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ABSTRACT Traffic monitoring is key to modern city planning. However, the costs associated with
monitoring devices limit the large-scale deployment of existing traffic monitoring systems. In this article,
we propose and evaluate an algorithm to automatically count the number of vehicles that have passed
through a low-cost system for traffic monitoring. The system uses deviations in the Wi-Fi signals strength
to predict the presence of a vehicle on the road and its type (car, bus). The study further systematically
compares six analytical techniques for the classification of detected vehicles. The methods were tested
with data from three road scenarios in the city of Münster, Germany. Vehicle classification accuracy
ranged from 83% up to 100% in our study. We also observed that a higher Wi-Fi frequency (5 GHz) was
superior to the 2.4 GHz for improving the overall vehicle detection and the results of the classification
algorithms. The results suggest that the Wi-Fi-based techniques proposed in this study are promising for
cost-efficient traffic monitoring in cities in a privacy-preserving manner.

INDEX TERMS Low-cost, machine learning, road traffic monitoring, smart cities, vehicle classification,
vehicle counting, Wi-Fi.

I. INTRODUCTION

WITH the growing population and traffic in urban
areas, there is a need to efficiently organize and

improve road traffic. Numerous concerns exist when the road
traffic is not efficiently planned, such as increased traffic
jams, high gasoline consumption, air pollution, noise pol-
lution [1], [2], [3]. Scarce management of traffic flow may
result in extended waiting times at traffic lights or in con-
gestion that influences the gasoline consumption as well as
the drivers’ mood and behavior. Access to timely, reliable
traffic data with high spatial coverage of cities can help to
minimize or address these problems. Information about the
speed and direction of a vehicle or the number of vehicles
that use specific roads can be useful to enhance and redirect
the traffic flow. This data can further be helpful for more
complex spatiotemporal models to infer harmful noise lev-
els or air pollution in cities. Additional applications areas
of timely and high-granular traffic data include road safety,

The review of this article was arranged by Associate Editor Winnie
Daamen.

traffic control systems, statistics, economic development and
federal reporting, which could also benefit significantly from
increased data availability.
Despite these potential benefits of timely, high-granular

traffic monitoring data, the costs associated with installing
and maintaining existing techniques for traffic monitoring
(e.g., inductive loop detectors, video analysis) limit their
large-scale deployment. For instance, inductive loops cost at
least 5.000e.1 The Georgia Department of Transportation
has stated in a report that the installation of a Continuous
Counting Stations (CSS) on a two-lane roadway costs
approximately $25.000 and can go up to $80.000 [4]. There
is thus a need for low-cost techniques that produce reli-
able traffic data. Along these lines, Gupta et al. [5] recently
proposed an approach for traffic monitoring, which uses
Wi-Fi signals to detect vehicles. Their approach was low-
cost (they indicated a cost of less than $50 for it), and they
reported promising results for vehicle classification using

1. https://ct-technologyinfo.com/2020/11/09/traffic-detection-systems/
(last accessed: July 31, 2021).
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Wi-Fi signals. Nonetheless, their work had a few limitations.
First, the vehicle counting strategy used led to multiple false
positives. It is desirable to avoid these false positive as much
as possible, so that vehicle classification is done on relevant
entities instead of noise. Second, the scenario of multiple
vehicles passing at the same time was not covered. Third,
their work reported that the k-nearest neighbor (kNN) tech-
nique used led to good classification accuracies, but it is
unclear if other models would have performed better. These
limitations are addressed in this work, with a focus on the
following four research questions.
1) How to automatize the counting of vehicles on the road

based on deviations of wireless signals? The emphasis
here is on increasing the precision of vehicle counting
strategies.

2) What are the respective merits of different types of sig-
nals (5GHz vs 2.4GHz) for detection and classification
endeavours?

3) How to automatically classify the type of vehicles
based on deflections of wireless signals? Here, the
aim is to systematically compare several models for
the classification tasks.

4) To which extent do models learned from a road envi-
ronment can be applied to other road environments?
This question touches on the generalization of the
models. ‘Other road environments’ here can denote
the same road at another time (in which case we talk
about temporal generalization) or an entirely new road
(in which case we talk about spatial generalization).

The key contributions of this article include (i) an algo-
rithm for automated counting of the vehicles based on Wi-Fi
signal; (ii) a comparative evaluation of the 2.4GHz and 5GHz
signals for vehicle counting and classification, and (iii) a
comparative evaluation of different classification algorithms
to analyse Wi-Fi signals. The rest of the paper is organized
in the following sections. Section II gives a brief overview
of the related work, followed by Section III that describes
the methods used during the work. The performances of six
analytical approaches used to classify the types of vehicle
are described in Section IV. A discussion of the results and
their implications in presented in Section V before Section VI
concludes the article.

II. RELATED WORK
Gupta et al. [5] proposed a grouping of traffic monitoring
techniques into five classes: intrusive devices, non-intrusive
devices, off-roadways devices, sensor combinations devices,
and relatively low-cost devices. Related work in these
categories in briefly reviewed in this section.
Intrusive devices: These devices are permanently installed

into the pavement. They have high accuracy, but high
installation and maintenance costs as well. Inductive loops,
magnetic detectors, micro-loop probes, pneumatic road tubes,
piezoelectric, and other weigh-in-motion sensors are exam-
ples of intrusive devices. Barbagli et al. [6] described the
disruption of the traffic during the installation and repair as

a huge drawback of intrusive devices along with increased
costs for their installation. They state that “as a result, those
solutions are not suitable for large-scale deployment and
hence are restricted to small scale applications” [6].
Non-intrusive devices: These devices are “more reliable

and cost-effective” [6] than the intrusive devices. Examples
of these include: technologies such as video image process-
ing, microwave radar, laser radar, passive infrared, ultrasonic,
passive acoustic array, in which devices are mounted over-
head on roadways or roadsides (see [5]). Recently, Asiain
and Antolín [7] developed a Low Power Wide Area Network
(LPWAN) based system for detecting traffic flow. However,
like intrusive devices, most non-intrusive devices also have
the downside of being expensive, energy intensive as well
as being affected by the environment (e.g., they are prone
to errors when environmental conditions like weather or
daytime change, see [6]).
Off-roadway devices: These devices use remote sensing

techniques for traffic monitoring. These techniques include
aircraft and satellite monitoring as well as tracking phones
or using probes within the vehicles. They are cheap and
easy to deploy and offer a high spatial resolution but raise
privacy concerns. Chourasia et al. [8] proposed Wi-Fi-based
road-side sniffers to examine signals broadcasted by smart-
phones available inside vehicles to estimate traffic stats of
road segments. Hoogendoorn et al. [9] conducted a study
where they used grayscale imagery, which was recorded by
a camera mounted on a helicopter. The study draw “insight
into the behavior of drivers during· · · congestion, and to
develop and test theories and models describing congested
driving behavior”. The assembly could detect and track 98%
of the vehicle positions and their dimensions—the spatial
resolution of 22cm and a temporal resolution of 8.6 Hertz.
Overall, the outcome of their study suggests that the weather
had a significant impact on the quality of the data collected.
Also, the helicopter was affected by the wind strength, which
also influenced the image quality. Another study conducted
by Schreuder et al. [10] found a drop of reliability in the
data from 98% of cars that were detected to 90% “after the
weather conditions worsened.”
The approach to counting vehicles with the help of probes

uses Global Positioning System (GPS) signals to track the
vehicles also belongs to the off-roadways devices class. The
benefit of the system is that it can be easily applied to
existing cars with GPS sensors and works with high accu-
racy. However, the obvious downside to this approach is
the privacy concerns that come with it. Even with anony-
mous data collection, data mining algorithms have been
shown to find out where the individuals live (see [11]).
Nanthawichit et al. [12] proposed a method for treating probe
vehicle data together with fixed detector data in order to esti-
mate the traffic state variables of traffic volume, space mean
speed, and density using a macroscopic model along with
the Kalman filtering technique (KFT). The model combines
data collected by probe vehicles and conventional data in a
microscopic traffic flow model. The KFT was used to handle
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the inconsistencies of data collected by the probe vehicles.
The researchers also had some experimental results on traf-
fic prediction, which confirm “that the proposed method can
provide reasonable estimation not only for traffic states but
also, [· · · ], travel time can be effectively estimated and pre-
dicted” [12]. Recently, Ryan et al. [13] and Byun et al. [14]
proposed the application of unmanned aerial vehicle (UAV)
for estimating road traffic and vehicle speed automatically
by analyzing video feed using machine learning approaches
like deep neural network.
Sensor combination devices: These devices try to com-

bine multiple traffic monitoring techniques such as passive
infrared with ultrasound and Doppler microwave radar to
enhance their overall accuracy. Even though they result in
higher accuracy, these combinations are often highly com-
plex to install, making it challenging to deploy them for high
spatial coverage data collection processes.
Relatively low-cost devices: Examples of systems men-

tioned in Gupta et al. [5] belonging to this category were
continuous-wave radar, computer vision low-cost sensors,
and radio-wave technologies. Some of their disadvantages
include the need for specialized hardware and procedures,
limited computation capability for large data set analysis and
privacy concerns. Forren and Jaarsma [15] proposed a low-
cost system by using acoustic sensors to monitor the traffic.
The study used microphones to count vehicles by analyzing
their tire noise. Sen [16] investigated traffic monitoring of
non-lane chaotic traffic using the noisiness and excessive
use of vehicle honks. The author used the noise level, the
number of honks, and their duration to check for congested
roads. Two microphones were used along the road to mea-
sure the noise variation over time and distance. The system
was able to detect different traffic conditions in real-time.
However, it was also acknowledged in the study that the
honking depends on the driver’s behavior and that chaotic
traffic jams result in many loud honks, but sometimes the
road users also queued up in a traffic jam, which resulted
in a quiet but still congested traffic situation. More recently,
Kochláň et al. [17] proposed a low-cost vision-based traffic
monitoring system using Raspberry pi and a high defini-
tion camera connected to a car battery in conjunction with
a step-down transformer and an antenna to send the data
to a remote server. The authors did not state the overall
cost of the system. They reported that the system had a low
power consumption because it was able to run on a single
car battery for over one week. The computer vision algo-
rithms were able to detect 95.7% and classify 93.2% of the
vehicles. Ryan et al. [13] also proposed the computer vision-
based approach assisted with small unmanned aerial systems
(sUAS) to capture detailed data for collecting vehicle data.
A novel approach based on dedicated short-range com-

munications (DSRC) signals to measure and classify traffic
demand was introduced by Tulay and Koksal [18]. The
DSRC is a method where vehicles communicate with other
vehicles without the driver knowing the communication. This
has the advantage that no wired infrastructure is needed to

deploy the system. They used a static transmitter on a road-
side, which captured the signals of bypassing cars and were
able to distinguish different traffic intensities with an accu-
racy of 96.3% and 87.6% [18]. Another approach that uses a
Microwave Doppler Radar Sensor connected to a Raspberry
PI 3 Model B was proposed by Czyz̈ewski et al. [19]. Their
algorithm results were compared to a pneumatic tube count-
ing system deployed on the same road. The study achieved
an accuracy of 90% for vehicle counting, stating that it would
be sufficient to use this approach to collect traffic statistics.
One problem that the authors acknowledge was the diffi-
culty of detecting vehicles with a high velocity (greater than
100km/h).
The Wi-Fi channel state information (CSI) was used in a

field study conducted by Zhang et al. [20], Won et al. [21]
to detect bypassing vehicles. To access the CSI particular
chipsets and firmware are necessary, which was not avail-
able in the generation of the Raspberry PI which was used
during this study. Furthermore this study’s focus is on com-
paring the difference between the two different frequencies
and the comparison of the different classification algorithms.
The CSI is also used for human indoor gesture detection.
They achieved an “average detection accuracy of 99.4%
and an average classification accuracy of 91.1%.” When
a vehicle passes, the system detects peaks with the stan-
dard outlier detection technique using CNN. Homchan and
Aswakul [22] further proposed the Wi-Fi packet measure-
ment based approach for vehicular traffic monitoring using
software-defined mesh network.
Summary: Overall, many efforts are underway to develop

novel methods to count and classify traffic in a transport
system. The central objective has been to reduce the cost
of an individual counting station to allow a large-scale
deployment by using existing infrastructures or cheap sen-
sor technology. Our work is in line with this objective. In
particular, as mentioned in Section I, we extend and address
several limitations of Gupta et al. [5] to develop a more
automated and reliable Wi-Fi based approach for vehicle
detection and classification.

III. METHOD
This section presents an overview of the data and methods
used in the study.

A. DATA COLLECTION SCENARIOS
The focus of this study was on investigating the performance
of the system in urban areas, and three road types that are
common in German cities were chosen to provide a realis-
tic test setting. The first type is the one-way roads, where
vehicles are only allowed to drive on one lane and in one
direction. The second type is a road with two lanes and
the vehicles driving in one direction, and the third type is
the roads with two lanes where the vehicles drive in both
directions. The speed limits of all scenarios are 50 km/h.
Highways were excluded at this point for safety reasons. The
measurements took place in November and December 2020
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in the city of Münster (North Rhine-Westphalia, Germany).
The data collection activities were approved by the city coun-
cil of Münster, and necessitated the deployment of additional
traffic signs to ensure the safety of the drivers. The three
scenarios are now described in detail.
Scenario 1 - The one-way street: For this scenario, the

Austermannstraße was chosen. It is a busy road in the
city, with cars and busses as the most common vehicle
types passing. The two units of the hardware system were
placed approximately 6 meters apart across the road. Two
measurements were collected from this road on 16.12.2020
and 17.12.2020. The first-day measurement started at 16:00
and ended at 19:00 with weather conditions of 9◦C,
cloudy and 87% relative humidity 1015 hPa. The second-
day measurement started at 16:30 and ended at 19:30 with
weather conditions of 10◦C, cloudy, 79%, and 1021 hPa.
The sunset time for the first measurement was at 16:17 and
for the second at 16:18.
Scenario 2 - Two lanes one direction: Here, the

Corrensstraße was chosen. It is a large but not a busy
road in front of a university building. The most common
vehicle types using this road were cars and busses. The
hardware units were approximately 11 meters apart across
the road. Three measurements were collected on 19.11.2020
(16:15-17:30), 24.11.2020 (17:00-18:00) and 25.11.2021
(17:20-18:40). The sunset times for the measurements were
at 16:32, 16:26 and 16:25, respectively. One noteworthy
observation for this particular scenario was that few busses
drove extremely slowly through the system because the hard-
ware installation was located in proximity to a bus stop, and
as the busses started, they needed some time to accelerate.
The weather conditions for the first measurement were 2◦C,
cloudy, 85% relative humidity and 1027 hPa; the second
measurement 0◦C, cloudy, 90% and 1020 hPa, and for the
third measurement, the conditions were 5◦C, cloudy, 82%
relative humidity and 1018 hPa.
Scenario 3 - Two lanes two directions: The third sce-

nario with two lanes and two directions was located at
the Mendelstraße with a distance between the two parts
of the installation by approximately 10 meters across the
road. The two most frequent vehicle classes over this road
were cars and busses with the possibility of two cars pass-
ing at the same time. Two measurements with 2.5 hours
length were collected on 08.12.2020 (starting 16:00) and
09.12.2020 (starting 16:20). The sunset times for both mea-
surements were at 16:17. The weather conditions for the
first measurement were 1◦C, foggy, 97% relative humidity
and 1006 hPa and for the second 0◦C, foggy, 100% and
1010 hPa.

B. DATA COLLECTION APPROACH
1) SENDER AND RECEIVER

The data was collected using a system extended and much
improved from [5]. A key novelty here was the addition
of the 5 GHz frequency. The sending unit consists of

FIGURE 1. Graphical representation of the installed system and its working (Icons
made by Freepik.com).

FIGURE 2. A picture of the system’s sending unit. The different hardware
components (Router, laser pointer, camera and power supply) are labeled.

multiple elements which are portrayed in Figure 2. A “TP-
Link WLAN-Router model Archer C7 AC1750” was used,
which uses the dual band frequencies 2.4 GHz and 5 GHz.
The SSIDs of the router was separated into the 2.4 GHz
and 5 GHz frequencies to allow the receiver to distinguish
between the two signals. The Receiver, which is displayed
in Figure 3 consists of a Raspberry Pi 3 B, two USB WI-FI
dongles, two dual band directional antennas and a light sen-
sor. The graphical representation of whole the installation is
illustrated in Figure 1 and the annotated configuration of the
installation is presented in Figure 2 and 3.
The signal strength of the frequencies was measured in

decibel (dB). The setup helped us capture the interruptions
in the signal caused by vehicle driving between the sender
and the receiver on the road.
In contrast to systems discussed in the previous section,

our prototype can be installed within a couple of hours with-
out stopping or distracting the traffic flow on the road. To
install the system, the two units need to be placed on opposite
sides of the road. As the hardware system can be accessed
and restarted without interfering with the traffic, detecting
errors and restarting the system can be performed remotely.

VOLUME 3, 2022 239



KANSCHAT et al.: WIRELESS-SIGNAL-BASED VEHICLE COUNTING AND CLASSIFICATION

FIGURE 3. A picture of the receiving unit of the system. The different hardware
components (directional antennas, Raspberry Pi, light sensor, camera and power
supply) are labeled.

As it consists of multiple components, defective parts can
be replaced individually with no effect on traffic flow, mak-
ing it more promising in terms of easy maintenance and
cost-effectiveness. Considering the safety approvals required
before installation and the fact that the data collection can
only be initiated with some programming skills, the system
in the current state is not suitable for citizen science ini-
tiatives. The approximate cost of the installation was 200e,
which is a lot cheaper than the state of the art monitoring
systems [4] or even newer approaches [21].

2) GROUND TRUTH

A laser tripwire system was used to collect ground truth
data about vehicles passing or not, and when. In addition,
the types of vehicle passing were recorded through cameras
mounted on the ground (max 20 cm above the ground). That
way, only the wheels of the cars were recorded to ensure
that no personal data about the drivers was collected. This
was a mandatory requirement by the local authorities. The
video data were subsequently manually annotated with the
class of vehicle passing to generate the ground truth data.
A subsequence of the data is shown in Figure 4. In the

visualization, an extract of the different collected time series
is shown for the time that a car drove by the system. In both
frequencies a noticeable drop in signal strength is visible.
Corresponding to the signal drop, the laser was interrupted,
which can be seen in Figure 4 (Bottom). The system, which
recorded 10 datapoints per second picked up three datapoints
of the disrupted laser, which correspond to 3 datapointts
(middle) and 4 datapoints (top).

C. VEHICLE COUNTING APPROACH
As mentioned in Section I, one of the aim of this work is to
reduce noise during the vehicle detection task. In previous

FIGURE 4. Visualization of the change in signal strength in dB when a car drives
through the system. Top: 2.4 GHz signal strength; Middle: 5 GHz signal strength;
Bottom: Laser Value (0 = The laser is not interrupted, 1 = The Laser is interrupted).

work [5], peaks were used to execute the detection of vehi-
cles. A peak starts when the Wi-Fi signal strength drops
more than a given threshold and ends when it recovers to
the starting dB value also within the threshold. A peak has
a time window, i.e., the duration between its start and end.
As the main idea of Gupta et al. [5]’s method was to use
the point in time the signal recovers (i.e., returns to its value
before deflection) as an indicator for the end of a peak, their
approach is called recovery-based method to peak extraction
at this point. The threshold of 2dB was used for peak detec-
tion in [5] and that value was also used in this work while
implementing the recovery-based approach as a baseline for
comparison. One weakness of the recovery-based approach
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is its limited ability to detect more complex patterns in sig-
nals. For example, in some cases when a bus passes the
system, the signal strength recovers momentary and goes
down again, causing the algorithm to detect two different
busses instead of one.
To enhance the threshold method and make it more robust

to fluctuations, we use a new method called median-based
peak extraction. We begin by first computing the median
of the time series, which we then use as a reference value.
In addition a 3 data point time window was also used to
allow the detection of more complex patterns in the signal
stream. By this new approach new peaks are identified when
the mean of the signal strength within the windows differs
more than 1.5 dB to the median. The peak ends when the
mean of the signal strength of the three data points recovers
back within the 1.5 dB. The threshold of 1.5 dB was chosen
after multiple iterations during the data analysis. Table 1
shows the results across all three scenarios. Note that the
detection algorithm does not perform any classification at
this stage. Since the outcomes of the extraction step are
the input values for the classification methods, the detection
algorithm determines the maximum vehicle count that can
potentially be classified. The assignment of the classes of
vehicles to the peaks has been done manually to generate the
data in this table. As the table illustrates, the median-based
peak extraction allowed a more complex and robust peak
extraction and is more resilient to noise detection across
scenarios. Nonetheless, it might still be prone to noise error
when the idle signal strength changes or a vehicle stands
for a long time between the sensors. In all three scenarios,
the median-based approach has reduced the number of NaV
(false positive) dramatically, leading to substantial improve-
ments in the precision and overall F-score, especially when
applied to 5GHz signals.

D. VEHICLE CLASSIFICATION TECHNIQUES
Once the peaks were extracted from the frequencies with the
new approach discussed above, a classification of the peaks
was intended. The goal here is to find out the type of vehi-
cle that led to the disturbance in the Wi-Fi signal. In order
to accomplish the classification process different algorithms
were used and compared. Initially, the classification algo-
rithm k-nearest neighbor classifier utilized in the previous
work by [5] was implemented and used as a comparison
baseline. Afterwards different preprocessing techniques were
applied to the data and various parameters for the kNN were
investigated. In addition, a Random Forest classifier was used
to classify the peaks. Ultimately, a new approach using the
matrix profile was implemented in our study for the vehicle
classification. A brief description of each method, as well
as the rationale for their choice is presented next.

1) K-NEAREST NEIGHBOR

K-nearest neighbor is a “simple but effective” [23] classifica-
tion method, suitable as a basis of comparison for following
classification algorithms because it “should be one of the

TABLE 1. Comparison of the peak extraction methods: Nav = Not a vehicle indicates
a false positive.

first choices for a classification study when there is little or
no prior knowledge about the distribution of the data” [24].
This classification method which is a supervised machine
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learning technique [25] learns by simply storing the training
samples and their features. The classification is then based
on the Euclidean distance between the training and test sam-
ples [24]. For each sample that will be classified the method
computes the Euclidean distances between the testing sam-
ple and all the training samples. The “k” samples that have
the least distance to the tested sample then determine the
predicted class based on a majority voting [26].
In a first step, the peaks have been extracted from the

two frequencies (see Section III-C). From these peaks the
amplitude and the length of the peak define the features
which, were used to classify the vehicles. These features are
the same that were used in previous work [5]. The ampli-
tude is determined by the maximum deflection of the signal
strength during the peak. The length of the system indi-
cates how long the signal needed to recover to its standard
strength. The resulting data is then split into 70% training
data and 30% testing data and the kNN is trained and the
test data is classified. After testing the values 3, 5 and 7
for “k”, the value 3 was chosen because it resulted in the
highest accuracy.
To enhance this method further, firstly, an additional pre-

processing step was conducted by applying feature scaling to
the input data. The different features were normalized which
can impact the overall accuracy of the kNN. The standardiza-
tion method from scikit-learn’s preprocessing package [27]
was used to perform this step. Secondly the Euclidean
Distance (ED) of the peak was added as a third feature for
the kNN algorithm for classification. The ED was computed
by adding up the distances between each of the datapoints
of a peak.
Since there was a greater amount of cars compared to the

other vehicle classes passing the sensors during the measure-
ment, an oversampling technique was also used to improve
the accuracy of the kNN even further. Chawla et al. [28]
stated that a class imbalance is present when the number
of instances of the different classes are not approximately
equal. This class imbalance problem results in wrong
detection of the dominant class which in this case are
cars [29]. The fact other vehicle classes occur less often
corresponds to the explanation by Chawla et al. [28] that
“real-world data sets are predominately composed of “nor-
mal” examples with only a small percentage of “abnormal”
or “interesting” examples” [29]. The Synthetic Minority
Oversampling Technique (SMOTE) provided by the python
package “imblearn.over_sampling” [30] was used to calcu-
late the additional samples of the minority classes. Only
classes with a minimum instance occurrence of 4 were
included. Tests with the oversampling technique did not
result in significant improvements, and are not reported in
this article.

2) RANDOM FOREST

Random forest is a supervised machine learning classifica-
tion and regression method that uses a divide and conquer
approach [31]. Multiple classifiers are used to achieve a

robust classification. The number of classifiers, which are
decision trees in the case of random forest, decide the accu-
racy and computation time for the algorithm. More trees lead
to more computation time [32]. For each new instance, the
individual trees vote on a class, and the decision is then based
on the majority of votes [33]. Previous work [34] reported
that random forest models perform well on a wide variety of
classification problems. The fact that many weak classifiers
most of the time perform better than a single classifier [35],
and that this method, in contrast to the kNN is efficient and
able to “operate quickly over larger datasets” [33] is the
reason that we chose to utilize it for our study.
In our study, the random forest used the same input data as

the new kNN approach to make a comparison possible. First,
the peaks for both frequencies are extracted using the new
counting method. The used features are the peaks duration,
maximum amplitude, and Euclidean distance. The features
were also normalized. The dataset was then split into the
same training and testing data using the same random seed,
which was used for the kNN classification to generate mean-
ingful results. The scikit-learn’s random forest classifier was
then used with 100 trees. Increasing the trees further up to
512 did not change the accuracy of the classification.

3) MATRIX PROFILE

The matrix profile technique was proposed in 2016 by
Yeh et al. [36] and is based on the all-pairs-similarity-search.
This method, also known as similarity join, retrieves the
nearest neighbors for each object in a data collection. In
the context of time series analysis, the method can be used
to identify patterns or outliers. Yeh et al. [36] created a
“simple, fast, parallelizable and parameter-free” algorithm
called Scalable Time series Anytime Matrix Profile (STAMP)
which uses the concept of the matrix profile. Their algorithm
was, at the time of publishing in 2016, the fastest to detect
motifs and anomalies in a time series. We found this tech-
nique to be relevant and worth of exploration in this study, as
Wi-Fi-based signals can be modeled as time series. To utilize
the matrix profile, the first step is to count the peaks in the
time series. A peak in the context of the matrix profile would
be defined as a discord or anomaly. However, multiple peaks
with similar patterns occur within the time series which is
the reason why the algorithm is not able to detect them as
an anomaly. This is called the “twin freak problem” [37].
This problem was investigated by He et al. [37] suggesting
that the algorithm “fails to identify rare subsequences when
it occurs more than once in the time series.”
Due to the “twin freak problem,” the matrix profile can-

not simply be used for the peak extraction and classification.
Therefore a different approach was used in our study. The
python library “STUMPY” [38] provides different algorithms
for motif and discord detection using the concept of the
matrix profile. The initial step is to split the data into a
training set which was chosen to be 70% of the data and
a testing set with the remaining 30%. Next, the new peak
extraction was used on the testing dataset, and a distance
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FIGURE 5. Matrix profile clustering approach. The signal strength of the 5 GHz frequency is visualized in blue. The vehicle class shown in red indicate 3 cars (left) with a class
of and a bus (right) with a class of 2. The clustering algorithm found 7 different clusters from the votes.

profile to the training dataset for each peak was computed,
which is basically an all-pairs-similarity-search. In this dis-
tance profile, the global minimum is then sought-after. The
result is the index of the most similar subsequence in the
training dataset to the extracted peak. If a class was anno-
tated within the length of subsequence, it was assigned to
be the predicted class for the particular peak.
To make the detection more robust not only the global

minimum of the distance profile was chosen, but also the
three lowest minima in the testing set were used in conjunc-
tion with a majority voting. With the previously explained
approach using the counting method in conjunction with the
pattern search, a major advantage of using the matrix pro-
file is left out. All the previous methods need a counting
step and a classification step. The matrix profile provides
the possibility to combine those steps. A first attempt uti-
lizing this advantage but avoiding the “twin freak problem”
is proposed in the following text.
The aim was to first use a manual extraction of peaks from

the training dataset. This extraction uses the same technique
that was used to find the ground truth of vehicles. Therefore,
no further changes had to be made to the data and the
extraction is not prone to errors except the ones that were
made during the data annotation or sensor errors. For each
manual extracted peak the distance profile to the testing
dataset is then computed. Thereafter all local minima were
extracted from the distance profile. For each minima, a vote
with the extracted peak’s class and the distance profiles value
at that specific index is assigned to the same index on the
testing dataset. All votes then form a cluster on the testing
dataset. A Density-Based Spatial Clustering (DBSCAN) was

used for robustness and to ignore some outliers. Each cluster
contains the votes of classes and has to be assigned to one
peak (see Figure 5).

4) SUMMARY

In summary, six algorithms were compared during the study:

• kNN (baseline): kNN without any preprocessing using
the peaks duration and maximum amplitude as features;

• kNN (normalization): kNN baseline with duration and
amplitude as features, both normalized;

• kNN (ED+normalization): kNN baseline with ampli-
tude, duration, and Euclidean distance as a third feature
added. All three features were normalized;

• Random Forest (ED+normalization): random forest
with amplitude, duration, and Euclidean distance as
features, all three normalized;

• Matrix profile 1: STUMPY Fast Pattern Search for
each peak. The global minimum was chosen to for the
classification.

• Matrix profile 2: STUMPY Fast Pattern Search for
each peak. Three lowest minimum where chosen in
conjunction with a majority voting for the classification.

E. GENERALIZABILITY
Ferguson [39] summarizes generalizability as the combina-
tion of internal and external validity of the findings. Validity
is a criteria for the quality of results and can be separated
into internal and external validity. To interpret the results
of an experiment, internal validity is necessary. However,
the “external validity pertains to the generalizability of the
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TABLE 2. Accuracy results of the different classification methods for the measurement at the 08.12.2020 at the Mendelstraße.

treatment effect to other populations, settings, treatment
variables, or measurement variables” [39].
Generalizability in the context of the proposed system

has multiple dimensions. Based on Ferguson’s [39] defini-
tion, hardware and software generalizability are desirable in
the different scenarios or settings. Also, different measure-
ment variables like weather conditions could be investigated
regarding generalizability. For the system to allow a large
scale deployment generalizability is also important. For the
generalizability of our proposed system, we tested it in
three different road environments. An additional step was to
investigate the generalizability of the different counting and
classification models. Temporal and spatial generalizability
were tested. Temporal generalizability relates to whether the
counting and classification methods and their parameters
apply to the same scenario but at a different time, or if
an adjustment to the parameters or learning data is needed
for a new measurement. The spatial generalizability related
to whether or not the counting and classification methods
and models can be used in other, entirely different road
scenarios.
To test generalizability, first the training data from the

16.12.2020 at the Austermannstraße was used to train the
models of the classification methods. Then testing data from
the 17.12.2020 at the Austermannstraße was classified (tem-
poral generalizability). For the spatial generalizability, the
training data from the Mendelstraße and the testing data
from the Austermannstraße were used. The Mendelstraße is
the two lane street and the three vehicle classes car, bus and

two cars at the same time occur. On the Austermannstraße
which has only one lane, only cars and busses occurred. This
test generalizes the counting and classification methods spa-
tially because the training and testing data were collected
in different locations with a different distance between the
sensors, different numbers of lanes for each scenario as well
as having different vehicle classes appearing.

IV. RESULTS
Tables 2 to 6 show the results. The support values in the
tables indicate the amount of instances that were tested for
each method.

A. MENDELSTRAβββE
This scenario, which had two lanes two directions, had two
separate measurements of about 3 hours each. Two notewor-
thy observations are that the distance between the sensors
was smaller and that some cars slowed down significantly
after seeing the traffic warning signs. In total 1416 cars and
6 busses were counted. The results are shown in Table 2.
Mendelstraße - 08.12.2020: A first measurement at the

Mendelstraße was conducted on 08.12.2020. A few obser-
vations from the table is that the overall accuracies of the
machine learning approaches classifying the 5 GHz peaks
are almost 10% higher than the 2.4 GHz classifications.
Regarding the classification techniques, the normalization
did not improve classification accuracies over the baseline
(quite unexpectedly). The use of the Euclidean distance
increased the accuracy for the 2.4 GHz slightly, but not for
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TABLE 3. Accuracy results of the different classification methods for the measurement at the 09.12.2020 at the Mendelstraße.

the 5 GHz. The accuracies of both matrix profile techniques
were much lower, compared to the previous models.
Mendelstraße - 09.12.2020: A second measurement at the

Mendelstraße was conducted on 09.12.2020. The results of
classification methods are shown in Table 3. Again, the
5 GHz frequency counted more cars, and the classifica-
tion accuracy is higher in all cases. The highest overall
accuracy was scored by the kNN with normalized feature
values with the 5 GHz frequency with 0.88725. Furthermore,
the amount of 2 cars again were very low, and none was
detected. The feature normalization decreased the accuracy
of the kNN algorithm for 2.4 GHz but improved it for 5GHz.
After adding the peaks Euclidean distance, the accuracy was
increased for 2.4 GHz but decreased for 5GHz. The random
forest had similar results to the kNN classification with a
slight improvement in 2.4 GHz. This time, the matrix pro-
file results were closer to the machine learning results with
0.67619 for 2.4 GHz and 0.82581 for 5 GHz.

B. AUSTERMANNSTRAβββE
The next scenario, which was a one way street had two
separate measurements of approximately three-hour long
each. Two observations worth mentioning are that the dis-
tance between the sensors was smaller and that some
cars slowed down significantly after seeing the traffic
warning signs. In total, 1306 cars and 18 busses were
counted.
Austermannstraße - 16.12.2020: The results of the first

measurement at the Austermannstraße are shown in Table 4.
Higher accuracy than the previous two-lane street can be
seen, with the enhanced kNN method even scoring 100%
accuracy in the 5 GHz peaks. The number of counted
cars for both frequencies this time was the same, but the

2.4 GHz frequency had more NaV peaks extracted. In the
2.4 GHz frequency, no bus was detected compared to the
2 correctly detected bus instances in the higher frequency.
This time the normalization improved the accuracy for the
kNN, and the Euclidean distance also increased the accu-
racy of the 2.4 GHz classification. The random forest became
slightly worse compared to the kNN baseline in 2.4 GHz
and the same accuracy for 5 GHz. The matrix profile’s over-
all accuracies were again worse than the machine learning
approaches. For the 5 GHz peaks, the accuracy of the method
got closer to the previous methods, with the improved
matrix profiling version scoring 0.96226. However, in the
2.4 GHz frequency, the majority voting system decreased
the accuracy.
Austermannstraße - 17.12.2020: The results of the clas-

sification methods for the second measurement at the
Austermannstraße can be found in Table 5. Similar to the
first measurement’s results in Table 4 the difference in peak
extraction of the frequencies are visible. The lower frequency
693 peaks without a vehicle class were extracted compared
to zero at the higher frequency. Furthermore, 8 cars and
6 busses, which the 2.4 GHz frequency did not measure,
were perceived in the higher frequency. The best accu-
racy was achieved with the kNN method in combination
with the feature normalization with 0.99061. The baseline
algorithms overall accuracy was 0.97648 for 2.4 GHz and
0.98592 for 5 GHz. Normalizing the data decreased the result
for the lower frequency but increased it for the 5 GHz.
This time adding the peaks Euclidean distance to the input
feature increased both frequencies accuracies. The random
forest classifier worked best for the 2.4 GHz peaks and
was especially good for bus detection. The enhanced matrix
profiling classification scored 0.98889 on the 5 GHz peaks
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TABLE 4. Accuracy results of the different classification methods for the measurement at the 16.12.2020 at the Austermannstraße.

TABLE 5. Accuracy results of the different classification methods for the measurement at the 17.12.2020 at the Austermannstraße.

bypassing the baseline algorithms accuracy with similar
vehicle instances.

C. CORRENSSTRAβββE
The measurements at the Corrensstraße on the 19. 24. and 25.
of November in 2020 were chronologically the first ones and
had different problems during data collection and analysis.
Overall only 320 cars and 35 busses were counted due to a
low traffic density. For the analysis, the number of instances
are split into three different measurements resulting in a

very low number of vehicles per measurement, making the
results not very meaningful. Therefore, only the results of
the first measurement on 19.11.2020 are shown in Table 6.
The first problem, which occurred, was a signal loss in the
2.4 GHz frequency. The Wi-Fi disconnected multiple times
for a brief period of time. Another problem was the location
of the setup, which was next to a bus station. This resulted in
a huge variation of duration that the busses needed to drive
by the system. The results of the three measurements also
exhibit better counting capability in the 5 GHz frequency.
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TABLE 6. Accuracy results of the different classification methods for the measurement at the 19.11.2020 at the Corrensstraße.

TABLE 7. Models’ generalizability performances.

The overall accuracies in all methods were much lower,
ranging from 0.47863 to 0.97917.

D. TEMPORAL AND SPATIAL GENERALIZABILITY
The results of the model generalizability are shown in
Table 7. Only the kNN (ED+normalization) and the matrix
profile 2 models were tested for generalizability at this point,
because they led to the best results overall (Tables 2 to 6).
The temporal generalizability was tested by extracting the
peaks from the first measurement at the Austermannstraße
and using them as the training data for the classifica-
tions. Then the peaks from the second measurement at the
Austermannstraße were extracted and used as testing data.
For the kNN and random forest algorithm, both frequencies
could get a classification accuracy between 0.96190 and
0.96750 for 2.4 GHz and 0.97806 to 0.98276 for 5 GHz.
The enhanced matrix profiling approach was able to score
an overall accuracy of 0.97753 using the higher frequency.
For spatial generalizability testing, data from Mendelstraße

was used, and the peaks from Austermannstraße were tested.
A significant drop in accuracy ranging from 6% to 10% is
noticeable for the two machine learning approaches. The
enhanced matrix profiling method, however, was able to
score 0.97753 accuracy.

V. DISCUSSION
The research questions are now revisited, before we discuss
implications and limitations.

A. REVISITING THE RESEARCH QUESTIONS
1) HOW TO AUTOMATIZE THE COUNTING OF VEHICLES
ON THE ROAD BASED ON DEVIATIONS OF WIRELESS
SIGNALS?

The results of the peak extraction algorithms show that peaks,
which do not correspond to a vehicle type, are counted and
passed to the classification algorithm. Because the NaVs (i.e.,
false positives) are also passed to the classification meth-
ods, it is desirable to avoid them as much as possible. The
median-based approach suggested and implemented in this
work reduced the amount of irrelevant peaks extracted in the
three scenarios both for the 2.4 GHz and 5 GHz signals by
several orders of magnitude (Table 1). A median-based peak
extraction is thus more effective for vehicle counting than
a recovery-based approach and is an important step towards
automated Wi-Fi-based vehicle counting. In particular, it is
more robust to noise, and this means greater efficiency for
the Wi-Fi based traffic monitoring approach as a whole.

2) WHAT ARE THE RESPECTIVE MERITS OF DIFFERENT
TYPES OF SIGNALS (5GHZ VS 2.4GHZ) FOR DETECTION
AND CLASSIFICATION ENDEAVOURS?

The results have shown that the higher Wi-Fi frequency
(5 GHz) was superior to the 2.4 GHz, improving the overall
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amount of counted vehicles as well as the results of the
classification algorithms. Furthermore, the higher frequency
shows greater robustness in urban areas. For the detection of
multiple vehicles passing the system simultaneously, the pre-
liminary results indicate that this was not possible. However,
the low amount of occurrences do not allow a final conclu-
sion in that regard. The advantages of the 2.4 GHz is to have
provided slightly better accuracy results, when it comes to
the spatial generalizability of two models (kNN and random
forest).

3) HOW TO AUTOMATICALLY CLASSIFY THE TYPE OF
VEHICLES CONSIDERING THE SHIFT OF PATTERNS IN
WIRELESS SIGNALS?

The first lesson learned from Tables 2 to 6 is that the use
of kNN along with normalization and Euclidean distance
as a feature performed best for vehicle classification using
the 2.4 GHz signal. This technique consistently performed
best across scenarios. For the classification using the 5 GHz
signal, the results are more inconclusive as no method con-
sistently provided the highest accuracy value across scenario.
kNN techniques seem to have a slight advantage, but the ran-
dom forest approach has provided largely comparable results.
A second lesson from the tables is that distance between the
sensors seem to matters. The accuracy results obtained at the
Austermanstrasse, which is a one-lane street, are typically
about 10% higher than the results in the other scenarios.
This suggests that the shorter the distance, the better the
results, but the impact of distance on the accuracy results is
a matter that needs to be more systematically investigated
in future work. A surprising observation from the tables,
though, is that accuracy values of classifiers may differ by
some order of magnitude (about 5-7%) in a given scenario
(i.e., Mendelstrasse). It is unclear why this has been the case,
given that the two measurements were only 24 hours apart,
with relatively similar conditions (see Section III-A). This
too, needs a more systematic investigation in future work. A
third lesson, is that matrix profiling techniques have some
potential, especially using in conjunction with the 5GHz
frequencies. How to make them more robust across scenar-
ios and signal frequencies is an interesting issue for further
work.
Fourth, the choice of the location matters. Overall, the

Correnstrasse led to lower accuracy values, compared to
other scenarios. There were two possible reasons for this.
The first one, already mentioned, was the fact that the system
was installed next to a bus station. Therefore the busses that
stopped at the station were picked up by the system during
acceleration. In contrast to the busses that did not stop at the
station, the duration of the peaks was a lot longer, making
classification very difficult. Second, this scenario was located
in a more populated area than the previous ones. Thus, there
was a higher number of devices using the 2.4 GHz frequency,
leading to the signal being possibly more disturbed (there
were even signal losses during the data collection process
for the 2.4 GHz channel).

At last, it must be mentioned that the scope of all observa-
tions made in this subsection is limited to the classification
of cars and busses. There were too few instances of multiple
vehicles passing at the same time in the data collected to
offer solid conclusions of the merits of the techniques on 2
cars. The best vehicle classification accuracies in the scenar-
ios ranged from 83.4% to 99.8% (2.4 GHz) and from 78.6%
to 100% (5 GHz). The received signal strength was used
in this study to derive the amplitudes used as features (see
Figure 4), but CSI provides more information than received
signal strength (see [40]). It is thus likely that using CSI as
the basis for the classification could improve the accuracies
even further, but this remains to be tested empirically.

4) TO WHICH EXTENT DO MODELS LEARNED FROM A
ROAD ENVIRONMENT CAN BE APPLIED TO OTHER
ROAD ENVIRONMENTS?

When a trained model on one scenario was used to classify
data from the same scenario at a different point in time, the
accuracy values were comparable (Table 7). Thus, model
reuse within scenarios is possible and sensible. However,
when a trained model on one scenario was used to classify
peaks from another scenario, the accuracy of the method
was significantly reduced. This suggests that reuse of models
across different scenarios comes with the cost of accuracy, or
put differently that each model needs to be trained separately
for every different road scenario. Even the enhanced matrix
profiling method was able to score 0.97753 accuracy, which
would be a reasonable classification accuracy for a traffic
monitoring system. However, it had the downside of not
offering consistent results in the internal validity, which is
also necessary for generalizability.

B. IMPLICATIONS
Overall, the proposed traffic monitoring system fulfills many
desirable requirements. The desirable characteristics men-
tioned in Barbagli et al. [6] are the capability of large-scale
deployment, being passive and operating at low power, being
cheap, easy to install and maintain. A large-scale deployment
was not tested in this work; nonetheless, a few comments
can be made about regarding this. The main hurdle for a
large-scale traffic monitoring deployment is the high cost
of an individual monitoring device. The proposed system
being low cost is a first step in the direction of a large-scale
deployment. The fact that the proposed approach is using
Wi-Fi signals and not interfering with the traffic, as well
as having the possibility to detect the traffic automatically,
makes it a passive system. The power consumption of the
setup was not quantified in this work; however, it was able
to operate during multiple hours with a car and motorcycle
battery. The amount of power consumption can therefore be
compared to the approach of Kochláň et al. [17] who indi-
cated that their system is operating at low power due to the
fact that a car battery is enough to satisfy its energy needs.
Furthermore, the system was installed in under one hour
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for each measurement without stopping the traffic, demon-
strating how easy it is to install. In addition, Wi-Fi signals
are not influenced by the day-night cycles and operate in
many different weather conditions. The accuracies obtained
for the temporal generalizability suggest that in the absence
of more recent models, models trained on previous data may
still provide useful results. Models trained on two lanes, two
directions data can also be used for one-lane, one direction
streets, but at the cost of a decrease in accuracy.

C. LIMITATIONS
The analysis is subject to multiple limitations as a result
of a dependency chain. First of all, the peak extraction
is limited to the actual raw data that is collected by the
system. If no signal change is recorded on either frequency
although a vehicle passed the system, a peak extraction is
not possible. Furthermore, the classification is limited to the
outcomes of the peak extraction. Two extraction methods
were compared during the work. Both methods have differ-
ent parameters, which have to be tuned for each scenario.
One input feature for the machine learning approach is the
duration that a vehicle spends between the two system’s
units. This means it is strongly influenced by the driver’s
behavior. This became clear when some vehicles drove very
slowly at the Austermannstraße because the driver saw the
traffic signs as well as at the Corrensstraße where some
busses had to accelerate after stopping at a bus station. It
follows that the vehicles’ speed and length has to be taken
into account. During this work all streets had a speed limit
of 50km/h. Data visualization during the analysis showed
that some short cars as well as cars exceeding the speed
limit were not picked up by the system. Increasing the tem-
poral resolution of the data collection could help mitigate
this issue. The results also showed the limits of using the
2.4 GHz frequency. In total, the lower frequency picked up
less cars and had problems with signal loss, which could be
traced back to the amount of devices using it in a city. Also,
the number of vehicles passing through the streets used in the
scenario is arguably relatively small, and could be increased
through data collection in non-residential areas. Finally, the
manual data annotation, which was labor intensive, limited
the amount of vehicles that could be used during the data
analysis. This also led to an under representation of certain
vehicle types.

VI. CONCLUSION AND FUTURE WORK
This work has deployed a low-cost, Wi-Fi-based system for
traffic data monitoring in three different urban scenarios. It
then introduced and thoroughly evaluated a new algorithm
for the automatic counting of vehicles (car, busses). The work
also evaluated the performance of different models for the
classification of vehicles (car, busses). Using normalization
and three features (amplitude, duration, Euclidean distance)
have helped to improve the accuracy over the baseline used
in previous work. Our results also suggest that a trained

model can be used to classify data collected about the same
road, but at a different point in time.
There are a few directions for future work that can be men-

tioned. First, as mentioned above, it would be interesting
to investigate the impact of spatial distance on the accu-
racy results more systematically. Also, the impact of noise
(e.g., competing signals on the 2.4 GHz frequency) could be
looked into more closely. In addition, the study outcomes can
be well utilized in consideration with work of [41], improv-
ing public transport systems in cities. Developing over the
work of [42], the present study could be extended to evalu-
ate the speed of the vehicles on the road. Finally, the matrix
profiling technique has shown promise. The density-based
clustering algorithm DBSCAN was able to detect clusters
of votes for individual cars but had problems combining the
votes for busses. In future work, a method for deciding on
a cluster’s class needs to be implemented. Furthermore, the
problem that multiple clusters are detected within the time
window of a longer vehicle presents interesting challenges
for future work.
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