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ABSTRACT Modeling safety-critical driver behavior at signalized intersections needs to account for the
driver’s planned decision process, where a driver executes a plan to avoid collision in multiple time
steps. Such a process can be embedded in the Optimal Velocity Model (OVM) that traditionally assumes
that drivers base their “mental intention” on a distance gap only. We propose and evaluate a data-driven
OVM based on real-time inference of roadside traffic video data. First, we extract vehicle trajectory data
from roadside traffic footage through our advanced video processing algorithm (VT-Lane) for a study
site in Blacksburg, VA, USA. Vehicles engaged in car-following episodes are then identified within the
extracted vehicle trajectories database, and the real-time time-to-collision (TTC) is calculated for all car-
following instances. Then, we analyze the driver behavior to predict the shape of the underlying TTC-based
desired velocity function. A clustering approach is used to assess car-following behavior heterogeneity
and understand the reasons behind outlying driving behaviors at the intersection to design our model
accordingly. The results of this assessment show that the calibrated TTC-based OVM can replicate the
observed driving behavior by capturing the acceleration pattern with an error 20% lower than the gap
distance-based OVM.

INDEX TERMS Driver behavior calibration, intersection safety, optimal velocity model, vehicle trajectory
tracking.

I. INTRODUCTION

VEHICLE trajectory tracking is one of the major areas
of research in Intelligent Transportation Systems (ITS),

and is integral to other ITS applications that include driver
behavior and car-following analysis, dynamic signal tim-
ing, active traffic management, advanced driver-assistance
systems (ADAS), among others. The combination of tra-
jectory tracking and driver behavior analysis is key in
identifying risks and conflicts that may lead to crashes,
allowing practitioners to proactively implement mitiga-
tion measures. Both the tasks of accurate and efficient
vehicle trajectory tracking and driving behavior modeling
remain challenging. Most car-following models (e.g., Gazis-
Herman-Rothery (GHR), Wiedemann, Fritzsche) assume that
drivers make longitudinal decisions (i.e., acceleration) based
on assumed momentary stimuli inputs. For example, the
GHR model [1] predicts a driver’s acceleration based on
the current driver’s speed and the sensed difference in speed
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and distance from the leading vehicle. These models do not
account for the driver’s planned decision process, where a
driver could perceive an impending danger, and plans to
avoid that danger, then executes that plan in multiple time
steps. This is especially important when modeling safety-
critical or close-to-critical situations, when an ego vehicle
approaches a vehicle that slows down, forcing the driver of
the ego vehicle to start a process of avoidance or adjustment
in their speed trajectory.
There is, therefore, a need to estimate the driver intention

underlying policy. This policy is expected to potentially vary
among drivers (causing heterogeneity in driver behavior). It
might also change for the same driver based on the driving
context (e.g., driving on a freeway versus driving on an arte-
rial, executing a turning movement versus continuing straight
through an intersection, etc.). Therefore, the policy can take
a variable functional form that maps the perceived state into
an action plan (a series of maneuvers or a deceleration pro-
file). The closest form of an existing implementation of such
an approach can be found in models that attempt to capture
a latent driving intention function and then translates that
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into a predicted desired acceleration. The Optimal Velocity
Model (OVM) [2] is an example of such an approach, albeit
not explicitly designed with the safety-related input in mind.
Instead, the OVM uses the difference in distance between the
following and leading vehicle to estimate a desired optimal
velocity (using a hyperbolic tangent function form), then uses
the difference between that estimated velocity and current
velocity, as well as an intended time-to-execution parameter,
to come up with the desired acceleration/deceleration. The
issue with the OVM (in this context) is that it assumes that
drivers base their “mental intention” on a difference in the
distance only. Whereas in safety-critical situations, drivers
are more likely to change their intention based on their esti-
mate of the impending danger, as could be measured, for
example, by the time-to-collision parameter (TTC).

A. OBJECTIVE
This paper examines the hypothesis that using a car-
following model based on real-time TTC can better capture
the actual driver behavior at urban intersections. We present a
case study for a site in Blacksburg, VA, USA. Vehicle trajec-
tories are extracted from a roadside video footage. Vehicles
engaging in car-following episodes are then identified and
an iterative optimization process is formulated to calibrate
the parameters of the Optimal Velocity Model (OVM) in
terms of the estimated instantaneous time-to-collision. The
following sections of this paper are as follows: (II) a sur-
vey of related literature in driver behavior modeling, vehicle
tracking, and trajectory-based safety, (III) a detailed break-
down of trajectory data extraction and safety-based model
calibration, (IV) results and analyses of the case study, and,
(V) discussion and conclusions.

II. RELATED WORK
A. CAR-FOLLOWING BEHAVIOR MODELING
Car-following and driver behavior modeling has long been
one of the most well studied topics in traffic engineering.
Brackstone and McDonald [3] provided a systemic reexam-
ination of the then-existing car-following models, including
the GHR model, collision avoidance, linear, fuzzy logic-
based and psycho-physical models. They concluded that
albeit the extensive study of car-following models, and
the strong support of those models in terms of conceptual
bases and empirical data, the lack of time-series following
behavior is a significant limitation to those models. The
emergence of naturalistic driving and trajectory datasets and
algorithms [4] alongside advancements in traffic simula-
tion modeling provided a boost to the state-of-the-research
allowing researchers to assess driving behavior and car-
following under different traffic conditions, driver attention
and distraction scenarios, and in various roadway geometry
settings [5], [6], [7], [8], [9], [10].
One of the most widely adopted driver behavior models

is the Optimal Velocity Model proposed by Bando et al. [2].
The base model developed by Bando et al. was very
successful in describing traffic and capturing behavior during

congestion, inspiring the development of OVM-derived mod-
els to help capture further aspects of traffic flow more real-
istically. Wang et al. [11] proposed an OVM variation with
a modified optimal velocity function. Mammar et al. [12]
investigated whether a modified OVM using the inverse of
TTC as a weighing factor at given distance gap increments
would better capture the breaking state of following vehi-
cles. The proposed model was only tested hypothetically in
simulation, finding that the simulated drivers’ risk percep-
tion of rear-end collision could be significantly improved.
Lazar et al. expanded on this work [13] and also pro-
vided an exhaustive review of some of those models [14]
concluding that due to the high variability in driving behav-
ior, each model performs well under certain circumstances
and has evident weaknesses in other circumstances. There
is, therefore, a need and an immense value in develop-
ing data-driven models that would take into account the
observed driver behavior heterogeneity [15], and in case of
urban intersections, factors such as turn movement classi-
fication and signal timing, which all impact the drivers’
decision making processes during car-following episodes.
The recent advancements in the fields of vehicle tracking
and the growing availability of trajectory data and trajectory-
extraction methods make the creation of such data-driven
models achievable and necessary.
This newfound availability of trajectory data in recent

years has enabled researchers to move from the long-standing
models to developing driver behavior models that utilize
modern machine learning methods, with a focus on neu-
ral and Bayesian networks [16], [17]. Those data-driven
models have proven to produce substantial improvements,
and overcome the limitations of the conventional, mathe-
matically derived models, especially the tedious process of
parameter calibration [18], [19]. Traditional models, how-
ever, are based on traffic flow theory fundamentals and
hence are highly explainable. The current incomprehensible
nature of black-box data-driven models is a major drawback
in that regard. Another limitation in the existing literature
is the dependence of assessment on long-standing datasets
extracted at certain locations from video inference [20] and
instrumented vehicles [21] that require further assessment on
their transferability to other locations where driver behavior
may significantly vary. The evolving automotive technologies
over the years may also impact driver behavior in the same
location (improved vehicle performance and dynamics, on-
board ADAS, etc), hence there is a need for a more robust
and generalizable approach utilizing advances in real-time
trajectory extraction.

B. VEHICLE DETECTION AND TRACKING FOR TRAFFIC
SAFETY
This growing ability to extract and analyze high-quality tra-
jectory data has also enabled researchers to move from
developing predictive crash likelihood models based on
historical data to a more proactive approach of real-time
assessment of traffic safety surrogate measures [22], [23].
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Those studies assessed different safety surrogate measures,
but the time to collision is the most commonly used measure.
St-Aubin et al. have proposed a video inference based safety
surrogate framework and thoroughly assessed it in multiple
studies [24], [25], [26]. Xie et al. [27], [28] developed a
framework to comprehensively assess traffic safety from
video data by analyzing conflict risk and TTC on hourly
basis, and found a significant correlation between the actual
number of crashes and the traffic conflicts inferred through
their proposed framework. Das and Maurya [29] utilized
trajectory data extracted from an urban traffic environment
to assess traffic safety based on the interactions of TTC,
roadway center line separation, and leader-follower vehi-
cle type pairing. Estimating TTC from video data is an
ongoing research problem, recent studies have assessed TTC
estimation from on-board [30] and UAV [31] cameras.
Recent studies both in the fields of traffic safety and

driving behavior modeling show the promising prospects
of utilizing trajectory data obtained from video inference
and conducting TTC-based safety assessments. A recent
review study by Li et al. [32] concluded that there is a need
and immense potential in data-driven, trajectory-based driver
behavior modeling. Therefore, this paper aims to address the
gaps identified in the literature, both in terms of the OVM’s
formulation and data acquisition for the model’s calibra-
tion, by proposing and assessing a data-driven car-following
behavior model that can utilize the real-time high-resolution
safety assessment, in terms of instantaneous TTC, obtained
from roadside video inference.

III. METHODOLOGY
A. PREVIOUS WORK
In previous works we proposed and evaluated VT-Lane, a
computer vision-based framework real-time vehicle tracking
and detection. We implemented a combination of YOLO
v4 [33] and DeepSORT [34] algorithms for the tasks of
vehicle detection and trajectory tracking, respectively. We
then introduced the concept of NEMA phases-based virtual
traffic lanes to obtain vehicle turn movement counts and
address issues of vehicle identity switching which results
from occlusion. The base of the framework is detailed and
evaluated in [35] and [36]. The method used for reference
object scaling, distance and speed estimation is discussed and
assessed in detail in [37]. A flowchart showing the extended
end-to-end framework utilized in this study is shown in
Figure 1.

B. VEHICLE TRACKING, MOVEMENT CLASSIFICATION,
AND SPEED ESTIMATION FRAMEWORK
For this study, we utilize an extended VT-Lane framework
for the task of vehicle tracking and turn movement clas-
sification. To improve the accuracy of vehicle tracking in
congested traffic, we retrained the Deep-SORT tracker on
the UA-Detrac dataset [38], a benchmark dataset for multi-
object detection and tracking consisting of 10 hours of

video data with over 1.2 million bounding boxes of traffic-
related objects. Retraining the tracker on different vehicle
movements, types, occlusion factors, and glare conditions as
illustrated in Figure 2 and incorporating low-confidence track
filtering [39] resulted in significant performance improve-
ments in congested traffic conditions. In the United States,
the typical traffic pattern assignment for signal controllers
follows the National Electrical Manufacturers Association
(NEMA) standards shown in Fig. 3 [40]. Figure 4 shows
the site of this study from the perspective of the roadside
camera used to obtain the video data for this study. The
figure also illustrates the NEMA movement enumeration for
the site.

C. TIME TO COLLISION ESTIMATION
Following trajectory extraction and speed estimation, the
time to collision is calculated for all vehicle pairs bro-
ken down by their virtual NEMA movement lane. For the
study intersection shown in Figure 4, NEMA movements 2
and 6 have two lanes, resulting in 10 virtual lanes across
the intersection (right turners included with through moving
vehicles). The classification of vehicle movements via our
framework eases the task of calculating the time to col-
lision, as it inherently identifies vehicles that are moving
in the same lane regardless of their location inside the
intersection’s geometry. The length of vehicles reported in
the output database is used to calculate effective bumper-
to-bumper distance as illustrated in Figure 5, which is used
to calculate the time to collision as shown in Equation (1)
for the following vehicle based on the speed differential for
every pair of vehicles detected moving in the same virtual
lane within the same frame.

TTCi,n,k = � Distance− 1
2

(
Li,n,k + Li−1,n,k

) ∗ γ

� Speed
∀i,n,k (1)

where:
TTCi,n,k = Time to collision in seconds for vehicle i to the
leading vehicle i−1 moving in the same NEMA virtual lane
n during frame k.
� Distance = The Euclidean distance between the centroids
of detection boxes of the leading and following vehicle.
Li,n,k = Length of vehicle i during frame k in pixels (vehicle
length changes slightly as it traverses the intersection due to
the vanishing point problem).
γ = Conversion function for vehicle length in pixels to
meters incorporating a pixel-per-meter weight function.
� Speed = The speed differential between the following and
leading vehicles (i.e., Speedi,n,k−Speedi−1,n,k) in meter/sec.
A negative speed differential occurs when the leading is
moving faster than the following vehicle, resulting in a
negative TTC meaning that the vehicles will not collide.
To calculate the real-time TTC, during every frame of the

input video, vehicles engaged in car-following episodes are
surveyed within each virtual traffic lane. If a car-following
episode exists within a virtual lane, and the speed differential
is positive (i.e., the following vehicle is closing the gap to
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FIGURE 1. VT-Lane framework’s data flow and trajectory data utilization for real-time driving behavior modeling.

the leading vehicle) the TTC is calculated. Otherwise, the
TTC is assigned a value of infinity for that instance of the
car-following episode. This process is shown in Algorithm 1.

D. TTC-BASED OPTIMAL VELOCITY MODEL
CALIBRATION
Following TTC calculation, vehicles engaging in car-
following episodes are identified based on the threshold
shown in Equation (2). This assumes that a following driver’s
behavior is not influenced by the leading vehicle if the

estimated instantaneous TTC is greater than 20 seconds.

Leading Vehicle =
{
vehiclei-1, n, if TTC ≤ 20s
None, otherwise

(2)

We then assess the value of utilizing the instantaneous
TTC estimates for calibrating car-following models. For the
purpose of exploratory assessment in this study, we uti-
lize the base Optimal Velocity Model. The optimal velocity
of a following vehicle based on the distance gap is given
by Equation (3), from which the desired acceleration is
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FIGURE 2. Tracker retraining on the UA-Detrac dataset.

FIGURE 3. Typical 8-phase traffic controller operation [40].

FIGURE 4. Site of study and NEMA movements.

calculated using Equation (4).

vopt(s) = vo
tanh

( s
�s − β

)+ tanh β

1+ tanh β
(3)

v̇ = vopt(s)− v
τ

(4)

where:
s = Distance gap between vehicles in a car-following
episode (m).
vopt(s) = The theoretical optimal velocity for a given
distance gap (km/hr).

FIGURE 5. Effective bumper-to-bumper distance for time to collision calculation.

Algorithm 1: Time to Collision Calculation
Result: Calculating TTC for Vehicle Pairs Crossing the

Intersection
initialization;
for framek do

for virtual_lanen do
if COUNT(carn) < 2 then

Continue;
else

if cari ∃ cari−1 & ⇐⇒ � Speed ∈ R
+

then
Calculate TTCi,n,k;

else
TTCi,n,k ←∞

end
end

end
end

vo = Desired speed (km/hr), �s = Transition width (m).
β = Form Factor, v̇ = OVM acceleration (km/hr/sec).
v = Actual speed of a following vehicle (km/hr).
τ = Adaptation time (sec).
Alongside calibrating the model in terms of the distance

gap between vehicle pairs, we calibrate in terms of the
estimated real-time TTC. We also introduce a data-driven
modified acceleration function (MAF) capturing the observed
car-following behavior from video inference.

vopt(ttc) = vo
tanh

(
ttc

�sttc
− β

)
+ tanh β

1+ tanh β
(5)
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Algorithm 2: OVM Parameter Calibration
Result: Calibrating the parameters of OVM in terms of

estimated TTC.
initialization;
for movementi ∈ {through, turning} do

for episodej do
for instancek do

voptj,k ← vo
tanh

(
ttc

�sttc
−β

)
+tanh β

1+tanh β
;

v̇j,k ← (1− α)
voptj,k−vj,k

τ
+ αf (ttcobserved);

errorj,k ←
(
aj,k − v̇j,k

)2;
end

end

MSEi← 1
ninstancesi

∑nepisodesi
j=1

∑ninstancesj
k=1 errorj,k

end

v̇ = (1− α)
vopt(ttcinstance)− v

τ
+ αf (ttcobserved) (6)

where α is a weight parameter assigned to the observed
ttc-based function that is learned from the extracted tra-
jectory data, f (ttcobserved). Furthermore, we utilize the turn
movement classification from VT-Lane to produce separate
calibrated models for through moving vehicles and turn-
ing vehicles for the intersection of study as described in
Algorithm 2. For the following vehicle in each episodej
of movement typei (where i is either through or turning
movement), the OVM acceleration v̇ during instancek of the
episode is calculated based on the estimated TTC between
the leading and following vehicles. The true instantaneous
acceleration (a) of vehicles is calculated based on their
frame to frame speed changes. An optimization problem
is formulated to minimize the Mean Square Error of the
true acceleration vs OVM acceleration by calibrating the
parameters of the OVM model (vo,�s, β, τ, and α).

IV. RESULTS AND ANALYSIS
A. VIDEO INFERENCE AND VEHICLE TRAJECTORY
EXTRACTION
A 1-hour footage was recorded and analyzed for the study
intersection during the PM peak hour. The trajectory extrac-
tion and movement classification obtained via VT-Lane is
illustrated in Figure 6. A total of 2,656 vehicles were detected
and tracked for the full 1-hr footage. Table 1 shows a sample
of the actual and detected counts from a 30-minute video
segment.
Alongside the vehicle trajectories and movement classifi-

cation, car-following episodes were identified, the instan-
taneous speed and distance differentials were estimated,
and the time to collision was calculated accordingly. A
total of 588 car-following episodes were identified for the
1-hr video data. Figure 7 shows a sample car-following
episode. For both the acceleration and TTC calculations,
a Savitzky–Golay filter was applied to obtain smoother
estimates.

FIGURE 6. Trajectories and turn movement classification.

TABLE 1. 30-minute actual vs detected turn counts.

FIGURE 7. Sample car-following episode.

B. MODEL CALIBRATION
Prior to model calibration, we plot the average acceleration
versus time to collision for all 588 car-following episodes.
This was carried out to identify outlying behavior that would
bias the model. A threshold of ten clusters emerged as one
after which no significant reduction in distance to nearest
centroid was achieved to justify further clustering as illus-
trated in Figure 8 a. When grouping the episodes into ten
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FIGURE 8. Behavior clustering and data-driven function fit.

clusters, an outlying behavior cluster was identified (shown
in Figure 8 b) where following vehicles seemed to be accel-
erating despite the lower TTC (≤ 5 seconds). All members of
this cluster (72 episodes) were found to be episodes belong-
ing to NEMA phase 6, which, alongside phase 2 had the
highest volumes. One of the two lanes of phase 6, how-
ever, was a shared lane with right turners, resulting in higher

FIGURE 9. Real-time TTC-based optimal velocity function.

TABLE 2. Optimal parameters for the calibrated models.

queues, and hence the acceleration behavior was significantly
higher for episodes in this phase compared to the remaining
NEMA movements.
After identifying the outlying behavior and understanding

its causes, we took a 20% subset of the remaining observed
episodes (516 episodes) to fit a function that captures the
observed deceleration behavior based on TTC. The func-
tion is added with a weighing factor (α) to the OVM’s
acceleration function. A 3rd order polynomial was found
enough to capture the observed behavior to a satisfactory
extent, with a mean absolute error of 2.5 km/hr/sec and an
R2 of 0.70. Figure 9 shows the optimal speed function of
the calibrated OVM as a function of the TTC (the dotted
line shows the TTC-Based model with modified accelera-
tion function, which can be seen providing less conservative
optimal velocities).
Table 2 shows the optimal model parameters for the base,

the TTC-Based OVM, and the model employing the mod-
ified acceleration function (MAF) denoted TTC-MAF. The
parameters of the Base OVM were optimized based on the
gap distance for all episodes, then employing the movement
classification obtained from VT-Lane. Intuitively, both the
base and TTC-Based models were optimal with a lower
desired speed threshold for turning movements compared to
through movements. It should be noted that the �s param-
eter is in meters for the base model, and in seconds for
the TTC-Based model. The adaptation time τ is in frames
(given that the input is in instantaneous, frame-based data),
which translates to 0.20-0.25 seconds. This relatively short

VOLUME 3, 2022 171



ABDELHALIM AND ABBAS: REAL-TIME SAFETY-BASED OVM

FIGURE 10. Sample episodes from video inference.

adaptation time is attributed to the intersection nature of the
area of the study where drivers make quick decisions. The
desired velocities (vo) are in km/hr, and variables β and α

are unitless.
Given that the OVM doesn’t explicitly account for vehi-

cle dynamics, this less conservative optimal velocity function
due to the proposed modification based on observed behavior
may lead to improved performance in microscopic simu-
lation. The α parameter (weight assigned to the observed
acceleration function in the modified TTC-Based model) was
close to zero for turning movements. This is attributed to
the fact that turning movement car-following episodes only
accounted for 7% of all episodes identified, hence the func-
tion from the observed 20% subset was more representative
of through moving vehicles.
Figure 10 shows the actual vs OVM calculated accelera-

tion for all instances of car-following episodes. The figure

TABLE 3. Instantaneous acceleration error (km/hr/sec).

FIGURE 11. Percentage of change in error compared to base OVM.

FIGURE 12. Actual vs TTC-based model predicted speeds.

clearly illustrates that the TTC-Based model provides better
prediction of the deceleration behavior and can be much bet-
ter interpreted. Figure 10 (a) for the original gap-based OVM
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FIGURE 13. Sample episodes and model predicted speed and acceleration profiles.

is color-coded with the distance gap (0-20+ m) whereas
Figure 10 (b) for our TTC-based model is color-coded with
the TTC (0-10+ seconds). While no clear association can
be identified in Figure 10 (a), the association between the
following vehicles’ acceleration and TTC is very clear in the
TTC-Based model, where vehicles are accelerating or main-
taining speed at higher TTC estimates, and decelerating as
TTC decreases. It can be observed that the TTC-Based model
provides a significantly better prediction of deceleration
process.
It can also be observed in Table 3 that the TTC-Based

model results in significant improvements in the MSE and
standard deviation of errors compared to the base distance-
based model. Improvements were slightly lower for turning
movements. This is attributed to the fact that only 43 of the
588 episodes identified were turning, hence the availability
of more data for through movements resulted in a better
calibrated model. The percentage of change in error com-
pared to the base OVM model (distance-based model without
accounting for turning movement classification from video
inference) is illustrated in Figure 11.
The figure illustrates that introducing turning movement

classification alone leads to significant improvement in
the base model’s performance for capturing the car-
following behavior of vehicles executing turning movements.
Substantial improvements are achieved via the TTC-Based
model, with the TTC-Based MAF model having an error
19.84% lower than the base model.
Figure 12 shows a plot of the actual versus TTC-Based

model predicted speeds (color-coded with the TTC) for all
instances of car-following inferred from the 1-hr footage.
Intuitively, lower TTCs were associated with following vehi-
cles driving at high speeds, and vice-versa. The plot also
illustrates that the model performed significantly better at
lower following speeds, while the variance increased at
speeds higher than 50 km/hr. The average error in instan-
taneous speeds estimation was found to be 4.74 km/hr
for through movements, and 0.54 km/hr for turning
movements.
Finally, Figure 13 shows sample episodes, illustrating the

actual speed and acceleration profiles of the following vehi-
cles, the calibrated TTC-MAF OVM acceleration, and the

resulting speed profile. The calibrated model captures the
acceleration/deceleration behavior well enough to produce
comparable speed profiles to the actual data, despite the
instability of acceleration estimation induced by the high-
resolution of video inference (at 28-30 fps). The results
not only illustrate the accuracy with which the calibrated
model is able to capture the actual deceleration pattern,
but also the high stability at which this is accomplished
(i.e., no severe abrupt acceleration or deceleration). The
figure also shows the predicted acceleration and speed
profile obtained using the calibrated distance-based model
(Base OVM), showcasing the improvement obtained via our
model.

V. DISCUSSION AND CONCLUSION
In this study, we examined and assessed the value of driver
behavior modeling based on real-time vehicle trajectories
and time-to-collision inferred from traffic video data. We
utilized the ability of our VT-Lane framework to efficiently
extract accurate vehicle trajectories, movement classifica-
tion, and speed estimates to calibrate the parameters of
the Optimal Velocity Model for the area of study both
in terms of the distance gap and the estimated TTC from
video inference. The TTC-Based model was able to pro-
duce improved deceleration estimates for vehicles engaged
in car-following episodes, and result in speed profiles with
an instantaneous estimated speed error of 4.74 km/hr and
an instantaneous acceleration error 19.84% lower than that
of the base, distance-based model. The results obtained
utilizing real-time data and through the modified acceler-
ation function based on observed behavior show the high
value of infusing driving behavior models with data-driven
modifications.
The clear differences in model parameters between

straight moving vehicles and vehicles executing turning
movements at the intersection demonstrates the need for
taking into account such characteristics in modeling driv-
ing behavior at urban settings. While 3rd order polynomial
function was able to capture the observed driving behav-
ior with high reliability (R2 of 70%), further information
that can be obtained through video inference (includ-
ing, and not limited to signal status time, vehicle type,
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overall traffic density and lane occupancy, etc) can all
be utilized to develop more sophisticated observed driving
behavior functions that would potentially further improve
the performance the data-driven model. Given the high-
resolution and accuracy of the trajectories obtained through
VT-Lane, utilizing a Kalman filter or similar continuous
state estimation approach to improve the desired acceleration
estimates based on the continuity of the trajectory instead
of relying on single measurements is another route worth
exploring.
The short length of the car-following episodes, given that

vehicles are only tracked as they cross the intersection,
was a limiting factor for this study. Although vehicles
engaged in car-following within the area of study are
expected to be engaging in car-following behavior before
and/or after the monitored segment. Future studies will
be conducted on longer arterial segments to evaluate
leader-follower interactions through longer periods. Future
work will also assess and quantify the improvements that
can be obtained in microscopic simulation by using the
proposed model to calibrate site-specific driving behav-
ior and utilizing that as an external driver model. The
end-to-end nature of this study starting with extracting
vehicle trajectories from roadside cameras, and utilizing
those trajectories for calibrating a data-driven diver behav-
ior model provides a blueprint for practitioners to both
accurately assess real-time traffic safety and performance,
as well as aid in developing simulation models that bet-
ter mimic the behavior of existing on-site traffic, allowing
for a more accurate assessment of any proposed safety
interventions.
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