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ABSTRACT Real-time load information in public transport is of high importance for both passengers
and service providers. Neural algorithms have shown a high performance on various object counting
tasks and play a continually growing methodological role in developing automated passenger counting
systems. However, the publication of public-space video footage is often contradicted by legal and ethical
considerations to protect the passengers’ privacy. This work proposes an end-to-end Long Short-Term
Memory network with a problem-adapted cost function that learned to count boarding and alighting
passengers on a publicly available, comprehensive dataset of approx. 13,000 manually annotated low-
resolution 3D LiDAR video recordings (depth information only) from the doorways of a regional train.
These depth recordings do not allow the identification of single individuals. For each door opening phase,
the trained models predict the correct passenger count (ranging from 0 to 67) in approx. 96% of boarding
and alighting, respectively. Repeated training with different training and validation sets confirms the
independence of this result from a specific test set.

INDEX TERMS Intelligent transportation, long short-term memory (LSTM), neural network, boarding
and alighting passenger counting, privacy, range imaging, LiDAR.

I. INTRODUCTION

THEDAY-TO-DAY operational management of transport
systems relies on large networks of sensors, actuators,

and software to provide passengers with safe, reliable, and
affordable means of transportation. Improving on these goals
is not only of scholarly concern but the provision of acces-
sible and sustainable public transport systems by 2030 is
one of the targets within the United Nations’ Sustainable
Development Goals framework [1]. Indeed, the efficiency
and quality of service in public transportation are related to
the quality of the living conditions of many citizens.
An essential task in the management of transport systems

is the monitoring of per-vehicle load information. It provides
a valuable service for passengers to select a comfortable
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itinerary, service providers to schedule their vehicle fleet or
share revenues within a transportation network operated by
several independent companies, and policymakers to identify
structurally relevant transportation routes.
The history of automated passenger counting (APC) goes

back to themid-1970’s [2] and links to other disciplines such as
people detection, crowd density estimation, and people flow
counting. The fast development of hardware and machine
learning techniques made it possible for neural networks to
be successfully applied in various tasks related to passenger
counting. Stewart et al. [3] introduced an end-to-end peo-
ple detection algorithm in images of crowded scenes using
a recurrent neural network with Long Short-Term Memory
(LSTM) units [4]. In this algorithm, a convolutional neural
network (CNN) first encodes each image as a 15×20×1024
dimensional high-level descriptor matrix, which is subse-
quently decoded by an LSTM network into a variable-length
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sequence of bounding boxes and corresponding confidence
values that a previously undetected person is present within
the respective image region. A confidence threshold is used
to terminate the detection process [3].
For RGB-D based human detection the multi-glimpse

LSTM in [5] and an asymmetric adaptive fusion two-stream
network (AAFTS-net, [6]) were proposed. For real-time
people detection in top-view depth images from video surveil-
lance systems, WatchNet and its extension WatchNet++ were
presented in [7] and [8]. WatchNet consists of a feature extrac-
tion module and a series of prediction stages that sequentially
refine the prediction maps for human body landmarks (head
and shoulders) and is trained with artificial and real depth
data for people detection. The neural object detection method
YOLO (You Look Only Once, [9]) was used among other
applications for person detection from an overhead view [10],
for pedestrian detection [11], and for person detection in
thermal images [12]. The neural network based object detec-
tion method SSD (Single Shot multi-box Detector, [13]) is
deployed for top view people detection and counting [14].
Wang et al. introduced an end-to-end deep CNN regression

model for counting people in extremely dense crowds [15].
To reduce false positives, they intentionally included poten-
tially confusing negative samples such as lush trees, build-
ings, and some natural scene images in the training data.
Following the work of [15], CNNs have been widely
applied in human detection or feature extraction for peo-
ple counting research [16]. In the context of detecting
humans, CNNs were deployed for head-shoulder detection
in crowd images [17], for predicting density maps on a given
crowd image [18], for human detection in nighttime images
obtained by a visible light camera [19], and for passen-
ger recognition in passenger flow monitoring systems [20].
CNNs were also used for feature extraction. Gao et al. com-
bined CNN-based feature extraction with Adaboost in an
algorithm for counting people in crowded surveillance envi-
ronments based on head detection. In contrast, [22] used
CNN-autoencoder feature extraction in an algorithm esti-
mating passenger occupancy in crowds of passengers on a
bus. A region-based CNN (R-CNN [23]) was deployed in a
variety of human detection tasks, e.g., in a crowd [24], in
complex scenes [25], and in drone imagery [26].
Wilie et al. introduced an end-to-end people counting

algorithm from 2D crowd images by using a pre-trained
network, the Xception (Extreme Inception, [27]) network,
and adding a fully connected network on the top of the
pre-trained network [28]. A class of end-to-end architec-
tures called long-term recurrent convolutional neural network
(LRCN) is proposed by Donahue [29] for visual recognition
and description in video data [29]. LRCN is constructed by
combining a CNN and an LSTM network using variable-
length inputs and generating variable-length representations.
Massa et al. proposed a regression model called LRCN-
RetailNet for counting people in videos captured by low-cost
surveillance cameras in retail stores [30]. The model is
trained on sequences of a fixed number of continuous images

in time, where the number of images is a hyperparameter (in
their experiments, the three values 5, 9, 12 are used). Each
sequence is annotated with the number of people in the last
image of the sequence. LRCN-RetailNet predicts the number
of people at the time of the last frame of the video [30].
Recently, neural networks were also applied to boarding

and alighting passenger counting on video data in public
buses. Liu et al. used a CNN and the spatio-temporal con-
text model for passenger detection and passenger tracking,
respectively, and achieved a passenger counting accuracy of
93%. This APC counted 108 of 116 passengers in the bus
transportation scene [31]. In [32], a two-class SSD and a
Kalman filter are used for detecting passengers and track-
ing their movements. They conducted experiments using a
7-segment bus monitoring video where the segments have
different characteristics, such as dark/strong outside light,
crowded while getting on/off, including passengers carry-
ing children, including passengers with babies and children.
Their APC counted all 28 boarding passengers and 79
of 81 alighting passengers, resulting in an accuracy of
98%. Furthermore, they conducted some pedestrian statisti-
cal experiments in the laboratory, including single walking,
two people walking together, 5 to 6 people walking, cross
walking and squatting, etc. Their APC counted 64 of 68
“in” passengers and 54 of 61 “out” passengers for the
experiments, resulting in an accuracy of 91%.
Sun et al. introduced a depth video stream generating the

method from RGB-D videos obtained by a camera mounted
on top of the door area of three different buses. They propose
a boarding and alighting passenger counting method com-
bining a two-step (generating and refining head proposal)
head detection with a tracking algorithm for the generated
depth video samples [33]. Different from [31], and [32],
in [33] the APC was tested on a large dataset with 2000
videos with four different sub-categories, which were defined
based on the noise level (strong/mild sunlight) and crowded-
ness (crowded/uncrowded) of the scene. The performance for
the different sub-categories ranged from 72.3% to 85.4% for
boarding and from 91.3% to 93.7% for alighting passengers.
The three approaches [31]–[33] for counting boarding and

alighting passengers from image sequences perform per-
son detection and tracking with two different modules and
subsequently combine both results for the counting. In our
approach, we consider the architecturally more straightfor-
ward approach where a single neural network solves the
detection, tracking, and counting problems simultaneously
in an end-to-end learning fashion.
The development of information technology to collect

data through cameras and sensors gives rise to signifi-
cant privacy risks [34], [35]. Privacy issues become more
and more critical by collecting and analyzing vast amounts
of images and video sequences. Various privacy protec-
tion solutions for visual recognition were proposed, e.g.,
by ad hoc de-identifying face images [36], by different
methods to hide distinguishing facial information [37],
by regions of interest (ROI) based transform-domain or
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codestream-domain scrambling [38], by face morphing [39],
by distortion-based visual privacy filters [40], by a degra-
dation transform for the original video inputs [41], or by a
video face anonymizer [42].
To assure a high level of passenger anonymity when count-

ing people in sequences of color images, Skrabanek et al.
used a camera set-up for capturing images from a top-
down (orthogonal) view [20]. Low-resolution depth images
obtained by RGB-D sensors are used for privacy-preserving
human pose estimation in [43] and for head detection in
the task of counting boarding and alighting passengers [33].
Top-view depth images from a video surveillance system
are employed for detecting people [7], as well as people
committing attacks and intrusions [8].

A. CONTRIBUTIONS
Our work introduces an end-to-end algorithm for a real-time
automated boarding and alighting passenger counting system
called “Neural Automated Passenger Counter” (NAPC)
based on an LSTM recurrent neural network. We present
an LSTM network with a tailored cost function, which is
trained on a large dataset of 3D LiDAR video recordings
of individual door openings (hereafter called “sequences,”
see Fig. 1) to automate passenger counting (Section III). It
achieves high performance in a series of counting experi-
ments (Section IV): On average, the algorithm obtains an
exact count in 96 out of 100 sequences for both boarding
and alighting passengers. The magnitude of the error made
in the miscounted sequences is small. The algorithm fails to
count only 1.46% of boarding and only 1.11% of alighting
passengers (see Section IV). This performance is superior to
the performance reported for three recently proposed meth-
ods for counting boarding and alighting passengers [31]–[33]
(Section V).
Counting experiments were conducted on a large set of

manually labeled videos recorded with 3D LiDAR cam-
eras that are installed over the doorways of an eight-door
German regional train with a top-down/high-angle per-
spective (Section II). At least three independent labeling
assistants manually annotated the events (that is, boarding
and alighting passengers) in each sequence using additional
grayscale video recordings (320×240 pixels at 10 frames per
second). If no consensus upon the correct annotation (that is,
upon the total number of events, and upon their timestamps
up to an intra-labeler standard variation of 2 seconds) was
reached, the number of viewers was increased up to seven
before an administrators’ decision upon the correct anno-
tation of that sequence was made. Even if their annotation
was difficult for human viewers, many challenging sequences
could be retained from rejection by this approach.
The NAPC system accepts sequences with hundreds of

frames, whose lengths are variable and only determined
by the duration of a realistic door opening phase and the
recording frame rate. It reliably predicts passenger counts
from low-resolution depth information with just 20 × 25
pixels (see Section IV), making our NAPC a privacy-aware

passenger counting system. Learning is accomplished in an
end-to-end manner. No background modeling, head detec-
tion, or trajectory tracking is required. Counting is realized
through a single neural network architecture. A similar
approach to our method is LRCN-RetailNet [30] for count-
ing people in a retail store. Both approaches, NAPC and
LRCN-RetailNet, consider the people counting task as a
regression problem. While LRCN-RetailNet takes a fixed
number (5, 9, or 12 frames) of the RGBP video sequences
obtained by combining color information and extracted fore-
ground (people) information as input, NAPC takes a variable
length of video sequences recorded with 3D LiDAR cameras
as input. Whereas LRCN-RetailNet predicts the occupancy
at the store, our method predicts the number of boarding and
alighting passengers during a door opening phase. To our best
knowledge, our method is the first end-to-end recurrent neu-
ral learning algorithm for a boarding and alighting passenger
counting system from 3D LiDAR video recordings.
A tailored cost function and data augmentation strate-

gies (such as mirroring or backward-playing of video, see
Section III) is used to maximize the information extracted
from a given training set such that the number of required
training videos can be minimized. Approx. 2,000 sequences
are already sufficient to train an NAPC network from ran-
dom initialization to high accuracy (see Section IV-G). In
our setting, this amounts to six days of data collection which
underpins the practical significance of our approach.

II. THE BERLIN-APC DATASET
For the evaluation of our system, we employ a large-
scale dataset of APC-relevant image sequences (Berlin-APC
Dataset, [44]). It consists of 12,956 sequences with a shape
of t × 20 × 25, where t denotes each sequence’s variable
number of frames. Note that only 3D LiDAR (but no RGB)
information is captured, resulting in one channel per pixel.
(The tradeoff between this approach and other sensor types
was not subject of this research.) This mode of recording
does not allow the identification of individual passengers (of
Fig. 1) but preserves enough information to give an accurate
algorithmic passenger count (see Section IV). The video
sequences were recorded in 2017 by 3D LiDAR cameras
mounted above the doors of a regional train under regular
operation in the Berlin metropolitan area. Every sequence
is annotated by the number of boarding and alighting
passengers (excluding children) as a label.
The recordings were made at 40 frames per second but

were later reduced to 10 frames per second. Each pixel takes
floating-point values between 0 and 1, where 0 is closest
to the sensor and 1 is 4 m away from the sensor. After
reducing the framerate, the number of frames per sequence
ranges from 56 to 3275 (avg. ~190, see Table 1). Each
sequence shows one entire door opening phase in a top-down
perspective, including the physical opening and closing of
the pictured sliding door (see Fig. 1 for sample frames).
Each sequence was initially given to three human labelers

who independently annotated the timestamp and direction
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FIGURE 1. Sample frames from the depth sensor. The door is located at the top of
the frame’s field of view. Each sequence begins with a door opening (a), then shows
zero or more passengers boarding and/or alighting (b,c), and ends with a door
closing (a). There may be noise distorted frames at the end of a stream after the door
closing (d).

(boarding or alighting) of every adult passenger they dis-
cerned in the sequence using a specialized labeling software.1

An additional grayscale video recording with 320 × 240
pixels at 10 frames per second of every scene was made
available to the labeling assistants to enhance clarity and
comprehensibility. Rare events such as dense crowds or large
objects could be annotated in a free-text field. After anno-
tation, the labelers were asked to mark every sequence as
decidable or undecidable. Sequences marked undecidable by
at least two labelers (primarily due to sensor errors) were
rejected.
It was then checked whether the three initial labelers

agreed upon the total counts per category and direction.
If there were no simple majority (1,270 out of 12,956
sequences, 9.80%), the sequences would be re-examined by
up to four additional human annotators. If still no major-
ity upon a correct label was reached (396 out of 12,956
sequences, 3.0%), an administrators’ decision finally deter-
mined the label. The per-sequence totals of boarding and
alighting adults were then stored. This iterative approach
ensured that dense crowds and sequences with many passen-
gers obtain consistent labels after careful manual inspection.
Though comparatively rare, their sequences are a cornerstone
for training a neural network and evaluating its predictive
performance.
This procedure yielded a dataset of 12,956 sequences

with 26,243 boarding and 26,164 alighting events; only

1. We used the video-based annotation and counting tool VisualCount,
developed by Interautomation Deutschland GmbH, Berlin, Germany.

TABLE 1. Statistics of the Berlin-APC dataset. Left: Distribution of the number of
frames per sequence. Right: Distribution of the number of boarding and alighting
events per sequence.

382 sequences were unusable. The detailed statistics are
summarized in Table 1.

III. THE NAPC-APPROACH
A. THE NETWORK ARCHITECTURE
There are two main approaches in deep learning which are
capable of modeling temporal dependencies. Autoregressive
neural networks like WaveNet [45] condition their new
prediction on previous ones. Plain recurrent neural networks
(RNN) [46], gated recurrent units (GRU) [47] or LSTMs
maintain past information in hidden states throughout the
sequence. Plain RNNs can not maintain information through-
out long sequences, and GRUs are less capable of solving
counting problems compared to LSTMs [48]. Thus, LSTMs
are chosen.
The input data is the above mentioned Berlin-APC Dataset

(see Section II). Every frame is represented as a 500-
dimensional vector by concatenating pixel rows. The fully
connected input layer reduces the input vector to a smaller
representation. This reduced representation is then propa-
gated through the LSTM layers. The output is combined
with a second fully connected layer into the final two
output classes, namely the counted boarding and alighting
passengers.
We propose the network architecture shown in Fig. 2.

Finally, the two major hyperparameters of the network’s
structure are the depth and the height of the LSTM
core. Those were optimized using standard hyperparameter
selection procedure (for details, see Section IV-F).

B. DATA AUGMENTATION
We apply the following data augmentation to each sequence
independently at every epoch: The neural network decides
whether a passenger is passing through the door, which
is centered on the top of each frame (see Fig. 1). This
property must not be changed. Thus, the sequence labels
remain valid when performing a left-right mirroring of each
frame, keeping the door position fixed at the top center
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FIGURE 2. The proposed neural network architecture. The values of each frame are
passed through a fully connected layer with the output size of 50, followed by a Leaky
Rectified Linear Unit (LReLU) [49] with the slope parameter α set to 0.3. The 5
subsequent hidden layers are LSTMs with 50 cells each. Their output is reduced again
with a fully connected layer. Followed by a LReLU with the slope parameter α set to
−1. The final outputs are the predictions for our two output classes.

of the view. (Mirroring all frames upside-down invalidates
the sequence as the door would flip to the bottom, and
thus change the region of interest every time.) Due to the
low-resolution data, reversing the sequence does potentially
distort the view on the objects but does not change the posi-
tion of the door. When reversing the sequence, previously
boarding passengers are now leaving the vehicle and vice
versa, i.e., swapping the boarding and alighting labels yields
a valid label for the reversed sequence. Both augmentations
(left-right mirroring and reversing) are applied independently
with a probability of 0.5.

C. SIMPLE LOSS
Each sequence is paired with only one label per class (the
two accumulated counts of the boarding and alighting pas-
sengers). The network processes the whole sequence at once,
and the prediction of the last frame is compared to the
label. The same approach was used in [30] and also works
for the NAPC. Employing more control over the network’s
loss without acquiring more information about the sequences
themselves leads to event-precise predictions. Therefore, the
error is calculated for each frame. This may improve the
gradient flow through time.
Valid predictions are bounded by zero from below and the

respective labels from above, as shown in Fig. 3. We refer
to them as the lower and upper bounds.
The error is calculated as follows: Network predictions of

boarding or alighting passengers are updated at every frame
of the sequence. Let k be the index of a sequence Xk ∈
R
tk×500 with tk frames, and let Yk ∈ N

2 be the corresponding
labels, with the two output classes. Then, the upper bound
Uk ∈ N

tk×2 for that sequence is given by

Ukij = Ykj, for all i ∈ {1, . . . , tk}, j ∈ {1, 2} (1)

and the lower bound Lk ∈ N
tk×2 is given by

Lkij =
{

0 if i < tk,
Ykj if i = tk,

for all i ∈ {1, . . . , tk}, j ∈ {1, 2}.
(2)

FIGURE 3. Illustration of the upper and lower bounds for an example stream. The
top and bottom panels show the actual accumulated number for boarding (top) and
alighting (bottom) passengers (jagged green line). The red dashed line denotes the
upper bound, which is always equal to the total number of boarding or alighting
passengers. The dashed blue line denotes the lower bound, which is zero except for
the last frame.

Intuitively speaking, we require the network to count at most
as many events as the label prescribes; as well as to count
at least zero events, except for the last frame. For the last
frame we require the network to exactly predict the label of
that sequence. Let Ŷk ∈ R

tk×2 denote the NAPC’s prediction
of that sequence, which is always greater or equal to zero
due to the activation function (see Fig. 2). Then the error
Ek ∈ R

tk×2 is given by how much the bounds are violated,

Ek = max
(
0, Ŷk − Uk

)
︸ ︷︷ ︸

overcount

− min
(
0, Ŷk − Lk

)
︸ ︷︷ ︸

undercount

, (3)

where the minimum and maximum operate elementwise.
Minimizing the simple loss results in networks which only

predict zeros. This is due to two reasons: First being a sig-
nificant fraction of sequences not containing any events in
either class (see Table 1). However, the second and more
influencial one being the loss function in combination with
the labels. To clarify the problem, assume for simplicity no
boarding and alighting events for a sequence Xk. The accord-
ing labels are both zero. Placing it in Eq. (1) and Eq. (2)
results in Ukij and Lkij being zero for every i ∈ {1, . . . , tk}
and j ∈ {1, 2}. Substituting Uk and Lk in Eq. (3) with zero,
the resulting error Ek is calculated as:

Ek = max
(
0, Ŷk

) − min
(
0, Ŷk

)
⇒ Ek = Ŷk.

Which holds because of the final activation function of the
network. Thus, every prediction which is not exactly zero
produces an error. When this error is minimized due to a
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FIGURE 4. Illustration of the upper and lower bounds for an example stream created
by concatenating three streams (boarding passengers only). Similar to Fig. 3 the red
dashed line marks the upper bound, and the blue dashed line the lower bound. The
bounding box of the second stream is raised by 11 according to the label of the first
stream. Therefore, maintaining states between consecutive streams and accumulating
passenger counts (jagged green line) over time.

large amount of no events, the only leftover error is produced
for the last frame for any label bigger than zero, which
is negligible in sequences with up to several thousands of
frames.

D. REFINED LOSS
To overcome the aforementioned problem, we concatenate
sequences to create longer sequences with intermediate
counting ground truth. Thus counts of the concatenated
sequences are accumulated. The bounding boxes of the con-
catenated sequences (see Fig. 4) now stack on top of each
other but moved along the time axis. The new loss func-
tion is defined as follows: Let k and l be the indices of the
sequences Xk ∈ R

tk×500 and Xl ∈ R
tl×500. The concatenation

of these two sequences

X∗ = [
Xk Xl

] ∈ R
(tk+tl)×500

contains two successive door opening phases, and the upper
and lower bounds U∗,L∗ ∈ R

(tk+tl)×2 of the concatenated
sequences are given by the sum of the two individual bounds,
i.e.,

U∗
ij =

{
Ykj if i ≤ tk,
Ykj + Ylj if i > tk,

and

L∗
ij =

⎧⎨
⎩

0 if i < tk,
Ykj if tk ≤ i < tk + tl,
Ykj + Ylj if i = tk + tl,

where i ∈ {1, . . . , tk + tl} and j ∈ {1, 2}.
Given a neural prediction Ŷ∗ ∈ R

(tk+tl)×2 the loss function
now reads as

E∗ = max
(
0, Ŷ∗ − U∗) − min

(
0, Ŷ∗ − L∗).

The number of concatenated sequences is a hyperparam-
eter of the learning procedure. It was fixed to a length of
five for all experiments.

FIGURE 5. Learning curves for several NAPC instances trained on eight different
partitions of the dataset into training, validation, and testing subsets and four
repetitions per partitioning (total of 32 models). The figure shows the epoch-wise
average of the validation accuracy (mean of boarding and alighting direction, thin
orange line), ±2 times the epoch-wise standard deviation (orange shaded area), and
the analogously plotted training accuracy (blue). The thick lines visualize the
validation (dark orange) and training (dark blue) accuracy of a randomly selected
single NAPC instance. The vertical line indicates the epoch with the highest attained
validation accuracy after the training was stopped; the corresponding model was
selected for testing. Note that the training accuracy is determined using
concatenations of five sequences (see Section III) and is, therefore, lower than the
validation accuracy.

E. LEARNING PROCEDURE
We use the Adam optimizer [50] with a fixed learning rate
of 0.001 when training an NAPC model. It runs for a fixed
number of 5,000 epochs, where the prediction accuracy is
determined after every 10th epoch on the validation set. The
model with the highest validation accuracy is selected for
testing (see Section IV and Fig. 5). Unless noted otherwise,
all experiments use 5 LSTM layers with 50 LSTM cells each.
The sequences are concatenated as described previously and
are batched together to 32 concatenated sequences. Thus,
every batch consists of 160(= 5 × 32) randomly drawn
sequences until the training data is exhausted and a new
epoch begins.

IV. RESULTS FOR THE BERLIN-APC DATASET
We next present a series of experiments that demonstrate the
high passenger counting accuracy of NAPC on the previously
introduced dataset. To that end, we first formulate the passen-
ger counting task in terms of a classification and a regression
problem, and compute the respective performance indices.
We then explored how prediction performance depends on
the hyperparameter selection and the required amount of
available training samples. To increase the robustness of our
experiments, the splitting of our dataset into a training, vali-
dation, and test subset is done along the lines of the original
2017 recording days. That is, if sequences are randomly
sampled, always entire recording days are drawn rather than
individual sequences (a similar approach is chosen in [33]).
To that end, the sequences recorded at 6 out of 31 recording
days (approx. 20%) were chosen at random (with random
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seed S) to build a test set, HS , of size HS ∈ N denoted by

HS :=
{
XS,k ∈ R

tk×500 : k = 1, . . . ,HS
}
,

where tk denotes the number of frames of the k-th sequence.
The remaining 25 recording days are split into a training,
TS , and validation, VS , subset in a 3:1 ratio. To simplify
the notation, we drop the random seed index S in the fol-
lowing. After a randomly initialized NAPC instance was
trained using T and model selection was done using V , we
computed for each sequence Xk ∈ H the prediction tensor
Ŷk ∈ R

tk×2 (k = 1, . . . ,H). The prediction of the last frame
Ŷk[tk, :] ∈ R

2 is the final algorithmic count, where [·, ·]
denotes standard array indexing. We denote by

Ŷ(b)
k := round

(
Ŷk[tk, 1]

)
and Ŷ(a)

k := round
(
Ŷk[tk, 2]

)
the final boarding and alighting count, respectively, where
round denotes standard integer rounding. Intuitively speak-
ing, Ŷk[:, 1] contains the prediction of the entire boarding
time-series (that is, the neural prediction to the given input
sequence Xk), and Ŷ

(b)
k contains the predicted boarding count

at the last frame, rounded to the next integer. The value for
Ŷ(a)
k is similarly extracted from the last frame of Ŷk[:, 2]. The

labels for the boarding and alighting passengers are likewise
defined as Y(b)

k and Y(a)
k , respectively, as Yk is the count until

the last frame.
The results presented were obtained by the following

scheme: First, we used eight different random seeds S to
sample independent random partitionings of the entire dataset
into the training, validation, and holdout sets T , V , and H as
described above to estimate the performance of our approach
independent of the specific choice of the training and hold-
out sets. For each of these different partitionings, we then
trained four randomly initialized NAPC networks each to test
the robustness of the performance results against different
influences of model initializations and against different data
samples used for training and testing. That is, 32 models
were trained in total.

A. CLASSIFICATION PERFORMANCE
We first looked at the passenger counting problem in terms of
a classification problem, that is, every sequence has a discrete
class-label in N × N. We denote the boarding accuracy of
an NAPC network by

ACCb :=
∣∣∣{k = 1, . . . ,H : Ŷ(b)

k = Y(b)
k

}∣∣∣
H

,

that is, the share of correctly classified sequences relative to
the total amount of sequences in the test set H. The alighting
accuracy ACCa is defined analogously.
Our approach achieved a boarding accuracy of 0.9615

(average over all models, min: 0.9522, median: 0.9613, max:
0.9711), i.e., approx. 96% of all sequences in the test set were
classified correctly. The accuracy only varied by 2 percentage
points from training to training. That is, the accuracy was
independent of the choice of the test set, and this held for
both the boarding and the alighting direction, see Table 2.

TABLE 2. The randomly initialized NAPC networks were trained and evaluated on
eight different partitionings of the available dataset into a training, validation and test
set. The reported values are the test set metrics.

B. REGRESSION PERFORMANCE
The passenger counting problem can also be understood as
regression task which allows for the quantification of count-
ing errors. To that end, the mean absolute and mean absolute
percentage errors in boarding direction (MAEb and MAPEb)
are given by

MAEb := 1

H

H∑
k=1

∣∣∣̂Y(b)
k − Y(b)

k

∣∣∣,

MAPEb := 1

H

H∑
k=1

Y(b)
k �=0

∣∣∣∣∣
Ŷ(b)
k − Y(b)

k

Y(b)
k

∣∣∣∣∣.

The MAE and MAPE in the alighting direction (MAEa and
MAPEa) are defined similarly. Note that the MAPE formula
excludes sequences with zero passengers to avoid division by
zero. Since the models summarized here classify a sequence
with zero boarding passengers correctly with a probability
>99%, this exclusion does not strongly affect the MAPE’s
significance. In line with [33], we also report the mean
absolute percentage error in the boarding direction relative
to the average number of boarding passengers (including
sequences with zero passengers),

MAPEb := 1

H

H∑
k=1

∣∣∣̂Y(b)
k − Y(b)

k

∣∣∣
Y

(b)
,

where Y
(b)

:= 1
H

∑H
k=1 Y

(b)
k = 2.03. In the alighting

direction, MAPEa is defined similarly with Y
(a) = 2.02.

Our models achieved a boarding MAEb of 0.0595 (average
over all models, min: 0.0337, median: 0.0535, max: 0.0944),
see Table 2, i.e., a typical trained NAPC network over- or
undercounted approx. 6 boarding passengers per 100 door
opening phases. The relative error indicated by the boarding
MAPEb was on average 0.96% (min: 0.76%, median: 0.94%,
max: 1.21%), i.e., a trained NAPC network over- or under-
counted approx. 1% of boarding passengers in the median
of all door opening phases. The relative error indicated by
the boarding MAPEb was on average 2.76% (min: 1.80%,
median: 2.78%, max: 3.91%), hinting at larger errors in
sequences with more passengers. The results for the alighting
direction were similar, see Table 2.
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C. COUNTING METRICS
We further propose to employ the following two metrics tai-
lored to the passenger counting task. First, the global relative
bias in boarding direction �

(global)
b is defined by

�
(global)
b :=

∑H
k=1 Ŷ

(b)
k∑H

k=1 Y
(b)
k

− 1.

The global relative bias in alighting direction �
(global)
a is

defined analogously.
Our models achieved a boarding bias �

(global)
b of −1.46%

(average over all models, min: −2.79%, median: −1.49%,
max: −0.15%), i.e., a trained NAPC network counted in the
median 985 passengers boarding for every 1,000 manually
counted boarding passengers (similar results for the alighting
direction).
Second, we computed the 95% confidence interval (CI)

of a t-test-induced equivalence test [51] with the alternative
hypotheses

H0 : |μ| ≥ m, i.e., a systematic boarding count error

H1 : |μ| < m, i.e., no systematic boarding count error

where m > 0 is the required equivalence margin, and μ is
the (unknown theoretical) MAPEb if the test set contained
an infinite number of sequences (i.e., H → ∞; analogously
defined for MAPEa). Then, if the confidence interval is fully
contained in the interval [ −m,m], the hypothesis H1 holds
with a probability of 95%.
In our experiments, we achieved a lower bound on the

confidence interval CI(lower) for the boarding direction of
−2.24% (average of over all models, min: −4.01%, median:
−2.14%, max: −0.57%) and an upper bound CI(upper) of
−0.68% (average of over all models, min: −1.57%, median:
−0.65%, max: 0.28%). Note that the zero (that is, a theoreti-
cally unbiased system) was not contained within the median
confidence interval, but the equivalence test suggested an
undercounting bias. The results for the alighting direction
were similar. A typical fully trained NAPC network would
not have passed the equivalence test for the boarding direc-
tion with an equivalence margin of m = 0.01 as suggested
in [52] since the 95% CI is not fully contained in the interval
[−m,m].

D. CHALLENGING SEQUENCES AND RARE EVENTS
Next, we posed the question of how well a trained NAPC
network handles sequences that contain challenging events
such as large objects, crowds, bicycles, or lingerers. To
answer this question, we further examined a trained NAPC
network from the previous section. First, we plotted its train-
ing and validation accuracy together with the average (taken
over all 32 previously trained NAPC networks) of the accu-
racy on the training set and the accuracy on the validation
set along with ±2 times their standard deviation in Fig. 5.
We further marked the epoch with the highest attained val-
idation accuracy after the training was stopped. Our results

TABLE 3. Selected test set metrics for downsampled sequences (average over
repeated independent trainings, standard deviation in brackets).

show that all training repetitions had a steep increase in val-
idation accuracy up to approx. 500 epochs, and only minor
improvements after approx. 4,000 epochs.
We further plotted the error distribution, that is, the

distribution of the differences between the manual and
the automated count, as histograms in Fig. 6. Over the
entire test set, we observed that average differences are
close to zero with a tendency to undercount. Notably, the
fully trained NAPC instance never missed more than six
passengers—even for challenging sequences. (Similar results
were obtained for the alighting direction and when analyzing
the other models summarized in Table 2.) If a door open-
ing phase featured a dense passenger sequence, a passenger
jam, or more than 20 boarding passengers, the accuracy
decreased to merely 55% due to undercounted (that is, over-
looked) passengers. This is also observed in the confusion
matrix (not reported here). The distribution for lingerers
is right-tailed, which indicates that lingerers were often
double-counted. Bicycles or other large objects had a slight
adversarial effect on counting performance, decreasing the
accuracy by approx. 7 percentage points.

E. RESOLUTION TRADEOFF
To determine the tradeoff between the spatial resolution
of the depth video and the performance of our count-
ing system, we artificially decreased the resolution of the
input data by downsampling (bi-linear spline interpolation
with anti-aliasing) simulating different sensor resolutions
(15 × 18, 10 × 12, 5 × 6, and 2 × 3 pixels). The data was
then upsampled to the original resolution of 20 × 25 pix-
els (using the same method) in order to keep the network
architecture constant over the entire experiment. For each
of the four datasets, a randomly initialized NAPC instance
was trained. This experiment was repeated five times with
different random seeds S , i.e., a total of 20 additional
NAPC instances were trained. The results are summarized in
Table 3. For convenience, we also state the relevant metrics
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FIGURE 6. Histogram of boarding errors for a fully trained NAPC instance. The
panels show the distributions for the entire test set (top left), for sequences with at
least one bicycle, or at least one large object (top right), for sequences with less than
20 passengers boarding (middle left), for sequences with more than or equal 20
passengers boarding (middle right), for ‘dense’ passenger flows with concourse (i.e.,
there is no visible gap between people in at least one frame, bottom left), and for at
least one lingerer (i.e., a person that abides on the door line, bottom right). Note that
the vertical axis has a logarithmic scale.

for the full-resolution experiment (without downsampling)
from Sections IV-A–IV-C as a reference.
Counting performance remains stable for lower resolu-

tions down to a resolution of 5 × 6 pixels, for which the
performance slightly decreased in all metrics accompanied
by an increase of the standard deviation (i.e., an increased
dependence of the performance on the chosen holdout set).
Still, more than 95% of all sequences in the holdout set
are counted correctly. Only when the resolution is reduced
to 2 × 3 pixels, counting performance drops significantly,
and correct counts are achieved for 45% of all sequences
only. While we consider a resolution of 20 × 25 pixels to
be low enough to prevent the identification of single indi-
viduals, even lower resolutions down to 10 x 12 pixels can
be employed without sacrificing counting performance.

F. HYPERPARAMETER VALIDATION
Next, we validated the choice of the LSTM network’s depth
and height. To that end, we fixed a training, validation
and test partitioning of the entire dataset and trained a
total of five NAPC instances each for the hyperparameters

FIGURE 7. Boxplots of the test set accuracies jointly plotted for the boarding and
alighting direction after training with different combinations of hyperparameters (see
axis labels). For every tuple, the orange line denotes the median accuracy; the grey
box extends from the lower quartile accuracy q0.25 to the upper quartile accuracy
q0.75. The left (right) whisker denotes the lowest (highest) attained accuracy above
q0.25 − 1.5(q0.75 − q0.25) (below q0.75 + 1.5(q0.75 − q0.25)). The attained accuracy
values that do not fall between the whiskers are plotted as flier points. The networks
with 5 LSTM layers with 50 cells each show both the smallest variation (smallest
interquartile range) and the highest accuracy.

depth ∈ {1, 2, 5, 10} and height ∈ {10, 20, 50, 100}, i.e., a
total 80 NAPC instances. Thereby, we obtained for each
tuple (depth, height) a total of ten values for the performance
of a trained model in terms of its boarding and alighting
accuracies. We jointly visualized the distribution of these
ten accuracy values for each hyperparameter configuration
in Fig. 7. The choice of 5 LSTM layers with 50 cells
each reached the highest accuracy and exhibited the smallest
variation (in terms of inter-quartile range). These findings
are confirmed by the analogous plot of the hyperparameter
validation in the global relative bias �(global) (not reported
here).

G. MINIMAL REQUIRED TRAIN SET SIZE
Finally, we decreased the number of recording days provided
to the training procedure while keeping all other parameters
constant. More precisely, we drew a fixed validation and
test set and varied the number of recording days used for
training. Unused sequences were discarded. This procedure
was validated with five different seeds S , that is, with five
different training, validation and holdout sets. Similar to
Section IV-F, we jointly visualized the boarding and alighting
accuracy as a function of the train set size, see Fig. 8. Our
results show that training can reach an accuracy above 90%
in both directions with as few as approx. 1,000 sequences,
but is not robust as it depends on the choice of the test
set. Training the model with 2,000 sequences already had a
high chance of reaching accuracy values of 90% and above,
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FIGURE 8. Boxplots of the test set accuracy as a function of the training set size,
jointly plotted for the boarding and alighting direction. The training set included 1 up
to 18 recording days. The corresponding number of sequences is provided in
brackets. (This number varies because different recording days are used in the
respective trainings, depending on the seed.) For details of the boxplot
representation, see Fig. 7.

and only failed to do so once. When using around 5,000
sequences, none of the trained models had an accuracy below
90%. In the Berlin-APC dataset, this amounts to around two
weeks of in-vehicle video material collection.

V. CONCLUSION
We introduced a real-time Neural Automated Passenger
Counting system (NAPC), which is based on an end-to-end
LSTM recurrent neural network. NAPC counts the number
of boarding and alighting passengers from 3D LiDAR videos
obtained by a top-down sensor during door opening phases.
A direct quantitative comparison with other counting algo-

rithms is not possible because they were tested on datasets
different from ours in the context of different real-world
scenarios, distinguished, e.g., by location (urban/rural), type
of vehicle (bus/train/tram), sensor (RGB/RGB-D/depth-only,
with various resolutions), number of samples to test, or
viewpoints (tow-down/oblique-view). However, it is possible
to test whether our approach yields a performance com-
parable to the performance of other counting algorithms
whereby each algorithm is tested in the scenario it was
designed for. NAPC counted on average approx. 99% of
the boarding and alighting passengers in our test data. This
performance is superior to counting 108 of 116 passengers
(i.e., approx. 93%, jointly for both directions) reported in
the scenario of [31], and counting 107 from 109 passengers
(i.e., approx. 98%, jointly for both directions) reported in
the scenario of [32]. Note that the authors of [32] report
an accuracy of 100% for the boarding direction; however,
their test data consists of only 28 boarding passengers (ours:
ranging 4555–5841 boarding passengers, i.e., a roughly 200
times bigger test set). Looking at the performance mea-
sure of [33], NAPC obtained on average an absolute relative
error of approx. 3% for both boarding and alighting pas-
senger counting, which is superior to all four sub-categories
reported in the scenario of [33] (15% absolute relative error

for boarding, and 6% for alighting passengers, respectively
in the best-performing sub-categories). As we have pointed
out, these results must be interpreted with caution as bet-
ter performance indices could also be explained by other,
scenario-dependent factors. However, it can be concluded
that the use of deep learning on low-resolution depth-data
leads to results competitive with other APC algorithms.
Besides looking at performance metrics, we stress the

following advantage of NAPC compared to other deep
learning and/or classical methods: Unlike three recently
proposed boarding and alighting passenger counting meth-
ods [31]–[33], NAPC is based on an end-to-end architecture.
No separate background modeling, head detection, or trajec-
tory tracking is required. Our experiments were conducted
on a large-scale dataset of approx. 13,000 depth-only record-
ings with a resolution of 20 × 25 (or less) pixels. This
demonstrates the possibilities to build a privacy-friendly APC
system with competitive counting performance based on a
deep-learning approach, avoiding unnecessary data collection
in the public sphere.

SOURCE CODE / DATASET AVAILABILITY
The source code of the TensorFlow implementation of NAPC
is available at https://github.com/nicojahn/open-neural-apc.
The Berlin-APC Dataset [44] can be downloaded at

https://dx.doi.org/10.14279/depositonce-12205.3.
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