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ABSTRACT The safety and reliability of autonomous driving pivots on the accuracy of perception and
motion prediction pipelines, which reckons primarily on the sensors deployed onboard. Slight confusion in
perception and motion prediction can result in catastrophic consequences due to misinterpretation in later
pipelines. Therefore, researchers have recently devoted considerable effort towards enhancing perception
and motion prediction models. However, targeting pixel-wise joint perception and motion prediction
using different sensor modalities are often ignored. In this paper, we push performance even further by
leveraging a multi-modal fusion network. We propose a novel LIDAR Camera Network (LiCaNet) that
achieves accurate pixel-wise joint perception and motion prediction in real-time. LiCaNet expands on our
earlier fusion network by incorporating a camera image into the fusion of LIDAR sourced sequential bird’s-
eye view (BEV) and range view (RV) images. We present a comprehensive evaluation using nuScenes
dataset to validate the outstanding performance of LiCaNet compared to the state-of-the-art. Experiments
reveal that utilizing a camera sensor results in a substantial gain in perception and motion prediction.
Moreover, most of the improvements achieved fall within the camera range, with the highest registered
for small and distant objects, confirming the significance of incorporating a camera sensor into a fusion
network.

INDEX TERMS Autonomous driving, deep learning, motion prediction, multi-modal fusion, perception,
sensor fusion.

I. INTRODUCTION

THE FIELD of autonomous driving had secured incre-
mental progress over the past few years, especially

around 2014, when deep learning blossomed. At that time,
researchers started regaining hopes that the impediments
in autonomous driving could be resolved with the help of
innovative deep learning. Typically, an autonomous vehi-
cle consists of several pipelines ranging from perception,
motion prediction, planning to control [1]. The two piv-
otal pipelines in autonomous vehicles are perception and
motion prediction, as they allow the vehicle to observe
the environment and forecast the dynamics in its sur-
roundings. All subsequent pipelines rely on the accuracy
of both perception and motion prediction. Without these

The review of this article was arranged by Associate Editor Winnie
Daamen.

pipelines, an autonomous vehicle cannot operate safely
and reliably. Moreover, fundamental to perception and
motion prediction pipelines are their input data provided by
sensors.
In general, an autonomous vehicle is equipped with a

suite of different sensors (e.g., LIDAR, camera, ultrasonic,
and RADAR) [2]. Although each sensor has advantages and
disadvantages, combining data features from several sensors
provides complementary information by reaping the benefits
of all employed sensors and mitigating the inherent chal-
lenges of individual sensors. As our paper focuses on fusing
LIDAR and camera features, we briefly compare LIDAR and
camera sensors and then show how multi-modal fusion leads
to performance advancement. A LIDAR sensor is designed
to capture precise depth and physical information of the sur-
rounding environment. On the other hand, a camera sensor
acquires color information offering rich semantic images.
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Unlike LIDAR, a camera is ineffective at capturing object
ranges and physical sizes.
Fusing precise range and geometric measurements from

a LIDAR and rich semantic information from a camera,
we yield an integral set of features resistant to the lim-
itations manifested by individual sensors. For example,
when a camera captures semantic features concerning an
object, the existence of LIDAR data complements those fea-
tures by adding the object’s depth and physical dimensions.
Additionally, small and distant objects are naturally repre-
sented by few LIDAR points, and even a camera captures
inadequate semantics for such objects. However, when these
features are aggregated, the representation of such objects is
strengthened.
LIDAR is the most common sensor employed in

autonomous vehicles, and several representations exist in
the literature for its data. The prominent LIDAR data
representations include point-based form [3], [4], 3D vox-
elization [5], [6], bird’s-eye view (BEV) [7], [8], [9], and
range view (RV) [10], [11], [12]. In this paper, on top of
multi-sensor fusion, we take advantage of fusing multi-view
LIDAR data representation. Undoubtedly, each LIDAR rep-
resentation has its benefits and drawbacks. However, the
two most efficient and effective are BEV and RV forms.
These two representations overcome most of the limitations
found in the other LIDAR-based representations, and further,
they encompass additional properties that are valuable to the
learning model.
BEV and RV are compact 2D image projections of the

LIDAR point cloud, inexpensive to generate, and efficient to
process using 2D convolutions. In addition, BEV simplifies
the process of adding historical information and preserves
object dimensions making learning easier. Lastly, RV pre-
serves occlusion and high-resolution point information.
Accordingly, exploiting both BEV and RV form in a fusion
network is computationally inexpensive and offers valuable,
constructive features procured from one sensor, enabling a
deeper understanding of the scene.
Based on recent works [7], [9], [13], [14], [15], [16], it

has been shown that the benefits of exploiting multi-modal
fusion for perception and motion prediction in autonomous
driving are substantial. To the best of our knowledge, no
other work explores the multi-modal fusion of historical
BEV, RV, and camera features to address the issue of pixel-
wise joint perception and motion prediction in real-time.
In light of the above observations and inspired by [9], we
propose a novel LIDAR Camera Network (LiCaNet), which
expands on the fusion network of our earlier work [7] to
involve a camera in addition to a LIDAR sensor. Hence,
a new camera module is added to extract relevant seman-
tic features from camera images, enabling fusion with BEV
and RV features. Fig. 1 illustrates the architecture of our
proposed LiCaNet multi-modal fusion network. LiCaNet
aims to generate rich and complementary features constitut-
ing: temporal, depth, and object sizes encoded in BEV form;
occlusion and high-resolution point information embodied

in RV; and semantic information characterized in a camera
image.
Model-based and data-driven are two main strategies for

approaching multi-modal fusion [17], [18]. The model-based
approach relies heavily on real-time data associations of
different sensors for precise multi-target tracking. Kalman
filter-based methods are the most popular among model-
based approaches [19]. Such approaches are challenging,
time-consuming, and are difficult to apply in complex
environments. Conversely, data-driven approaches use deep
learning to perform their assigned task. Even though deep
learning-based algorithms require huge amounts of anno-
tated data for training, they are fast at learning, generate
accurate solutions, and do not require learning at runtime.
Therefore, we design LiCaNet to produce outcomes based
on a data-driven fusion approach.
After engendering our multi-modal features, they are fed

into a backbone network to attain an enhanced joint percep-
tion and motion prediction model, especially for small and
distant objects. These overarching set of multi-modal fea-
tures engendered by LiCaNet feeds the backbone network
a vivid and knowledgeable image of the surrounding scene,
resulting in improved accuracy. The backbone network used
in this paper is MotionNet [20] which is a pixel-wise model
that perceives and predicts motion in real-time. Our primary
contributions are summarized as follows:

• To propose a multi-modal fusion network that reaps
the benefits of LIDAR data in historical BEV and RV
representations, along with a camera image. The rich
and comprehensive features attained are used to per-
form accurate pixel-wise joint perception and motion
prediction in real-time.

• To enhance the accuracy performance for small and
distant objects.

• To provide an extensive study that verifies the effec-
tiveness of our proposed approach using nuScenes
dataset [21]. We also show that our proposed approach
accomplishes competitive performance compared to
our earlier work, MotionNet, and other state-of-the-art
models.

The remainder of this paper is organized as follows.
Section II provides an overview of the related work.
Section III explains our proposed fusion scheme. The analy-
sis of our performed experiments is discussed in Section IV.
Finally, Section V concludes our paper.

II. RELATED WORK
With the advent of deep learning, significant progress has
been made towards perception and motion prediction. In this
section, we review the existing prominent literature on per-
ception and motion prediction in the field of autonomous
vehicles. Research works have established various method-
ologies for formulating their input to the learning models,
whether the generated input features are sourced from sin-
gle or multiple sensors. As our proposed work involves two
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FIGURE 1. LiCaNet architecture. The input is composed of 5 sequential BEV images, an RV, and a camera image. LiCaNet is composed of three modules. The BEV and RV
modules consist of double 3 × 3 convolution layers (d). The camera module consists of a pretrained network, projecting and warping the camera features into RV form and
double 3 × 3 convolution layers. The RV features from both the RV and camera modules are concatenated and fed into U-Net (b). The U-Net consists of residual blocks (c) and
upsample and downsample blocks of scale 2. The output of the U-Net, in RV form, is projected into BEV and concatenated with the features from the BEV module to be finally fed
into a single 3 × 3 convolution layer. Finally, the LiCaNet output is fed into MotionNet backbone for joint perception and motion prediction.

sensors, we target works that deployed a LIDAR, camera,
and LIDAR and camera combined.

A. PERCEPTION AND MOTION PREDICTION USING
LIDAR SENSOR
There exist many models that depend on a single LIDAR
sensor, with each representing its input features differently.
Some of the prior works directly processed the raw 3D
point cloud without applying any transformation. To begin
with, PointRCNN [3] is a point-based method that gener-
ates 3D proposals for 3D object detections using a two-stage
method: the bottom-up 3D proposal generation and refining
the proposals. Shi et al. [4] extends PointRCNN to achieve
3D object detections using part-aware and aggregation neural
network. Another common approach is to transform the point
cloud into 3D voxels. VoxelNet [5] predicts 3D detections
using voxel encodings. Additionally, fast point R-CNN [6]
and PV-RCNN [22] performed 3D object detection by incor-
porating voxel-based and point-based for better point cloud
feature learning.
Although perceiving the environment through point-based

or 3D voxels has benefits. However, the runtime require-
ment suffers due to the processing of sparse representations
and the existence of 3D convolutions. Typically, point-based

models are data-intensive, and so in addition to being time-
consuming, they face computation and memory bottlenecks;
thus cannot be scaled easily. Recently, researchers have con-
sidered transforming point clouds into 2D images, such as
BEV and RV, for their compactness, efficiency in process-
ing, and effectiveness in improving the performance of point
cloud classification and segmentation. There exist few works
that used 2D LIDAR-based image representations but ended
up generating 3D object-level proposals [12], [23], [24].
All works reviewed so far engender 3D object-level

predictions, even though different input representations were
used. The generation of 3D proposals requires 3D convolu-
tions, which are computationally inefficient compared to 2D
convolutions. The following works adopt 2D input images for
their input features and use 2D convolutions to perform pixel-
wise predictions. Khalil and Mouftah [7] proposed combin-
ing BEV and RV representations to perceive and predict
motion in real-time. Khalil and Mouftah [8] used reinforce-
ment learning to train an autonomous vehicle in an urban
environment with perception and motion prediction guid-
ance. SqueezeSegV3 [11] used RV images to perceive the
driving environment through segmentation. SalsaNext [10] a
real-time, uncertainty-aware semantic segmentation model
that is based on RV representations. AMVNet [25] use
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RV images to perform semantic segmentation using an
assertion-guided sampling strategy. Lastly, MotionNet [20]
used sequential BEV images to perform pixel-wise joint
perception and motion prediction in real-time.
We can conclude that fusing LIDAR-based 2D image

representations is more effective than other LIDAR-based
representations because they are compact, efficient to gen-
erate and process, and 3D convolutions can be avoided.
Furthermore, it is possible to generate real-time pixel-wise
predictions with such representations.

B. PERCEPTION AND MOTION PREDICTION USING
CAMERA SENSOR
Perception algorithms that utilize deep learning and depend
on a camera sensor fall under the category of image-based
detections based on convolutional neural network (CNN)
architectures. Typically, such frameworks are divided into
two streams: one-stage and two-stage object detections. One-
stage detectors (e.g., YOLO [26] and SSD [27]) directly
map input features to class probabilities and bounding box
coordinates via a single-stage CNN model. Whereas two-
stage detectors (e.g., Faster R-CNN [28] and R-FCN [29])
firstly extract region proposals, then they are refined down
the pipeline to generate object classification and regression.
Predominantly, one-stage detectors are faster than two-stage
detectors but are inferior to two-stage detectors in terms
of detection accuracy. An excellent performance assessment
of one-stage and two-stage detectors in autonomous driving
can be found in [30]. Over the past decade, image-based
object detections have picked a staggering pace in the field
of autonomous driving [31], [32], [33], [34].
A typical problem with image-based CNN detectors is

that accuracies for large and small objects are unbalanced.
Large objects are represented by sufficient features permit-
ting them to be classified correctly with high confidence. In
contrast, small objects are usually represented by inadequate
features and thus left undetected or classified with low con-
fidence. In the field of autonomous driving, it is essential
to detect small objects (e.g., pedestrians and bicyclists) to
maintain their safety. Recently, researchers proposed image-
based CNN algorithms with a focus on detecting small
objects. FPN [35] is a two-stage multiscale network that
achieved high detection accuracy for small objects. The tech-
nique adopted in FPN is the fusion of multiscale features.
PNA [36] is an enhanced version of FPN that also special-
izes in detecting small objects. YOLOv4-5D [31] proposed
an improvement to the PNA backbone network to increase
the detection accuracy for small objects. Even though these
detectors were able to achieve better detection results for
small objects, they are still bounding box-based methods.
Several successful attempts exist that build a pixel-wise

detector using only camera sensors, registering challenging
outcomes. Porzi et al. [37] proposed semantic segmen-
tation using a single backbone network, outperforming
UPSNet [38] which uses parameter-free panoptic head for

segmentation. Yang et al. [39] proposed an end-to-end unsu-
pervised learning framework to perform depth estimation and
camera motion prediction. Results showed that using stereo
image sequences surpasses scale ambiguity for depth estima-
tion and increases motion prediction accuracy for temporal
image sequences.
To conclude this subsection, we note that pixel-wise

predictions are essential for perceiving small and dis-
tant objects in autonomous driving; however, the inference
time requirement remains an issue. Furthermore, motion
prediction using only a camera sensor is a recent research
topic, and results are still not ideal mainly due to the lack
of depth information in camera semantics.

C. FUSION OF LIDAR AND CAMERA SENSORS
Presently, the utilization of multi-modal fusion for percep-
tion and motion prediction has gained much attention among
researchers in autonomous driving. Multi-modal fusion is
used to exploit the complementary properties of different
sensors and representations. Feng et al. [13] presented a
survey on different multi-modal methodologies for object
detection and segmentation in autonomous driving. An in-
depth review on the fusion of point clouds and images can
be found in [40]. Liang et al. [41] fused BEV and camera
images to perform 3D object detection using a continuous
fusion layer. Moreover, Liang et al. [15] enhanced the 3D
object detection model in [41] by reasoning about 2D and
3D object detections, ground estimation, and depth com-
pletion. LaserNet++ [14] is another model that performs
3D object detections; however, by fusing RV and camera
features. LaserNet++ reported good performance results,
especially for small and distant objects. PointPainting [42]
applied sequential fusion for semantic segmentation using
the painting technique where the point cloud is augmented
with image semantics. Later, the 3D detections are extracted
by applying the painted point cloud to a LIDAR detector.
Lastly, MVX-Net [43] proposed a 3D object detector using
two methods that fuse a point cloud and a camera image in
a point-wise or voxel-wise fashion.
These works utilized multi-modal fusion to perform just

perception using 3D object proposals. Fadadu et al. [9]
proposed a multi-modal fusion model (BEV, RV, cam-
era, and HD maps) for perception and motion prediction
using LIDAR and camera. However, again, 3D object-level
predictions were computed. It is evident that no work has
yet been conducted that investigates pixel-wise joint percep-
tion and motion prediction using multi-modal fusion, which
is essential for small and distant objects as they provide
fine-grained, pixel-level precision.

D. RELATED WORK CONCLUDING REMARKS
In contrast to the reviewed works above, we propose a multi-
modal fusion network named LiCaNet to generate accurate
pixel-wise perception and motion prediction. LiCaNet fuses
camera features with LIDAR-based historical BEV and
RV features. LiCaNet engenders multi-modal features that
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embrace: 1) temporal, depth, and physical object dimen-
sions in BEV form; 2) occlusion and high-resolution point
information in RV form; and 3) semantics in camera images.
These rich and integral features enhance the accuracy of
perception and motion prediction, especially for small and
distant objects.

III. PROPOSED METHODOLOGY
The overview of our LiCaNet model is shown in Fig. 1.
We designed LiCaNet to incorporate features from LIDAR
and camera sensors to produce complementary multi-modal
features. We represent the LIDAR data in sequential BEV
and RV images. LiCaNet consists of three modules: BEV,
RV, and camera. The BEV and RV modules represent the
network of our earlier work [7], and the camera module is
the proposed expansion resulting in LiCaNet. The camera
module accepts camera images and extracts relevant features
to be fused with the outcomes of the BEV and RV mod-
ules for further performance enhancement. The multi-modal
features generated by LiCaNet are then used as input to
MotionNet backbone network for pixel-wise joint perception
and motion prediction. LiCaNet is evaluated on nuScenes
dataset [21] which consists of large amounts of high-quality
LIDAR and camera data designed for autonomous driving.
The methodologies used to analyze LiCaNet predictions are
classification accuracy for perception and displacement error
for motion prediction. LiCaNet performance outperforms
our earlier work, MotionNet, and other state-of-the-art mod-
els. Furthermore, LiCaNet operates in real-time, making it
suitable for autonomous driving.
In Sections III-A and III-B, we explain the formulation of

the sensors’ data representation specifically BEV, RV and
camera images; basically, our LiCaNet input. We define
the architecture of LiCaNet that generates the integral fea-
tures in Section III-C. Last, we discuss in Section III-D
the MotionNet backbone network used for learning from
the generated integral features to realize accurate pixel-wise
joint perception and motion prediction in real-time.

A. LIDAR INPUT REPRESENTATION
A LIDAR operates by scanning its entire field-of-view (FOV)
using laser beams. The LIDAR measures the time differ-
ence between firing a focused laser beam and detecting its
reflection. This collected data is used to compute the dis-
tance to objects, which can be further used to compute the
xyz-coordinates of objects. We represent the LIDAR data
provided by the nuScenes dataset in BEV and RV forms.

1) BIRD’S-EYE VIEW

Bird’s-eye view (BEV) is formed by projecting the 3D
LIDAR points into 2D images of dimensions Rx × Ry × H
meters, and grid cell resolution of �rx ×�ry ×�h meters
in the xyz-axis. The 2D grid images represent the top-down
view of the point cloud, where RxRyH denotes the region-
of-interest in the xyz-direction. We set Rx and Ry to each
cover a range of 64m in length and width, respectively. The

covered range in length is 32m long from the front- and
back-side of the vehicle (Rx ∈ [ − 32, 32]). Similarly, the
width range is divided equally between the left- and right-
side of the vehicle (Ry ∈ [ − 32, 32]). Height dimension H
covers a total range of 5 meters (H ∈ [− 3, 2]). We set the
resolution of each 2D grid cell to �rx = 0.25, �ry = 0.25
and �h = 0.4. Discretizing all 3D points into evenly spaced
cells results in a BEV image of dimensions 256×256×13. In
other words, the entire height dimension of the point cloud
is discretized into 13 image channels (H�h−1), each with a
size of 256×256 (Rx�r−1

x ×Ry�r−1
y ). Upon discretization, a

grid cell is considered occupied if at least one LIDAR point
is mapped to it and is labeled with a value of 1; otherwise,
−1 is assigned.
The procedure outlined above computes one BEV image

from a single LIDAR sweep. On the other hand, our BEV
input requires a sequence of 5 BEV images. As a result,
we incorporate a sequence of 4 historical LIDAR sweeps in
addition to the current sweep to provide the capacity to gen-
erate motion predictions. The historical sweeps are exploited
in BEV form because of their simplicity in stacking sequen-
tial images. So, on top of computing the BEV image of the
current sweep, we need to convert all 4 historical sweeps
into BEV form by the same discretization process explained
above. Before discretizing the 4 historical sweeps, we must
first synchronize them with the current sweep’s coordinate
system. The synchronization process is done through coor-
dinate transformation. This step is necessary to compensate
for the autonomous vehicle’s motion across time. After the
synchronization and discretization steps, all 4 historical BEV
images are stacked on top of the current BEV image. Thus,
the overall BEV input dimensions become 256×256×13×5.
Fig. 2a illustrates a sample of our sequential BEV input.

2) RANGE VIEW

Range view (RV) representation is created by projecting each
point pi = (x, y, z) in the LIDAR point cloud to a pixel in the
projected RV image. A spherical projection is used to speed
up computation. The transformation used for projecting to
RV image is defined in Eq. (1).(

ul
vl

)
=

( 1
2

[
1− arctan (y, x) π−1

]
wl[

1− (
arcsin (zr−1)+ fup

)
f−1

]
ll

)
, (1)

where (ul, vl) represents the angular coordinates denoting
the pixels in the RV image. wl and ll indicates the width
and length of the RV image, respectively. The vertical FOV
of the LIDAR sensor is defined as f = fup + fdown, and
r = √

x2 + y2 + z2 is the range of point pi.
We design the projected RV image dimensions to be

1024 × 32 × 4. The length value usually reflects the num-
ber of LIDAR beams. The LIDAR sensor used in nuScenes
dataset is Velodyne HDL32E and has 32 beams. In contrast,
the width and channel values are determined by the designer.
In our earlier work [7], it was proven that the wider the RV
image, the better the performance. However, we selected
a width dimension of 1024 because that is the maximum
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our limited hardware can handle to load and train LiCaNet.
Similar to [7], we construct the 4 channels for each (ul, vl)
pixel by projecting the range r, height, intensity of pi, and the
last channel is a binary value indicating if the pixel is occu-
pied by at least one pi. If no pi is projected to a (ul, vl) then
all 4 channels are filled with −1. Unlike the input BEV
representation, our RV image only constitutes the current
LIDAR sweep with no historical information. Compared to
BEV form, where past sweeps are simply stacked together,
concatenating past sweeps in RV form involves more com-
plicated processing. The LiDAR sweep used to generate the
RV image is the same as the one used to compute the cur-
rent BEV image. A sample range, height and intensity of
the current sweep in RV form are illustrated in Fig. 2c, 2d,
and 2e, respectively.

B. CAMERA INPUT REPRESENTATION
A camera sensor captures information with color encod-
ings, offering semantically rich images. From the nuScenes
dataset, the front camera images are used as input to the
LiCaNet camera module. The RGB camera images are of
dimensions 1600× 900× 3. Fig. 2b shows a sample camera
image captured at the exact timestamp as the LIDAR sweep
that is used to compute the current BEV and RV images.

C. LICANET ARCHITECTURE
As aforementioned, the significance of fusing multi-modal
features is to extract complementary information that con-
tributes to producing improved perception and motion
prediction. A LIDAR is adopted in LiCaNet primarily due
to its capability in capturing precise depth information.
Moreover, a front camera is employed for its dense semantic
features. To avoid the sparsity of the LIDAR data and the
inefficient processing of the vast number of points, LIDAR
data is processed in its BEV and RV representations. We
select BEV representation to represent LIDAR data because
they are handled readily and efficiently by 2D convolu-
tions. In addition, BEV representations preserve physical
object sizes offering vital prior information to the learning
model. Further, a sequence of historical data encoded in
BEV form can be easily concatenated. Along with BEV
representations, we use RV images to represent LIDAR
data. They are generated from a single viewpoint, mak-
ing them the most informative to portray a point cloud.
Another advantage of RV images is that they preserve
occlusion information. Consequently, concatenating features
from BEV, RV, and camera representations produces comple-
mentary features that leverage all representations’ benefits
and mitigate the drawbacks of individual representations.
Therefore, the performance advancements reported in this
paper are attributed to the fusion of camera semantics into
BEV and RV features.
The architecture of LiCaNet is depicted in Fig. 1. The

proposed fusion scheme consists of three key modules: BEV,
RV, and camera. A sample of input data to the LiCaNet mod-
ules is illustrated in Fig. 2. Starting with the BEV module,

FIGURE 2. A sample of LiCaNet input features. (a) illustrates the historical BEV
images; (b) the camera image; (c), (d), and (e) represent three channels of the RV
image.

once all LIDAR sweeps are transformed into BEV rep-
resentation through synchronization and discretization, the
aggregated BEVs are sent down a two-layer 3 × 3 convo-
lution layers, named Double 3 × 3 conv. Concurrently, the
RV image and camera features representing only the cur-
rent timestamp are also passed down a Double 3 × 3 conv
independently. However, before applying the RGB camera
image directly to Double 3×3 conv, the RGB image is first
passed to a small pretrained network to generate high-level
camera features. Then the high-level features are projected
and warped into RV representation. Next, the resulting fea-
tures from the RV and camera modules are concatenated
and applied to a U-net [44]. U-Net is an encoder-decoder
network with a strong representation ability mainly because
of the skip connections that combine shallow features from
the encoder path with deep features from the decoding path
at their respective stages. The features resulting from the
U-Net are in RV form and thus need to be projected to
BEV representation to complete the fusion process. The sub-
sequent step is to concatenate the projected features, in BEV
representation from the RV and camera modules, with the
features from the BEV module. The last step in the fusion
process is to feed the resulting multi-modal features into a
single 3×3 convolution layer. This proposed LiCaNet fusion
process generates rich complementary features that enable
us to achieve enhanced performance. Finally, the generated
multi-modal features are then applied to MotionNet back-
bone network to perform accurate pixel-wise joint perception
and motion prediction in real-time.
Directly feeding the fusion network with raw RGB fea-

tures causes the learning network to discard most features as
they do not comprise valuable high-level information. Thus,
the camera image is first passed to a pretrained network
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FIGURE 3. Examples of LIDAR points’ range values projected onto the camera
image. The left image represents the LIDAR points projected on the raw camera
image. The right image shows the LIDAR points projected on the outcome of the
lightweight pretrained network (in grey scale).

to extract high-level features, which are later fed into the
fusion network. Now, to use the extracted high-level camera
features in our fusion process, we need a mapping from the
LIDAR points to the camera image. This mapping permits
the retrieval of the high-level camera features corresponding
to LIDAR points residing in the camera’s FOV. In summary,
once we have a mapping from LIDAR points to camera
features, we can warp and project features from the camera
image into the RV image. The mapping of each LIDAR point
pi onto a camera image is achieved by the transformation
Tc←l defined in Eq. (2).

Tc←l = K
(
Tc←vtc ∗ Tvtc←vtl

∗ Tvtl←l

)
, (2)

where subscripts c, l, and v stands for camera, LIDAR, and
vehicle, respectively. K is the intrinsic calibration matrix of
the camera. In nuScenes dataset, LIDAR and camera sensors
have different operational frequencies and so before trans-
forming LIDAR points to the camera’s coordinate system
they need to be mapped to the vehicle’s coordinate system
to compensate for the time-shift between the two sensors.
Tvtl←l transforms LIDAR points to the vehicle’s frame at
LIDAR capture time tl, Tvtc←vtl

transforms the points from
vehicle’s frame at LIDAR capture time tl to camera capture
time tc. Last, Tc←vtc transforms the points from vehicle’s
frame at tc to the camera’s coordinate system.
The complete mapping equation that maps LIDAR points

onto the camera coordinate system is defined in Eq. (3).

[uc vc 1]T = Tc←l (p), (3)

where (uc, vc) are the mapped points from the LIDAR’s
coordinate system onto the camera. An example of LIDAR
points’ range values being mapped using Eq. (3) and pro-
jected onto camera coordinate system is shown on the left
image of Fig. 3. The projection algorithm is explained later.
Ultimately, we need to fuse the extracted high-level camera

features with RV features. Thus, using the mapping com-
puted in Eq. (3) between the LIDAR points and the camera
features, we can now project the camera features into RV
representation. Up to this point, we assumed that the features
extracted from the pretrained network have the same dimen-
sions as the original camera image. Unfortunately, this is not
always the case, so to resolve this issue, we need to update
the mapping between LIDAR points and camera image pixels

FIGURE 4. Illustration of the projection algorithm from source to target form. tpi is
the average of all features that LIDAR point pi is mapped to in the source form (s1pi ,
s2pi , and s3pi ).

with a scale factor as expressed in Eq. (4).

ucscaled = uc ∗ s−1
l and sl =

(
lc/lhlcf

)
,

vcscaled = vc ∗ s−1
w and sw =

(
wc/whlcf

)
, (4)

where (ucscaled , vcscaled ) are the scaled mapped points on the
camera image. (lc,wc) represents the length and width of
the original camera image, while (lhlcf ,whlcf ) denotes the
resolution of the high-level camera features resulting from
the pretrained network. The right image of Fig. 3 illustrates
the projected LIDAR points’ range values on the high-level
features resulting from the pretrained network, using map-
ping in Eq. (3) and scaling in Eq. (4). The lightweight
pretrained network used to extract high-level features from
camera images is described in Section IV-B.
The projection of features from one form to another is

accomplished using the painting technique [42]. Briefly, the
algorithm takes the mean of all features from the source rep-
resentation that corresponds to a LIDAR point pi and projects
them to the cell position in the target representation where
pi is linked. If no features are projected into a cell in the
target representation, the cell value remains −1. The same
algorithm is repeated for all points that have a mapping
between the source and target forms. Fig. 4 demonstrates
an illustrative example of the adopted projection algorithm.
Firstly, the mapping for each LIDAR point pi is computed
in both the source and target forms (denoted by blue and
orange arrows). Next, all features in the source form where
pi is linked to (denoted by s1pi , s2pi , and s3pi) is averaged.
Eventually, the averaged features are positioned in the tar-
get’s cell where pi is linked (orange arrow). Fig. 5 displays
features from the camera image projected into RV form. The
number of LIDAR points mapped between the camera and
RV forms determine the resolution of the target RV image.

D. BACKBONE NETWORK
The backbone network used in this work is MotionNet [20].
MotionNet is a novel model that performs pixel-wise joint
perception and motion prediction in real-time. MotionNet
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FIGURE 5. Example of the front camera image projected into RV representation. The
RV image has been cropped to present only the area that contains the projected
camera features. The rest of the RV image is empty because the camera FOV is 70◦ ,
while the horizontal LIDAR FOV is 360◦ .

architecture consists of an encoder-decoder named spatio-
temporal pyramid network (STPN) and three output heads.
MotionNet is considered one the fastest models in per-
forming joint perception and motion prediction due to
its lightweight STPN. This is because STPN lacks 3D
convolutions and depends merely on 2D and pseudo-1D
convolutions. Fig. 6 presents the architecture of MotionNet.
The main element of STPN is the spatio-temporal convolu-
tion (STC) that constitutes two 2D convolutions followed by
one pseudo-1D convolution. STPN builds an encoder with
STC blocks to extract features at different stages, leverag-
ing multi-scale spatial and temporal feature learning. Global
temporal pooling is used to assist in fusing multi-stage tem-
poral features while going up the decoder part of the STPN.
This design promotes the extraction of local and global
spatio-temporal information.
The MotionNet output heads are: 1) cell classification – for

perceiving the category of pixels; 2) motion prediction – for
predicting pixels motion; 3) state estimation – for predicting
whether the pixels are static or dynamic. The three output
heads constitute two 2D convolutions each to acquire BEV
pixel-wise predictions. The cell classification head classi-
fies pixels from 5 category groups: background, vehicles,
pedestrians, bicyclists, and others. The others category is
assigned to detect objects that are not categorized in any of
the remaining four groups. Therefore, the output dimension
of the cell classification head is 256× 256× 5. The motion
prediction head predicts pixel positions for a sequence of
20 frames into the future (translating into 1 second); thus,
the dimension of its output head is 256 × 256 × 2 × 20.
Lastly, the output dimension of the state estimation head is
256× 256× 2 because it predicts whether each pixel in the
BEV image is static or dynamic.
MotionNet loss function defined in Eq. (5) consists of

six components. Three of which are dedicated for global
regularization of network training. These components are
linked to the three output heads (cell classification loss
Lclass, motion prediction loss Lmotion, and state estimation
loss Lstate). Spatial consistency loss Ls, foreground Lft and
background Lbt temporal consistency losses are the other
three components that are dedicated for local regularization.

L = Lclass + Lmotion + Lstate + α Ls + β Lft + γ Lbt, (5)

where α, β, and γ are balancing factors. Lclass and Lstate
use weighted cross-entropy loss, while Lmotion uses weighted

smooth L1 loss. Different weights are used for each class cat-
egory to counteract the class imbalance issue. Ls uses smooth
L1 loss to constrain predicted motion between adjacent pixels
of the same object. Similarly, Lft limits the predicted motion
for each object, but temporally rather than spatially. In other
words, the motion of objects between consecutive frames
should not have abrupt changes. Unlike Lft that focuses on
foreground objects, Lbt concentrates on background cells
and tries to minimize the temporal loss of static cells by
overlapping them across adjacent frames.

IV. RESULTS
We begin this section with a brief description of the dataset
used. Second, we define the set of experiments performed
to validate the significance of multi-modal fusion for joint
perception and motion prediction. Details about the training
setup are illustrated next. Extensive quantitative and qual-
itative results are provided to confirm the effectiveness of
our proposed approach. Last, we include an ablation study
to compare LiCaNet to other state-of-the-art models.

A. DATASET
The dataset used to conduct our experiments is
nuScenes [21]. It consists of 850 annotated scenes, with
each having a continuous sequence of sweeps. Our training
set consists of 500 scenes (17,065 sequences), while our
validation and test set has 100 (1,719 sequences) and 250
scenes (4,309 sequences), respectively. The LIDAR sensor
used in the nuScenes dataset is Velodyne HDL32E, consist-
ing of 32 beams, and operates at 20Hz. The horizontal FOV
of the LIDAR is 360◦, while its vertical FOV ranges from
−30.67◦ to 10.67◦. The front camera sensor used in the
nuScenes dataset captures images at 12Hz with an opening
angle of 70◦.

B. EXPERIMENTAL SETUP
MotionNet confirms that using bigger BEV dimensions
than 256 × 256 × 13 accumulates additional computational
cost without promising any performance improvements.
Similarly, using 5 frames to reflect the temporal informal
manifests a good trade-off between efficiency and accuracy.
Thus, our BEV input dimension is 256 × 256 × 13 × 5.
In addition, it was proven in [7] that using RV images of
dimensions 2048 × 32 for fusion purposes leads to better
joint perception and motion prediction results compared to
smaller sizes. However, in this paper, we select the RV image
dimensions to be 1024×32 due to our limited computational
power.
We begin our experiments by training MotionNet on our

machine to record its potential. Second, we include the exper-
iment conducted in our earlier work [7] that fuses historical
BEV data with RV representation (1024 × 32). In [7], the
Double 3×3 conv block in the RV module uses 32 channels
to encode features. In order to load and train LiCaNet on
our machine, we narrow down the depth of the RV module’s
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FIGURE 6. MotionNet Architecture. The encoder part consists of 4 STC blocks, each constituting two 2D convolution layers and one pseudo-1D convolution layer. The
temporal pooling is used to diminish the temporal dimension of the features to 1. The decoder part consists of deconvolution, concatenation, and two 2D convolutions layers.
The deconvolution layers are used to scale up the input features to allow concatenation with the features coming from the encoder. MotionNet has three output heads where
each has two 2D convolution layers.

TABLE 1. Comparison of perception and motion prediction results between MotionNet, multi-view LIDAR-based fusion, and our proposed LiCaNet model.

Double 3× 3 conv block to 16 channels. Thus, in order to
compare LiCaNet with [7], we retrain the fusion of historical
BEV and RV images with a depth configuration of 16 for the
RV module’s Double 3×3 conv block. It is worth mentioning
that LiCaNet minus the camera module matches the fusion
network of [7]. Thus, we name this experiment LiCaNet
(LIDAR only). The comparison with these two experiments
is essential to verify that LiCaNet (fusion of BEV, RV, and
camera) outperforms both our earlier work (fusion of BEV
and RV) and MotionNet (BEV only).
The next set of experiments analyzes the performance

of LiCaNet under various lightweight pretrained networks.
These experiments are used to monitor whether the
performance gain of LiCaNet is consistent across all pre-
trained networks. All selected lightweight networks dedi-
cated to extracting high-level features from camera images
are pretrained on ImageNet. The four pretrained networks
investigated are MobileNetv2, VGG16, ResNet50, and
ResNeXt50. These pretrained networks were chosen as they
have shown challenging performance in image classification.
As our camera module requires only a lightweight pre-
trained network, we only employ 6 convolution layers from
MobileNetv2 and VGG16; and 11 layers from ResNet50 and
ResNeXt50.

C. TRAINING SETUP
For fair comparisons, we follow the same setup as our earlier
work and MotionNet. Each scene in the dataset is divided
into several clips, where each clip consists of 5 consecutive

(1 current and 4 previous) sweeps. The current sweeps are
sampled at 2Hz for training and 1Hz for testing. The current
sweeps for testing are sampled at a lower frequency to reduce
the similarity between the clips. Additionally, the period
between all sweeps in a clip is 0.2s. All experiments are
trained with a batch size of 4. The initial learning rate is
set at 1.6× 10−3 and it decays every 10 epochs to end at
0.8× 10−3. All experiments are implemented using PyTorch
and trained on a single NVIDIA Quadro RTX5000 GPU with
Intel Xeon 3.9-GHz CPU.

D. QUANTITATIVE RESULTS
Table 1 unveils the perception and motion prediction results
of our conducted experiments. To evaluate motion prediction,
we measure the mean and median displacement errors of
pixels based on three-speed groups. The speed groups are
static, slow, and fast. Pixels with speed < 5m/s are assigned
to the slow speed group, while pixels with predicted motion
≥ 5m/s are assigned to the fast group. If pixels are pre-
dicted to have 0 motion, then they are assigned to the static
group. Due to the large proportion of staticity in a scene,
distinguishing static from dynamic pixels becomes essen-
tial to avoid biased displacement errors. The displacement
error is measured using L2 distances between the predicted
and the ground-truth displacements. In terms of perception,
the metrics used are classification accuracy per category,
mean classification accuracy (MCA), and overall pixel
accuracy (OA).
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It is evident from the collected results in Table 1 that all
LiCaNet experiments, with the different pretrained networks,
compare favorably to MotionNet and LiCaNet (LIDAR only)
- a narrowed version of the multi-view LIDAR-based fusion
network [7]. For fair comparisons, the second experiment in
Table 1 is excluded from our analysis as the depth of its RV
module is wider than LiCaNet. Nevertheless, it was included
to show that its narrower version has inferior performance in
both perception and motion prediction. According to Table 1,
the use of 6 convolution layers from pretrained VGG16
resulted in the best perception. Even though VGG16 did
not attain the lowest displacement errors; however, VGG16
still achieved competitive motion predictions compared to
the other pretrained networks. Comparing perception accu-
racy of LiCaNet (VGG16_6) with LiCaNet (LIDAR only)
experiments, we see that the addition of the camera module
achieved a substantial increase of 1.5% and 0.3% in MCA
and OA, respectively. Moreover, a total gain of 3.6% in
MCA and 0.6% in OA is registered relative to MotionNet.
In addition, examining the classification accuracy per cat-

egory, we notice that of all the selected pretrained networks,
VGG16_6 is considered the best at detecting small objects.
With only 6 convolution layers, VGG16_6 secured the high-
est detection accuracy for pedestrians and a competitive
accuracy for bikes. In comparison, ResNeXt50_11 used
11 convolution layers to procure the maximum accuracy
for bikes (23.6%), which is only 0.4% higher than what
VGG16_6 accomplished. Also, the use of ResNeXt50_11 did
not perform as well as VGG16_6 in detecting the remain-
ing categories. Overall, VGG16_6 outperformed the other
pretrained networks in perception. Further investigation into
the classification accuracy results reveals that smaller objects
have the highest perceptual gain compared to the other cate-
gories. LiCaNet (VGG16_6) resulted in a jump of 0.4% for
vehicles, but a rise of 3.4% and 0.6% is procured for pedes-
trians and bikes, respectively, compared to LiCaNet (LIDAR
only) experiment.
The presented results in Table 1 confirm that LiCaNet

experiments, for all different pretrained networks, achieved
an enhancement in perception accuracy and prominent
decrease in displacement error (i.e., increase in motion
prediction) compared to our earlier work and MotionNet.
Furthermore, as LiCaNet (VGG16_6) attained the best per-
ception accuracy and competitive displacement errors, we
summarize in Table 2 its standard deviation (STD) and root
mean square error (RMSE) compared to MotionNet and
LiCaNet (LIDAR only) experiments. LiCaNet (VGG16_6)
secured the lowest motion prediction errors for the three-
speed groups compared to the base algorithms in terms
of mean, STD, and RMSE. Thus, we can confidently say
that the exploitation of camera images in the fusion pro-
cess assists in achieving an enhanced perception and motion
prediction model, with the highest advancement dedicated
to small objects.
Table 3 further investigates the success of LiCaNet exper-

iments by restricting the perception accuracy to within

TABLE 2. Further motion prediction analysis of MotionNet, LiCaNet (LIDAR only),
and LiCaNet (VGG16_6) experiments.

the camera FOV. Furthermore, the results are measured
based on the distance from the camera sensor. For each
object category, we measure perception within the camera
FOV at three distance ranges: short-range (S) defined from
0m-10m, medium-range (M) from 11m-20m, and far-range
(F) from 21m-30m. Considering the perception accuracy
between LiCaNet, LiCaNet (LIDAR only), and MotionNet
experiments, we recognize that within the camera FOV, the
accuracy is higher for LiCaNet experiments, with the highest
rise recorded for small and distant objects.
To begin with, comparing the gain of vehicles between

LiCaNet (VGG16_6) and LiCaNet (LIDAR only), we note
that a gain of 0.7% and 1.4% is attained for short- and far-
range, respectively. Similarly, for pedestrians, an increase
of 1.7% and 1.9% is procured in the same range groups,
respectively. This shows that our proposed model can gather
higher accuracy for distant objects. Moreover, smaller objects
collected even greater gain in perception within the camera
FOV. For example, in the far-range 1.4% improvement is
registered for vehicles, while 1.9% for pedestrians and 4.0%
for bikes. This proves the potential of LiCaNet in detecting
small and distant objects. Furthermore, a natural character-
istic in any model is that the detection accuracy decreases
with a farther distance from the sensor; nevertheless, the
drop with LiCaNet is lower. The accuracy drop between the
short- and far-range of vehicles, pedestrians, and bikes is
8.4%, 6.5%, and 4.8% for LiCaNet (LIDAR only); whereas,
for LiCaNet (VGG16_6) the drop is merely 7.7%, 6.3%, and
0.2%, respectively.
To summarize, results in Table 3 confirm that the percep-

tion accuracy of LiCaNet within camera FOV is substantially
better than our earlier work, especially for small and distant
objects. Although most of our analysis is limited between
LiCaNet (VGG16_6) and LiCaNet (LIDAR only), compar-
ing our proposed LiCaNet with MotionNet leads to even
more significant gains.
The inference time is naturally compromised when a

fusion network is expanded by adding a camera mod-
ule. Thus, a trade-off should be made between accuracy
and inference time. Although our proposed LiCaNet model
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TABLE 3. Evaluation of classification accuracy within the camera FOV based on distance ranges from the camera sensor. The three distance groups are short-range (S)
defined from 0m-10m, medium-range (M) from 11m-20m, and far-range (F) from 21m-30m.

FIGURE 7. Qualitative comparison of perception and motion prediction. Top row: ground truth. Middle row: LiCaNet (LIDAR only). Bottom row: LiCaNet (VGG16_6). Ground
truth is also present in the second and third row for easier visual comparison. Color codes are presented at the top of the figure. g_ and p_ denotes ground truth and prediction
colors, respectively.

involves a camera module, all experiments with the dif-
ferent pretrained networks did not exceed the real-time
requirement. Therefore, we can safely conclude that LiCaNet
is suitable for autonomous driving applications. According
to the results in Table 1, incorporating a camera module
onto our fusion network results in a minimum increase
of 2.6ms. This is recorded for MobileNetv2, where 6
convolution layers are utilized. VGG16_6 contains more
parameters than MobileNetv2 and thus is heavier than
MobileNetv2_6, explaining the reason behind the addi-
tional 0.3ms in inference time. Furthermore, the use of

11 convolution layers will undoubtedly consume additional
time compared to 6 layers. As ResNeXt50 has a denser
architecture than ResNet50, its inference time is the maxi-
mum (33.2ms) compared to the rest of the used pretrained
networks.
Lastly, an advantage of our proposed LiCaNet solution is

that it is transferable. The operation of LiCaNet does not
depend on the sensor’s specifications. For instance, if the
LIDAR sensor generates a different number of points, it will
not affect the operation of LiCaNet, as LIDAR points are
converted to 2D image representations (BEV and RV). The
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TABLE 4. Performance comparison with other state-of-the-art methods.

transferability has been proven in [45], where the network
has been applied to an autonomous driving simulator.

E. QUALITATIVE RESULTS
Qualitative results for LiCaNet are displayed in Fig. 7. We
present five scenes to visually compare LiCaNet (LIDAR
only) predictions with LiCaNet (VGG16_6). Each scene is
displayed in a column; the first row displays the ground truth,
the second row shows LiCaNet (LIDAR only) predictions,
and the last row depicts LiCaNet (VGG16_6) predictions.
The ground truth is also included in the second and
third rows for easier visual comparison. Arrows represent
motion predictions. The presented examples demonstrate
many prediction differences between the experiments; yet,
we only label the most apparent ones with circles to simplify
the comparison process for the reader. It is obvious that the
overlap between LiCaNet (VGG16_6) predictions and the
ground truth is higher compared to LiCaNet (LIDAR only)
and the ground truth, indicating better accuracy attained
by LiCaNet (VGG16_6). Indeed, these examples vividly
illustrate that our proposed LiCaNet model has enhanced per-
ception and motion prediction than LiCaNet (LIDAR only).
To that end, in addition to quantitative analysis, we qualita-
tively proved that incorporating camera images in the fusion
network enhances performance.
Furthermore, Fig. 8 provides visual comparison on per-

ception and motion prediction confined to the camera FOV
(70◦). Examining the overlap between the predictions and
the ground truth, we observe that the accuracy level is higher
within the camera FOV for LiCaNet (VGG16_6), especially
for small and distant objects. Thus, this comparison fur-
ther validates the positive effect of adding semantic camera
features to the fusion network.

F. ABLATION STUDIES
We conduct extensive ablation experiments to prove the
effectiveness of LiCaNet (VGG16_6) against other state-
of-the-art methods. We compare LiCaNet performance to
FlowNet3D [46], HPLFlowNet [47], PointRCNN [3], and
LSTM-Encoder-Decoder [48]. In addition to the finetuned
FlowNet3D and HPLFlowNet, we include the results of their
pretrained models. The two scene flow datasets used for the
pretrained models are FlyingThings3D and KITTI Scene,
while finetuned on nuScenes. FlowNet3D and HPLFlowNet

FIGURE 8. Examples of perception and motion prediction within camera range.
Ground truths are presented in all rows. The second and third rows include the
outcomes of LiCaNet (LIDAR only) and LiCaNet (VGG16_6), respectively.

models estimate the scene flow between two point clouds,
while PointRCNN predicts directly from a point cloud.
LSTM-Encoder-Decoder estimates the multi-step 2D grid
map representation of the point cloud. Table 4 reveals that
LiCaNet (VGG16_6) exceeds the state-of-the-art in joint per-
ception and motion prediction. Even though the mean error
in the static and the median in the slow groups are not
the lowest; nonetheless, the overall LiCaNet performance
largely outperforms the other methods, especially in the fast
group. All these comparisons collectively show the potential
of LiCaNet in joint perception and motion prediction.

V. CONCLUSION
We presented a new method, named LiCaNet, that fuses
multi-modal features into a backbone network to perform
accurate pixel-wise joint perception and motion prediction
for autonomous driving. LIDAR and camera sensors are
used to extract rich and complementary multi-modal fea-
tures. The LIDAR data is represented in sequential BEV
and RV forms. The predictions are attained in real-time,
making LiCaNet suitable for real-world autonomous driv-
ing applications. Our experimental evaluation confirms that
the involvement of camera information results in enhanced
performance for joint perception and motion prediction. In
addition, most accuracy improvement is registered within the
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camera field-of-view region, with the highest recorded for
small and distant objects. Overall, LiCaNet outperforms our
earlier multi-view LIDAR-based fusion network, MotionNet,
and other state-of-the-art models.
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