b). The
simplified FC block consists of a connected layer of 256 ker-
nels with the ReLU function followed by a fully connected
layer of one kernel with the ReLU activation function. In
the second connected layer, ReLU is selected because the
output of TrafficTalk prediction is dissipation time instead
of multiple classes (that are typically identified by softmax).
Our experiments indicate that transfer learning reduces the
computation complexity of the FC block. It also improves
the MAPE by 2.059%, reduces the MAE by 13.3255%, and
improves R2 by 17.5581%.

FIGURE 4. The structures of the pre-trained VGG16 and the reduced models.

FIGURE 5. The fully connected blocks of the original VGG16 and the pre-trained
VGG16 models.

In TrafficTalk, we use the weights obtained from the
VGG16 model pre-trained on ImageNet to construct a fixed
convolution feature extractor ((2) of Fig. 4 (a)) to extract spe-
cific features of the image (e.g., the color and the shape of
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FIGURE 6. The TrafficTalk architecture.

the images in Fig. 2). These features are used for fine-tuning
the model.
Through feature extraction in Section III-A, we have

reduced the complexity of the input for the VGG16 model
from the queue pattern images to the vehicle density maps.
Therefore, we can reduce the computational cost of the
VGG16 model by adjusting the model structure including
the input size of queue-pattern images ((1) of Fig. 4), the
number of layers in the convolutional block, and the number
of kernels in each convolutional layer ((2) of Fig. 4). Three
reduction models are described as follows:

• In Reduction Model 1 (RM1; see Fig. 4 (b)), the last
three convolutional layers in (2) of Fig. 4 (a) are
removed. Because the vehicles in the input images
are transformed into simple geometric shapes, and the
color distribution of the input images is simplified into
red, green, and blue densities, the simplified RM1 can
still effectively extract features with fewer convolutional
layers.

• Reduction Model 2 (RM2; see Fig. 4 (c)) reduces the
resolutions and the kernel sizes of RM1’s convolutional
block are replaced. Note that the layers in the convo-
lutional block are the same for both RM1 and RM2.
The number of kernels in each layer of the convolu-
tional block is reduced from (64, 128, 256, 512; see
(2) in Fig. 4 (b)) to (52, 104, 208, 416; see (2) in
Fig. 4 (c)), and the input size of queue pattern images
is reduced from 512x512 ((1) in Fig. 4 (b)) to 416x416
((1) in Fig. 4 (c)). Since the objects in the vehicle den-
sity maps have been simplified, we can resize input
images with a lower resolution (i.e., 416x416), and can
still capture the same features as the input images with
higher resolution (i.e., 512x512).

Reduction Model 3 (RM3; see Fig. 4 (d)) further reduces
the resolutions and the kernel sizes of RM2’s convolutional

block; i.e., (1) and (2) of Fig. 4 (c) are replaced. Note that
the number of layers in the convolutional blocks for both
RM2 and RM3 are the same. The number of kernels in each
convolutional layer is reduced from (52, 104, 208, 416) to
(32, 64, 128, 256), and the input size of queue pattern images
is reduced from 416x416 to 256x256. Since the objects in the
pre-processed images have been simplified, we try to resize
input images with a lower resolution (i.e., 256x256), and
we expect that the model still captures the same features as
the input images with the higher resolution of 416x416. The
effects of model reduction evaluated in Section IV indicate
that RM3 does not provide any improvement over RM2.

IV. THE TRAFFICTALK ARCHITECTURE
This section describes the TrafficTalk architecture.
TrafficTalk detects the real-time queue patterns of mixed
traffic flows and predict the corresponding dissipation time.
The training data are collected from the real-world videos
of Closed-Circuit Television (CCTV) and PiXORD bullet
network cameras.
Based on an IoT application development tool called

IoTtalk [42], TrafficTalk analyzes the video data col-
lected by cameras and controls the signal lights based
on dissipation time prediction. In TrafficTalk, the cameras
(Fig. 6 (2)) provide real-time video streaming of traffic
flows in the intersection (Fig. 6 (1)). Two AI tools are
deployed as software IoT devices [43], including YOLOv4
and CNN. The Detector (Fig. 6 (3)) continuously takes snap-
shots from the video stream in real time, detects vehicle
objects from the background using the YOLOv4 model and
stores them in the Traffic DataBase (TrafficDB; Fig. 6 (4)).
The Detector sends the coordinates of the extracted fea-
tures (Bus-I, Truck-I, Car-I, Motorcycle-I) and the HTML
file path of the image (Image-I) to the TrafficTalk Engine
(Fig. 6 (5)). The features appended with “-I” are called input
features, and the measured data of input features are sent to
the TrafficTalk Engine. The engine may process the received
data (to be elaborated later), and then forwards them to the
Predictor (Fig. 6 (6)). The data sent from the engine to the
Predictor are received by the output features appended with
“-O”. The CNN model uses the data of the output features
(the file paths) to retrieve the images in the TrafficDB, and
then dynamically predicts the dissipation time. The results
are sent to the Traffic Controller (Fig. 6 (7)) through the
TrafficTalk engine. The traffic Controller then determines
the control of the traffic lights (Fig. 6 (8)). In this system,
the TrafficTalk engine is responsible for dispatching mes-
sages among the software IoT devices (i.e., the Detector,
the Predictor, and the Traffic Control devices).
In TrafficTalk, the software of an IoT device consists

of two parts, the Device Application (DA) and the Sensor
& Actuator Application (SA). The DA is responsible for
the connection to the TrafficTalk server (that is, (3)→(5),
(6)→(5), (5)→(6) and (5)→(7)) using the HTTPS and the
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FIGURE 7. The CNN SA.

MQTT protocols. The lower-layer communication technolo-
gies for the DA can be wired (Ethernet) or wireless (LTE,
5G, or WiFi).
The SA implements the intelligence of the IoT device.

For example, the YOLO SA in Fig. 6 (3) implements the
YOLOv4 model to identify the types of vehicles and detect
their positions in the snapshots of the streaming videos.
With the detected types and locations of the vehicles, The
Predictor (Fig. 6 (6)) derives the queue patterns emerging in
the traffic videos. Details of the CNN SA for the Predictor
are illustrated in Fig. 7. The vehicle detection results in
Fig. 7 (1) are sent to the extraction module (Fig. 7 (2))
for image preprocessing of vehicle density map generation
(Fig. 2 (c)) described in Section III. The dissipation time
label (Label-O; the first output feature in Fig. 7 (1)) and
hyper-parameter setting (Fig. 7 (4)) are used in the queue
dissipation time prediction model described in Section III-C
(Fig. 7 (3)). The results generated by the preliminary model
are used to conduct stratified k-fold cross validation (Fig. 7
(5)) to adjust the hyper-parameters (Fig. 7 (6)) by gradient
search optimization, and then fed back to the CNN model
for fine-tuning. The dissipation time prediction results are
sent to the Traffic Controller (Fig. 6 (7)) through the input
device feature Result-I in Fig. 7 (1).
The connections among the IoT devices are easily con-

figured using the TrafficTalk graphical user interface (GUI)
illustrated in Fig. 8. This GUI can be conveniently accessed
by an arbitrary computing device with a Web browser. In
the TrafficTalk GUI, a software IoT device with input fea-
tures (for example, the Detector) is represented by a “device
model” icon placed in the left of the GUI window (Fig. 8 (1)).
The input features are represented by small icons grouped
within the device model icon. A software IoT device with
output features (for example, the Traffic Controller) is rep-
resented by a device model icon placed in the right of the
GUI window (Fig. 8 (4)). An IoT device with both input and
output features (for example, the Predictor) is represented by
two device model icons placed in the right (Fig. 8 (2)) and
the left (Fig. 8 (3)) of the window.
To create a path (3)→(5)→(6) in Fig. 6, we simply drag

a line from an input feature in the Detector icon to an output
feature in the Predictor icon in Fig. 8. For example, Bus-I

FIGURE 8. The TrafficTalk GUI.

and Bus-O are connected through the Join 1 line. Therefore,
to create the configuration described in Fig. 6, we simply
make the connections Joins 1-7 in Fig. 8.
The Join 6 connection in Fig. 8 merits further discussion.

In the CNN model, the labels are required to validate the
prediction results for training. Through the vehicle objects
identified by the Detector, the vehicle tracking algorithm
implemented in Section III-C calculates the actual dissipation
time using Eq. (1) to produce the ground truth labels. By
clicking the circle in the middle of the Join 6 link in Fig. 8, a
window pops up for one to write the Python vehicle tracking
function (i.e., Eq. (1)) with the inputs received from input
features of the Detector. The reader is referred to [42] for
the details.
Based on the queue patterns, the Predictor computes

the corresponding queue dissipation times. By connecting
Result-I to Controller-O through Join 8, the Predictor sends
the predicted dissipation time to the Traffic Controller for
making decisions to switch traffic signal lights.
Implementation of TrafficTalk (Figs. 6, 7 and 8) are

guaranteed by three tools provided by IoTtalk. The
VerificationTalk tool [48] guarantees the codes in Figs. 6
and 7 are made safe from failure. The BigraphTalk tool [49]
guarantees that the connections in Fig. 8 are correct.

V. EXPERIMENTS AND RESULTS
This section first describes how we collected the queue pat-
tern data. Then we conduct experiments to investigate the
performance of TrafficTalk in terms of the queue dissipation
time prediction and the inference time complexity.

A. QUEUE PATTERN DATASETS
We established three datasets by collecting the traffic video
data from different signalized intersections:

• Dataset 1 collects the data from the PiXORD bullet
network cameras at Ping’an Rd. and Zhongzheng E. Rd.
intersection in Dayuan Dist., Taoyuan City (Fig. 9 (a)).
The collection periods range from 7:00 a.m. to 5:00 p.m.
on 04/15/2020, 02/24/2020, 03/01/2020, 12/08/2020,
12/09/2020, and 12/12/2020.
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FIGURE 9. Locations for the queue pattern datasets.

• Dataset 2 collects the data from the PiXORD bul-
let network cameras at Hengnan Rd. and Zhongzheng
E. Rd. intersection in Dayuan Dist., Taoyuan City
(Fig. 9 (b)). The collection period ranges from 7:00 a.m.
to 5:00 p.m. on 12/12/2020.

• Dataset 3 collects the data from the CCTV at Aly. 1,
Ln. 1, Xipu Rd. intersection in Dashu Dist., Kaohsiung
City (Fig. 9 (c)). The collection periods range from
8:00 a.m. to 5:00 p.m. on 10/30/2019, 10/31/2019,
02/20/2020, 02/24/2020, and 02/25/2020.

By excluding the images with empty queues and outliers
caused by traffic accidents or other special incidents, there
are 981,295,415 valid images. In TrafficTalk, 60% of the
data are used for training, 20% are used for validation, and
20% are used for testing.

B. EXPERIMENTS FOR QUEUE DISSIPATION TIME
PREDICTION
The MAE in Eq. (2), the MAPE in Eq. (3), and the R2 in
Eq. (4) are used to evaluate the accuracy of the TrafficTalk
model, where

MAE =
[
n−1

n∑
i=1

|Pi − Oi|
]

(2)

MAPE =
[

100 ∗ n−1
n∑
i=1

∣∣∣∣Pi − Oi
Oi

∣∣∣∣
]

(3)

R2 = 1 −
∑n

i=1(Oi − Pi)2∑n
i=1(Oi − O)

(4)

In Eqs. (2)–(4), Pi is the i-th model prediction, Oi is the
pairwise matched observation for i = 1, 2, . . . , n, and O is
the mean value of all observations.
According to [44], a model with MAPE less than 10%

is a highly accurate forecasting model; a model with
MAPE 10%-20% is a good forecasting model; a model
with MAPE 20%-50% is a reasonable forecasting model,
and a model with MAPE more than 50% is an inaccurate
forecasting model.

TABLE 1. MAE and MAPE comparison between different models.

FIGURE 10. The inference time comparison between different models.

Table 1 shows the MAE/MAPE/R2 values and
Fig. 10 shows the inference times for TrafficTalk based
on VGG16 and model reductions RM1, RM2, and RM3.
Without the image preprocessing of object detection and
extraction, the MAPE of VGG16 using the original images
is 33.1414%, and the inference time is 234.1 milliseconds.
On the other hand, the MAPE of VGG16 using the vehi-
cle density maps is 28.4868%, which indicates that object
detection and extraction can significantly reduce the error
on predicting the queue pattern dissipation time. Since the
vehicle density map significantly reduces the complexity of
an image, the pre-trained VGG16 may overfit in predicting
the queue pattern dissipation time. Therefore, it is required
to conduct model reduction to avoid overfitting in predicting
the queue pattern dissipation time. Table 1 and Fig. 10 show
that with model reduction, the MAPE is 21.2266% for RM1,
and the inference time is decreased from 234.1 milliseconds
to 162.6 milliseconds. The MAPE is 10.3771% for RM2,
and the inference time is decreased to 98.6 milliseconds,
which is an improvement of 57% over the VGG16 model.
The experiments show that the effectiveness and efficiency
of queue pattern dissipation time prediction can be sig-
nificantly improved with model reduction RM2. On the
other hand, the MAPE of RM3 is 30.9507%, which is
worse than that of RM2. This result indicates that RM3 has
over-reduced the resolutions and the kernel sizes of RM2’s
convolutional block.
We have also implemented four regression models (e.g.,

linear regression, random forest [45], support vector regres-
sion (SVR) [46], and XGBoost [47]). Table 1 lists the
MAEs, the MAPEs and the R2 values for all models con-
sidered in this paper. The MAPE is 20.3392% for linear
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FIGURE 11. The prediction results of the six models.

regression, 27.9360% for random forest, 17.6532% for SVR,
and 25.7848% for XGBoost.
Fig. 11 illustrates the queue dissipation time prediction

results for the various machine learning models based on
Dataset 1, Dataset 2, and Dataset 3. In this figure, the orange
lines represent the ground truths of the queue dissipation
time, and the blue lines stand for the queue dissipation time
prediction results. We observe that the queue dissipation time
prediction results generated by RM2 (Fig. 11 (b)) are more
in line with the ground truths of the queue dissipation time.
We conclude that RM2 has better MAE, MAPE and R2

than other models. The computation overhead for RM2 is
also reasonably small.

FIGURE 12. The object extraction results for various selected types of vehicles
combinations.

C. EFFECTS OF TYPES OF VEHICLES
This subsection conducts experiments to investigate the
effects of mixed traffic flows by considering selected types
of vehicles. Specifically, after vehicle object extraction (see
Section III-A), the image in Fig. 12 (a) is extracted as a vehi-
cle density map with various types of vehicles. Specifically,
Fig. 12 (b) is the vehicle density map {L, P, M} including
all types of vehicles; Fig. 12 (c) is the vehicle density map
{L} with the large vehicles only; Fig. 12 (d) is the vehi-
cle density map {P} with the passenger cars only; Fig. 12
(e) is the vehicle density map {M} with the motorcycles
only; Fig. 12 (f) is the vehicle density map {L, P} without
the motorcycles; Fig. 12 (g) is the vehicle density map {L,
M} without the passenger cars; Fig. 12 (h) is the vehicle
density map {P, M} without the large vehicles.
Table 2 lists the MAE, MAPE and R2 measures of

the RM2 model for various queue patterns in Fig. 12.
Denote “>” as “better than”. Then Table 2 indicates that
{L,P,M}>{L,P}>{P,M}>{L,M}>{P}>{L}>{M}.

Compared with merely considering the large vehicles and
passenger cars, additionally consideration of the motorcycles
can reduce the MAPE from 31.2912% to 10.3771%, which
is an improvement of over 66%.
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TABLE 2. MAE and MAPE of RM2 for patterns with extracted types of vehicles.

VI. CONCLUSION
We proposed a novel method called TrafficTalk, which
predicts the dissipation time for traffic signal timing plan
design of signalized intersections for multiple types of vehi-
cles including motorcycles. TrafficTalk can estimate the
dissipation time of various queue patterns consisting of
different types of vehicles. Compared with the previous
approaches, TrafficTalk has better feasibility and stability
by further considering the mixed traffic flows including,
for example, the characteristics of parallel dissipation of
motorcycles. Moreover, TrafficTalk provides appropriate set-
tings for TSCT. Experiments show that TrafficTalk accurately
and efficiently predicts the dissipation time of different
queue patterns. By extracting the detected vehicle objects
in an image to produce a vehicle density map, TrafficTalk
reduces the complexity of the VGG16 model and obtains
more accurate prediction results with model reduction RM2.
Specifically, RM2 achieves the lowest MAPE of 10.4%
among all machine learning models considered in this paper
(i.e., VGG16, linear regression, random forest, SVR and
XGBoost). By considering motorcycles in the traffic flows,
the MAPE can be improved over 66%, the MAE can be
reduced over 35%, and the R2 can be improved over 49%.

In the future, we will investigate TrafficTalk by using other
country’s traffic datasets such as the KTTI dataset. Also, we
are negotiating with the Kaohsiung city to open the city
traffic datasets for public access.
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