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ABSTRACT An important aspect of automated driving is to handle situations where it fails or is not
allowed in specific traffic situations. This case study explores means, by which control transitions in a
mixed autonomy system can be organized in order to minimize their adverse impact on traffic flow. We
assess a number of different approaches for a coordinated management of transitions, covering classic
traffic management paradigms and Al-driven controls. We demonstrate that they yield excellent results
when compared to a do-nothing scenario. This text further details a model for control transitions that
is the basis for the simulation study presented. The results encourage the deployment of reinforcement
learning on the control problem for a scenario with mandatory take-over requests.

INDEX TERMS Connected automated vehicles (CAV), reinforcement learning (RL), take-over request
(ToR), traffic management (TM), transition of control (ToC).

NOMENCLATURE
AV Automated vehicle
CAV  Connected automated vehicle
CV Connected vehicle
LoD Level of demand
MRM Minimum risk manoeuvre
MV Manual vehicle
MDP Markov decision process
No-AD No automated driving
RL Reinforcement learning
RSI Roadside infrastructure
™ Traffic management
TMC Traffic management center
ToC  Transition of control
ToR  Take-over request.

The review of this article was arranged by Associate Editor Jia Hu.

I. INTRODUCTION
HE TREND towards vehicle automation and connec-
tivity between vehicles (V2V) or infrastructure (V2I)
implies a need for traffic management approaches to deal
with emerging complications in future mixed traffic situa-
tions. In such scenarios, connected automated vehicles (CAV)
can be addressed individually by V2I technology, which dif-
fers considerably from classic traffic management tasks that
organize large numbers of road users with standard control
measures like, e.g., signal control or ramp metering. Based
on this communication, CAVs hold the potential to pose as
sensors and actuators within the traffic system simultane-
ously. This opens up prospects for novel traffic management
schemes.
Moreover, with the progressing deployment of CAVs that
provide state-of-the-art level-two functionalities (see SAE
taxonomy for automated vehicles [1]), the traffic system
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will gradually turn into a system of mixed autonomy. Such
a system presents various challenges in terms of traffic effi-
ciency and safety when human drivers and partly to fully
automated vehicles (AV) share the same road space. In partic-
ular, automation disengagements are of concern, i.e., when
a human driver has to operate as a fallback for a failed
vehicle automation and needs to respond in a proper and
timely manner to take back the driving task [2]. This safety
critical process, a so-called downward transition of control
(ToC) [3], is an increasingly important studied research topic,
especially from the perspective of manufacturers on how to
design respective takeover strategies in highly automated
vehicles [4], [5], [6].

In contrast, the macroscopic effects on overall traffic,
which even successful downward ToCs may induce when
occurring frequently in certain traffic situations and areas are
less investigated so far. Therefore, in this paper we consider
the issue of such transition areas from a traffic management
perspective with a specific focus on:

1) how to model, simulate and manage downward ToCs,
detailing some of the related work of the EC project
TransAID, and on,

2) how to design a traffic management control that miti-
gates the adverse effects of downward ToCs on traffic
with the help of tools from artificial intelligence
compared to a more traditional approach.

To the best of the authors’ knowledge, there is only one
other publication presenting a model for ToCs that conducted
simulations on traffic performance [7], but with a rather
limited scope on restricting the lane change behaviour. Thus,
we present a case study based on a novel ToC model, that
demonstrates possible outcomes in future scenarios of mixed
autonomy when downward ToCs contribute detrimental to
the traffic performance on a macroscopic level. Our study
introduces several approaches on managing those adverse
impacts.

We apply reinforcement learning (RL) which is a concept
in machine learning that formalizes a control task in form
of a Markov Decision Process (MDP) [8] to maximize a
reward in a trial-and-error learning process. Reference [9]
points out that the terminus RL is a class of solution
methods in machine learning as well as a research field
of these solutions that work well on a problem. In that
sense, this work simply uses RL as a method to solve a
control task for traffic management rather than research-
ing the problem of RL itself. RL-based methods have been
previously adopted to optimize traffic light performance [10],
control ramp meters [11], enable eco-driving along signalized
corridors [12], deliver personalized driving policies [13], or
facilitate big-data driven intelligent traffic management [14].
However, the RL-based management of downward ToCs
upstream of a no-automated-driving zone (No-AD zone) has
not been targeted by RL approaches up to date.

The rest of the paper is organized as follows. In Section II
we introduce the modeling of ToCs and discuss the out-
come of respective simulation results. Further, we briefly
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review some related publications in the context of traffic
management of CAVs with the application of RL. Section III
describes the computer experimental setup. That is, we define
the traffic control task and formulate the MDP for the RL
experiment. Section IV presents the simulation results and
provides a discussion of the obtained results. Finally, in
Section V we present our conclusions from this study and
point to future research directions.

Il. RELATED WORK

A. TRANSITIONS OF CONTROL

ToCs constitute overarching processes that govern bi-
directional shifts of authority between the driver and the AV.
In case of downward ToCs, factors endogenous or exoge-
nous to the AV may force vehicle automation to disengage
and request driver’s intervention for resuming AV’s control.
The signal (audio, visual, haptic or combination of the latter)
from the vehicle automation side that notifies the driver for
the need to re-engage in the primary driving tasks is defined
as a take-over request (ToR). A successful downward ToC is
completed as soon as the driver has re-engaged and his/her
situational awareness and driving skills are fully restored. If
the downward ToC is unsuccessful, namely the driver does
not respond to ToR within the available lead time, the AV
stops as safely as possible via a minimum risk manoeuvre
(MRM). In case of upward ToCs, the driver hands over con-
trol to AV within its Operational Design Domain (ODD) via
the activation of its automated driving systems. For exam-
ple, the manufacturer Daimler recently announced that it will
introduce a conditionally automated level-3 system in 2022,
which deploys this depicted takeover strategy [15].

Failure from the driver’s side to react in a timely manner to
ToRs has been linked with fatal crashes in reports from both
the U.S. National Highway Traffic Safety Administration
(NHTSA) and the National Transportation Safety Board
(NTSB) [16]. Given the adverse impacts of downward ToCs
on safety, multiple studies have ventured to identify con-
tributing factors to automated vehicle disengagements, by
harnessing data collected for the disengagement and AV
collision reports of the California Department of Motor
Vehicles [17]-[19]. Findings from the latter studies indicate
that vehicle-initiated disengagements are positively corre-
lated with sensing and planning issues on the vehicle side
and occur with increased frequency in high speed driving
conditions or when behavior from other traffic participants
becomes unpredictable and irregular.

Another research branch on downward ToCs has placed
emphasis on determining human and AV system factors that
affect driving performance during the ToC-preparation and
post-ToC phases. References [20], [21] conducted literature
review studies to identify factors that influence response time
to ToRs (available lead time, involvement in secondary tasks,
take-over request functionality etc.) and post-takeover vehi-
cle control (braking-steering) in different traffic situations.
Moreover, they reviewed existing models suitable for captur-
ing the aforementioned artefacts of driver behavior prevailing
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FIGURE 1. lllustration of the proposed ToC model for both cases: panel (a) shows a
successful control transition; panel (b) presents an unsuccessful control transition
resulting in a MRM.

in the course of downward ToCs. High fidelity driver models
that can comprehensively capture behavioural processes dur-
ing downward ToCs are essential for exhaustively studying
their impacts and assessing possible mitigation measures via
computer simulations. To this end, [22] proposed a sim-
ulation framework that incorporated human factors (task
demand and capacity, situational awareness) in microscopic
traffic models which enabled the investigation of com-
plex driver-vehicle interactions occurring during downward
ToCs [23]. To capture the symptomatic side of potential
disruptions of smooth vehicle operation induced by down-
ward ToCs while, at the same time, enabling large scale
simulations, [24] developed a simplified, computationally
efficient model for ToCs, which allows capturing statistical
characteristics of the take-over performance of AV drivers.

The modelling and large scale simulation of planned
downward ToCs constitute focal elements in the context of
this study. Since our primary interest lies on the statisti-
cal distributions of the downward ToC characteristics and
associated potential disruptions of the smooth traffic flow,
rather than on the detailed psycho-physical processes under-
lying these, we employ the ToC model adopted from [24].
A generic description of the ToC model is provided below,
while its detailed mathematical formulations can be found
in [24].

The proposed ToC model as illustrated in Fig. 1 is based
on a state machine that enables transitions between auto-
mated and manual driving modes. ToRs issued during normal
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operation of automated mode prompt the commencement of
a preparatory ToC phase when automated driving can be
explicitly supported for a confined time interval (available
lead time). Upon expiration of the available lead time, two
distinct outcomes are possible according to driver’s response
to ToR. Either the driver reacts to the ToR and resumes vehi-
cle control (Fig. 1, panel (a)), or the AV is forced to enter
a minimum risk condition and stop as safely as possible
(Fig. 1, panel (b)). In the context of the state machine, the
first case pertains to the transition from the preparatory to
the post-ToC phase, where the driver may exhibit a reduced
driving performance until she/he fully restores her/his driv-
ing skills (normal operation in manual mode). The second
case pertains to the execution of a minimum risk manoeuvre
that safely stops the AV.

Our modelling approach encompasses the enforcement
of lane change abstinence, acceleration abstinence, and the
establishment of enlarged and secure car-following headways
via a gap control mechanism throughout the preparatory
ToC phase for safety reasons. The augmentation process
of car-following headways can be manipulated with the
adaptation of several calibration parameters of the lat-
ter mechanism (headway change rate, maximum allowed
deceleration, duration of gap opening manoeuvre) to attain
the desired car-following behavior (new desired headway,
duration the new desired headway is maintained). Driving
performance during the post-ToC phase is determined based
on a driver state model that embeds perception errors in
the default car-following behavior of the microscopic traffic
simulator SUMO [25]. Each driver is randomly assigned
an initial situational awareness state when she/he enters
the post-ToC phase and a situational awareness recovery
rate that regulates the restoration of situational aware-
ness until normal operation in manual mode is achieved.
Erratic car-following behavior is triggered during the post-
ToC phase according to perception specific action points
designed for imperfect driving [26]-[29]. Moreover, the
considered ToC model assumes a constant deceleration
rate during the MRM which can either take place in the
vehicle’s current lane or stop the AV on the right-most
lane via lane changes (if surrounding traffic conditions
permit).

Finally, the ToC model presumes two different ways for
issuing ToRs in SUMO. In the first case, the location of
ToRs can be a priori specified via a dedicated SUMO func-
tionality. In the second case, ToRs are issued dynamically
according to AV planned manouvres and surrounding traffic
conditions. In specific, if an AV encounters a dead-end lane
and is forced to execute a lane change for strategic reasons
while nearby vehicles block the AV intended manoeuvre,
then the AV will dynamically issue a ToR. On this occa-
sion, the location of dynamic ToR becomes a function of AV
speed and distance to the dead-end. Furthermore, dynamic
downward ToCs encompass dynamical sampling of driver
response time which entails probabilistic estimation of MRM
frequency as well.
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FIGURE 2. Baseline results of the TransAID use case study. Panel (a): Average
travel times for different parameter combinations LoD/Mix, panel (b): Exemplary
space-time-diagram for the mean speed of a single simulation run with LoD C and
Mix 3. The white dashed line indicates the point from which all vehicles are obliged to
drive manually.

This approach for modelling ToCs makes it straightfor-
ward to embed the associated processes into microscopic
traffic simulations of a broad variety of traffic scenarios at
a high computational efficiency, such that the macroscopic
assessment of impacts on traffic operations via microscopic
simulation software can be achieved. A simulation analysis
encompassing mixed fleet scenarios indicated that downward
ToCs can induce adverse impacts on traffic efficiency, con-
flict risk and the environment in a variety of traffic situations
(lane closure, road works, highway merge/diverge sections,
no automated driving zones) [30]. Key findings of this study
on the impact of downward ToCs on traffic flow upstream
of a No-AD zone in the absence of any vehicle specific
managing intervention from a Traffic Management Center
(TMC)! are displayed in Fig. 2. In Panel (a) the average
travel time of a single vehicle required to pass through the
whole simulated road segment (cf. Fig. 3) is reported for
an array of scenarios. These scenarios differ in the assumed
level of demand (LoD), and the composition of the traffic,
i.e., the percentage of automated vehicles. The LoD was
varied ranging over the categories A, B, and C, and the
percentage of different types of automated vehicles varied
over Mix 1 (30%), Mix 2 (50%), and Mix 3 (80%), see
Section III-C for details. Each scenario is assigned an ID
composed of the corresponding LoD and Mix code, i.e.,
scenario C2 corresponds to LoD C and Mix 2. It can be
observed that the do-nothing scenarios exhibit severe traffic
jams beyond a certain demand level, clearly leading to a drop
in speeds and a strong rise in the travel times. The space-
time diagram in panel (b) shows the disruption of traffic
flow caused by downward ToCs upstream of a No-AD zone
in a single simulation for a specific parameter combination
(LoD C, Mix 3).

To address the aforementioned impacts, [31] introduced
several infrastructure-assisted traffic management measures
designed for preventing, managing or distributing con-
trol transitions upstream of transition areas (areas on the
roads where multiple control transitions may concurrently

1. CAVs will be informed about the existence of the upcoming No-AD
zone via a simple information message, which causes automated vehicles
to hand over control to the human driver at a specific position.
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FIGURE 3. Panel (a) shows the basic control scheme for a traffic management
deploying CAVs for measurement and actuation in future traffic scenarios. Panel (b)
illustrates a control scenario of a RSI communicating with automated vehicles within a
defined control zone; colouring of vehicles corresponds to driving status; black
dashed lines indicate the control cell borders. Panel (c) shows a SUMO screenshot of
the discussed scenario.

take place). Simulation findings showed that the proposed
measures could mitigate the adverse impacts of control tran-
sitions for specific fleet mix and traffic demand scenarios.
In particular, the distribution of downward ToCs in space
and time upstream of a No-AD zone based on the TransAID
approach could in many cases prevent traffic disruptions. The
proposed distributed scheduling of downward ToCs reduced
the local accumulation of accelerations/decelerations which
may lead to strong speed variations and can consequently
generate unsafe conditions. Thus, the rise in travel times
observed in Fig. 2 could be at least postponed to a higher
demand, or, in the best case, be avoided at all by AV specific
ToR scheduling. Subsequently, the management of down-
ward ToCs and guidance of MRMs to safe spots has been
explored via real-world testing by Coll-Perales et al. in [32].
Their results suggested that the provision of personalized
advice to CAVs including information about recommended
ToC and safe spot locations could minimize MRMs taking
place in lane which can result in hazardous situations.

B. REINFORCEMENT LEARNING IN TRAFFIC CONTROL

RL is a branch in machine learning that is heavily researched
in emerging trends of deep learning applications nowadays,
partly inspired by recent influential publications from [33]
and [34]. Intelligent transportation systems (ITS) with often
highly complex control tasks and vast volumes of data are
a particularly promising field for data-driven techniques to
improve nonlinear models as well as developing novel ideas
to tackle future transportation challenges. The deployment
of RL in traffic research was propelled by its ready utiliza-
tion on control tasks in connection with traffic simulators.
There is a wide range of traffic simulations that emulate a
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certain system behavior. These representations of dynamic
traffic systems conveniently serve as the environment com-
ponent in RL. The feasibility to train an agent that operates
and handles specific tasks in such environments allowed
the rapid testing and progress of RL related techniques in
traffic control. As [35] point out in their survey, various
traditional transportation problems like demand or destina-
tion prediction, travel time estimation, traffic signal control
or traffic flow prediction are investigated with help of deep
learning and RL techniques.

Other areas of research and application where deep
learning and RL have proven useful are traffic signal con-
trol [36], [37], [38] connected automated vehicles in mixed
autonomy traffic [39], variable speed limit control at bottle-
necks and ramps [40], or at round-abouts [41], to name but
a few.

lll. EXPERIMENTS

A. COMPUTER EXPERIMENTAL SETUP

We define the main control task as follows: A Traffic
Management Center has to address vehicles within a con-
fined area to prevent them from entering a No-AD zone,?
still driving in automated mode. Therefore, a generic two-
lane road is divided into two regions: (1) an upstream area
denominated the control zone where automated driving is
allowed and (2) a downstream area, where manual driv-
ing is mandatory (No-AD zone). Thus, the TMC issues a
ToR to every CV and CAV approaching the No-AD zone.
Vehicles that receive a ToR, initiate a downward ToC. A
downward ToC results, for a certain time-span, in a mod-
erate vehicle deceleration caused by the gap enlargement
in the ToC preparation phase, and possibly reduced human
driver performance. The control zone is managed by the
TMC via V2X communication, e.g., using roadside infras-
tructure (RSI). The RSI receives position, speed and driving
status from each CV and CAV via cooperative awareness
messages [42] and maneuver coordination messages [43].

Fig. 3, panel (a) illustrates the envisioned role of con-
nected vehicles within the standard control scheme of traffic
management, actively adding sensory information and direct
actuation to the control loop. Panel (b) details this sim-
ple idea of an RSI communicating with vehicles within the
control zone by sending individual ToRs, aiming to prevent
those vehicles to exit the control zone while still driving
in automated mode. Panel (c) shows a snapshot of such a
simulation experiment in SUMO.

For simplicity, failing downward ToCs resulting in MRMs
are not managed specifically in this scenario.® Although
MRMs are included in the simulations with a very rare aver-
age rate of occurrence, we do assume that human drivers

2. In this study we do not further examine the rationale for the mere
existence of a No-AD zone. We presume the No-AD zone as a prerequisite
for the TMC to address automated vehicles not to enter this area while
driving automatically.

3. We refer the interested reader to [44] for a concept of how MRMs
could be guided to safe spots if the given infrastructure permits.
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resume the vehicle’s operation timely and do not block one
lane, or both lanes, for an extended period of time. In the
majority of the events, the driver takes over before the vehicle
has stopped completely. Thus, occurring MRMs still have
a negative impact on the traffic flow, but from a macro-
scopic perspective, they play only a secondary role relative
to the by far more numerous downward ToCs. Fig. 4 shows
the respective probability distribution of the reaction times
by human drivers to take back control of the vehicle after
receiving a ToR.

B. FORMULATION OF MARKOV DECISION PROCESS
(MDP)

An MDP is a formalization of the decision making process of
an agent that interacts with its environment. Specific actions
by the agent affect the state of the environment. Based on
observing the current state of the environment, the agent
can take actions that aim to maximize future rewards, where
rewards represent desirable outcomes. Fig. 5 schematically
shows such an interaction.

In reference to Fig. 3, the environment represents the
transport system, in our case emulated with the traffic simu-
lator SUMO, and the agent corresponds to the traffic control
logic. The data obtained by measurement and the means of
interaction via V2X technology provide a basis for defining
specific actions and observations in the MDP in this context.
RL uses this formalization in order to guide and improve
the decision making of an agent in such an interactive
environment.

In this work we train a policy with Twin-Delayed
Deep Deterministic Policy Gradient (TD3) [45], using
the implementation of the stable-baselines library (version
2.10) [46]. A TD3 algorithm, which is a modification of
Deep Deterministic Policy Gradient (DDPG) [47], simul-
taneously learns a Q-function for value updates and a
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target-policy that maximizes the Q-function through gra-
dient ascent. The interplay between those two is referred
to as an actor-critic algorithm. TD3 improves on DDPG,
by adding three tricks: (1) estimating the target with two
Q-functions (clipped double Q-Learning), (2) employing a
lower update rate on the target network (delayed policy
update) and (3) adding random noise to the target policy
(target policy smoothing) [47].

In the following, we formulate two models, model 1 and
model 2, which differ in observation space and reward func-
tion. The definitions for observations, actions and rewards
in the next paragraphs are derived from initial work in [48].

1) OBSERVATIONS

The standard RL approach requires that the space of all pos-

sible states is of a fixed dimension. Therefore, the description

of a dynamic vehicle flow as a list of vehicle states is not

suitable, as this list greatly varies in length over time. We

propose to overcome this problem by dividing the control

zone of the highway into a constant number of cells per

lane. In this manner, the agent can operate on a constant

state space, despite facing a dynamic number of vehicles.

The cells represent smaller parts of each lane with approxi-

mately the same size (cf. Fig. 3, black dashed lines indicate

cell borders). We found that a number of Ncejs = 14 cells

represents a good trade-off between complexity and granular-

ity for the scenario at hand. Every cell is described by three

respectively four values, which constitute the perception of

the environment for the agent:

(i) the average speed of all vehicles in the cell,
(i) the number of manually driven vehicles (MVs) in the

cell,

(iii) the number of CAVs in the cell,

For model 1, these quantities constitute the complete state

of the environment. For model 2, we further provide

(iv) the number vehicles that are about to enter the control
zone in the next time steps (see paragraph c) below
for details).

2) ACTIONS

Similarly, each cell represents a potential target object for
an action of the agent, i.e., the TMC. Effectively, an action
would correspond to the transmission of ToRs to all CAVs
in a specific cell at a specific time step. However, for-
mally we construct the action in the MDP framework as
a vector

ac [O’ l]Ncells’

which assigns a probability a;, with 0 < a; < 1, to each
cell, with which an effective action is triggered. Thus,
at each control step (that is every second), the agent
updates the probability for a ToR to every cell, taking into
account the observed state. In this context, an assignment
a;i = 1 corresponds to the deterministic decision of send-
ing ToRs to cell i, while a; = O ensures that no ToR is
emitted.
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Furthermore, the protocol ensures that a vehicle, which
passes one of the last cells before the No-AD zone, will
always receive a ToR, if it hasn’t already. This is to avoid
the vehicle from entering the No-AD zone while still driving
automatically.

3) REWARD

At each control step, a reward
(D

is calculated based on a part r,(¢) associated to the state of the
environment and a part r1or(#) associated to the number of
effective ToRs transmitted by the TMC. For both considered
models, we employ a ToR reward

r(t) = rror (1) + (1),

Ncells

rTor () = Z rror.i - #{ToRs sent to cell i}
i=1
— 71oR - #{ToRs sent to last cells}.

2

Here, rroRr; is a constant which defines the reward associated
to a transmission of a ToR to a CAV in the i-th cell, which
increases linearly from zero to wro,r with the cell’s index
along its lane. That means, the further downstream a CAV
is located when receiving its ToR, the higher the associated
reward. As an exception, if the ToR is sent just before the
No-AD zone, a penalty mror is imposed, since a belated
transmission increases the risk for CAVs to enter the No-AD
zone in automated mode.

The fraction r,(¢) of the reward (1) applied in model 1 is
proportional to the average speed v(f) taken over all vehicles
in the control zone:

3

rv,modell(t) = V() /Vmax,

where vipax = 36m/s is the maximal allowed speed in the
scenario.

In model 2 this definition is extended by terms account-
ing for vehicles loaded into the simulation, but not entered,
yet. For clarity, given a specific demand level, the simula-
tion software SUMO generates vehicles at a corresponding
rate and tries to insert these into the simulation scenario. If
there is not sufficient free space on the road, it keeps the
generated vehicles in a buffer. That means, these “pending”
vehicles represent a tailback not depicted in the simulation
and contain information regarding the traffic situation, valu-
able to its evaluation. Accordingly, we define the reward for
model 2 as

7y, model2(£) = V(£) + Vpend(!) — Trpend - #{pending vehicles},

“)

where Vpend(f) is the average speed of all vehicles in
the control zone and in the simulation buffer (accounted
for with speed zero), and mpeng is a constant scaling the
penalty imposed per loaded vehicle, not yet inserted in the
simulation.
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TABLE 1. Demand levels.

Level of demand (LoD)
A B C
1470 2310 3234

Qin [veh/h]

TABLE 2. Traffic compositions with vehicles shares for three different mixes.

Traffic mix Vehicle Type
MV cv CAV
Mix 1 70% 15% 15%
Mix 2 50% 25% 25%
Mix 3 20% 40% 40%

TABLE 3. Vehicle types in the simulation represented by SUMO model combinations.
The KrauB model is SUMO’s standard model, while the ACC model is described in [49].

Vehicl
Driving Mode SUMO Model chicle Type
Mv cv CAV
Car Following Krauf © ) )
ACC - [ o
Defaul - -
Lane Change ¢ a-m t ©
Parametrized LC - [ o
’ Control Transition ‘ ToC ‘ - ‘ [ ‘ o ‘

C. SIMULATION AND TRAINING SETUP

We conducted our simulations with the microscopic traffic
simulator SUMO [25], version /.6. On a two-lane motor-
way with a length of 5.0 km and a speed limit of 130 km/h,
vehicles enter the network randomly with a Poissonian dis-
tribution with a demand Qj, at the upstream part of the road.
The maximum capacity of the two-lane motorway is assumed
to be 4200 [veh/h] for a homogeneous fleet of MVs, that
means without the existence of control transitions. Since the
maximum road capacity inevitably decreases in the presence
of control transitions in all cases, and also in every case dif-
ferently, we compare those TM approaches based on the
induced demand. Three different demand levels LoD were
defined (see Table 1).

The following tables summarize the three different traf-
fic mixes with shares of manually driven (MV), connected
(CV), and connected automated vehicles (CAV) used in the
experiment (see Table 2), and also the respective vehicle
models represented by the different models in SUMO (see
Table 3). The selection of the simulated traffic mixes was
made to verify that increasing shares of CV/CAVs esca-
late traffic disruption due to higher frequency of downward
ToC events which are not efficiently distributed in space
and time, rather than to explicitly quantify the exact pene-
tration rates of CVs/CAVs inducing traffic flow breakdown
as a result of accumulated downward ToCs. In the context
of our simulation experiments, we consider that drivers of
CVs continuously monitor the operation of the automation
functions and can promptly react to ToRs. Moreover, CVs
are ACC/CACC capable and their lane change behavior is
more conservative compared to MVs. On the other hand,
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drivers of CAVs can be involved in secondary tasks dur-
ing normal operation in automated mode, and thus exhibit
delayed response to ToRs or even fail to resume vehicle con-
trol within the available lead time (CAV executes MRM on
these rare occasions). CAVs are also assumed ACC/CACC
capable, but their lane change behavior is more conservative
compared to CVs. A detailed parametrization of the utilized
SUMO models per vehicle type can be found in [30].

In the simulation, the No-AD zone starts at 2.5 km down-
stream of the network entry. The TM controller addresses
CVs and CAVs ahead of the No-AD zone by sending
take-over requests via the SUMO API traci.

For the parametrization of the TD3 training we mainly
use the default parameters provided by the stable baselines
library. For approximating the policy and the Q-function
we deploy neural networks with two hidden layers, using
[300, 400] for layer size as in [47]. The only hyperparam-
eters, which have been altered in favor of the best results,
are:

1) buffer_size: The size of the replay buffer to save expe-
riences at each step, to update the target network
episodically was set to 100000.

2) train_freq: The value to define the model update rate
of the target network was set to 300 steps.

Two different models termed model I and model 2 were
trained with the respective rewards functions. For the respec-
tive reward parameters we chose: wor = 10, mor = 100,
Tpend = 1/1200. A training episode ran for 1200s, with the
first 200s as uncontrolled warm-up in order to establish a
fully populated control zone. We let the model learn for
2000 episodes with a random seed for each episode. Both
policies were trained on the highest demand level C with
the vehicle fleet of Mix 3.

After the finished training, we ran simulations with both
models for all parameter combinations (LoD/Mix), each
combination with 10 random runs for 1 hour simulated time
per seed.

IV. RESULTS

In the following we present the results obtained from the
simulation study. We ran simulations for all parameter com-
binations (LoD/Mix) for model 1, model 2, the do-nothing
case (baseline), the deterministic control approach proposed
by the TransAID consortium [31], and a random model, that
encompasses uniformly distributed ToRs within the control
zone. Since our RL-based models were explicitly designed
with the consideration of mobility objectives, we focus on
the analysis of simulation results from the traffic efficiency
perspective. First, we evaluate the performance of all cases
based on the average travel times per vehicle and the average
distance driven in automated mode (CAV distance). Also, we
compare the control strategies for both trained models based
on space time diagrams and the spatial distribution of sent
ToRs. Finally, we analyze the training success by evaluating
the reward.
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FIGURE 6. Aggregated results for five different cases/models: baseline (dark blue),
random (light blue) TransAID (orange), model 1 (dark green), model 2 (light green).
Panel (a): Travel time for all parameter combinations; results of the baseline simulation
for parameter combinations higher than B1/Mix 1 are excluded. The medians for those
excluded combinations in ascending order are: 620.3, 978.2, 457.6, 721.8 and 1093.6s.
Compare also to Fig. 2, panel (a). Panel (b): Average CAV distance driven in automated
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A. MOBILITY PERFORMANCE
Fig. 6 presents the aggregated results of the simulation study
for all parameter combinations for both models compared to
the unmanaged (baseline) and also two alternatively managed
cases (TransAID) and (random). Panel (a) shows the indi-
vidual vehicle’s average travel times in the form of boxplots.
Panel (b) respectively presents the average covered distance
of CAVs within the control zone driving in automated mode.*
Firstly, comparing only the two trained models with each
other, we observe that travel times are almost the same for all
combinations except for C/3 where model 1 slightly outper-
forms model 2. Notably, this is the combination the models
were trained with (cf. red boxes in Fig. 6). On the other hand,
for C/3 model 2 covers significantly more CAV distance than
model 1 (about plus 300m per vehicle on average, which cor-
responds to approximately one cell length), corresponding to
the rationale of the model development, see Section III-B.
For parameter combinations C/2 to B/1 model 2 is able to
prolong automated driving for CAVs longer than model 1.
For LoD A differences in CAV distance are rather small. So,
the plain side-by-side comparison of both models leads to
the initial conclusion that both achieve a good compromise

4. Note, for better visibility, in panel (a) we excluded boxes of the
baseline simulation for parameter combinations higher than B1/Mix 1. In
panel (b) we used grouped scatter plots and drew additional lines between
groups for each model.
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between optimizing travel time and CAV distances simulta-
neously, yet with different emphasises on favouring travel
time vs. CAV distance (cf. Fig. 6, case C/3).

The good performance of both models becomes obvious
at higher demand levels when compared to the the other
three approaches. For the baseline, we first take a look at
panel (b) with the CAV distance. Due to the fact that all
CAVs perform the control transition shortly before entering
the No-AD zone, they cover the maximum possible CAV
distance, but since consecutive and simultaneous downward
ToCs cause disruptions in traffic flow, the travel time in
panel (a) increases significantly (up to the factor 6, see Fig. 2)
which ultimately results in traffic jams for parameter combi-
nations higher than B/1.5 In contrast, the original approach
from TransAID is based on distributing individual ToRs, by
forming virtual platoons for consecutive CAVs. This allows a
continuous optimization of the latest possible ToR depending
on the current speed of a CAV, achieving quite low aver-
age travel times, in fact slightly better than model 2 and
similar compared to model I (see panel (a)). But, since this
approach strongly depends on the traffic density within the
control zone, in panel (b) we can observe a steady decrease
in CAVs distance for higher parameter combinations. Both
models prevent this decline for LoD B and LoD C, but drop
noticeably in CAV distance for LoD A.

Comparing the random case to both models, it is notice-
able, that this rather simple heuristic approach performs very
well for LoD A and LoD B in terms of travel time and
CAV distance, similar to TransAID. For C/3 though, this ran-
dom approach apparently hits the capacity limit way earlier
and shows significantly higher travel times.

Overall, the highest benefits of the two RL models com-
pared to all other cases can be gained at LoD C depending on
the performance metric (travel time vs. CAV distance). Both
models seem to be able to handle lower demands and mixes,
i.e., LoD B/Mix 2 and Mix 3, that are somewhat close to
the training case, but for LoD A that mobility performance
drops for the RL models.

B. CONTROL STRATEGY PERFORMANCE

In Fig. 7 two exemplary space time diagrams are shown,
which correspond to the same parameter combination as in
Fig. 2. They illustrate that both models are very well able to
distribute downward ToCs so that no traffic jams develop.
The visible differences between panel (a) and (b) in the
distribution of the mean speed within the control zone (the
area below the white dashed line) result from the different
control strategies of the two models. The areas of lighter
blue indicate the occurrence of short episodes of slower

5. Notice that for the baseline, the average covered CAV distance for
demand level LoD A and B1/Mix1 is less than 2000m opposed to the
rest of the combinations with 2400m. This is because the ToR message is
triggered dependent on the current vehicle speed. For combinations with
low travel times, vehicles can drive almost up to their desired speed, which
is about 36m/s opposed to the rest of the parameter combinations, where
vehicles in congested traffic only drive about 5 — 10m/s.
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in Section lll-B, showing 7 cells per lane.

average speed, which do not build up to a persistent con-
gestion, though. Also, they support the argument that the
TMCs objective is to preserve a rather smooth traffic flow
without too many disruptive decelerations/accelerations by
consecutive vehicles at similar positions. Clearly, model 1
and model 2 improve the smoothness of the traffic flow
in comparison with the unmanaged case shown in Fig. 2.
Thus, the rationale of the reward design seems to have iden-
tified mechanisms related to the emergence of congestion in
that case. The trained controllers manage successfully and
counteract congestion by a distribution of ToRs.

However, the spatiotemporal diagrams rather indirectly
point to the control strategy, since the vehicle speed is
a delayed indicator of the TMCs distribution strategy.
Therefore Fig. 8 shows the spatial distribution of ToRs sent
to CAVs within the control zone for each lane. As a clear
distinction, we observe a disparate utilization of the left and
right lane between both models, as well as different spatial
distributions over the length of the control zone. Whereas
model 1 uses both lanes almost equally close to a normal
distribution pattern around 1050m, model 2 shows significant
differences in distribution (skewed distribution on left lane)
and lane utilization shifted further downstream (1600m on
right lane). This might be connected to differences in the
overall performance of the control strategies. On the con-
trary, both models show similarities in not sending ToRs to
the last cells before the No-AD zone (longitudinal position
>2000m), as imposed by the reward definitions.
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FIGURE 9. Reward per episode for model 1 and model 2.

Despite these differences, the ToC management performs
well in both cases while achieving a compromise between
travel time optimization versus preserving the automated
driving mode.

C. TRAINING ASSESSMENT

Fig. 9 shows the reward curves for the training process of the
RL-based models 1 and 2. Both models converge relatively
quickly, although model 2 apparently needs more episodes
to do so. Given that we effectively trained for 1000 steps per
episode, the final average return is about 2.2 - 2.4 for both
models. However, note that the average return for model 2
may be expected to deviate slightly due to the different
definition for r,(¢) in Eq. (1), cf. (4).

Overall, some of the variance in the reward could be
explained due to the randomness in vehicle flow and num-
bers. For the training of models 1 and 2, leading to the
performance reported in Section IV, we ran each training
run for 2000 episodes with random seeds per episode.

Additionally, we tested training runs with fixed seeds,
i.e., deterministic vehicle flows for each episode, in order
to find a smoother reward convergence (as e.g., in [50]).
Those test runs (not displayed here) indeed showed less
variance in the reward and also converged at about the same
level as the training with random seeds. Nonetheless, the
random seed training induced a better overall performance.
We consider this to be attributable to an increased versatility
of the control gained from the confrontation with a larger
variety of situations and allowing it to handle different LoD
and traffic mixes in a more robust fashion.

Moreover, it is worthwhile mentioning that the choice of
the reward definition is critical for the training success, as
well. For example, during the development, we tested one
function, which imposed rather strong penalties (i.e., negative
rewards) on the sending of ToRs. The penalties included a
similar cost gradient as in (2), which favored longer distances
in automated driving mode. From this definition, the model
did not learn to postpone ToR transmissions, as intended. In
contrast, it rather learned to reduce the occurrence of ToRs
via a reduction of the inflow. This was achieved by sending
all ToRs to the first cell in contradiction to the original
objective of prolonging the distance of automated driving.
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Clearly, an accurate design of the reward is necessary to align
the resulting model behavior with the training objectives.

V. CONCLUSION

For a range of different demand levels and ratios of auto-
mated and manually driven vehicles, we have demonstrated,
that traffic control can significantly attenuate the negative
side-effect of control transitions from automated to manual.
Four different TM methods have been explored and com-
pared to a do-nothing scenario: Two heuristic approaches
adhering to the form of conventional TM protocols, and two
based on a RL approach employing slightly different reward
functions. All methods perform similarly well, in terms
of travel times and slight improvements with the trained
RL models for prolonging the automated driving mode.
Furthermore, all protocols outperform a do-nothing solution.
Especially for higher demand levels the performance gap is
significant. It is noteworthy that the RL models were trained
with just one, relatively high demand at a fixed, relatively
high ratio of automated vehicles in the traffic composition,
but still perform properly when getting applied to lower
demands and other fleet mixes in our scenario.

The robustness of the RL approaches has been tested by
changing the demand and the vehicle fleet composition. In
all cases, we see that the traffic management can ameliorate
the potential capacity drop induced by an accumulation of
downward ToCs in transition areas. We assess that this delay
of the foreseeable capacity drop under high demand and
with high CAVs percentages will be the task at hand for
future TMCs in comparable scenarios. However, for very
large demands close to capacity limit all of the methods
must finally fail. While the two RL models, as well as the
conventional TM controller, do not differ considerably in
the maximum capacity they finally achieve, they enhance
the capacity significantly compared to the baseline approach.
The conventional TM controller TransAID, although way
better than a do-nothing approach, manages high demand
levels only by compromising the objective of preserving the
automating driving mode. On the contrary, the naive random
distribution TM approach achieves better CAV distances than
TransAID, but only performs adequately for lower demands
and hits the capacity limit earlier than the RL models.

We acknowledge that the sole objective to maintain auto-
mated driving as long as possible, although a downward
ToC cannot be avoided in such a scenario, might be con-
flicting from a traffic management perspective and should
only be considered while simultaneously tackling the adverse
impacts discovered in the baseline analysis. Manufacturers
and consumers of CAVs on the one hand might be interested
in maintaining automated driving features without external
interference, while from a traffic safety and efficiency per-
spective it can be favourable to initiate downward ToCs
further upstream. In denser and highly heterogeneous traf-
fic, belated ToRs resulting in ToCs close to a No-AD zone
also mean more complex and possibly unsafe interactions
between MVs and CV/CAVs. Therefore preserving a smooth
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and safe traffic flow should be a priority in such scenarios for
a TMC. Although limitations of the ToC model, such as not
capturing evasive and overtaking manoeuvres, may amplify
the adverse downward ToC impacts discussed before, we
think that the results presented illustrate the feasibility to
accomplish both objectives (efficient traffic + automated
driving) concurrently as long as demand and traffic mix do
not exceed the capacity limit in the scenario. In that regard,
the RL method achieves a better overall performance.

Accordingly, this work shows that an Al-based approach is
very well able to be on par with more traditional approaches,
which usually require a lot of traffic domain knowledge
to be developed. Thus, Al-approaches open the promis-
ing perspective of control solutions with a limited need for
such expertise, and offering a potential for synergies with
developments in other areas. It is still a challenging and
time-consuming task, though, to develop adequate RL mod-
els, which usually require a careful tailoring to the given
problem. Besides, the duration of the development cycle of
adapting the MDP setup and assessing the learning progress
of the altered model is often governed by the computational
complexity of the task. In our case, the training of a model
variant took about 24 hours (on a Intel Core i9-10900X CPU
10 x 3.7GHz) and numerous iterations were necessary to
find an adequate formalization and parametrization of the
training experiment.

Finally, we plan to adapt our RL-based models in future
work so that they also account for safety objectives, and
conduct an explicit microscopic traffic simulation based
safety evaluation that will encompass an in-depth analysis of
conflicts and relevant surrogate safety assessment measures
(SSMs). Moreover, the aspect on how to handle MRMs in
such traffic scenarios, which were mostly ignored in this
study, might be a future research focus for applying RL to
elaborate TM schemes, but it will take significant effort and
time, considering the rather low sample efficiency of the
training process. In addition, we think that not much more
can be gained in terms of traffic efficiency with any other TM
approach, for a scenario such as we presented, since a con-
trol transition itself, as modelled here, diminishes capacity,
and there is no method that can bring it back.
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